Запасной полисахарид растений это. Полисахарид - это что? Применение полисахаридов и их значение

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Запасные полисахариды. Запасной полисахарид растений это


Полисахариды - это... Что такое Полисахариды?

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Классификация полисахаридов

К полисахаридам относятся вещества, построенные из большого числа остатков моносахаридов или их производных. Если полисахарид содержит остатки моносахарида одного вида, его называют гомополисахаридом. В том случае, когда полисахарид составлен из моносахаридов двух видов или более, регулярно или нерегулярно чередующихся в молекуле, его относят к гетерополисахаридам.

К полисахаридам относятся, в частности:

  • декстрин — полисахарид, продукт гидролиза крахмала;
  • крахмал — основной полисахарид, откладываемый как энергетический запас у растительных организмов;
  • гликоген — полисахарид, откладываемый как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений;
  • целлюлоза — основной структурный полисахарид клеточных стенок растений;
  • хитин — основной структурный полисахарид экзоскелета насекомых и членистоногих, а также клеточных стенок грибов;
  • галактоманнаны — запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева;
  • инулин - резервный углерод сложноцветных;
  • глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит;
  • амилоид — применяется при производстве пергаментной бумаги;
  • многоглюкоза — многоконечный продукт гидролиза большинства многосахаридов.

Функциональные свойства

Структурные полисахариды придают клеточным стенкам прочность.

Водорастворимые полисахариды не дают клеткам высохнуть.

Резервные полисахариды по мере необходимости расщепляются на моносахариды и используются организмом.

Литература

  • Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M Essentials of glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9
  • Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J Essentials of glycobiology. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9
 Просмотр этого шаблона Углеводы Общие: Геометрия Моносахариды Мультисахариды Производные углеводов
Альдозы · Кетозы · Фуранозы · Пиранозы
Аномеры · Мутаротация · Проекция Хоуорса
Диозы Альдодиоза (Гликольальдегид)
Триозы Кетотриоза (Дигидроксиацетон) · Альдотриоза (Глицеральдегид)
Тетрозы Кетотетроза (Эритрулоза) · Альтотетрозы (Эритроза, Треоза)
Пентозы Кетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза)

Дезоксисахариды (Дезоксирибоза)
Гексоза Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы Кетогептозы (Седогептулоза, Манногептулоза)
>7 Октозы · Нанозы (Нейраминовая кислота)

dic.academic.ru

Полисахарид Википедия

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (Ch3O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(h3O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6h20O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — это структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

Функция[ | код]

Функция Характеристика
Энергетическая Основной источник энергии. Расщепляются до моносахаридов с последующим окислением до СО2 и Н2О. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.
Структурная Входят в состав оболочек клеток и н

ru-wiki.ru

это что? Применение полисахаридов и их значение

Образование 24 января 2016

Существует четыре основных класса сложных биоорганических веществ: белки, жиры, нуклеиновые кислоты и углеводы. Полисахариды принадлежат к последней группе. Несмотря на "сладкое" название, большинство из них выполняет совсем не кулинарные функции.

Полисахарид – это что?

Вещества группы также называют гликанами. Полисахарид – это сложная полимерная молекула. Она составлена из отдельных мономеров – моносахаридных остатков, которые объединены с помощью гликозидной связи. Проще говоря, полисахарид – это молекула, построенная из объединенных остатков более простых углеводов. Количество мономеров в полисахариде может варьироваться от нескольких десятков до ста и больше. Строение полисахаридов может быть как линейным, так и разветвленным.

Физические свойства

Большинство полисахаридов нерастворимы или плохо растворимы в воде. Чаще всего они бесцветные или желтоватые. В большинстве своем полисахариды не обладают запахом и вкусом, но иногда он может быть сладковатым.полисахарид это

Видео по теме

Основные химические свойства

Среди особых химических свойств полисахаридов можно выделить гидролиз и образование производных.

  • Гидролиз – это процесс, который происходит при взаимодействии углевода с водой при участии ферментов или катализаторов, таких как кислоты. Во время такой реакции полисахарид распадается на моносахариды. Таким образом, можно сказать, что гидролиз – процесс, обратный полимеризации.

Гликолиз крахмала можно выразить следующим уравнением:

  • (С6Н10О5)n + n Н2О = n С6Н12О6

Так, при реакции крахмала с водой под действием катализаторов мы получаем глюкозу. Количество ее молекул будет равно количеству мономеров, образовывавших молекулу крахмала.

  • Образование производных может происходить при реакциях полисахаридов с кислотами. В таком случае углеводы присоединяют к себе остатки кислот, вследствие чего образуются сульфаты, ацетаты, фосфаты и т. д. Кроме того, может происходить присоединение остатков метанола, что приводит к образованию сложных эфиров.

углеводы полисахариды

Биологическая роль

Полисахариды в клетке и организме могут выполнять следующие функции:

  • защитную;
  • структурную;
  • запасающую;
  • энергетическую.

Защитная функция заключается прежде всего в том, что из полисахаридов состоят клеточные стенки живых организмов. Так, клеточная стенка растений состоит из целлюлозы, грибов – из хитина, бактерий – из муреина.

Кроме того, защитная функция полисахаридов в организме человека выражается в том, что железами выделяются секреты, обогащенные этими углеводами, которые защищают стенки таких органов как желудок, кишечник, пищевод, бронхи и т. д. от механических повреждений и проникновения болезнетворных бактерий.полисахариды в клетке

Структурная функция полисахаридов в клетке заключается в том, что они входят в состав плазматической мембраны. Также они являются компонентами мембран органоидов.

Следующая функция заключается в том, что основные запасные вещества организмов являются именно полисахаридами. Для животных и грибов это гликоген. У растений запасным полисахаридом является крахмал.

Последняя функция выражается в том, что полисахарид – это важный источник энергии для клетки. Получить ее из такого углевода клетка может путем его расщепления на моносахариды и дальнейшего окисления до углекислого газа и воды. В среднем при расщеплении одного грамма полисахаридов клетка получает 17,6 кДж энергии.

Применение полисахаридов

Эти вещества широко используются в промышленности и медицине. Большинство из них добываются в лабораториях путем полимеризации простых углеводов.строение полисахаридов

Наиболее широко используемыми полисахаридами являются крахмал, целлюлоза, декстрин, агар-агар.

Применение полисахаридов в промышленности
Название веществаИспользованиеИсточник
КрахмалНаходит применение в пищевой промышленности. Также служит сырьем для получения глюкозы, спирта. Применяется для изготовления клея, пластмасс. Кроме того, используется и в текстильной промышленностиПолучают из клубней картофеля, а также из семян кукурузы, рисовой сечки, пшеницы и других богатых крахмалом растений
ЦеллюлозаИспользуется в целлюлозно-бумажной и текстильной промышленности: из нее изготавливают картон, бумагу, вискозу. Производные целлюлозы (нитро-, метил-, ацетилцеллюлоза и др.) находят широкое применение в химической промышленности. Из них же производят синтетические волокна и ткани, искусственную кожу, краски, лаки, пластмассы, взрывчатку и многое другоеДобывают это вещество из древесины, в основном хвойных растений. Также есть возможность получения целлюлозы из конопли и хлопка
Декстрин
Является пищевой добавкой Е1400. Также применяется при изготовлении клеящих веществПолучают из крахмала путем термической обработки
Агар-агарЭто вещество и его производные применяют в качестве стабилизаторов при изготовлении продуктов питания (например, мороженого и мармелада), лаков, красокДобывают из бурых водорослей, так как он является одним из компонентов их клеточной оболочки

Теперь вы знаете, что такое полисахариды, для чего они используются, какова их роль в организме, какими физическими и химическими свойствами они обладают.

Источник: fb.ru

Комментарии

Идёт загрузка...

Похожие материалы

Притчи Иисуса Христа и их значение в христианском миреИскусство и развлечения Притчи Иисуса Христа и их значение в христианском мире

Притчи Иисуса Христа можно найти во всех канонических Писаниях, а также в некоторых апокрифических текстах, однако их большая часть находится в трех синоптических Евангелиях. Они представляют собой важную часть учения...

Татуировки Тимати: символы и их значениеМода Татуировки Тимати: символы и их значение

Многие звезды российской и зарубежной эстрады украшают свое тело татуированными рисунками и иероглифами. Для кого-то это путь к самовыражению, для других – напоминание о любимом человеке, для тетьих - жизненный ...

Томизм это что такое? Определение и значениеОбразование Томизм это что такое? Определение и значение

Философия – это наука, которая рождает огромное количество споров. Тем не менее тут всегда можно найти место мысли. Множество философов несколько столетий подряд предлагали свои теории и идеи. На данный момент и...

Иероглифы - это что? Китайские и японские иероглифы и их значениеОбразование Иероглифы - это что? Китайские и японские иероглифы и их значение

Некоторые системы письменности имеют особенный знак, на котором они базируются, иероглиф. В одних языках он может обозначать слог или звук, в других – слова, понятия и морфемы. В последнем случае более распростр...

Что значит Новости и общество Что значит "майна", "вира"? Происхождение этих слов и их значение

Очень известная пара слов, которая звучит очень часто на стройке, при погрузке в морских и речных портах, при работе подъемных кранов: «вира» и майна». Откуда они взялись? Как толкуются в словарях ру...

Цеолит - это что? Цеолит природный и синтетический. Цеолит: свойства, применение, польза и вредБизнес Цеолит - это что? Цеолит природный и синтетический. Цеолит: свойства, применение, польза и вред

Название этого удивительного минерала произошло от греческого zeo — «киплю» и lithos — «камень», потому что при опускании в воду он долго пузырится воздухом.Цеолит природный в...

Часы - это... Краткая история часов и их разновидностиДом и семья Часы - это... Краткая история часов и их разновидности

Часы – это неизменный атрибут современной жизни. Представить без них наш мир просто невозможно. Задумайтесь, что было бы, если бы все часы разом сломались или перестали идти? Полнейший хаос. Однако как все начин...

Керамзит - это что такое? Производство и области применения керамзитаДомашний уют Керамзит - это что такое? Производство и области применения керамзита

Многие знают, что есть такой строительный материал, как керамзит. Это общеизвестно. Но мало кто может дать полные ответы на вопросы, что это такое, какими свойствами обладает, как производится и где применяется. Попыт...

Битум - это что такое? Свойства и область применения битумаДомашний уют Битум - это что такое? Свойства и область применения битума

Битум – это один из самых древних строительных материалов, известных человечеству. В наше время его применение предполагает достаточно разнообразные варианты. Существует множество разновидностей этого материала....

Антуриум: болезни и их профилактикаДомашний уют Антуриум: болезни и их профилактика

Подарок тропиков, красивый и немного странный, но такой желанный, антуриум слывет у цветоводов капризным красавцем, которому непросто угодить. Действительно, нередко за считанные месяцы роскошное растение превращается...

monateka.com

Полисахариды Википедия

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (Ch3O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(h3O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6h20O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — это структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

Функция

Функция Характеристика
Энергетическая Основной источник энергии. Расщепляются до моносахаридов с последующим окислением до СО2 и Н2О. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.
Структурная Входят в состав оболочек клеток и некоторых органелл. У растений полисахариды выполняют опорную функцию.
Запасающая Накапливаются в тканях растений (крахмал) и животных (гликоген). Используются при возникновении потребности в энергии.
Защитная Секреты, выделяющиеся разными железами, обогащены углеводами, например глюкопротеидами, защищающими стенки полых органов (пищевод, желудок, бронхи) от механических повреждений, проникновения вредных бактерий и вирусов.

Свойства

Пищевые полисахариды — основные источники энергии. Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усвояемы, они важны для питания. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокон — это изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.[10]

Пищевые волокна считаются важными составляющими питания, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11][12]

Резервные полисахариды

Крахмал

Крахмалы — это полимеры глюкозы, в которых остатки глюкопиранозы образуют альфа-соединения. Они сделаны из смеси амилозы (15–20 %) и амилопектина (80–85 %). Амилоза состоит из линейной цепочки нескольких сотен глюкозных молекул, а амилопектин — это разветвленная молекула, сделанная из нескольких тысяч глюкозных остатков (каждая цепочка из 24–30 глюкозных остатков — это одна единица амилопектина). Крахмалы нерастворимы в воде. Они могут перевариться при разрыве альфа-соединений (гликозидные соединения). И у животных, и людей есть амилазы, поэтому они могут переварить крахмал. Картофель, рис, мука и кукуруза — главные источники крахмала в человеческом питании. Растения запасают глюкозу в виде крахмалов.

Гликоген

Гликоген служит вторым по значению долговременным энергетическим запасом в клетках животных и грибов, который откладывается в виде энергии в жировой ткани. Гликоген в первую очередь образовывается в печени и мышцах, но также может вырабатываться гликогеногенезом в головном мозге и желудке.[13]

Гликоген — это аналог крахмала, глюкозный полимер в растениях, иногда его называют «животный крахмал»,[14] имеет схожую структуру с амилопектином, но больше разветвлен и компактен, чем крахмал. Гликоген — это полимер, связанный гликозидными связями α(1→4) (в точках разветвления — α(1→6)). Гликоген находится в форме гранул в цитозоли/цитоплазме многих клеток и играет важную роль в глюкозном цикле. Гликоген формирует запас энергии, которая быстро пускается в обращение при необходимости в глюкозе, но он менее плотный и быстрее доступен в качестве энергии, чем триглицериды (липиды).

В гепатоцитах вскоре после еды гликоген может составлять до 8 процентов массы (у взрослых — 100—120 г).[15] Только гликоген, запасенный в печени, может быть доступен для других органов. В мышцах гликоген составляет 1-2 % массы. Количество гликогена, отложенного в теле — в особенности в мышцах, печени и эритроцитах[16][17][18] — зависит от физической активности, основного обмена и пищевых привычек, таких как периодическое голодание. Небольшое количество гликогена находится в почках, и ещё меньше в клетках глии в головном мозге и лейкоцитах. В матке также запасается гликоген во время беременности, чтобы рос эмбрион.[15]

Гликоген состоит из разветвленной цепочки глюкозных остатков. Он находится в печени и мышцах.

  • Это энергетический запас для животных.
  • Это основная форма углевода, отложенного в теле животного.
  • Он нерастворим в воде. Йодом окрашивается в красный цвет.
  • Он превращается в глюкозу в процессе гидролиза.
  • Схема гликогена в двумерном сечении. В сердцевине находится белок гликогенин, окруженный ответвлениями глюкозных остатков. Во всей глобулярной грануле может содержаться примерно 30 000 глюкозных остатков.[19]

Структурные полисахариды

Арабиноксиланы

Арабиноксиланы находятся и в главных, и во второстепенных стенках клеток растений, и они являются сополимерами двух пентозных сахаров: арабиноза и ксилоза.

Целлюлоза

Строительный материал растений формируется в первую очередь из целлюлозы. Дерево содержит, кроме целлюлозы, много лигнина, а бумага и хлопок — это почти чистая целлюлоза. Целлюлоза — это полимер, сделанный из повторяющихся глюкозных остатков, соединенных вместе бета-связями. У людей и многих животных нет энзимов разорвать бета-связи, поэтому они не переваривают целлюлозу. Определенные животные, такие как термиты, могут переварить целлюлозу, потому что в их пищеварительной системе присутствуют энзимы, способные переварить её. Целлюлоза нерастворима в воде. Не меняет цвет при смешивании с йодом. При гидролизе переходит в глюкозу. Это самый распространенный углевод в мире.

Хитин

Хитин — один из самых часто встречающихся натуральных полимеров. Он является строительным компонентом многих животных, к примеру экзоскелетов. Он разлагается микроорганизмами в течение долгого времени в окружающей среде. Его распад могут катализировать ферменты под названием хитиназы, которые секретируют такие микроорганизмы как бактерии и грибы, и производят некоторые растения. У некоторых из этих микроорганизмов есть рецепторы, которые расщепляют хитин до простого сахара. При нахождении хитина они начинают выделять ферменты, расщепляющие его до гликозидных связей, чтобы получить простые сахара и аммиак.

Химически хитин очень близок хитозану (более водорастворимое производное хитина). Он также очень похож на целлюлозу: это тоже длинная неразветвленная цепочка глюкозных остатков, но с добавочными группами. Оба материала придают организмам прочность.

Пектины

Пектины — это совокупность полисахаридов, которые состоят из а-1,4-связей между остатками D-галактопиранозилуроновой кислоты. Они есть во многих важнейших клеточных стенках и в недревесных частях растений.

Кислотные полисахариды

Кислотные полисахариды — это полисахариды, содержащие карбоксильные группы, фосфатные группы и/или группы серных сложных эфиров.

Бактериальные капсульные полисахариды

Патогенные бактерии обычно вырабатывают вязкий, слизистый слой полисахаридов. Эта «капсула» скрывает антигеновые белки на поверхности бактерии, которая иначе вызвала бы иммунный ответ и таким образом привела к разрушению бактерии. Капсульные полисахариды водорастворимые, зачастую кислотные, и у них есть молекулярная масса на уровне 100—2000 kDa. Они линейны и состоят из постоянно повторяющихся субъединиц от одного до шести моносахаридов. Существует огромное структурное многообразие; около двух сотен разных полисахаридов производится только одной кишечной палочкой. Смесь капсульных полисахаридов, либо конъюгируется, либо естественным путем используется как вакцина.

Бактерии и многие другие микробы, включая грибы и водоросли, часто секретируют полисахариды, чтобы прилипнуть к поверхностям для предотвращения пересыхания. Люди научились превращать некоторые такие полисахариды в полезные продукты, включая ксантановую камедь, декстран, гуаровая камедь, велановую камедь, дьютановую камедь и пуллулан.

Большинство из этих полисахаридов выделяют полезные вязкоупругие свойства, когда растворяются в воде на очень низком уровне.[20] Это позволяет использовать различные жидкости в ежедневной жизни, к примеру, в таких продуктах как лосьоны, очищающие средства и краски, вязкие в стабильном состоянии, но становятся намного более жидкие при малейшем движении и используются для размешивания или взбалтывания, чтобы наливать, вытирать или расчесывать. Это свойство называется псевдопластичностью; изучение таких материалов называется реология.

У водного раствора таких полисахаридов есть интересное свойство: если придать ему круговое движение, раствор сначала продолжает кружить по инерции, замедляя движение благодаря вязкости, а потом меняет направление, после чего останавливается. Этот разворот происходит благодаря упругости цепочек полисахаридов, которые после растяжения стремятся возвратиться в расслабленное состояние.

Мембранные полисахариды выполняют другие роли в бактериальной экологии и физиологии. Они служат барьером между клеточной стенкой и окружающим миром, посредником во взаимодействии хозяин-паразит, и образуют строительные компоненты биопленки. Эти полисахариды синтезируются из нуклеотидно-активированных предшественников (их называют нуклеотидные сахара) и, во многих случаях, все ферменты, необходимые для биосинтеза, собрания и транспортировки целого полимера закодированые генами, организованны в специальных группах с геномом организма. Липополисахарид — это один из самых важных мембранных полисахаридов, так как он играет ключевую структурную роль для сохранения целостности клетки, а также является важнейшим посредником во взаимодействии между хозяином и паразитом.

Недавно были найдены энзимы, которые образуют A-группу (гомополимерные) и B-группу (гетерополимерные) O-антигенов и определены их метаболические пути.[21] Экзополисахаридный альгинат — это линейный полисахарид, связанный β-1,4-остатками D-маннуроновой и L-гулуроновой кислот, и ответственный за мукоидный фенотип последней стадии муковисцедоза. Локусы Pel и psl — две недавно обнаруженные генетические группы, которые также закодированы экзополисахаридами, и как выяснилось, являются очень важным составляющим биопленки. Рамнолипиды — это биологические поверхностно-активные вещества, производство которых строго регулируется на транскрипционном уровне, но роль, которую они играют во время болезни, пока не изучена. Протеиновое гликозилирование, в частности пилин и флагеллин, стали объектом исследования нескольких групп начиная где-то с 2007 г., и как оказалось, они очень важны для адгезии и инвазии во время бактериальной инфекции.[22]

Примечания

  1. ↑ Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9.
  2. ↑ Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9.
  3. ↑ IUPAC Gold Book internet edition: "homopolysaccharide (homoglycan)".
  4. ↑ IUPAC Gold Book internet edition: "heteropolysaccharide (heteroglycan)".
  5. ↑ Matthews, C. E.; K. E. Van Holde; K. G. Ahern (1999) Biochemistry. 3rd edition. Benjamin Cummings. ISBN 0-8053-3066-6
  6. ↑ N.A.Campbell (1996) Biology (4th edition). Benjamin Cummings NY. p.23 ISBN 0-8053-1957-3
  7. ↑ 1 2 Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005), Chapter 7: Dietary, Functional and Total fiber.  (недоступная ссылка — история). US Department of Agriculture, National Agricultural Library and National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Архивировано 27 октября 2011 года.
  8. ↑ 1 2 Eastwood M, Kritchevsky D (2005). «Dietary fiber: how did we get where we are?». Annu Rev Nutr 25: 1–8. DOI:10.1146/annurev.nutr.25.121304.131658. PMID 16011456.
  9. ↑ Anderson JW (2009). «Health benefits of dietary fiber». Nutr Rev 67 (4): 188–205. DOI:10.1111/j.1753-4887.2009.00189.x. PMID 19335713.
  10. ↑ Weickert MO, Pfeiffer AF (2008). «Metabolic effects of dietary fiberand any other substance that consume and prevention of diabetes». J Nutr 138 (3): 439–42. PMID 18287346.
  11. ↑ Dietary Benefits of Fucoidan from Sulfated Polysaccharides.
  12. ↑ Jones PJ, Varady KA (2008). «Are functional foods redefining nutritional requirements?» (PDF). Appl Physiol Nutr Metab 33 (1): 118–23. DOI:10.1139/H07-134. PMID 18347661.
  13. ↑ Anatomy and Physiology. Saladin, Kenneth S. McGraw-Hill, 2007.
  14. ↑ Animal starch. Merriam Webster. Проверено 11 мая 2014.
  15. ↑ 1 2 Campbell, Neil A. Biology: Exploring Life. — Boston, Massachusetts : Pearson Prentice Hall, 2006. — ISBN 0-13-250882-6.
  16. ↑ Moses SW, Bashan N, Gutman A (December 1972). «Glycogen metabolism in the normal red blood cell». Blood 40 (6): 836–43. PMID 5083874.
  17. ↑ http://jeb.biologists.org/cgi/reprint/129/1/141.pdf
  18. ↑ Miwa I, Suzuki S (November 2002). «An improved quantitative assay of glycogen in erythrocytes». Annals of Clinical Biochemistry 39 (Pt 6): 612–3. DOI:10.1258/000456302760413432. PMID 12564847.
  19. ↑ Page 12 in: Exercise physiology: energy, nutrition, and human performance, By William D. McArdle, Frank I. Katch, Victor L. Katch, Edition: 6, illustrated, Published by Lippincott Williams & Wilkins, 2006, ISBN 0-7817-4990-5, ISBN 978-0-7817-4990-9, 1068 pages
  20. ↑ Viscosity of Welan Gum vs. Concentration in Water. Архивированная копия  (недоступная ссылка — история). Проверено 2 октября 2009. Архивировано 18 июля 2011 года.
  21. ↑ Guo H, Yi W, Song JK, Wang PG (2008). «Current understanding on biosynthesis of microbial polysaccharides». Curr Top Med Chem 8 (2): 141–51. DOI:10.2174/156802608783378873. PMID 18289083.
  22. ↑ Cornelis P (editor). Pseudomonas: Genomics and Molecular Biology. — 1st. — Caister Academic Press, 2008. — ISBN [1].

См. также

⛭Общие:ГеометрияМоносахаридыМультисахаридыПроизводные углеводов
ДиозыТриозыТетрозыПентозыГексозаГептозы>7
Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)

wikiredia.ru

Крахмал - резервный полисахарид у растений

    Крахмал — резервный полисахарид растений, запасаемый в особых зернах. Эти крахмальные зерна состоят из двух компонентов— амилозы и амилопектина, каждый из которых построен исключительно из остатков о-глюкозы. [c.284]

    Крахмал — резервный полисахарид растений, молекула которого построена из остатков Л-глюкозы, соединенных друг с другом а-глюкозидными связями, нерастворимый в воде, дающий синее окрашивание с йодом. Молекулярный вес крахмала 110 000—140 000. Легко гидролизуется при действии различных животных и растительных амилаз с образованием мальтозы. Зерна крахмала не однородны и состоят из амилозы, нерастворимой в воде и дающей синее окрашивание с йодом, и амило-пектина, содержащего около 0,17% фосфора (в виде остатка фосфорной кислоты), дающего с йодом красно-фиолетовое окрашивание и растворимого в воде. [c.93]

    Крахмал — резервный полисахарид растений, состоящий из большого числа остатков О-глюкозы (до 300). Он является основным полисахаридом пищи, поставщиком глюкозы в организм человека. Молекулярная масса крахмала большая — от 50 ООО до 300 ООО. По строению он неоднороден и представляет собой смесь спиралевидных цепей амилозы (10—20 %) и разветвленных цепей амилопектина (80—90 %). Остатки глюкозы в амилозе связаны между собой 1,4-гликозидной связью, а в точках ветвления амилопектина — 1,6-гликозидными связями (рис. 57, а, б). [c.159]

    Крахмал — резервный гомополисахарид растений. Состоит из двух полисахаридов а-амилозы и амилопектина (96,1—97,6 %), минеральных веществ, в основном фосфатов (0,2—0,7 %). В крахмале найдено 0,6 % жирных кислот (пальмитиновой, стеариновой и др.). [c.31]

    Основным резервным полисахаридом растений является крахмал. Он служит основным источником углеводов в пищевом рационе человека и, следовательно, имеет большое экономическое значение его получают в промышленном масштабе. Крахмал обнаружен в некоторых простейших, бактериях и водорослях, но до сих пор основным его источником являются семена, плоды, листья и луковицы растений, где содержание крахмала составляет от нескольких процентов до >75% (зерна хлебных злаков). Крахмал имеет зернистую структуру, причем форма зерен (гранул) зависит от источника выделения. Гранулы крахмала можно выделить из растительной ткани без их разрушения, так как они нерастворимы в холодной воде, в которой растворяются многие примеси. Такие гранулы обратимо набухают в холодной воде, что используется при промышленной экстракции крахмала [78]. При повышении температуры этот процесс становится необратимым, и в конце концов гранулы разрушаются с образованием крахмального клейстера-Не все гранулы крахмала в образце разрушаются при одной и тои [c.234]

    Крахмал, основной резервный полисахарид растений, представляет собой смесь гомополимеров D-глюкозы - как линейных (амилоза), так и разветвленных (амилопектин). Молекула амилозы состоит из 1-10 -4-10 остатков D-глюкозы, соединенных а-1,4-связями (рис. 13.9, А), а амилопектина - из коротких (17-23 остатков D-глюкозы, соединенных [c.286]

    КРАХМАЛ м. Резервный полисахарид растений, состоящий из звеньев глюкозы и мальтозы, белый нерастворимый в холодной воде порощок применяется для получения глюкозы, в пищевой, целлюлозно-бумажной, текстильной, микробиологической и др, отраслях промыщленности. [c.223]

    Крахмал — резервный полисахарид многих растений он содер жит два различных полисахарида — амилозу (20—30%) и амилопектин (70—80%). [c.301]

    Крахмал — резервный полисахарид многих растений он содержит два различных полисахарида — амилозу [(20—30%) и амилопектин (70—80%). Некоторые виды крахмала, например крахмал из воскового маиса и воскового сорго, практически совсем лишены амилозы, в то время как другие, например крахмал мозгового гороха содержат амилозу в качестве главного компонента. [c.547]

    Крахмал—основной резервный полисахарид растений, один из весьма важных компонентов питания и, наконец, продукт, применяемый во многих отраслях промышленности, —привлекает к себе внимание многих исследователей. [c.126]

    Крахмал — основной резервный полисахарид растений, один из весьма важных компонентов питания и, наконец, продукт применяемый во многих отраслях промышленности, привлекает к себе внимание многих исследователей. Большое число посвящаемых крахмалу работ было обобщено в сравнительно недавно опубликованных монографии и обзорах [1—4]. [c.169]

    Крахмал-резервный полисахарид у растений [c.131]

    Функциональное предназначение полисахаридов в живой клетке определяет в значительной степени их структурные особенности. В зависимости от выполняемой ими роли полисахариды можно подразделить на три группы. Структурные полисахариды, такие как целлюлоза или кси-лап в клеточных стенках растений, хитин в наружном скелете членистоногих и насекомых, образуют протяженные цепи, которые, в свою очередь, укладываются в прочные волокна или пластины и служат своего рода каркасом в живом организме. Резервные полисахариды, как амилоза (составная часть растительного крахмала), гликоген (животный крахмал), глюкоманнаны (резервное вещество ряда растений), часто характеризуются разветвленной структурой, где длина наружных и внутренних ветвей варьируется в довольно широких пределах, или состоят из набора линейных цепей с различной степенью полимеризации. Полисахариды данной группы важны для энергетики организма. Наконец, каррагинан, мукополисахариды соединительной ткани и другие гелеобразующие полисахариды часто состоят пз линейных цепей, которые, образуя достаточно большие ассоциаты и удерживая воду, превращаются в плотные гели. [c.17]

    КРАХМАЛ, основной резервный углевод растений. Представляет собой смесь двух полисахаридов линейного (амилозы), построенного из остатков a-D-глюкопиранозы с [c.281]

    По своему функциональному назначению гомополисахариды могут быть разделены на две группы структурные и резервные полисахариды. Важным структурным гомополисахаридом является целлюлоза, а главными резервными—гликоген и крахмал (у животных и растений соответственно). [c.181]

    Крахмал является основным энергетическим резервным полисахаридом растительных организмов [4]. Он содержится в небольших количествах в листьях, но главным образом накапливается в семенах (зерна злаков, например, пшеницы, риса, кукурузы, содержат до 70 % крахмала), а также в луковицах, клубнях и сердцевине стеблей растений, где содержание его доходит до 30 %. Крахмал откладывается в клетках в ви- [c.268]

    Основным резервным полисахаридом в клетках растений является крахмал, а в клетках животных — гликоген. [c.233]

    Главный резервный углевод растений — крахмал, представляющий собой смесь полисахаридов — амилозы и амилопектина. Амилоза линейный полисахарид, построенный из остатков а-О-глюкопиранозы, связанных (1- 4)-связями. Длина цепей 1000 — 4000 звеньев [c.500]

    Таким образом, растения при фотосинтезе запасают энергию и связывают углерод в виде D-фруктозо-б-фосфата, из которого затем синтезируют сахарозу и крахмал. Сахароза хорошо растворяется в воде и транспортируется в различные части растения, крахмал используется в качестве резервного полисахарида. Сахароза и крахмал легко гидролизуются, образующиеся при этом D-глюкоза и D-фруктоза служат исходньпки материалами для биосинтеза других моно-, олиго- и полисахаридов. D-Глюкоза и D-фруктоза подвергаются также расщеплению и окислению с выделением необходимой для жизнедеятельности растения энергии и образованием промежуточных соединений для последующего биосинтеза (ацетилкофермент А, D-эpитpoзo-4-фo фaт, фосфоенолпировиноградная кислота, рибозо-5-фосфат). На основе этих веществ растения синтезируют многочисленные представители различных классов соединений (лигнины, липиды, таннины, нуклеотиды, нуклеиновые кислоты, аминокислоты, терпены, пигменты, алкалоиды, фитогормоны и т.д.). Растительная биомасса является обширным возобновляемым сырьевым источником для производства различных органических материалов и соединений. [c.341]

    Полиозы играют в растениях различную роль. Они бывают структурными веществами, придающими организму растений плотность, гибкость, например целлюлоза, пектиновые вещества и пр. Резервные полисахариды являются источником питания растений, например крахмал, гликоген, инулин и пр. Некоторые полисахариды имеют неясную биологическую функцию — растительные слизи, камеди и т. д. [c.77]

    Резервные полисахариды — это временные или постоянные запасные углеводы растений и животных, которые в соответствующие периоды жизнедеятельности используются как питательные вещества и источник энергии. К этим веществам относятся крахмал, гликоген, инулин и др. [c.354]

    Крахмал. Крахмал является основным резервным углеводом растений и составляет от 30 до 60% сухой массы растительной ткани. Он состоит из двух гомо полисахаридов амилозы и амилопектина, построенных из глюкозы. Их соотношение колеблется в зависимости от источника выделения и составляет 1 6 или 1 3, в отдельных случаях 3 1. Крахмал некоторых растений не содержит амилозы. [c.61]

    Крахмал относится к числу полисахаридов, выполняющих роль резервного пищевого вещества в растениях. Клубни, плоды, семена содержат до 70 % крахмала. Запасаемым полисахаридом животных является гликоген, который содержится преимущественно в печени и мышцах. [c.11]

    Мы обратимся теперь к другим распространенным полисахаридам. Резервным полисахаридом у растений является крахмал, который существует в двух формах. Амилоза, неразветвленный тип крахмала, состоит из глюкозных остатков, соединенных а-1,4-связью. В амилопектине, разветвленной форме, на тридцать а-1,4-связей имеется примерно одна а-1,6-связь, Таким образом, он подобен гликогену, отличаясь от последнего более низкой степенью ветвления. [c.131]

    Крахмал (разд. 25.4)-общее название группы полисахаридов, которые служат резервными источниками энергии в растениях. [c.466]

    Биосинтез полисахаридов матрицы еще менее изучен, чем биосинтез целлюлозы. Обнаруженные в растениях взаимопревращения НДФ-сахаров позволили предложить схему их возможной биосинтетической связи с полисахаридами (рис. 11.9). Согласно этой схеме, глюкоманнан так же, как и целлюлоза, образуется из гуанозиндифосфатпроизводных, а пектины и остальные гемицеллюлозы - из уридинднфосфатпроизводных. Следует отметить, что при биосинтезе крахмала - резервного полисахарида растений используется АДФ-О-глюкоза. Такое разъединение нуклеозидцифос-фатных производных моносахаридов в общих чертах согласуется с порядком формирования структурных полисахаридов. Пектиновые вещества образуют истинную срединную пластинку, на которую начинают откладываться целлюлозные микрофибриллы, создавая каркас слоев клеточной стенки. Этот каркас покрывается главными цепями макромолекул полиса- [c.337]

    Подавляющее большинство высших растений, как известно, содержат в качестве резервных углеводов гомополисахариды крахмала. Гораздо менее многочисленны группы растений, содержащих как резервное вещество гомополисахариды фруктозы—фруктозаны (семейство ompositae, Gramineae). Другие резервные полисахариды растений долгое время оставались очень мало изученными. [c.151]

    Полисахариды — высокомолекулярные вещества, состоящие из повторяющихся структурных единиц. Отличаются друг от друга структурой моноса-харидных звеньев, молекулярной массой, а также гликозидных связей. Благодаря наличию большого числа полярных групп, полисахариды после набухания растворяются в воде и образуют коллоидные растворы. Они присутствуют почти во всех клетках и выполняют многообразные функции. Велика их роль в образовании биологических структур. Так, хитин образует панцири членистоногих, целлюлоза является основной структурой зеленых растений, мукополисахариды — важнейшие компоненты соединительной ткани. Гликоген в животных, а крахмал в растительных организмах являются важнейшими резервными полисахаридами. Их делят на гомо- и гетерополисахариды. Примером гомополисахаридов может служить крахмал, состоящий из остатков только одного типа (глюкозы), а примером гетерополисахаридов — гиалуроновая кислота, которая состоит из остатков глюкуроновой кислоты, чередующихся с -ацетилглюкозамином. [c.9]

    Широкое применение в качестве флокулянтов находят крахмал и его производные. Крахмал - основной резервный полисахарид растений — представляет собой смесь двух полиуглеводов линейного слабо-разветвленного - амилозы (до 80 %) [c.81]

    Крахмал (СдН5205) является типичным резервным полисахаридом растений. Откладывается он в виде зерен в клубнях и корнях, в зернах злаков. Форма зерен крахмала различного происхождения неодинакова и характерна для каждого вида растений. Содержание крахмала в зернах пшеницы достигает 75%, кукурузы — 72%. риса — 80%. В клубнях картофеля содержание крахмала колеблется от 12 до 24%. Клубни картофеля — наиболее дешевый материал для производственного получения крахмала. [c.71]

    Крахмал [ (СеН о05)/гН20]/п —типичный резервный полисахарид растений. Состоит из остатков глюкозы, откладывает- [c.49]

    Из резервных полисахаридов упомянем крахмал (лат. ату 1ит) и гликоген. Крахмал имеет две составные части — ами лозу и амилопектин, накапливается в растениях. Из-за присут ствия амилозы крахмал окрашивается иодом в синий цвет. Он содержится главным образом в семенах, клубнях и корнях. Гликоген же накапливается в животных организмах в случае необходимости он легко переводится в о-глюкозу. Гликоген сосредоточен в основном в печени. Крахмал и гликоген построены из о-глюкозы и отличаются степенью разветвленности молекул. Наиболее разветвлены молекулы гликогена, меньше — амилопектина, а молекулы амилозы почти не разветвлены. Во всех трех случаях мы имеем дело с о-глюканами, в которых молекулы о-глюкозы соединены а-1,4-связями. Это, казалось бы, небольшое отличие от целлюлозы, которая является о-глюканом с 3-1,4-связями, обусловливает большое различие между свойствами целлюлозы, с одной стороны, и амилозы, амилопектина и гликогена — с другой. При разложении крахмала под действием кислот или повышенной температуры образуются декстрины, используемые для получения клеев. [c.215]

    В животных организмах функцию резервного полисахарида выполняет гликоген, в большинстве растений — крахмал (амилоза 4- амилопектин), в бурых водорослях — ламинарии, б дрожжах и бактериях — декстраны. (Заметим, что все ати полисахариды построены только из остатков П-глюкопиранозы.) Высшие растения накапливают крахмал в особенно больших количествах в органах, связанных с воспроизведением вида, где необходимо создавать значительные знергетические ресурсы для обеспечения развития зародыша в семенах лри половом раз- [c.142]

    Крахмал представляет собой природную смесь полисахаридов с общей формулой СвНюОд, образующихся в результате фотосинтеза и откладывающихся в корнях, клубнях и семенах растений. Крахмал является самым распространенным резервным полисахаридом и служит основным источником питания растительных клеток. В некоторых видах семян и зерен количество его доходит до 70%. В меньших, но все же значительных количествах (25—30%) он содержится в клубнях тропических растений. Основным сырьем для производства крахмала является зерно, главным образом маисовое (кукурузное), и клубнеплоды, в основном картофель, в меньшей степени батат, тапиока, саго и др. Зерна крахмала содержат 10—20% воды и очень небольшие количества фосфатов, кремнезема, жирных кислот, липидов и т. и. [c.172]

    Основные резервные полисахариды водорослей включают крахмалоподобные полисахариды и ламинаран. Зеленые, красные и сине-зеленые морские водоросли, а также пресноводные водоросли содержат полисахариды типа крахмала, также состоящие из амилозы и амилопектина. Отсутствие амилозы в некоторых экстрактах может объясняться ее деструкцией при выделении в кислотных или щелочных растворах. Б отличие от крахмалов растений крахмалы водорослей дают менее вязкие растворы и обладают более низкой способностью связывать иод, что указывает на меньший размер их молекул. Наличие молекул меньшего размера продемонстрировано также с помощью рентгеноструктурного анализа, который показал, что гранулы этих крахмалов имеют более простую организацию, но все еще обладают характеристиками растительных крахмалов. Крахмалы водорослей более чувствительны к действию амилолитических ферментов. Средняя длина их цепи составляет 10—19 структурных единиц в их молекулах обнаружено небольшое число а-(1- 3)-связей [125]. [c.248]

    Полисахариды морских водорослей, составляющие нередко до 80% сухого веса этих растений, по своему строению значительно отличаются от полисахаридов наземных растительных организмов. Хотя целлюлоза, участвующая в построении клеточных стенок водорослей, идентична обычной целлюлозе , основную массу этих стенок и межклеточного веп е тва составляют так называемые водорослевые слизи, примером которых могут служить агар, каррагинин и альгиновая кислота. Некоторые резервные полисахариды водорослей напоминают аналогичные вещества наземных растений (флоридный крахмал , фруктаны ), но нередко значительно отличаются от них (ламинарии). [c.536]

    Из других природных полисахаридов растительного происхождения можно назвать гуммиарабик, трагакант, карайю, агар, дск-страны, лихенин — резервный полисахарид исландского мха, являющийся линейным полимером р-О-глюкопиранозы, содержащий 30% 1 3-и 707о 1->4-связей. Еще одним сопутствующим целлюлозе полисахаридом с а-1,4-гликозидными связями является крахмал, содержащийся в клубнях, например, картофеля, корнях и сердцевине стеблей растений. В семенах имеется до 70°/о крахмала, а в других частях растений — 4—25% (Йирген-сонс, 1964). Крахмал обычно хорошо усваивается животными, человеком и большинством микроорганизмов. [c.18]

    Наиболее важный резервный полисахарид в клетках растений-Kpaxjua i, а в клетках жшотпых-гликоген. И крахмал, и гликоген содержатся внутри клеток в виде крупных кластеров, или гранул (рис. 11-14). Молекулы крахмала и гликогена имеют много экспонированных гидроксильных групп и поэтому сильно гидратированы. При экстрагировании крахмала и гликогена из гранул горячей водой образуются мутные коллоидные растворы или взвеси. [c.311]

    Гликоген основной резервный полисахарид в клетках животных, т.е. его роль аналогична роли крахмала в клетках растений. Подобно амилопектину, гликоген-разветвленный полисахарид, состояший из остатков D-глюкозы, связанных друг с другом ос(1 - 4)-связями, но по сравнению с амилопектином он значительно более разветвлен и компактен. В местах ветвления образуются а(1 ->6)ч вязи. В наибольшем количестве гликоген содержится в печени, где на его [c.312]

    Крахмал. Подобно целлюлозе крахмал представляет собой. полисахарид состава (СбНюОб),,. Он является резервным веществом растений и питательным материалом для человека и травоядных. Крахмал накопляется в растениях как конечный продукт ассимиляции угольной кислоты воздуха и отлагается в клубнях и зернах. Особенно богаты крахмалом картофель, зерна хлебных злаков, и его легко получают из этих природных продуктов. [c.320]

    Крахмал — самый распространенный в природе полисахарид, играющий роль резервного продукта многих растений. В технике крахмал, в основном, получают нз картофеля. В состав крахмала входят два полисахарида — ажилоза (20—30%) и амилопектин (70—80%). Эти полисахариды построены из остатков а-О-глюко-зы, связанных между собой а-(1,4 )-глюкозидными связями  [c.247]

    К гомополисахаридам относится большое количество полисахаридов, ВХОДЯШ.ИХ в состав скелетной части растений, состапляюн их их покрытие, вместилище для плодов, а также представляющих собою резервный запас углеводов в растении. К гомополисахаридам относятся, в частности, наиболее широко распространенные и важные природные полимеры— целлюлоза и крахмал. [c.154]

chem21.info

Запасные полисахариды

Полисахариды (сложные углеводы).

Полисахариды представляют собой высокомолекулярные полимеры моносахаридов и их производных. Число моносахаридных остатков в них до сотен и нескольких тысяч. моносахаридов. нескольких тысяч. Полисахариды подразделяют на:

· Запасные — крахмал, животный и растительный гликоген;

· Структурные — целлюлозы, гемицеллюлозы, пектиновые вещества, слизи и др.

Крахмал (С6Н10О5)n является важнейшим представителем полисахаридов в растениях. Этот запасной полисахарид используется растениями как энергетический материал. Аналогичным запасным углеводом у животных является гликоген.

Крахмал в больших количествах содержится в эндосперме злаков — 65…85 % его массы, в картофеле — до 20 %. В запасающих тканях различных органов — клубнях, луковицах более крупные крахмальные зерна откладываются в запас в амилопластах как вторичный (запасной) крахмал.

В клетках эндосперма крахмал находится в виде крахмальных зерен, форма и размер которых характерны для данного вида растения. Форма крахмальных зерен дает возможность легко распознать крахмалы различных растений под микроскопом, что используется для обнаружения примеси одного крахмала в другом, например при добавлении кукурузной, овсяной или картофельной муки к пшеничной.

Крахмал не является химически индивидуальным веществом. Он состоит из двух полисахаридов: амилозы и амилопектина.

Строение амилозы. В молекуле амилозы остатки глюкозы связаны гликозидными α(1→4). связями, образуя линейную цепочку. Линейные цепи амилозы, содержащие от 100 до нескольких тысяч остатков глюкозы, способны спирально свертываться и таким образом принимать более компактную форму. В воде амилоза растворяется хорошо, образуя истинные растворы, которые неустойчивы и способны к самопроизвольному выпадению в осадок.

Строение амилопектина Амилопектин представляет собой разветвленный компонент крахмала. Он содержит до 50 000 остатков глюкозы, соединенных между собой главным образом α(1→4) гликозидными связями (линейные участки молекулы амилопектина). В каждой точке разветвления молекулы глюкозы ( D-глюкопиранозы) образуют α(1→6) гликозидную связь, которая составляет около 5 % общего числа гликозидных связей молекулы амилопектина. Структура амилопектина трехмерна, его ветви расположены по всем направлениям и придают молекуле сферическую форму. Амилопектин в воде не растворяется, образуя суспензию, но при нагревании образует вязкий раствор — клейстер.

Как правило, содержание амилозы в крахмале составляет от 10 до 30 %, а амилопектина — от 70 до 90 %. Некоторые сорта ячменя, кукурузы и риса называются восковидными. В зернах этих культур крахмал состоит только из амилопектина. В яблоках крахмал представлен только амилозой.

Соотношение амилозы и амилопектина в крахмале

Вид, растение Крахмал, % Амилоза, % Амилопектин, %
Картофель, Пшеница, кукуруза обычная 12—20 60—70 19—22 78—91
Кукуруза восковидная  
Яблоки (плоды) 0,2
рис 60—80    

Содержание крахмала в зерне, %: пшеница – 49—73, рожь – 55—73, ячмень – 45—68, овес – 34—64, кукуруза – 61—83, просо – 51—70, рис – 50—70.

Ферментативный гидролиз крахмала. Гидролиз крахмала катализируется ферментами – амилазами. Амилазы относятся к классу гидролаз.

α–Амилаза содержится в слюне и поджелудочной железе животных, в плесневых грибах, в проросшем зерне пшеницы, ржи, ячменя (солод). α-Амилаза является термостабильным ферментом, её оптимум находится при температуре 700С. Оптимальное значение pH 5.6-6.0, при pH 3.3-4.0 она быстро разрушается.

β–амилаза находится в зерне пшеницы, ржи, ячменя, в соевых бобах, в батате. Однако активность фермента в созревших семенах и плодах низкая, активность β–амилазывозрастает при прорастании семян. β-амилаза расщепляет амилозу полностью, на 100% превращая ее в мальтозу. β-амилаза расщепляет амилопектин расщепляет на мальтозу и декстрины, дающие красно-коричневое окрашивание с йодом. Действие фермента прекращается, когда доходит до разветвлений. Гликозидная связь α(1→6) в точках ветвления молекулы амилопектина гидролизуется R – ферментом . Образовавшиеся при этом декстрины гидролизуются α-амилазой с образованием декстринов меньшей молекулярной массы и не дающих окрашивания с йодом.

Т.о. при действии образуются в основном мальтоза и немного высокомолекулярных декстринов. При действии образуются главным образом декстрины меньшей молекулярной массы и незначительное количество мальтозы. При одновременном действии α-амилазы и β-амилазы крахмал гидролизуется на 95%. Мальтоза под действием α–глюкоамилазы гидролизуется до D- глюкозы.

Препараты амилаз широко применяют в хлебопечении в качестве улучшителей. Добавление амилаз приводит к образованию более мягкого хлебного мякиша и уменьшает скорость черствения хлеба при хранении.

Инулин состоит изβ-D-фруктозы (97%) и α-D-глюкозы (около 3%).Это неразветвленный полисахарид, состоящий из 37—44 остатков моносахаридов.Инулин относится к запасным полисахаридам ряда растений семейств астровые, колокольчиковые. В большом количестве инулин содержится в клубнях георгина (12%) и топинамбура, в корнях цикория (до 10%), одуванчика, корневищах артишока.

studlib.info

Запасные полисахариды

Полисахариды (сложные углеводы).

Полисахариды представляют собой высокомолекулярные полимеры моносахаридов и их производных. Число моносахаридных остатков в них до сотен и нескольких тысяч. моносахаридов. нескольких тысяч. Полисахариды подразделяют на:

· Запасные — крахмал, животный и растительный гликоген;

· Структурные — целлюлозы, гемицеллюлозы, пектиновые вещества, слизи и др.

Крахмал (С6Н10О5)n является важнейшим представителем полисахаридов в растениях. Этот запасной полисахарид используется растениями как энергетический материал. Аналогичным запасным углеводом у животных является гликоген.

Крахмал в больших количествах содержится в эндосперме злаков — 65…85 % его массы, в картофеле — до 20 %. В запасающих тканях различных органов — клубнях, луковицах более крупные крахмальные зерна откладываются в запас в амилопластах как вторичный (запасной) крахмал.

В клетках эндосперма крахмал находится в виде крахмальных зерен, форма и размер которых характерны для данного вида растения. Форма крахмальных зерен дает возможность легко распознать крахмалы различных растений под микроскопом, что используется для обнаружения примеси одного крахмала в другом, например при добавлении кукурузной, овсяной или картофельной муки к пшеничной.

Крахмал не является химически индивидуальным веществом. Он состоит из двух полисахаридов: амилозы и амилопектина.

Строение амилозы. В молекуле амилозы остатки глюкозы связаны гликозидными α(1→4). связями, образуя линейную цепочку. Линейные цепи амилозы, содержащие от 100 до нескольких тысяч остатков глюкозы, способны спирально свертываться и таким образом принимать более компактную форму. В воде амилоза растворяется хорошо, образуя истинные растворы, которые неустойчивы и способны к самопроизвольному выпадению в осадок.

Строение амилопектина Амилопектин представляет собой разветвленный компонент крахмала. Он содержит до 50 000 остатков глюкозы, соединенных между собой главным образом α(1→4) гликозидными связями (линейные участки молекулы амилопектина). В каждой точке разветвления молекулы глюкозы ( D-глюкопиранозы) образуют α(1→6) гликозидную связь, которая составляет около 5 % общего числа гликозидных связей молекулы амилопектина. Структура амилопектина трехмерна, его ветви расположены по всем направлениям и придают молекуле сферическую форму. Амилопектин в воде не растворяется, образуя суспензию, но при нагревании образует вязкий раствор — клейстер.

Как правило, содержание амилозы в крахмале составляет от 10 до 30 %, а амилопектина — от 70 до 90 %. Некоторые сорта ячменя, кукурузы и риса называются восковидными. В зернах этих культур крахмал состоит только из амилопектина. В яблоках крахмал представлен только амилозой.

Соотношение амилозы и амилопектина в крахмале

Вид, растение Крахмал, % Амилоза, % Амилопектин, %
Картофель, Пшеница, кукуруза обычная 12—20 60—70 19—22 78—91
Кукуруза восковидная  
Яблоки (плоды) 0,2
рис 60—80    

Содержание крахмала в зерне, %: пшеница – 49—73, рожь – 55—73, ячмень – 45—68, овес – 34—64, кукуруза – 61—83, просо – 51—70, рис – 50—70.

Ферментативный гидролиз крахмала. Гидролиз крахмала катализируется ферментами – амилазами. Амилазы относятся к классу гидролаз.

α–Амилаза содержится в слюне и поджелудочной железе животных, в плесневых грибах, в проросшем зерне пшеницы, ржи, ячменя (солод). α-Амилаза является термостабильным ферментом, её оптимум находится при температуре 700С. Оптимальное значение pH 5.6-6.0, при pH 3.3-4.0 она быстро разрушается.

β–амилаза находится в зерне пшеницы, ржи, ячменя, в соевых бобах, в батате. Однако активность фермента в созревших семенах и плодах низкая, активность β–амилазывозрастает при прорастании семян. β-амилаза расщепляет амилозу полностью, на 100% превращая ее в мальтозу. β-амилаза расщепляет амилопектин расщепляет на мальтозу и декстрины, дающие красно-коричневое окрашивание с йодом. Действие фермента прекращается, когда доходит до разветвлений. Гликозидная связь α(1→6) в точках ветвления молекулы амилопектина гидролизуется R – ферментом . Образовавшиеся при этом декстрины гидролизуются α-амилазой с образованием декстринов меньшей молекулярной массы и не дающих окрашивания с йодом.

Т.о. при действии образуются в основном мальтоза и немного высокомолекулярных декстринов. При действии образуются главным образом декстрины меньшей молекулярной массы и незначительное количество мальтозы. При одновременном действии α-амилазы и β-амилазы крахмал гидролизуется на 95%. Мальтоза под действием α–глюкоамилазы гидролизуется до D- глюкозы.

Препараты амилаз широко применяют в хлебопечении в качестве улучшителей. Добавление амилаз приводит к образованию более мягкого хлебного мякиша и уменьшает скорость черствения хлеба при хранении.

Инулин состоит изβ-D-фруктозы (97%) и α-D-глюкозы (около 3%).Это неразветвленный полисахарид, состоящий из 37—44 остатков моносахаридов.Инулин относится к запасным полисахаридам ряда растений семейств астровые, колокольчиковые. В большом количестве инулин содержится в клубнях георгина (12%) и топинамбура, в корнях цикория (до 10%), одуванчика, корневищах артишока.

studlib.info


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта