Взаимоотношение животных и растений как пища. О взаимоотношениях растений и животных

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

О взаимоотношениях растений и животных. Взаимоотношение животных и растений как пища


ВЗАИМООТНОШЕНИЯ ЖИВОТНЫХ И РАСТЕНИЙ

Планктон, бентос, водоросли эстуариев и прибрежной полосы, рыбы и прочие обитатели океана связаны друг с другом различными типами взаимоотношений.

Пищевые цепи.Если не считать сравнительно небольшого количества органических веществ, смываемых с суши, практически вся продуктивность моря является результатом фотосинтеза. Он осуществляется фитопланктоном в толще воды; крупными многоклеточными водорослями (макрофитами), например ламинариями, саргассумами и морским салатом; наконец, морскими цветковыми растениями на мелководье, в частности из семейства взморниковых.

Фитопланктон поедается зоопланктоном и мелкими рыбами, а также отфильтровывается из воды бентосными видами. Многоклеточные водоросли и литоральные растения тоже стравливаются некоторыми животными, например морскими ежами, однако основная их масса умирает «своей смертью» и под действием волн и бактерий превращается в мелкие частицы органического детрита. Огромные его количества выносятся отливами из эстуариев и приморских болот и составляют основу многочисленных прибрежных пищевых цепей, первым звеном которых становятся организмы-детритофаги.

Одним из побочных источников питания для бентосных беспозвоночных и некоторых рыб в этой зоне служат органические частицы, поступающие в море с суши. Многие мелководные акватории, например Чесапикский залив и залив Пьюджет, в значительной мере обогащены материалом, постоянно сбрасываемым в них реками и дренажными системами.

Недавно морскими биологами были обнаружены новые элементы некоторых пищевых цепей. Например, когда многоклеточные животные и растения умирают, их тела разлагаются бактериями до простых составляющих, включая простые сахара (углеводы) и аминокислоты. Некоторые морские животные, в частности черви, способны поглощать эти питательные вещества из воды через кожу, хотя обладают ртом и пищеварительным трактом и обычно заглатывают целые живые организмы. Эти черви, как правило, населяют толщу илистых субстратов, богатых продуктами распада, возникающими в результате жизнедеятельности бактерий.

Бактерии, разлагающие остатки организмов в толще воды, тоже обогащают ее растворимыми сахарами и аминокислотами. Море можно сравнить с питательным бульоном. Если образец такого бульона сильно взболтать или пропустить через него поток пузырьков воздуха, то на его поверхности появится слой пены, которая содержит множество агрегированных молекул органических веществ. В лабораторных условиях было показано, что некоторые мелкие ракообразные способны заглатывать такие молекулярные агрегаты; следовательно, не исключено, что они делают то же самое и в открытом море. Волны приводят к образованию пены, содержащей агрегаты растворенных органических веществ, и такие частицы могут служить пищей для обитающих у поверхности животных. Некоторое количество частиц, по-видимому, опускается на дно и становится дополнительным источником корма для бентосной фауны.

МОРСКИЕ ПИЩЕВЫЕ ЦЕПИ представлены многими сложными взаимосвязями между организмами. Приведенный на рисунке вариант такой цепи сильно упрощен, однако он демонстрирует основные ее звенья. К главным морским продуцентам относится фитопланктон, т.е. крошечные дрейфующие водоросли, использующие солнечную энергию для фотосинтеза. Фитопланктоном питаются креветки, веслоногие рачки и другие зоопланктонные организмы, а иногда и живущие на дне фильтраторы. Это первичные консументы. Мелкие рыбы (например, сельдь), усатые киты и многие ракообразные поедают как фито-, так и зоопланктон. В последнем случае они выступают как вторичные консументы. На мелких рыб охотятся средние по размеру хищники, например тунцы и луфари (консументы третьего порядка), которые сами становятся жертвами акул, барракуд и других хищников. Тела умерших организмов разлагаются бактериями (редуцентами). В процессе этого разложения в воду попадают питательные вещества, в частности простые сахара, аминокислоты и белки, которые служат пищей для планктона; кроме того, органические частицы в составе детрита оседают на дно и становятся кормом для многих бентосных видов; некоторые донные черви способны поглощать из воды растворенные питательные вещества через кожу. Многие другие обитатели дна, в частности крабы и морские звезды, являются падальщиками и хищниками.

ФАУНА ОТКРЫТОГО ОКЕАНА

Симбиоз.Многие морские виды связаны друг с другом не только различными пищевыми цепями, но и особым типом зависимости, который называется симбиозом, т.е. «сожительством» (см. также СИМБИОЗ). В некоторых случаях симбиоз необходим для выживания одного или обоих партнеров (симбионтов), и тогда он называется облигатным. При факультативном симбиозе партнер может устанавливать сходные отношения не с одним, а с разными видами или вообще обходиться собственными силами.

Паразитизм. Паразитизм – это тип взаимоотношений двух организмов разных видов, выгодный только одному из них (паразиту), который живет за счет другого (хозяина), нанося ему вред, например повреждая его ткани или лишая достаточного для нормального существования количества пищи. Виды-паразиты известны во многих таксономических типах морских организмов. Например, целые группы усоногих рачков паразитируют на других ракообразных, в частности креветках, раках-отшельниках и крабах. Эти усоногие во взрослом состоянии совершенно не похожи на близкородственных им морских желудей, однако личинки и тех и других свободно плавают и обладают многими общими признаками. Когда личинка паразита прикрепляется к хозяину, она превращается в бесформенную массу репродуктивной ткани, врастающую в его тело и часто повреждающую жизненно важные органы, например систему размножения.

Мутуализм. Мутуализм – это тип симбиоза, выгодный обоим партнерам. Возможно, один из самых интересных примеров мутуализма в морской среде – сожительство одноклеточных фотосинтезирующих организмов, называемых зооксантеллами, и гигантских двустворчатых моллюсков из рода тридакна, обитающих в южной части Тихого океана. Под приоткрытые створки их полутораметровых раковин проникает свет, которого хватает для фотосинтеза зооксантелл, поселяющихся в мягких тканях моллюска. Зооксантеллы снабжают хозяина некоторым количеством синтезируемых органических веществ, а взамен получают надежное убежище и извлекают из его клеток необходимые для развития вещества. Аналогичную симбиотическую ассоциацию зооксантеллы составляют также с рифообразующими кораллами.

Комменсализм. Комменсализм обычно рассматривается как тип симбиоза, выгодный одному партнеру и безразличный для другого. Один из классических примеров такого симбиоза – сожительство крабов-горошинок с двустворчатыми моллюсками или червями. Многие крабы-горошинки отбирают у своих симбионтов пищу и даже ранят их. В целом наблюдается определенная градация форм комменсализма: от простого поселения в вырытой хозяином норке до питания остатками его трапезы и неосторожного нанесения «кормильцу» тяжких увечий. Последнее происходит, когда краб живет в мантийной полости двустворчатых моллюсков, например устриц или мидий, – тут вполне можно говорить о переходе к паразитизму. Вероятно, в прошлые геологические эпохи эти ракообразные стали вступать в факультативные на первых порах взаимоотношения с другими видами, но с течением времени эти отношения эволюционировали до облигатного комменсализма, а затем и паразитического образа жизни, при котором симбионт бóльшую часть своей взрослой жизни проводит в организме хозяина.

В морских сообществах встречается и множество других уникальных экологических взаимоотношений. Например, некоторые мелкие креветки и рыбы играют роль чистильщиков. Их почти всегда можно встретить около крупных рыб, с которых они удаляют наросты и кусочки отмерших тканей. В результате раны хозяев быстрее заживают, а чистильщики всегда обеспечены кормом. По-видимому, крупные рыбы никогда не причиняют вреда таким симбионтам; более того, замечалось, что они сами подставляют им свое тело для «обработки», а возможно, и охраняют санитаров от других хищников.

Близкий пример – сосуществование некоторых мелких рыб с крупными медузами и актиниями. Эти кишечнополостные вооружены стрекательными клетками – нематоцитами. Обычно, если рыба, креветка или другое мелкое животное прикоснется к их щупальцам, оно будет парализовано ядом и проглочено. Однако рыбы-симбионты к действию нематоцитов не чувствительны и беспечно плавают среди массы стрекающих щупалец, подбирая остатки трапезы своих хозяев, которые, по-видимому, невольно защищают их от нападений других хищников. В свою очередь, эти ярко окрашенные рыбки, возможно, служат приманкой, заводящей неосторожных охотников прямо на щупальца сидячих актиний и медуз.

Экосистемы.Все взаимодействия морских организмов – как с другими существами, так и с физико-химическими факторами – происходят в рамках более или менее ограниченных в пространстве комплексов, называемых экосистемами. Границы между ними весьма прозрачные. Очевидно, что стремительно плавающие в толще воды акулы живут в совершенно иной среде, чем, скажем, офиуры, ползающие по дну на глубине 1800 м, т.е. эти организмы принадлежат разным экосистемам. Однако рано или поздно останки акулы могут стать пищей офиуры, а биогенные вещества, попавшие в воду после гибели обоих этих животных, – обеспечить необходимыми элементами планктонных диатомей, находящихся в сотнях километров от места их смерти. В свои очередь, не исключено, что диатомеи, продрейфовав еще сотню километров в открытом море, попадут в желудок морских желудей или мидий, прикрепленных к литоральным скалам.

Пространственно-временные флуктуации.Взаимоотношения организмов в море изменяются со временем и модифицируются под влиянием топографических особенностей прилежащей суши. Например, в особенно сухие и жаркие годы сток пресных вод с материков сокращается, что ведет к заметному повышению солености и температуры мелких бухт и эстуариев. Это может привести к эмиграции или гибели в них некоторых видов и временному проникновению других, живущих обычно в открытом море, далеко от зоны солоноватых вод. Очевидно, что в результате заметно изменятся и взаимоотношения видов в этих прибрежных экосистемах.

Значительным периодическим изменениям подвержены и крупные океанические течения. Гольфстрим в разные годы проходит то дальше от берегов, то ближе к ним. Такие флуктуации иногда наблюдаются, например, в Вудс-Холе на полуострове Кейп-Код. Когда летом Гольфстрим проходит близко от него, местные жители находят на берегу и в своих сетях необычных тропических и субтропических рыб. С наступлением зимы все эти яркие пришельцы с юга гибнут.

Местами на условия даже вдали от берега сильно влияет конфигурация суши. Например, полуостров Кейп-Код является серьезным барьером для морских течений и распространения организмов. Температура воды к северу от него летом всегда на несколько градусов ниже, чем южнее – у острова Мартас-Винъярд и в проливе Нантакет. В результате многие виды, обычные к югу от этого мыса, не в состоянии обогнуть его и продвинуться севернее. Аналогичным образом, залив Кейп-Код служит южным пределом распространения других, более северных видов.

Препятствием для морских течений и миграции организмов служат и многие другие объекты. Например, таким барьером, хотя и не столь серьезным, как Кейп-Код, считается также мыс Хаттерас. Во многих случаях крупные мысы или полуострова используются для проведения условных границ между обширными участками океана с характерной для них фауной – т.н. зоогеографических провинций. Так, воды к северу от мыса Кейп-Код относят к бореальным. Зона между ним и мысом Хаттерас называется виргинской, или умеренной, провинцией. Дальше на юг до мыса Канаверал простирается каролинская провинция, а воды южнее него принято считать уже тропическими.

Заиление непрерывно ведет к росту литоральных болот. Почва, смываемая с суши, сносится реками к морю и в их устья; здесь, где течение замедляется, она оседает на дно, образуя мощный слой осадков. Так возникают обнажающиеся в отлив отмели, на которых поселяются болотные растения и другие свойственные литорали организмы.

stydopedia.ru

Основные свойства животных. Питание

Как ни разнообразна организация животных, но все они обладают некоторыми общими свойствами, каковы: 1) питание, 2) приспособляемость, 3) размножение и развитие, 4) сознательное движение. Сознательные движения животных — это их образ жизни (взаимодействие с окружающей средой). Здесь же рассмотрим пока 3 первых общих свойства,[1] начиная с питания.[2]

Каждое животное принимает пищу, без чего не мыслимо самое существование его.[3] Необходимость постоянно вводить извне в организм новые массы питательного вещества обусловливается для всех животных тем, что частицы, из которых состоит живой организм,[4] беспрестанно изменяются, разрушаются и поэтому должны постоянно возобновляться. Самый жизненный процесс главным образом и заключается в этом беспрерывном изменении и возобновлении веществ, составляющих организм. Извне поступает кислород, который окисляет сложные органические вещества, из которых построены ткани животного, и разрушает их, причем образуются менее сложные соединения, именно: углекислота, вода, мочевина, некоторые минеральные соли, которые удаляются из организма: углекислота через посредство органов дыхания, остальные вещества при помощи особых выделительных органов. Именно это беспрестанное изменение химического состава материи, из которой слагается организм, и является источником всех сил (теплота, электричество, мускульная и нервная работа и др.), наличностью которых характеризуется живой организм.

Очевидно, что при постоянной потере веществ, которую несет организм во время своей жизни, столь же беспрестанно должно происходить и возобновление их введением новых веществ, которые, будучи известным образом переработаны, могли бы стать на место разрушенных, так как только таким образом может поддерживаться существование живого организма. Под влиянием такой необходимости, каждое животное питается, т. е. вводит из окружающей природы внутрь своего тела различные вещества, перерабатывает их определенным образом и полученные новые частицы размещает по различным тканям своего тела, где в них ощущается надобность; таким образом происходит восстановление веществ, утраченных при разнообразных жизненных процессах. Организм животного беспрестанно возобновляется; в каждом органе, в каждой частице его ткани непрерывно совершается разрушение вещества и замена его новыми, вновь приобретенными извне.

В этом процессе, называемом вообще обменом веществ, можно различать два ряда химических явлений: а) явления, сопровождающие разрушение веществ, продукты которого удаляются тем или другим способом из организма, и б) процесс восстановления тканей, который и есть питание в широком смысле.

Первый ряд химических явлений составляет предмет физиологии. В этой науке рассматривается, как изменяются состав и строение тканей организма в ходе жизненных процессов; она же знакомит нас с процессами химического обмена веществ, который происходит в тканях, а также с процессами восстановления их путем усвоения принятой пищи и выделения получающихся при этом продуктов.

Для зоолога главный интерес представляет лишь одна сторона сложного процесса питания, именно способ добывания пищи, т. е. те приемы и приспособления, какими обладает животное для удовлетворения потребностей питания.

Можно различать четыре главных способа добывания пищи животными: 1) простое пищедобывание; 2) комменсализм;[5] 3) симбиоз[6] и 4) паразитизм.[7]

Простой способ добывания пищи наиболее распространен в царстве животных. Громадное большинство животных добывает себе пищу прямо, без каких-либо особых приспособлений и ухищрений. Одни животные кормятся растениями, другие поедают различных животных и делают это самыми разнообразными способами, соответственно своей организации, но при этом не вступают в какие-либо определенные отношения с животными или растениями, которые служат им пищей. Хотя способ этот самый простой, но для зоолога он представляет чрезвычайно много поучительного и важного, так как те или другие приемы в добывании пищи и род ее кладут резкий отпечаток на свойства самого животного. Род пищи, которую обыкновенно употребляют животные, и способ ее добывания настолько связаны с организацией его, что зоолог не затруднится определить одно на основании другого.

Так, например, травоядные и хищные млекопитающие,[8] резко различаются между собой как устройством скелета и общим видом внешних форм, так и внутренней организацией. Достаточно указать на устройство зубов и челюстей, на основании которого можно легко разделить между собой даже животных, принадлежащих к одной и той же из этих двух групп. Соответственно роду пищи изменяется устройство пищеварительных органов, орудий нападения или защиты, наконец, наружная форма тела, которая всегда бывает приспособлена к добыванию пищи тем или иным способом. Скелет и мускулатура травоядных животных более грубы и менее развиты, чем у хищников, у которых кости тоньше, но тверже, мускулы не столь объемисты, но развитее и плотнее. Поэтому хищники всегда осиливают травоядных животных не только равной с ними величины, но часто и значительно больших.[9]

Точно также у птиц во всем построении их тела, во внешних их формах и в устройстве органов очень ясно выражена зависимость от рода пищи. Сильный крючковатый клюв, крепкие ноги, вооруженные когтями, отлично приспособлены у орла или сокола к их хищническому образу жизни. Язык дятла[10] снабжен твердым острием, которым он вынимает из-под коры личинок насекомых. Чтобы добраться до этих личинок, дятел должен долбить дерево, для чего его тело должно иметь определенное положение и устойчивость, и вот природа снабдила его крепкими костями; толстые хвостовые перья, устанавливаемые в определенном положении сильными мускулами, образуют сзади прочную подпорку, а крепкий, острый клюв, как хорошая кирка, легко долбит не только кору, но и древесину. У колибри,[11] которые питаются мелкими насекомыми, живущими в цветах, язык снабжен на конце маленькой кисточкой из роговых волосков; посредством ее колибри с удобством может доставать насекомых из глубины цветочного венчика. Подобных примеров очень хитро устроенных приспособлений к добыванию известного рода пищи можно найти бесчисленное множество, особенно в классе насекомых.

Есть очень много животных, которые ищут покровительства другого, более могущественного животного, чтобы под его защитой добывать себе пищу или же с целью пользоваться крохами от стола своего покровителя. Такой способ пищедобывания называется комменсализмом.[12]

В простейшем случае этого рода между некоторыми животными устанавливается нечто вроде союза для общей пользы, или полезного только слабейшему члену, но совершенно безразличного для покровителя.

Вот несколько примеров. В степной полосе Южной России скворцы целыми стаями держатся около стад, так как в навозе скота для них всегда имеется обильная пища в виде многочисленных насекомых, которые там поселяются. Издавна известен союз между пахарем и грачами, которые целыми стаями слетаются, лишь завидят соху; их привлекают личинки насекомых, которые они могут доставать из разрыхленной почвы. В африканских степях страусы и квагги обыкновенно держатся вместе, и такой союз приносит им обоюдную пользу. Действительно: высокорослые страусы легче, чем квагги, могут заметить приближающуюся опасность, а квагги с своей стороны полезны страусам тем, что в навозе их разводятся большие жуки, составляющие лакомство для страусов. Травяные вши поселяются целыми колониями в муравейниках и живут со своими хозяевами в добром согласии, угощая их сладкой жидкостью, которую они выделяют, и расплачиваются таким образом за ту защиту, какую оказывают им сравнительно хорошо вооруженные муравьи. Очень многие насекомые, так называемые «копрофаги», живут исключительно в навозе некоторых млекопитающих и настолько связаны с ними, что без этих животных не могут существовать.

Комменсализм принимает вид еще более тесного союза в том случае, когда слабейший член поселяется внутри самого тела своего покровителя или на поверхности его, но это еще не паразиты, о которых речь будет дальше: комменсалист в таком случае питается не телом и не соком своего покровителя, а лишь перехватывается себя часть его пищи.

В Тихом океане водятся рыбы[13] из рода Fierasfer, которые почти никогда не встречаются на свободе, а всегда поселяются в пищеварительной полости различных морских животных: морских звезд, голотурий и др. В реках Бразилии водится один сом, у которого во рту преспокойно живут целые общества маленьких рыбок; они помещаются между выростами костей и в складках стенок ротовой полости. Устроившись таким образом во рту у сома, рыбешки эти находятся в полной защите от врагов и в то же время кормятся частицами той пищи, которую заглатывает сом. У низших животных подобные случаи комменсализма наблюдаются еще чаще. Многие раки поселяются в раковинах живых моллюсков. Еще Плиний описал такой способ сожительства краба, которого он назвал Cancer custos (т. е. сторож), с моллюском Pinna; сидя между полуоткрытыми створками раковин, краб быстрыми движениями своих жаберных жгутиков привлекает к ротовому отверстию своего хозяина струю, которая приносит ему пищу, и этим отплачивает за ту безопасность, какую он может в случае надобности находить под створками раковины моллюска.[14] Некоторые маленькие рачки поселяются даже в полостях губки, причем, войдя туда маленькими, они вырастают настолько, что не могут выйти наружу и остаются вечными узниками, но за то пользуются полною безопасностью и без всякого труда со своей стороны получают пищу. Многие гидромедузы и некоторые черви точно также поселяются в полости губок, чтобы жить в большей безопасности от врагов.

Во всех вышеприведенных случаях союз или сожительство продолжаются неопределенное время, но бывают случаи комменсализма лишь на короткое время личиночной стадии.

Подобный пример представляет речная жемчужница (unio). Из яичек этого моллюска развивается личинка, которая, поместившись на дне водовместилища или на каком-либо подводном предмете, начинает раскидывать вокруг себя тонкие липкие нити, вроде паутинок. Если проходящая мимо рыба коснется такой паутинки, то она приклеивается к ней, чаще всего к плавникам или к жабрам, и личинка таким образом переселяется на тело рыбы; чтобы плотнее прикрепиться, у нее существуют особые крючки. Далее начинается еще более удивительное явление. Личинка вышеупомянутыми крючками производит беспрестанное раздражение тканей своего хозяина; вследствии этого вокруг места прикрепления начинается разрастание кожицы, и в конце концов вокруг личинки образуется кольцеобразный чехлик. Такое близкое соединение личинки жемчужницы с телом рыбы продолжается все время, пока происходит развитие личинки (от 14 до 40 дней), а затем чехлик разрывается, личинка освобождается и начинает жить самостоятельно.

Еще более заслуживают внимания явления комменсализма между растениями и животными, которые наблюдаются также нередко. Муравьи, поселяясь на каком-нибудь растении, вообще защищают его от насекомых, которые вредят листьям. И вот мы видим, что растение Cecropia выработало себе особое приспособление для привлечения муравьев. Именно, на листьях у него выделяется смолистая сладковатая жидкость, которую муравьи очень любят. Кроме того, на стебле растения образовались специальные приспособления к тому, чтобы доставить муравьям удобное и безопасное помещение. Именно, в определенных местах на стебле Cecropia стенка чрезвычайно утончается так, что для муравьев не представляет никакого труда прогрызть здесь отверстие и поместиться во внутренней полости стебля. Таким образом выходит, что муравьи, за использование полицейских обязанностей, получают от растения удобное помещение и лакомую пищу. Есть и другие, не менее удивительные случаи такого сожительства.

Симбиоз представляет особую форму комменсализма, когда союз между двумя различными существами становится настолько тесным, что они представляют собою как бы части одного организма. Впрочем, многие ученые понимают явление симбиоза в более широком смысле; именно симбиоз называют всякого рода сожительством двух различных организмов, в котором оба сожителя приносят друг другу взаимную пользу. С этой точки зрения сожительство муравьев и растения Cecropia также должно считать случаем симбиоза. Самый интересный пример симбиоза представляет растительное царство, где впервые и изучена эта форма сожительства. Общеизвестное растение — лишайник — представляет прекрасный пример симбиоза грибков с водорослями, которые настолько тесно сплетаются и срастаются между собой, что образуют одно растение.

На корнях многих деревьев, напр., дуба, бука, каштана, лещины — вовсе нет всасывательных волосков, при помощи которых корни растений вбирают из почвы воду с растворенными в ней питательными веществами. Лишенные таких волосков упомянутые деревья не могли бы питаться, если бы корни их не были покрыты слоем грибных нитей, которые врастают в корни, а с другой стороны, разветвляются густою сетью в окружающей почве. Таким образом грибные нити, составляющие совершенно постороннее растение, исполняют для дуба или бука то же самое назначение, для которого у других растений имеются специальные органы.

Но в такое же тесное соединение с растениями вступают иногда и животные организмы. Так известно, что в тканях некоторых водных животных, как морских, так и пресноводных (полипов, медуз, гидр, солнечников), отлагаются зерна хлорофилла.[15] Вещество это, как известно, свойственно растениям. Долгое время предполагали, что этот хлорофилл составляет принадлежность самого животного, но впоследствии было доказано, что в тканях этих животных поселяются живые водоросли, которые, будучи выделенными, могут вести и самостоятельный образ жизни. В настоящее время известно уже множество таких водорослей, которые проводят некоторые стадии своего развития в теле упомянутых животных. Однако, помещаясь в тканях и клетках животных, водоросли эти не причиняют им ни малейшего вреда и даже наоборот, приносят им пользу. В яйцах обыкновенной пресноводной гидры почти всегда, при внимательном наблюдении, можно открыть присутствие таких водорослей, которые иногда скопляются в таком количестве, что совершенно заполняют внутренность клетки. Однако присутствие такого постороннего элемента нисколько не мешает правильному развитию яйца. Взаимная польза от такого сожительства между растением и животным становится очень понятной из следующего соображения. Зеленые растительные клетки, как известно, обладают способностью разлагать углекислоту, получаемую извне, выделяя кислород и усваивая углерод; поэтому водоросли поглощают углекислоту, выделяемую из животных клеток при жизненном процессе, и в свою очередь выделяют свободный кислород, в котором нуждаются животные клетки. С этой точки зрения скопление водорослей в тканях животных можно рассматривать, как специальную лабораторию для переработки углекислоты в кислород, и это имеет очень важное значение для жизни глубоководных животных. Действительно, на большую глубину атмосферный кислород проникает лишь в ничтожном количестве, и дыхательный обмен газов у многих животных, неподвижно приросших к морскому дну, был бы совершенно невозможен или, по крайней мере, сильно затруднен, если бы им на помощь не пришли вышеуказанные водоросли, которые снабжают животное кислородом внутри его собственного тела. Правильность вышеприведенных рассуждений подтверждается тем, что растения вступают в симбиоз только с такими животными, которые по условиям своей жизни нуждаются в кислороде. В свою очередь водоросли получают от животного не только нужную им углекислоту, а также минеральные соли и азотистые соединения.

Во всех вышеприведенных случаях союз двух различных организмов заключается для взаимной пользы обоих организмов и во всяком случае не приносит существенного вреда хозяину, приютившему у себя комменсалиста; еще более наглядна взаимная польза сожительства в симбиозе; но в природе известны примеры другого рода сожительства, когда животное или растение вступает в тесное соединение с другим организмом и извлекает из этого пользу только для себя, нанося в то же время более или менее существенный вред своему хозяину. Такой способ пищедобывания называется паразитизмом.

Паразитизм очень распространен как в животном, так и в растительном царстве. Существуют целые роды и семейства животных, которые ведут исключительно паразитический образ жизни, питаясь за счет своего хозяина, и очень часто бывают причиной различных болезней его, нередко причиняя даже смерть пораженному существу. Наглядные примеры этого будут приведены в свое время при описании низших животных, которые наиболее склонны к паразитизму.[16] Однако паразиты встречаются и среди более совершенных животных, в классе насекомых и даже среди позвоночных. Известно, например, что некоторые из животных, к примеру миксина[17] (Myxine), поселяются в брюшной полости у акул.

Одни паразиты живут внутри тела своего хозяина и называются внутренними, или энтопаразитами, другие поселяются на теле снаружи и называются наружными, или эктопаразитами. Хозяевами их могут служить самые разнообразные животные, начиная от низших беспозвоночных до млекопитающих. В большинстве случаев самки и самцы паразитов ведут одинаковый образ жизни, но бывает и так, что паразитирует только самка, а самец добывает себе пищу обыкновенным способом. Объясняется это тем, что самка, откладывающая многочисленные зародыши,[18] более нуждается в пище, чем самец, который может прожить и сам собственным трудом, сохраняя при этом свободу. Бывают, впрочем, случаи, когда самец паразитирует на самке.[19]

Паразитический образ жизни почти всегда отражается на самом строении паразита. У одних появляется особое приспособление для прикрепления к данной части тела хозяина, в виде разного рода крючков или присосок, у других вырастают особые отростки, которые внедряются в тело хозяина и всасывают питательные соки, как корешки растений; очень часто даже личинки и яички паразитов бывают снабжены специальными приспособлениями для того, чтобы пристроиться известным образом. Во всех этих случаях паразит в известном направлении совершенствует свою организацию и приобретает новые органы, которые ему полезны.

Но еще чаще приспособление строения паразита идет в другом направлении: в смысле упрощения организации. Находясь в особенно благоприятных условиях, окруженный обилием пищи, живя в полной безопасности от всяких врагов, паразит не нуждается во многих органах и приспособлениях, которые необходимы животному свободно живущему. Поэтому очень часто паразиты утрачивают конечности, органы чувств, пищеварительный канал у них до крайности упрощайся, а у иных даже совсем исчезает, если паразит поселяется в кишечном канале хозяина, где может пользоваться уже переваренной пищей. Некоторые паразиты до такой степени упрощают свою организацию, что теряют все наружные органы и внутренние, за исключением лишь органов размножения.

Самое тщательное анатомическое исследование такого паразита не может установить его принадлежности к той или другой группе животных, и только наблюдая историю развития, можно увидеть родство этого организма с другими представителями животного царства и его происхождение. Для примера укажем на паразитного рака (Sacculina), который во взрослом состоянии имеет вид плоского мешочка, наполненного яйцами, без всяких внутренних или наружных органов. Не было бы никакой возможности установить родство его с другими ракообразными, если бы не удалось проследить развитие его зародыша, но оказывается, что в личиночной стадии Sacculina очень сходна с другими подобными раками, когда они находятся также в стадии личинки.

Паразитизм не только влечет за собою изменение в организации паразита, но пребывание этого последнего в теле хозяина нередко вызывает некоторое изменение и у него. Наиболее простые случаи такого влияния паразита на тело хозяина можно видеть, например, в образовании волдырей на теле рогатого скота, вследствие укушения оводов, которые откладывают под кожу животных свои яички; известно также, что на лицевых костях у рогатого скота появляются иногда характерные наросты под влиянием поселившегося там паразитного грибка (Acanthomyces). Еще более наглядные примеры такого рода представляют растения. Всем известны так называемые чернильные орешки, т. е. наросты овальной формы, которые образуются на листьях дуба. Вот как они происходят.[20]

Самка насекомого орехотворки (Cynips) прокалывает кожицу листа и откладывает туда яички; из них вскоре развиваются личинки, которые питаются клетками растения, раздражают ткани и вызывают усиленное размножение клеток; вследствие этого, в данном месте появляется нарост — вышеупомянутый орешек.

[1]Животным действительно присущи все свойства, перечисленные здесь, но они не охватывают все стороны их существования. Обмен веществ — более общее понятие, кроме питания в него входят дыхание, выделение.

Говоря об образе жизни животных, мы можем говорить отдельно о поведении и экологии животных, то есть взаимодействии животных с окружающей средой. Экологические взаимодействия можно разделить на биотические (взаимодействия с живой природой — отношения с животными своего или других видов, добыча пищи, избегание хищников, взаимодействия с болезнетворными организмами и паразитами и тому подобное) и абиотические (отношения с неживой природой — климатом, географическими условиями мест обитания, такие как рельеф, почва, степень потребности разных животных в воде).

Приспособляемость животных можно понимать как изменения в пределах нормы реакции, то есть ненаследственные изменения организма, подстраивание организма в течение жизни к условиям внешней среды. А можно говорить об эволюционных изменениях, которые передаются из поколения в поколение.

[2]Все живые существа по способу питания делятся на две группы — автотрофы и гетеротрофы. Автотрофам для существования достаточно воды, двуокиси углерода, неорганических солей и источника энергии. Автотрофами являются зеленые растения и пурпурные бактерии. Они получают энергию, необходимую для синтеза органических молекул, от солнечного света. Гетеротрофы неспособны синтезировать питательные вещества из неорганических соединений. Гетеротрофные организмы вынуждены поэтому жить за счет автотрофов, либо питаться разлагающимися остатками. К гетеротрофам относятся все животные, грибы и большинство бактерий.

[3]Можно выделить ряд особенностей, свойственных только живым организмам. Во-первых, это постоянное расходование энергии. Другая особенность живых организмов — это их способность к движению. В-третьих, для всех живых организмов характерна раздражимость: они реагируют на стимулы, то есть на физические и химические изменения в непосредственно окружающей их среде. Для любой живой ткани характерен рост (увеличение клеточной массы), он может происходить либо за счет увеличения размеров отдельных клеток, либо за счет увеличения их числа, либо за счет и того и другого. Еще один обязательный атрибут жизни — способность к воспроизведению.

[4]Любой живой организм состоит из клеток, которые объединяются в ткани, а ткани, в свою очередь, в органы.

[5]Комменсализм — нахлебничество. Форма взаимодействия животных, когда один из партнеров обеспечивает другому регуляцию отношений со внешней средой. Основой могут быть общее пространство, убежище, передвижение, но чаще всего — пища. Присутствие комменсала для хозяина обычно неощутимо.

[6]Одно из современных определений симбиоза: тип взаимоотношений организмов разных систематических групп: совместное существование, взаимовыгодное, нередко обязательное (облигатный симбиоз) сожительство особей двух или более видов.

[7]Паразитизм не только способ добывания пищи. Паразитизм — это форма антагонистических межвидовых отношений, когда одни виды существуют за счет других и тесно связаны с ними в своем жизненном цикле.

[8]Потребность в пище — это одна из ведущих связей между организмами. В этом отношении животные в первую очередь могут быть разделены по характеру пищевого объекта на растительноядных, детритоядных, грунтоядных, плотоядных, в том числе и хищников.

Понятие хищник употребляют в различном смысле. Животных, питающихся моллюсками, червями или насекомыми обычно хищниками не называют. А треска, питающаяся сельдью — хищник, так же как и акула, пожирающая других рыб, и волк, гоняющийся за зайцем. Обычно хищниками называют животных, питающихся другими животными, близкими по систематическому положению (в рамках позвоночных, или насекомых, или моллюсков). Но иногда говорят о хищных растениях, питающихся насекомыми (например, росянка), или о хищных грибах, питающихся червями. То есть точное определение хищничества, видимо, невозможно, так как оно достаточно субъективно, во многих случаях складывалось исторически. Способы питания создаются независимо у разных животных, на различной морфологической основе и не имеет никакой генетической связи. Едва ли возможно создание естественной системы форм питания.

Всеядный медведь систематически относится к хищным животным, а всеядный кабан — к копытным.

[9]Для хищных животных характерны более сложные формы поведения. Они считаются «сообразительнее» травоядных.

[10]Почти все дятлы, добывая себе пищу, долбят кору деревьев и кустарников. Поэтому ноздри у них покрыты жесткими волосковидными перьями, которые предохраняют дыхательные пути от попадания в них мелкой стружки, образующейся при долблении. Язык у дятлов очень длинный и тонкий, слюнные железы сильно развиты, они позволяют крепко приклеивать добычу к языку.

Американский ученый Филипп Мей с помощью специальной кинокамеры сделал удивительное открытие: пробивая кору дерева, дятел при каждом ударе устремляет свой клюв вперед со скоростью 555 метров в секунду. При ударе о ствол дерева клюв останавливается, торможение клюва при такой скорости создает для головы дятла перегрузку, превышающую в несколько тысяч раз силу земного притяжения.

[11]Язык колибри — это длинная тонкая трубочка с бахромой на конце. Питаются колибри нектаром и мелкими насекомыми. Колибри вводят в цветок клюв и сильными глотательными движениями с помощью языка, сложенного трубочкой накачивают в рот нектар.

[12]В современной литературе о рыбке Teraster umberis, которая обитает в заднем отделе кишки голотурии Holothuria tubulosa говорят как о примере симбиоза. Но это тонкости терминологии. Термины симбиоз и комменсализм употребляются в очень широком диапазоне значений разными авторами.

[13]Еще классический пример комменсализма: рыбы-прилипала, она передвигается на большие расстояния, прикрепляясь спинным плавником присоской к коже акул и других крупных рыб, к тому же она часто питается остатками их пищи.

[14]Еще известные примеры симбиоза. Например, рак-отшельник и актиния. Рак сажает себе на раковину актинию, которая пользуется остатками с его стола и получает возможность к передвижению. Рак же находится под защитой актинии, которая стрекательными щупальцами отпугивает его врагов.

Почти у всех млекопитающих в кишечнике находится кишечная флора — бактерии, способствующие перевариванию пищи.

[15]Здесь не имеется в виду способность растений к фотосинтезу.

[16]Имеется немало классов животных, ведущих исключительно паразитический образ жизни. К ним относятся споровики, трематоды, цестоды, колючеголовые и некоторые другие черви, из ракообразных — мешкогрудые (Ascothoracida).

[17]Миксины — относятся к классу бесчелюстных (Agnatha), ранее их ошибочно считали рыбами.

Миксин часто называют полупаразитами. Они не являются активными хищниками, питаются, главным образом, падалью и вгрызаются, проделывая ходы в тело мертвых и ослабевших рыб. Они попадают в тело жертвы через прогрызенную дыру или через жаберные отверстия и начинают поедать внутренности рыбы, начиная с печени. Часто от жертвы остается только кожа и скелет.

[18]Количество яиц, продуцируемых одной самкой у трематод исчисляется многими десятками тысяч.

[19]Интересны случаи сверхпаразитизма, наблюдаемые у насекомых (мухи и перепончатокрылые): насекомые откладывают яйца в паразитическую личинку другого насекомого, находящуюся внутри личинки третьего.

[20]Интересно, что присутствие саккулины оказывает мощное воздействие на организм краба (хозяина). Заражение саккулиной молодого самца подавляет развитие его половых желез. С каждой последующей линькой он все больше становится похож на самку. Японские зоологи описали зараженного саккулиной самца краба Eriocheir japonicus, семенники которого под влиянием паразита переродились в яичники, продуцировавшие нормальные яйца.

 

 

 

 

 

 

< Предыдущая Следующая >
 

sp-i.ru

пищевые отношения

Пищевые отношения, кроме случаев типа хищник -»■ жертва, обычно представляют активную или пассивную борьбу за пищу. Там, где этой борьбы нет, трудно констатировать характер отношений, даже если, рационы животных полностью совпадают. Четкое отношение возникает тогда, когда животные начинают оказывать влияние друг на друга, причем это влияние отражается на характере их питания. Другими словами, пищевые косвенные отношения животных есть такой тип отношений, вследствие которых создаются новые условия питания, в свою очередь определяющие интенсивность последнего.[ ...]

Пищевые (трофические) связи - основные биотические связи. Они поддерживают жизнь организмов. Каждый вид служит источником энергии для других. Одни виды потребляют живую пишу, другие -мертвые остатки. Существование пищевых отношений между организмами противостоит геометрической прогрессии размножения, регулируя численность видов.[ ...]

В природе пищевые отношения могут осуществляться только в сосуществовании обеих форм, ибо трудно предположить, что животные, существуя и питаясь совместно, совершенно бы не оказывали друг на друга никакого влияния. Как мы видели, даже в экспериментальных условиях для получения величин, характеризующих только простые отношения, требовалось содержание животных в изолированном состоянии. Следовательно, простые отношения являются понятием, которое никогда в чистом виде не может иметь адекватного отображения в природе, и если мы вводим и анализируем его, то делаем это с единственной целью — количественно оценить различные элементы в общем механизме явления.[ ...]

Среди форм отношений между элементами различных систем в живой природе и в человеческом обществе одно из главных мест занимают парные взаимодействия, которые обобщенно могут быть обозначены как «ресурс — потребитель (эксплуататор) ресурса». В природе это — пищевые отношения: потребление растением минеральных питательных веществ из почвы и воздуха, поедание травы травоядным животным, отношения хищника и его жертвы, паразитизм и т.п. (см. п. 4.3). Взаимодействия в каждой из таких пар можно представить в виде контура обратных связей. Классическим примером такого контура может быть модель взаимовлияния численности особей в популяциях хищника (X) и его жертвы (Ж) (рис. 2.2).[ ...]

Домбровский В. К. Пищевые отношения карпа и серебристого карася при совместном выращивании в прудах. Наука и техника», Минск, 1964.[ ...]

Вопросам питания и пищевых отношений в экосистемах, как факторам, влияющим на поведение нектона, уделялось достаточно внимания. Трофологические исследования проводили по стандартной методике, принятой в ТИНРО-Центре.[ ...]

Подводя итоги главы о пищевых отношениях рыб, мы приходим к следующим выводам.[ ...]

Эволюционное значение пищевых отношений может стать объектом научного анализа лишь на основании четкого понимания следующего звена процесса — функциональной зависимости интенсивности размножения и, в равной степени, скорости вымирания животных от характера их питания. В настоящее время последний вопрос находится в состоянии почти полной неизученное™, особенно в отношении выяснения количественных зависимостей. Поэтому ведущим принципом наших исследований явилось изучение действия, оказываемого пищевыми отношениями на характер и интенсивность питания различных животных одного или нескольких видов.[ ...]

Новая глава в вопросе о пищевых отношениях у рыб начата Шорыгиным и его сотрудниками. Исследования Шорыгина представляют для нас особый интерес, так как, во-первых, объектом его работ, как указывалось, являются рыбы, и, во-вторых, этот автор впервые количественными методами изучения подошел непосредственно к вопросу питания, рассматривая его с точки зрения пищевых отношений.[ ...]

Следствием сложившихся пищевых отношений является расхождение доминант элективности, что в конечном итоге должно с неизбежностью привести к расхождению общих привычек питания. Эти же наблюдения позволяют говорить об относительности и условности отнесения той или иной формы к определенной экологической нише.[ ...]

Лишев М. Н. 1950 — Питание и пищевые отношения хищных рыб в бассейне Амура. Труды Амурской ихтиол, экспед., т. I.[ ...]

У яйца и эмбриона ведущие отношения возникают обычно на почве дыхания и защиты от хищников (Крыжановекий, 1949). В этих направлениях и наблюдается наибольшее разнообразие приспособлений. Пищевые взаимосвязи не имеют значения, так как питание идет за счет желтка, накопленного материнским организмом. В следующие периоды развития у рыбы в связи с переходом на внешнее питание ведущими становятся пищевые отношения. У взрослой рыбы, помимо пищевых, существенное значение приобретают взаимосвязи, возникающие на почве размножения.[ ...]

Следовательно, конкурентные пищевые отношения нарйду с непосредственным истреблением одними животными других являются стержневыми элементами борьбы за существование, й йх анализдолжен приблизить нас к познанию одного из важнейших явлений природы.[ ...]

Разобранные примеры косвенных пищевых отношений, протекающих в условиях полной монофагии, при всей своей кажущейся искусственности, имеют достаточно широкое распространение в природе. В -наиболее чистом виде монофагия присуща отдельным стадиям насекомых, главным образом растительноядных, реже хищных. Но и другие животные, даже высокопластичные в выборе пищи, часто сталкиваются с условиями, когда питание происходит в основном за счет одной, более или менее узкой категории пищевых объектов. Вместе с тем, анализ тенденции элективности, произведенный Шорыгиным для естественных условий и подтвержденный нами экспериментально, показал, что для воблы данный вид моллюсков не является предпочитаемым в комплексе других пищевых форм.[ ...]

Таким образом, формы косвенных пищевых отношений мы различаем по составу питающихся животных (гомоконкуренция и гетероконкуренция), по характеру пищи (монофагия и полифагия1), по характеру изменения рационов (качественные и количественные изменения), по механизму осуществления отношений (отношения простые и осложненные).[ ...]

В разрешении вопросов косвенных пищевых отношений больше, чем в других областях трофологии, нашел применение метод математической интерпретации получаемых результатов. В них не только используются для измерения- интенсивности процесса конкуренции различные количественные показатели, но и самый анализ его осуществляется с помощью более или менее сложного математического аппарата.[ ...]

Знание закономерностей„ межвидовых пищевых отношений имеет важное значение и при планировании акклиматизации новых видов рыб в те или иные водоемы.[ ...]

Отсюда, исходя из принципов проблемы пищевых отношений, экологическая ниша может быть определена как такое положение занимающего ее вида в экосистеме, когда показатели гетероконкуренции имеют наименьшее значение.[ ...]

Нам кажется, что перечисленные формы пищевых отношений достаточно полно охватывают различные случаи изучаемого .явления. С другой стороны, как будет показано ниже, они доступны для конкретного анализа, который в конечном счете и является основной задачей наших исследований.[ ...]

Поскольку интенсивность осложненных отношений является функцией совместного питания большей или меньшей группы животных, естественно было предположить, что чем выше численность группы, тем напряженнее сложатся косвенные пищевые отношения, давая более высокие значения показателя ц.[ ...]

Очерки по общим вопросам ихтиологии»: Изд. АН СССР.[ ...]

При рассмотрении с точки зрения изучения пищевых отношений некоторого биологического комплекса, необходимо разграничивать группы организмов, слагающиеся в экологически однородные категории, т. е. занимающие определенное положение в системе трофических взаимоотношений. Характерной особенностью таких категорий или уровней, по терминологии Хатчинсона1, является использование для питания практически одинакового пищевого материала и отсутствие внутри уровня отношений типа хищник добыча.[ ...]

Следовательно, в простейшем случае, когда пищевые отношения определяются исключительно запасами пищи, приходящейся на каждого отдельного животного, их количественной мерой служит указанная функция.[ ...]

Методическое пособие по изучению питания и пищевых отношений рыб в естественных условиях.[ ...]

Интересным продолжением анализа косвенных пищевых отношений у рыб являются работы Никольского. На них мы остановимся подробнее при обсуждении полученных нами мате-[ ...]

Благодаря определенной последовательности пищевых отношений различаются отдельные трофические уровни переноса веществ и энергии в экосистеме, связанные с питанием определенной группы организмов. Так, первый трофический уровень во всех экосистемах образуют продуценты — растения; второй — первичные консументы — фитофаги, третий — вторичные консументы — зоофаги и т.д. Как уже отмечалось, многие животные питаются не на одном, а на нескольких трофических уровнях (примером могут служить диеты серой крысы, бурого медведя и человека).[ ...]

В свете данных по анализу явления косвенных пищевых отношений по-новому приходится толковать причины, определяющие структуру некоторого совместно обитающего комплекса животных.[ ...]

В настоящем заключительном разделе о косвенных пищевых отношениях мы попытаемся рассмотреть некоторые общие вопросы, или непосредственно вытекающие из результатов произведенных опытов, или тесно с ними соприкасающиеся. Анализ вопросов, имеющих второстепенный характер, дан нами при изложении экспериментального материала.[ ...]

Забегая вперед, укажем еще на одно подразделение косвенных пищевых отношений: на простые и осложненные. Разграничение этих понятий относится непосредственно к механизму осуществления отношений и будет разобрано в следующей главе.[ ...]

При перенесении данного принципа на изучение проблемы косвенных пищевых отношений необходимо отметить следующее. Наблюдаемое в природе расхождение видов по различным нишам и ослабление этим путем гетероконкуренции по сравнению с внутривидовыми отношениями не только не является противоречием полученным экспериментальным данным, но, наоборот, целиком их подтверждает.[ ...]

43

Консервированные компоты, натуральные пюре из плодов и ягод — то ценные в пищевом отношении продукты.[ ...]

Принципиальная разница этих двух кардинальных условий осуществления косвенных пищевых отношений заключается, следовательно, в том, что в первом случае ухудшение условий питания, являющееся естественным результатом конкуренции, не может быть компенсировано хотя бы частичным переходом данного животного на качественно иной рацион. Во втором случае такая перемена неизбежно осуществляется. Переход же на иной рацион вызовет изменение показателей элективности, следовательно, и весь .анализ процесса потребует привлечения иного аппарата исследования.[ ...]

Отличительной особенностью нашего подхода к разбираемой проблеме является то, что пищевые отношения нами рассматриваются в первую очередь не как фактор эволюции вида, но, главным образом, как экологический процесс, выражаемый в определенных, количественно измеряемых категориях.[ ...]

Указывалось также, что основным фактором, обусловливающим наличие и интенсивность осложненных отношений, является причина рефлекторного порядка, мыслимая как взаимное отпугивание, взаимные помехи, взаимное беспокойство и пр. Заметим, что наличие нервных причин в осуществлении пищевых отношений отмечалось и ранее.[ ...]

Синтезом вопросов об интенсивности питания и об избираемости пищи является учение о конкурентных пищевых отношениях— центральная проблема современной трофологии. Теоретическое и практическое значение данной проблемы трудно переоценить. Даже простое перечисление вопросов, входящих в нее и в значительной степени определяемых ею, заняло бы слишком много места. Поэтому мы укажем лишь на наиболее разработанные направления современного учения о косвенных пищевых отношениях.[ ...]

Расс м а тр и в а е м а я смешанная популяция характеризуется, во-первых, значительным повышением показателей пищевых отношений в результате совместного питания особей двух ¡видов, -во-вторых, более активным воздействием карпов на золотых рыбок-, чем этих последних на карпов и, в-третьих, одновременным сдвигом как общих рационов, так и их качественного состава (рис. 49,Л).[ ...]

Эта схема, представляя, казалось бы, стройную картину, страдает определенной погрешностью. Например, конкурентные пищевые отношения могут быть как в пределах одного вида, так и между двумя или многими видами, причем межвидовая борьба . за пищу, как будет показано, является более интенсивной, чем внутривидовая. С другой стороны, прямая борьба с организованными врагами иногда наблюдается и внутри одного вида (например в случае каннибализма).[ ...]

В основном встречается в местах с каменистым дном (курья Зыряновская, северная часть озера). В уловах чаще попадается весной и осенью. Это тугорослый вид. В пищевом отношении является конкурентом других видов рыб, потребляя ценные пищевые компоненты. Также наносит ущерб ихтиофауне, поедая икру.[ ...]

Экологическое взаимодействие двух видов, из которых один является хищником, а другой — жертвой, за последние годы было предметом обширных исследований как в отношении накопления эмпирического материала, полученного в природных и в экспериментальных условиях, так и по линии теоретического, главным образом, математического анализа явления. Вместе с тем, следует признать, что закономерности пищевых отношений разных видов животных даже в предельно простом случае, когда популяция одного вида служит пищевым материалом для представителей другого, в значительной части остаются не разъясненными и даже просто выпавшими по тем или иным причинам из круга проблем, уже подвергнутых изучению.[ ...]

Пища — важнейший экологический фактор. Ее качество и количество способны изменять плодовитость, продолжительность жизни, развитие и смертность живых существ. Помимо этого, разнообразие пищевых рационов лежит в основе многочисленных морфологических, физиологических и экологических адаптаций. Действительно, большинство жизненных приспособлений и функций любых видов организмов так или иначе связаны с питанием. Ими являются приспособления растений к почвам, растительноядных животных к поискам корма, хищников — к захвату добычи. Весьма тонки взаимные приспособления цветов и их опылителей, плодов и распространителей семян, даже между паразитами и их хозяевами, между хищниками и их жертвами.[ ...]

Таким образом, картофель, давая большую продукцию сухой массы и крахмала с гектара, представляет очень ценную культуру среди полевых растений, особенно возделываемых для технических целой; в пищевом отношении он может лишь частично заменить зерновые хлеба.[ ...]

Последней по времени является общая концепция Лысенко [51] по вопросам межвидовой и внутривидовой конкуренции. Построенная на основании теоретического обобщения агробиологического материала, эта концепция иногда используется и при анализе пищевых отношений животных.[ ...]

Как видно и по табличным данным, при сопоставлении величин Р с показателями Р» найденными для соответствующих концентраций пищи, и, особенно наглядно, путем сравнения каждой пары кривых на рис. 40, наблюдается закономерность, сходная с разобранной при рассмотрении гомоконкуренции при монофа-гии. Следовательно, наличие осложненных косвенных пищевых отношений является неизбежным следствием совместного питания рыб во всех испытанных системах, усиливая интенсивность отношений, определяемую только концентрацией пищи.[ ...]

Формулы (6. 1.4) и (6. 1. 5) показывают, что эффективность передачи энергии в трофической цепи и соотношение биомасс популяций сообщества зависят от многих параметров. Наиболее существенно на увеличении У2/Р1 сказывается рост коэффициента усвоения пищи (и2), однако в природных условиях эта величина довольно стабильна. Доступность кормовых объектов (£12) и степень напряженности пищевых отношений (а12 и ¡312) также влияют на энергетическую эффективность популяции в сторону ее увеличения. Что касается интенсивности промысла (то ), то с увеличением этого параметра степень его влияния на рост вылова (У2) не прерывно падает — это связано с уменьшением биомассы В2 или сокращением промысловых запасов.[ ...]

Чрезвычайно высокая интенсивность потоков вещества из неорганической природы в живые тела давно привела бы к полному исчерпанию запасов необходимых для жизни соединений, то есть биогенных элементов. Но этого не происходит, и жизнь не прекращается, так как указанные элементы постоянно возвращаются в окружающую среду. И происходит это благодаря биоценозам, в которых в результате пищевых отношений между видами синтезированные растениями сложные органические вещества превращаются в конце концов в такие простые соединения, как диоксид углерода, вода, ряд элементов, которые могут быть снова использованы растениями в процессе фотосинтеза. Так возникает биологический круговорот вещества. Следовательно, биоценоз, будучи и сам по себе сложной системой живых организмов, является частью еще более сложной системы. В последнюю, помимо живых организмов, входит и их неживое окружение, которое содержит различные вещества и энергию, необходимые для развития и обеспечения жизнедеятельности.[ ...]

Рыбы частиковых пород (елец, плотва, ерш и др.), конкурируя с сиговыми во время их преднерестового нагула, значительно ухудшают его условия, выедая запасы кормовых организмов не только в соровой системе, но и в других участках поймы и русла рек (особенно в низовьях). Об этом говорят и наши наблюдения, и результаты исследований прошлых лет (Москаленко, 1958). Данному обстоятельству должно уделяться особое внимание в годы с относительно низким уровнем весенне-летнего паводка, когда пищевые отношения рыб-конку-рентов из-за бедности ресурсов кормовых объектов обостряются необычайно, что в конечном итоге весьма отрицательно сказывается не столько на линейном и весовом приростах, упитанности производителей сиговых рыб, сколько на своевременности созревания их половых продуктов, массовости нереста и плодовитости — основных показателей, определяющих объем и темпы естественного воспроизводства популяций изученных нами видов рыб.[ ...]

Мы отдаем себе отчет, что принципиально иная трактовка общеэкологических положений должна быть обоснована более солидно, чем это возможно сделать на основании данных, имеющихся в нашем распоряжении. И если мы решаемся, может быть с несколько подчеркнутой категоричностью, говорить о вопросах, по существу достаточно спорных, то делаем это из стремления указать на возможность нового подхода и нового толкования некоторых основных экологических понятий. При анализе явлений косвенных пищевых отношений мы не касаемся вопросов эволюционного порядка. Выше неоднократно подчеркивалось, что основной нашей задачей, определившей весь характер работы, является попытка понять механизм пищевой конкуренции.[ ...]

Повидимому, наибольшая сложность наблюдается при попытке найти связь между интенсивностью питания и выживанием. Наши опыты, ограниченные однородным материалом — рыбами, показали, что фактор интенсивности питания через изменение резистентности организма к внешним условиям может быть подвергнут анализу при обязательном условии учета комбинированного действия всех причин, влияющих на данных животных. Эти опыты с несомненностью показали подавляющее превосходство так называемых «биотических» факторов, в соответствии с сформулированными выше положениями. В последнее время эти вопросы с успехом разбираются Никольским [57] применительно к пищевым отношениям у рыб.[ ...]

Под кондицией обычно понимают состояние упитанности животного, обусловленное главным образом его кормлением, содержанием и характером использования. В отличие от конституции, определяемой в значительной мере наследственностью и являющейся в некоторой степени пожизненным свойством животного, его кондиция в течение жизни и даже в течение одного года может меняться. Существенная особенность животных, в значительной мере определяющая их кондиции, заключается в их способности накапливать резервы питательных веществ. Животные с достаточными и разносторонними резервами отличаются более крепким здоровьем, большей устойчивостью против неблагоприятных влияний среды, лучше используют корм и дают более ценную в пищевом отношении продукцию.[ ...]

ru-ecology.info

О взаимоотношениях растений и животных

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника ⇐ ПредыдущаяСтр 8 из 36Следующая ⇒

Вопреки приведённому нами эпиграфу, мы знаем, что ни в одном уголке земного шара нет в одиночку живущих растений, животных, микроорганизмов. У растений много друзей, но много и врагов помимо грибков и бактерий. Очень важную роль, иногда полезную, а иногда и крайне вредную, играют в жизни растений насекомые. В ходе развития живого мира, в течение миллионов лет, сложились разнообразные, подчас весьма сложные, взаимоотношения между растениями и насекомыми. Достаточно вспомнить роль насекомых в так называемом перекрёстном опылении растений, важность растений для жизни пчёл; вспомним и насекомых — вредителей лесов, огородов, садов.

В лесу, на лугу, в болоте, морях — повсюду в природе жизнь растений и насекомых взаимосвязана и представляет в некоторых отношениях как бы одно целое. Наука, накапливая всё больше и больше фактов о растениях и животных, в то же время изучает закономерности в жизни растительных и животных сообществ.

В озёрах, реках, хвойных лесах, дубовых рощах, зарослях черёмухи, на плантациях цитрусовых — везде складываются свои, своеобразные отношения между растениями и животными, преобладает своё животное население, приуроченное лишь к тем или другим видам растений, определённому характеру почвы и т.д. Самка падальных мух откладывает яйца в гниющие растительные и животные продукты. Зародыши мух могут развиваться среди кишащих микробов. Вышедшая из организма рыбы икринка может оказаться в соседстве с различными микробами, растениями и животными.

В каждом типе леса обитают и свои животные организмы. В буковых лесах встречается от 3 до 4 тысяч видов растений и от 6 до 7 тысяч видов животных (микроскопические одноклеточные животные здесь в расчёт не принимаются). Оказывается, что значительная часть животных строго приурочена именно к буковым лесам. Около 1800 видов животных и 1170 видов растений находит благоприятные условия для жизнедеятельности только в буковых лесах.

Приведём пример. Он неприятный, но, пожалуй, полезный, так как заставит тщательнее мыть фрукты и овощи перед тем, как их есть. В чудесном Петергофском парке под Ленинградом учёные подсчитали, сколько различных насекомых и клещей может быть, например, на ягоде. На 400 граммах земляники оказалось около 600 экземпляров главным образом клещей, на 400 граммах черники — около 1100, на таком же количестве малины — 5000, рябины — более 7000. А в кроне одной большой берёзы их около 5—10 миллионов.

В природе сложились очень своеобразные взаимоотношения организмов, связанные с фитонцидами. Так, фитонциды могут оказаться у маленьких растений опасным оружием нападения на больших для них животных. Среди паразитов цитрусовых растений есть черви нематоды, похожие по своему строению на аскарид, но только значительно меньшего размера. Эти черви могут оказаться в плену у двух грибков, называемых артоботрис. Они совместно нападают на червя и побеждают его. Один из грибков, которого учёные прозвали «рыбаком», быстро разрастаясь, образует сети гифов, опутывающих червя. Другой гриб, названный «палачом», выбрасывает петли, сжимающиеся вокруг червя. Гифы прорастают в тело нематоды и убивают её выделяющимися фитонцидами. Червь становится, таким образом, добычей грибков разлагаясь, служит им пищей.

А вот ещё не менее своеобразный случай взаимоотношений организмов в природе на основе выделения фитонцидов. Учёные долго не могли понять, каким образом всосанная пиявкой кровь становится для неё пищей. Чужая кровь с её сложными химическими веществами должна сначала измениться, а потом уже в более простом виде она может быть усвоена клетками пиявки. У животных и человека в кишечном тракте вырабатываются особые вещества — ферменты, благодаря которым и происходит пищеварение. В кишечнике пиявок этих веществ нет. Что же оказалось? В кишечнике пиявок постоянно живёт, сильно размножаясь, бактерия псевдомонас гирудинис. Эта бактерия является благодетельной для пиявки. Она помогает переваривать всосанную кровь, выделяя соответствующие вещества, и она же, выделяя свои фитонциды, убийственные для других микробов, оказывается единственной полновластной хозяйкой в кишечнике пиявок и не допускает никакого другого бактериального загрязнения. Вот почему кишечник пиявки совершенно чистый, от сосущей кровь пиявки никогда не заболеешь заразной болезнью. Недаром научная медицина пользуется пиявками при лечении многих болезней.

Эволюция растений и животных, приобретение или потеря ими каких-либо новых свойств не происходят особняком, изолированно друг от друга. Изменения одного явления вызывают изменения других. Между растениями и животными складываются новые и новые отношения сожительства (симбиоза) или паразитизма. Устанавливаются новые взаимоотношения в борьбе и взаимопомощи на основе законов, открытых Ч. Дарвином, В природе эти процессы совершаются ежесекундно и стихийно.

Человек, являясь частью природы, стал её творцом, важнейшим фактором её эволюции. Осуществляя гигантское строительство, социалистическое государство должно предвидеть и биологические последствия: какие растительные сообщества сложатся при посадке тех или других древесных пород, как изменится животный и растительный мир при строительстве новых каналов, как преобразится жизнь водоёмов? Биологи всех специальностей, участвуя в этих величественных делах, заняты и решением возникающих проблем.

Всё новые открытия во взаимоотношениях животных и растений используются в интересах человека, ставятся на службу лесной промышленности, (медицины, сельского хозяйства, садоводства, огородничества. Хочется думать, что в ближайшие годы удастся кое-что извлечь и из открытия фитонцидов, полезное не только для борьбы с бактериями, простейшими и грибками, но и для регулирования жизни растительных сообществ и высших животных, а также активно применить фитонциды для сохранения здоровья человека.

Но вернёмся к взаимоотношениям фитонцидов и насекомых.

Невольно напрашивается мысль, не играют ли и фитонциды какую-либо роль в приуроченности определённых видов насекомых к тем или иным растениям и растительным сообществам? Не имеют ли в природе летучие фитонциды какое-либо значение в качестве отпугивающих или, наоборот, привлекающих насекомое веществ? Нельзя ли использовать фитонциды в быту и медицине как инсектициды — вещества, убивающие вредных насекомых? Нельзя ли научно объяснить народные растительные средства борьбы с вредными насекомыми? Эта область исследований столь заманчива потому, что имеет огромное практическое значение.

Сообщим некоторые факты. Может быть, они пробудят у читателей интерес к наблюдениям и экспериментам в природе.

Совершим небольшую экскурсию в прошлое и сообщим об одном открытии, которое довелось сделать ещё в 1928—1930 годах. Это открытие впоследствии убедило нас в полезности изучения влияния фитонцидов на многоклеточных животных, в частности на насекомых.

Рис.21. Моллюски и их яйцеклетки. а — яйцекладка, внутри общей оболочки 10 яиц; б — отдельное яйцо с оболочками в сильно увеличенном виде; в — раковина моллюска; г — моллюск (другого вида) в раковине; д — яйцекладка этого вида моллюска.

Уже в первые дни открытия фитонцидов, когда было ясно, что летучие вещества некоторых растений действуют губительно на грибки, встал вопрос: имеем ли мы дело с ядами, вредными протоплазме определённых клеток, или с ядами для всякой протоплазмы? Теперь-то мы хорошо знаем, что фитонциды действуют избирательно: убивают одни клетки и организмы и не умерщвляют, а даже стимулируют другие.

Одними из первых опытов по фитонцидам были опыты с яйцами моллюсков — с теми клетками, от которых начинается развитие этих организмов. Моллюсков, «слизняков», очень много в морях, пресных водоёмах и на суше (рис.21).

Водные моллюски откладывают яйца на листьях и стеблях растений, на камнях и других твёрдых предметах. Каждый раз их откладывается несколько десятков. Все они находятся в общей прозрачной студенистой массе, играющей важную роль в предохранении зародышей от внешних неблагоприятных воздействий. Каждое яйцо, в свою очередь, одето оболочками. Эти оболочки настолько прозрачны, что сквозь них с помощью лупы легко наблюдать все последовательные этапы развития зародыша вплоть до формирования микроскопического моллюска, у которого уже отчётливо видна раковина. Освободившись от оболочек, моллюск начинает вести самостоятельное существование как взрослое животное.

Микроскопические зародыши моллюсков беззащитны на вид. Но впечатление это ошибочное. Оболочки яиц имеют такое строение и состав, что очень многие вещества, ядовитые и для более сложно организованных животных, для яиц моллюсков совершенно безвредны. Раздавить яйцо моллюска, конечно, легко, можно убить яйцо высокой температурой, но подобрать для этих нежных, изящных, прозрачных клеток химические яды учёному непросто, так как многие ядовитые для протоплазмы вещества не проникают сквозь оболочку яйца.

Возьмём одну яйцекладку какого-либо моллюска на такой стадии развития, когда сквозь прозрачные оболочки видно движение зародышей. Разрежем эту яйцекладку на две половины. Одну половину используем для опыта, а другая останется контрольной.

Опытную половину яйцекладки поместим в капле воды на стекло, а рядом положим только что приготовленную на тёрке луковую кашицу. В первые же секунды (обычно не позднее чем через 30 секунд) мы заметим резкое ускорение движения зародышей: они приходят в возбуждённое состояние. Через минуту-другую это состояние сменяется полной остановкой движения. Пройдёт некоторое время, и мы увидим при кажущейся сохранности оболочек яиц полный распад зародышей. Яйца же контрольной половины яйцекладки, также находящиеся в воде, прекрасно развиваются.

Очень многие растения обладают такими свойствами, например листья, почки, кора черёмухи (рис.22), корневища хрена, листья лавровишни, клёна, дуба, иглы пихты и т.д. Особый биологический интерес для понимания взаимоотношений в природе растений и животных представляет действие фитонцидов водных растений на яйца моллюсков, лягушек, рыб и других организмов. Уже первоначальные исследования дали неожиданные результаты. Одни водные и прибрежно-водные растения (некоторые синезелёные водоросли, спирогира, манник) тормозят развитие зародышей моллюсков, а другие его стимулируют.

Рис.22. Распад зародышей моллюсков под влиянием летучих фитонцидов почек черёмухи (через 40 минут воздействия). а — зародыш был на ранней стадии; б — развившийся моллюск, он имел раковину и вскоре должен был освободиться от яйцевых оболочек.

И вновь возникает мысль: не случайно ли это явление? Имеют ли отношение обнаруженные факты к защитным свойствам водных растений? Безразлично ли для растений, если на них откладывают яйца моллюски и другие водяные животные? Безразлично ли для моллюсков, на каких растениях отложить яйца? Таким образом мы подходим к вопросу о биологической самоочистке водоёмов, к вопросу о том, не играют ли фитонциды водных растений некоторую роль и в регулировании состава животного, растительного и микробного населения водоёмов. На этих вопросах мы остановимся в дальнейшем.

mykonspekts.ru

Биология для студентов - 21. Питание и пищевые взаимоотношения водных организмов

По характеру воспринимаемой пищи водные животные разделяются на:

  • сестофагов, питающихся сестоном, т. е. взвешенными в воде планктоном и детритом,
  • нектофагов, потребляющих рыб и крупных головоногих моллюсков,
  • бентофагов, пищей которых служат донные животные и растения,
  • грунтофагов, поглощающих ил и песок вместе с находящимися в них живыми организмами и органическими веществами.

Все нектофаги являются хищниками, среди бентофагов большинство видов также является хищниками, другие относятся к растительноядным организмам, или фитофагам.

Питание водных животных грунтом имеет такой же характер, как и у наземных грунтофагов, примером которых могут служить дождевые черви.

Совершенно особыми, свойственными только водным организмам, являются способы питания сестофагов. Наличие в окружающей среде взвешенных пищевых частиц вызвало у них целый ряд приспособлений для получения пищи.

К числу сестофагов относится огромное количество видов среди водных животных, от простейших до рыб и млекопитающих. Среди них можно выделить группу планктофагов, питающихся только одними планктическими организмами без примеси детрита, а для пресных вод, кроме того, группу нейстофагов, существующих за счет организмов нейстона. По способу получения пищи сестофаги делятся на:

  • ощупывателей,
  • седиментаторов,
  • активных фильтраторов,
  • пассивных фильтраторов.

Ощупыватели, представителями которых являются кишечнополостные, ловят добычу при помощи своих распростертых, как бы ощупывающих воду щупалец, покрытых стрекательными капсулами.

Седиментаторы, как, например, инфузории и коловратки, производят своими ресничками круговорот воды, увлекающий мелкие пищевые частицы, осаждающиеся затем на дне водяной воронки, или же, как, например, мшанки и плеченогие, образуют ток воды, из которого действием ресничек пищевые частицы направляются к ротовому отверстию.

Активные фильтраторы, к числу которых относятся многие ракообразные, водные личинки некоторых насекомых, двустворчатые моллюски, оболочники, беззубые киты и некоторые другие организмы, вызывают движениями частей тела или ресничек токи воды, приносящие к фильтрационному аппарату взвешенный в воде планктон и детрит. Пассивные фильтраторы, как, например, личинки некоторых насекомых, живущие в текучей воде, строят ловчие сети, улавливающие сносимые течением пищевые частицы.

Кроме монофагов, питающихся строго определенным видом пищи, среди водных животных имеется большое количество полифагов, потребляющих разнообразную пищу. Характер питания нередко меняется с возрастом. Многие организмы, не питающиеся во взрослом состоянии планктоном, в личиночный период своей жизни являются типичными планктофагами, как, например, различные представители червей, ракообразных, моллюсков, иглокожих, рыб и ряда других групп. Многие хищные виды, даже среди рыб, при отсутствии обычной пищи переходят на заменяющую или вынужденную пищу; в качестве последней часто служат организмы планктона.

Пищевая цепь — ряд взаимоотношений между группами организмов (растений, животных и микроорганизмов), при котором происходит перенос энергии путём поедания одних особей другими.

Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе.

Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища — потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды. Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами. Чаще всего на этом месте находятся растения, водоросли. Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

vseobiology.ru

О взаимоотношениях растений и животных



church.houserelieffast.com hits.houserelieffast.com

Вопреки приведённому нами эпиграфу, мы знаем, что ни в одном уголке земного шара нет в одиночку живущих растений, животных, микроорганизмов. У растений много друзей, но много и врагов помимо грибков и бактерий. Очень важную роль, иногда полезную, а иногда и крайне вредную, играют в жизни растений насекомые. В ходе развития живого мира, в течение миллионов лет, сложились разнообразные, подчас весьма сложные, взаимоотношения между растениями и насекомыми. Достаточно вспомнить роль насекомых в так называемом перекрёстном опылении растений, важность растений для жизни пчёл; вспомним и насекомых — вредителей лесов, огородов, садов.

В лесу, на лугу, в болоте, морях — повсюду в природе жизнь растений и насекомых взаимосвязана и представляет в некоторых отношениях как бы одно целое. Наука, накапливая всё больше и больше фактов о растениях и животных, в то же время изучает закономерности в жизни растительных и животных сообществ.

В озёрах, реках, хвойных лесах, дубовых рощах, зарослях черёмухи, на плантациях цитрусовых — везде складываются свои, своеобразные отношения между растениями и животными, преобладает своё животное население, приуроченное лишь к тем или другим видам растений, определённому характеру почвы и т.д. Самка падальных мух откладывает яйца в гниющие растительные и животные продукты. Зародыши мух могут развиваться среди кишащих микробов. Вышедшая из организма рыбы икринка может оказаться в соседстве с различными микробами, растениями и животными.

В каждом типе леса обитают и свои животные организмы. В буковых лесах встречается от 3 до 4 тысяч видов растений и от 6 до 7 тысяч видов животных (микроскопические одноклеточные животные здесь в расчёт не принимаются). Оказывается, что значительная часть животных строго приурочена именно к буковым лесам. Около 1800 видов животных и 1170 видов растений находит благоприятные условия для жизнедеятельности только в буковых лесах.

Приведём пример. Он неприятный, но, пожалуй, полезный, так как заставит тщательнее мыть фрукты и овощи перед тем, как их есть. В чудесном Петергофском парке под Ленинградом учёные подсчитали, сколько различных насекомых и клещей может быть, например, на ягоде. На 400 граммах земляники оказалось около 600 экземпляров главным образом клещей, на 400 граммах черники — около 1100, на таком же количестве малины — 5000, рябины — более 7000. А в кроне одной большой берёзы их около 5—10 миллионов.

В природе сложились очень своеобразные взаимоотношения организмов, связанные с фитонцидами. Так, фитонциды могут оказаться у маленьких растений опасным оружием нападения на больших для них животных. Среди паразитов цитрусовых растений есть черви нематоды, похожие по своему строению на аскарид, но только значительно меньшего размера. Эти черви могут оказаться в плену у двух грибков, называемых артоботрис. Они совместно нападают на червя и побеждают его. Один из грибков, которого учёные прозвали «рыбаком», быстро разрастаясь, образует сети гифов, опутывающих червя. Другой гриб, названный «палачом», выбрасывает петли, сжимающиеся вокруг червя. Гифы прорастают в тело нематоды и убивают её выделяющимися фитонцидами. Червь становится, таким образом, добычей грибков разлагаясь, служит им пищей.

А вот ещё не менее своеобразный случай взаимоотношений организмов в природе на основе выделения фитонцидов. Учёные долго не могли понять, каким образом всосанная пиявкой кровь становится для неё пищей. Чужая кровь с её сложными химическими веществами должна сначала измениться, а потом уже в более простом виде она может быть усвоена клетками пиявки. У животных и человека в кишечном тракте вырабатываются особые вещества — ферменты, благодаря которым и происходит пищеварение. В кишечнике пиявок этих веществ нет. Что же оказалось? В кишечнике пиявок постоянно живёт, сильно размножаясь, бактерия псевдомонас гирудинис. Эта бактерия является благодетельной для пиявки. Она помогает переваривать всосанную кровь, выделяя соответствующие вещества, и она же, выделяя свои фитонциды, убийственные для других микробов, оказывается единственной полновластной хозяйкой в кишечнике пиявок и не допускает никакого другого бактериального загрязнения. Вот почему кишечник пиявки совершенно чистый, от сосущей кровь пиявки никогда не заболеешь заразной болезнью. Недаром научная медицина пользуется пиявками при лечении многих болезней.

Эволюция растений и животных, приобретение или потеря ими каких-либо новых свойств не происходят особняком, изолированно друг от друга. Изменения одного явления вызывают изменения других. Между растениями и животными складываются новые и новые отношения сожительства (симбиоза) или паразитизма. Устанавливаются новые взаимоотношения в борьбе и взаимопомощи на основе законов, открытых Ч. Дарвином, В природе эти процессы совершаются ежесекундно и стихийно.

Человек, являясь частью природы, стал её творцом, важнейшим фактором её эволюции. Осуществляя гигантское строительство, социалистическое государство должно предвидеть и биологические последствия: какие растительные сообщества сложатся при посадке тех или других древесных пород, как изменится животный и растительный мир при строительстве новых каналов, как преобразится жизнь водоёмов? Биологи всех специальностей, участвуя в этих величественных делах, заняты и решением возникающих проблем.

Всё новые открытия во взаимоотношениях животных и растений используются в интересах человека, ставятся на службу лесной промышленности, (медицины, сельского хозяйства, садоводства, огородничества. Хочется думать, что в ближайшие годы удастся кое-что извлечь и из открытия фитонцидов, полезное не только для борьбы с бактериями, простейшими и грибками, но и для регулирования жизни растительных сообществ и высших животных, а также активно применить фитонциды для сохранения здоровья человека.

Но вернёмся к взаимоотношениям фитонцидов и насекомых.

Невольно напрашивается мысль, не играют ли и фитонциды какую-либо роль в приуроченности определённых видов насекомых к тем или иным растениям и растительным сообществам? Не имеют ли в природе летучие фитонциды какое-либо значение в качестве отпугивающих или, наоборот, привлекающих насекомое веществ? Нельзя ли использовать фитонциды в быту и медицине как инсектициды — вещества, убивающие вредных насекомых? Нельзя ли научно объяснить народные растительные средства борьбы с вредными насекомыми? Эта область исследований столь заманчива потому, что имеет огромное практическое значение.

Сообщим некоторые факты. Может быть, они пробудят у читателей интерес к наблюдениям и экспериментам в природе.

Совершим небольшую экскурсию в прошлое и сообщим об одном открытии, которое довелось сделать ещё в 1928—1930 годах. Это открытие впоследствии убедило нас в полезности изучения влияния фитонцидов на многоклеточных животных, в частности на насекомых.

Рис.21. Моллюски и их яйцеклетки. а — яйцекладка, внутри общей оболочки 10 яиц; б — отдельное яйцо с оболочками в сильно увеличенном виде; в — раковина моллюска; г — моллюск (другого вида) в раковине; д — яйцекладка этого вида моллюска.

Уже в первые дни открытия фитонцидов, когда было ясно, что летучие вещества некоторых растений действуют губительно на грибки, встал вопрос: имеем ли мы дело с ядами, вредными протоплазме определённых клеток, или с ядами для всякой протоплазмы? Теперь-то мы хорошо знаем, что фитонциды действуют избирательно: убивают одни клетки и организмы и не умерщвляют, а даже стимулируют другие.

Одними из первых опытов по фитонцидам были опыты с яйцами моллюсков — с теми клетками, от которых начинается развитие этих организмов. Моллюсков, «слизняков», очень много в морях, пресных водоёмах и на суше (рис.21).

Водные моллюски откладывают яйца на листьях и стеблях растений, на камнях и других твёрдых предметах. Каждый раз их откладывается несколько десятков. Все они находятся в общей прозрачной студенистой массе, играющей важную роль в предохранении зародышей от внешних неблагоприятных воздействий. Каждое яйцо, в свою очередь, одето оболочками. Эти оболочки настолько прозрачны, что сквозь них с помощью лупы легко наблюдать все последовательные этапы развития зародыша вплоть до формирования микроскопического моллюска, у которого уже отчётливо видна раковина. Освободившись от оболочек, моллюск начинает вести самостоятельное существование как взрослое животное.

Микроскопические зародыши моллюсков беззащитны на вид. Но впечатление это ошибочное. Оболочки яиц имеют такое строение и состав, что очень многие вещества, ядовитые и для более сложно организованных животных, для яиц моллюсков совершенно безвредны. Раздавить яйцо моллюска, конечно, легко, можно убить яйцо высокой температурой, но подобрать для этих нежных, изящных, прозрачных клеток химические яды учёному непросто, так как многие ядовитые для протоплазмы вещества не проникают сквозь оболочку яйца.

Возьмём одну яйцекладку какого-либо моллюска на такой стадии развития, когда сквозь прозрачные оболочки видно движение зародышей. Разрежем эту яйцекладку на две половины. Одну половину используем для опыта, а другая останется контрольной.

Опытную половину яйцекладки поместим в капле воды на стекло, а рядом положим только что приготовленную на тёрке луковую кашицу. В первые же секунды (обычно не позднее чем через 30 секунд) мы заметим резкое ускорение движения зародышей: они приходят в возбуждённое состояние. Через минуту-другую это состояние сменяется полной остановкой движения. Пройдёт некоторое время, и мы увидим при кажущейся сохранности оболочек яиц полный распад зародышей. Яйца же контрольной половины яйцекладки, также находящиеся в воде, прекрасно развиваются.

Очень многие растения обладают такими свойствами, например листья, почки, кора черёмухи (рис.22), корневища хрена, листья лавровишни, клёна, дуба, иглы пихты и т.д. Особый биологический интерес для понимания взаимоотношений в природе растений и животных представляет действие фитонцидов водных растений на яйца моллюсков, лягушек, рыб и других организмов. Уже первоначальные исследования дали неожиданные результаты. Одни водные и прибрежно-водные растения (некоторые синезелёные водоросли, спирогира, манник) тормозят развитие зародышей моллюсков, а другие его стимулируют.

Рис.22. Распад зародышей моллюсков под влиянием летучих фитонцидов почек черёмухи (через 40 минут воздействия). а — зародыш был на ранней стадии; б — развившийся моллюск, он имел раковину и вскоре должен был освободиться от яйцевых оболочек.

И вновь возникает мысль: не случайно ли это явление? Имеют ли отношение обнаруженные факты к защитным свойствам водных растений? Безразлично ли для растений, если на них откладывают яйца моллюски и другие водяные животные? Безразлично ли для моллюсков, на каких растениях отложить яйца? Таким образом мы подходим к вопросу о биологической самоочистке водоёмов, к вопросу о том, не играют ли фитонциды водных растений некоторую роль и в регулировании состава животного, растительного и микробного населения водоёмов. На этих вопросах мы остановимся в дальнейшем.

houserelieffast.com

О взаимоотношениях растений и животных

Вопреки приведённому нами эпиграфу, мы знаем, что ни в одном уголке земного шара нет в одиночку живущих растений, животных, микроорганизмов. У растений много друзей, но много и врагов помимо грибков и бактерий. Очень важную роль, иногда полезную, а иногда и крайне вредную, играют в жизни растений насекомые. В ходе развития живого мира, в течение миллионов лет, сложились разнообразные, подчас весьма сложные, взаимоотношения между растениями и насекомыми. Достаточно вспомнить роль насекомых в так называемом перекрёстном опылении растений, важность растений для жизни пчёл; вспомним и насекомых — вредителей лесов, огородов, садов.

В лесу, на лугу, в болоте, морях — повсюду в природе жизнь растений и насекомых взаимосвязана и представляет в некоторых отношениях как бы одно целое. Наука, накапливая всё больше и больше фактов о растениях и животных, в то же время изучает закономерности в жизни растительных и животных сообществ.

В озёрах, реках, хвойных лесах, дубовых рощах, зарослях черёмухи, на плантациях цитрусовых — везде складываются свои, своеобразные отношения между растениями и животными, преобладает своё животное население, приуроченное лишь к тем или другим видам растений, определённому характеру почвы и т.д. Самка падальных мух откладывает яйца в гниющие растительные и животные продукты. Зародыши мух могут развиваться среди кишащих микробов. Вышедшая из организма рыбы икринка может оказаться в соседстве с различными микробами, растениями и животными.

В каждом типе леса обитают и свои животные организмы. В буковых лесах встречается от 3 до 4 тысяч видов растений и от 6 до 7 тысяч видов животных (микроскопические одноклеточные животные здесь в расчёт не принимаются). Оказывается, что значительная часть животных строго приурочена именно к буковым лесам. Около 1800 видов животных и 1170 видов растений находит благоприятные условия для жизнедеятельности только в буковых лесах.

Приведём пример. Он неприятный, но, пожалуй, полезный, так как заставит тщательнее мыть фрукты и овощи перед тем, как их есть. В чудесном Петергофском парке под Ленинградом учёные подсчитали, сколько различных насекомых и клещей может быть, например, на ягоде. На 400 граммах земляники оказалось около 600 экземпляров главным образом клещей, на 400 граммах черники — около 1100, на таком же количестве малины — 5000, рябины — более 7000. А в кроне одной большой берёзы их около 5—10 миллионов.

В природе сложились очень своеобразные взаимоотношения организмов, связанные с фитонцидами. Так, фитонциды могут оказаться у маленьких растений опасным оружием нападения на больших для них животных. Среди паразитов цитрусовых растений есть черви нематоды, похожие по своему строению на аскарид, но только значительно меньшего размера. Эти черви могут оказаться в плену у двух грибков, называемых артоботрис. Они совместно нападают на червя и побеждают его. Один из грибков, которого учёные прозвали «рыбаком», быстро разрастаясь, образует сети гифов, опутывающих червя. Другой гриб, названный «палачом», выбрасывает петли, сжимающиеся вокруг червя. Гифы прорастают в тело нематоды и убивают её выделяющимися фитонцидами. Червь становится, таким образом, добычей грибков разлагаясь, служит им пищей.

А вот ещё не менее своеобразный случай взаимоотношений организмов в природе на основе выделения фитонцидов. Учёные долго не могли понять, каким образом всосанная пиявкой кровь становится для неё пищей. Чужая кровь с её сложными химическими веществами должна сначала измениться, а потом уже в более простом виде она может быть усвоена клетками пиявки. У животных и человека в кишечном тракте вырабатываются особые вещества — ферменты, благодаря которым и происходит пищеварение. В кишечнике пиявок этих веществ нет. Что же оказалось? В кишечнике пиявок постоянно живёт, сильно размножаясь, бактерия псевдомонас гирудинис. Эта бактерия является благодетельной для пиявки. Она помогает переваривать всосанную кровь, выделяя соответствующие вещества, и она же, выделяя свои фитонциды, убийственные для других микробов, оказывается единственной полновластной хозяйкой в кишечнике пиявок и не допускает никакого другого бактериального загрязнения. Вот почему кишечник пиявки совершенно чистый, от сосущей кровь пиявки никогда не заболеешь заразной болезнью. Недаром научная медицина пользуется пиявками при лечении многих болезней.

Эволюция растений и животных, приобретение или потеря ими каких-либо новых свойств не происходят особняком, изолированно друг от друга. Изменения одного явления вызывают изменения других. Между растениями и животными складываются новые и новые отношения сожительства (симбиоза) или паразитизма. Устанавливаются новые взаимоотношения в борьбе и взаимопомощи на основе законов, открытых Ч. Дарвином, В природе эти процессы совершаются ежесекундно и стихийно.

Человек, являясь частью природы, стал её творцом, важнейшим фактором её эволюции. Осуществляя гигантское строительство, социалистическое государство должно предвидеть и биологические последствия: какие растительные сообщества сложатся при посадке тех или других древесных пород, как изменится животный и растительный мир при строительстве новых каналов, как преобразится жизнь водоёмов? Биологи всех специальностей, участвуя в этих величественных делах, заняты и решением возникающих проблем.

Всё новые открытия во взаимоотношениях животных и растений используются в интересах человека, ставятся на службу лесной промышленности, (медицины, сельского хозяйства, садоводства, огородничества. Хочется думать, что в ближайшие годы удастся кое-что извлечь и из открытия фитонцидов, полезное не только для борьбы с бактериями, простейшими и грибками, но и для регулирования жизни растительных сообществ и высших животных, а также активно применить фитонциды для сохранения здоровья человека.

Но вернёмся к взаимоотношениям фитонцидов и насекомых.

Невольно напрашивается мысль, не играют ли и фитонциды какую-либо роль в приуроченности определённых видов насекомых к тем или иным растениям и растительным сообществам? Не имеют ли в природе летучие фитонциды какое-либо значение в качестве отпугивающих или, наоборот, привлекающих насекомое веществ? Нельзя ли использовать фитонциды в быту и медицине как инсектициды — вещества, убивающие вредных насекомых? Нельзя ли научно объяснить народные растительные средства борьбы с вредными насекомыми? Эта область исследований столь заманчива потому, что имеет огромное практическое значение.

Сообщим некоторые факты. Может быть, они пробудят у читателей интерес к наблюдениям и экспериментам в природе.

Совершим небольшую экскурсию в прошлое и сообщим об одном открытии, которое довелось сделать ещё в 1928—1930 годах. Это открытие впоследствии убедило нас в полезности изучения влияния фитонцидов на многоклеточных животных, в частности на насекомых.

Рис.21. Моллюски и их яйцеклетки. а — яйцекладка, внутри общей оболочки 10 яиц; б — отдельное яйцо с оболочками в сильно увеличенном виде; в — раковина моллюска; г — моллюск (другого вида) в раковине; д — яйцекладка этого вида моллюска.

Уже в первые дни открытия фитонцидов, когда было ясно, что летучие вещества некоторых растений действуют губительно на грибки, встал вопрос: имеем ли мы дело с ядами, вредными протоплазме определённых клеток, или с ядами для всякой протоплазмы? Теперь-то мы хорошо знаем, что фитонциды действуют избирательно: убивают одни клетки и организмы и не умерщвляют, а даже стимулируют другие.

Одними из первых опытов по фитонцидам были опыты с яйцами моллюсков — с теми клетками, от которых начинается развитие этих организмов. Моллюсков, «слизняков», очень много в морях, пресных водоёмах и на суше (рис.21).

Водные моллюски откладывают яйца на листьях и стеблях растений, на камнях и других твёрдых предметах. Каждый раз их откладывается несколько десятков. Все они находятся в общей прозрачной студенистой массе, играющей важную роль в предохранении зародышей от внешних неблагоприятных воздействий. Каждое яйцо, в свою очередь, одето оболочками. Эти оболочки настолько прозрачны, что сквозь них с помощью лупы легко наблюдать все последовательные этапы развития зародыша вплоть до формирования микроскопического моллюска, у которого уже отчётливо видна раковина. Освободившись от оболочек, моллюск начинает вести самостоятельное существование как взрослое животное.

Микроскопические зародыши моллюсков беззащитны на вид. Но впечатление это ошибочное. Оболочки яиц имеют такое строение и состав, что очень многие вещества, ядовитые и для более сложно организованных животных, для яиц моллюсков совершенно безвредны. Раздавить яйцо моллюска, конечно, легко, можно убить яйцо высокой температурой, но подобрать для этих нежных, изящных, прозрачных клеток химические яды учёному непросто, так как многие ядовитые для протоплазмы вещества не проникают сквозь оболочку яйца.

Возьмём одну яйцекладку какого-либо моллюска на такой стадии развития, когда сквозь прозрачные оболочки видно движение зародышей. Разрежем эту яйцекладку на две половины. Одну половину используем для опыта, а другая останется контрольной.

Опытную половину яйцекладки поместим в капле воды на стекло, а рядом положим только что приготовленную на тёрке луковую кашицу. В первые же секунды (обычно не позднее чем через 30 секунд) мы заметим резкое ускорение движения зародышей: они приходят в возбуждённое состояние. Через минуту-другую это состояние сменяется полной остановкой движения. Пройдёт некоторое время, и мы увидим при кажущейся сохранности оболочек яиц полный распад зародышей. Яйца же контрольной половины яйцекладки, также находящиеся в воде, прекрасно развиваются.

Очень многие растения обладают такими свойствами, например листья, почки, кора черёмухи (рис.22), корневища хрена, листья лавровишни, клёна, дуба, иглы пихты и т.д. Особый биологический интерес для понимания взаимоотношений в природе растений и животных представляет действие фитонцидов водных растений на яйца моллюсков, лягушек, рыб и других организмов. Уже первоначальные исследования дали неожиданные результаты. Одни водные и прибрежно-водные растения (некоторые синезелёные водоросли, спирогира, манник) тормозят развитие зародышей моллюсков, а другие его стимулируют.

Рис.22. Распад зародышей моллюсков под влиянием летучих фитонцидов почек черёмухи (через 40 минут воздействия). а — зародыш был на ранней стадии; б — развившийся моллюск, он имел раковину и вскоре должен был освободиться от яйцевых оболочек.

И вновь возникает мысль: не случайно ли это явление? Имеют ли отношение обнаруженные факты к защитным свойствам водных растений? Безразлично ли для растений, если на них откладывают яйца моллюски и другие водяные животные? Безразлично ли для моллюсков, на каких растениях отложить яйца? Таким образом мы подходим к вопросу о биологической самоочистке водоёмов, к вопросу о том, не играют ли фитонциды водных растений некоторую роль и в регулировании состава животного, растительного и микробного населения водоёмов. На этих вопросах мы остановимся в дальнейшем.

Дата добавления: 2015-10-29; просмотров: 99 | Нарушение авторских прав

Читайте в этой же книге: Удивительные свойства раненых растений | И не раненые растения выделяют фитонциды | Разнообразные реакции микроорганизмов на фитонциды | Картины смерти инфузорий под влиянием фитонцидов | Интересные наблюдения практиков | О тлях, бабочке и пчеле | О ядовитых для человека растениях. Млекопитающие и фитонциды | Защитные силы организмов. Фитонциды — один из факторов иммунитета растений | Д.Д. Вердеревский и молдавская школа иммунологов | Фитонциды и защита растений от болезней |mybiblioteka.su - 2015-2018 год. (0.011 сек.)

mybiblioteka.su


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта