Взаимодействие микроорганизмов с растениями. Взаимоотношения между почвенными микроорганизмами и растениями

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Взаимодействие микроорганизмов с высшими растениями (стр. 1 из 8). Взаимодействие микроорганизмов с растениями


Взаимоотношения микроорганизмов с растениями

Микрофлора ризосферы. Растения являются хорошей средой для обитания микроорганизмов. Корневая система и наземные органы растений обильно населены микроорганизмами. Микрофлору зоны корня принято подразделять на микрофлору ризопланы – микроорганизмы, непосредственно поселяющиеся на поверхности корня, и микрофлору ризосферы – микроорганизмы, населяющие область почвы, прилегающей к корню. Численность микроорганизмов в ризоплане и ризосфере в сотни и даже тысячи раз превышает содержание их в обычной почве.

На численность и групповой состав микрофлоры ризопланы и ризосферы оказывает влияние тип почвы, климатические условия, характер растительного покрова и стадия развития растений. Как правило, в динамике численности микроорганизмов ризопланы и ризосферы наблюдаются два максимума: первый приходится на фазу кущения растений, второй – на фазу цветения и начало плодоношения. Доминируют неспорообразующие бактерии рода Pseudomonas и некоторые микроскопические грибы, бациллы, актиномицеты, клетчаткоразрушающие бактерии, микобактерии. Процессы трансформации веществ в ризосфере обусловливают накопление в ней элементов минерального питания растений. Выделяемые бактериями кислоты способствуют растворению и усвоению растениями труднодоступных соединений, таких, как фосфаты кальция, силикаты калия и магния. Синтезируемые микроорганизмами витамины (тиамин, витамин B12, пиридоксин, рибофлавин, пантотеновая кислота и др.) и ростовые вещества (гиббереллин, гетероауксин) оказывают стимулирующее действие на ростовые процессы растений. Многие сапрофитные бактерии ризосферы являются антагонистами фитопатогенных микробов и выполняют роль санитаров в почве.

Эпифитная микрофлора растений. Микроорганизмы, развивающиеся на поверхности стеблей и листьев растений, получили название эпифитной микрофлоры. Состав эпифитной микрофлоры весьма специфичен. Большинство составляют бактерии Erwinia herbicola. Второе место по численности занимают различные грибы (Penicillium, Mucor, Fusarium и др.). На поверхности многих тропических растений обнаружены азотфиксирующие бактерии рода Beijerinckia, поставляющие азот непосредственно в лист.

Разнообразная и обильная микрофлора находится на поверхности семян. В состав микрофлоры семян обязательно входят неспорообразующие бактерии Pseudomonas, Arthrobacter и Flavobacterium, дрожжи Candida, Rhodotorula, Criptococcus, а также грибы Penicilium, Aspergillus, Alternaria, Cladosporium, Mucor и др. Развитие микроорганизмов на поверхности зерна в значительной мере зависит от влажности и температуры.

Считают, что эпифитная микрофлора образует определенный биологический барьер, препятствующий заражению растительных тканей фитопатогенными микробами.

Фитопатогенные микроорганизмы. Первое место среди фитопатогенных микробов принадлежит грибам, второе место занимают вирусы и бактерии и лишь небольшой процент болезней растений вызывают актикомицеты. Фитопатогенные микроорганизмы активно синтезируют гидролитические ферменты (пектиназы, целлюлазы, протеазы и др.), вызывающие мацерацию растительных тканей и разрушение клеточных оболочек, что приводит к проникновению возбудителя болезни внутрь клетки, нарушают обмен, отравляют токсинами, что приводит ее к гибели.

Источниками заражения растений фитопатогенными микроорганизмами служат почва, вода и многие насекомые. Наибольшую опасность представляют инфицированный семенной материал и остатки больных растений в почве.

Нормальная микрофлора человека и животных. Совокупность микроорганизмов, приспособившихся к жизни в организме человека и животных и не вызывающих каких-либо нарушений физиологических функций макроорганизма, носит название нормальной микрофлоры.

Нормальную микрофлору человека и животных подразделяют на облигатную и факультативную. К облигатной микрофлоре относятся относительно постоянные сапрофитные и условно-патогенные микроорганизмы, максимально приспособленные к существованию в организме хозяина. Факультативная микрофлора является случайной и временной. Она определяется поступлением микроорганизмов из окружающей среды, а также состоянием иммунной системы макроорганизма.

Постоянными обитателями ротовой полости являются стрептококки, лактобациллы, коринебактерии, бактероиды, а также дрожжевые грибы, актиномицеты, микоплазмы и простейшие. К факультативным обитателям относятся энтеробактерии, спорообразующие бактерии и синегнойная палочка. Наличие Escherichia coli является показателем неблагополучного состояния ротовой полости.

Главную роль в поддержании качественного и количественного состава микроорганизмов в ротовой полости играет слюна, содержащая различные ферменты, обладающие антибактериальной активностью.

В желудке человека микроорганизмы почти отсутствуют. Иногда в желудке в незначительном количестве встречаются Sarcina ventriculi, Bacillus subtilis и некоторые дрожжи.

В тонком кишечнике обитает сравнительно мало бактерий (102–103), преимущественно аэробные формы. Зато в толстом кишечнике имеется колоссальное количество микробов, включающих более 260 разных видов факультативных и облигатных анаэробов. Основными обитателями толстого кишечника являются бактероиды, бифидобактерии, фекальный стрептококк, кишечная палочка, молочнокислые бактерии. Последние в кишечнике выступают в роли антагонистов гнилостной микрофлоры и некоторых патогенных микробов.

Из окружающего воздуха поступает масса микробов. Большая часть микроорганизмов задерживается в верхних дыхательных путях. Бронхи и альвеолы легких практически стерильны. В составе микрофлоры верхних дыхательных путей содержатся относительно постоянные микробы, представленные стафилококками, коринебактериями, стрептококками, бактероидами, капсульными грамотрицательными бактериями и др. Кроме бактерий в верхних дыхательных путях в течение длительного времени в латентном состоянии могут пребывать некоторые вирусы, в частности, аденовирусы.

Субстратом для питания бактерий на поверхности кожи служат выделения потовых и сальных желез, а также отмирающие клетки эпителия. Наиболее богата микроорганизмами кожа открытых частей тела – рук, лица, шеи. Подавляющая масса микроорганизмов кожи представлена сапрофитными бактериями – стафилококками, бациллами, микобактериями, коринебактериями и дрожжевыми грибами, и только в 5% анализов выделяется условно-патогенный микроб – золотистый стафилококк. При санитарно-бактериологических анализах обнаружение на поверхности кожи Escherichia coli свидетельствует о загрязнении ее фекалиями.

Нормальная микрофлора в организме человека и животных играет важную роль в формировании естественного иммунитета. Облигатные микроорганизмы, продуцирующие вещества типа антибиотиков, молочную кислоту, спирты, пероксид водорода и другие соединения, обладают ярко выраженными антагонистическими свойствами в отношении многих патогенных бактерий. Качественные и количественные нарушения в составе микробной флоры в организме человека получили название дисбактериоза. Дисбактериоз возникает чаще всего в результате длительного приема антибиотиков, а также при хронических инфекциях, радиации и действии экстремальных факторов. Развитие дисбактериоза объясняется подавлением облигатной микрофлоры макроорганизма.

Патогенные микроорганизмы. Патогенными (от греч. patos – болезнь) называются микроорганизмы, способные вызывать заболевания человека, животных и растений.

Степень патогенности выражается вирулентностью бактерий, измеряемой условно принятой единицей DLM (Dosis letalis minima – минимальная летальная доза). Одна DLM равна наименьшему количеству бактерий, способных вызвать в течение определенного времени гибель не менее чем 80–95% лабораторных животных.

Вирулентность связана с образованием экзо- и эндотоксинов, способностью к инвазии (проникновению в организм хозяина), формированием капсульной слизи, а также выделением агрессинов (веществ, подавляю­щих защитные силы организма).

Внедрение патогенных микробов, нарушающих физиологическое равновесие и физиологические функции организма, приводит к развитию инфекции. Общими наиболее типичными признаками инфекции являются воспаление, лихорадка, поражение нервной системы, нарушение сердечно-сосудистой и дыхательной функций, а при некоторых заболеваниях появление накожной сыпи. В ходе инфекционного процесса возбудители из первичного очага могут поступать в кровь и разноситься по всему организму, что приводит к развитию сепсиса. При благоприятном течении инфекционный процесс заканчивается выздоровлением.

Иммунитет. Защита организма от инфекционных и других генетически чужеродных для него агентов (микробов или их токсинов) получила название иммунитета. По происхождению различают врожденный и приобретенный иммунитет. Врожденный иммунитет является одним из видовых генетических признаков организма, передается по наследству. Так, человек невосприимчив к чуме собак и крупного рогатого скота, куриной холере. Животные не поражаются такими инфекциями человека, как гонорея, сифилис, брюшной тиф, скарлатина, корь и др. Врожденный иммунитет является естественной и наиболее совершенной и прочной формой защиты организма, так как он сформировался в процессе эволюции в ходе естественного отбора.

Приобретенный иммунитет формируется в процессе жизни организма и не передается по наследству. Он вырабатывается в организме после перенесенного заболевания или искусственного введения вакцины либо готовых антител. Приобретенный иммунитет является высокоспецифичным.

Одним из механизмов иммунитета является фагоцитоз. Значение фагоцитоза в иммунитете обосновано И.И. Мечниковым. Процесс фагоцитоза заключается в активном поглощении и переваривании чужеродного агента специализированными клетками организма, получившими название фагоцитов. Фагоцитарной активностью обладают микрофаги и макрофаги. К микрофагам относятся гранулоциты (нейтрофилы, эозинофилы, базофилы). Среди макрофагов различают подвижные (моноциты крови, полибласты, гистиоциты) и неподвижные (клетки селезенки, лимфатической ткани, клетки Купфера печени) клетки.

Процесс фагоцитоза проходит в несколько стадий: 1) приближение фагоцита к чужеродному объекту; 2) захват объекта; 3) внутриклеточное ферментативное переваривание объекта фагоцитом. Фагоцитарная активность организма в значительной мере определяет его сопротивляемость инфекции.

Специфическим механизмом приобретенного иммунитета служит образование антител в ответ на внедрение в организм того или иного антигена. В роли антигенов выступают чужеродные для организма патогенные микробы, их токсины, а также белки, нуклеиновые кислоты, липиды, полисахариды и т.д. Антигены обладают способностью вызывать образование антител и вступать с ними в специфическое взаимодействие.

Антитела представляют собой иммуноглобулины – специфические гетерогенные белки с характерными химическими и биологическими свойствами. Для синтеза иммуноглобулинов необходима кооперация трех типов клеток в организме – Т- и В-лимфоцитов и макрофагов.

Профилактика и терапия инфекционных заболеваний. В профилактике инфекционных заболеваний исключительно важную роль играют вакцины. Термин «вакцина» происходит от латинского слова vaccina, что означает «корова». Первая вакцина против оспы получена в 1796 г. Э. Дженнером из гнойников на коже руки доярки, ухаживавшей за коровами, больными коровьей оспой. По характеру вакцинного материала различают живые, убитые и химические вакцины.

Живые вакцины применяются для профилактики таких серьезных инфекционных заболеваний, как оспа, полиомиелит, бешенство, корь, паротит, грипп, сыпной тиф, сибирская язва, чума и др.

Убитые вакцины представляют собой суспензию убитых патогенных микроорганизмов в растворе хлорида натрия. Для инактивации вакцинных штаммов микроорганизмов применяют ультрафиолетовое облучение, ультразвук, химические вещества – формалин, фенол, спирт и др. Введение убитых вакцин, как правило, вызывает менее стойкий иммунитет организма. К эффективно действующим убитым вакцинам относятся вакцины против брюшного тифа, паратифа, холеры, коклюша, клещевого энцефалита и др.

Химические вакцины получают извлечением из клеток патогенных микроорганизмов антигенов, обладающих наиболее выраженными иммуногенными свойствами. В качестве химических вакцин практическое применение нашли О-антиген сальмонелл брюшного тифа и паратифов, Vi-антиген сальмонелл брюшного тифа, протективный антиген бацилл сибирской язвы.

К наиболее эффективно действующим относятся ассоциированные вакцины, вырабатывающие иммунитет организма сразу к нескольким заболеваниям. Примером такой ассоциированной вакцины является коклюшно-дифтерийно-столбнячная вакцина (акдс).

Для лечения инфекционных заболеваний современная медицина располагает арсеналом химических препаратов и антибиотиков.

Различают корпускулярные вакцины, содержащие ослабленные (аттенуированные) или убитые микроорганизмы и вирионы.

Некорпускулярные – содержат продукты химического расщепления микроорганизмов, обезвреженные яды, экзотоксины.

По числу антигенов различают моновакцины и ассоциированные поливакцины.

Синтетические – безбаластные, не обладают побочным токсическим действием, они коньюгируют с Т-зависимыми носителями, введены в адьюванты.

Рекомбинантные – искусственно созданные вакцины на основе рекомбинантных вирусов или микробов-химер, в геномы которых введены гены антигенов (вакцина против оспы и гепатита; вакцина против герпеса, гриппа А и стоматита).

Антиидиотипические вакцины – смесь моноклональных антител (используют гибридомы).

Иммунныесыворотки – жидкая часть плазмы крови без фибриногена: нормальные и иммунные; гомологичные (от человека) и гетерологические (от животных), по целям: диагностические и лечебно-протифилактические (пассивный иммунитет).

Похожие статьи:

poznayka.org

Взаимоотношения между почвенными микроорганизмами и растениями

В присутствии растений в почве численность и состав микрофлоры значительно меняются, особенно в прикорневой зоне.

Корни растений, улучшая химические и физические условия в почве, способствуют значительному повышению численности микрофлоры в этой зоне. Активное размножение микрофлоры ризосферы, состоящей в основном из бактерий, обусловлено наличием веществ, выделяемых корнями растений в течение вегетационного периода. Корневые выделения содержат различные органические кислоты, аминокислоты, углеводы и т. д., служащие источником питания для ризосферной микрофлоры, численность которой на возделываемых участках в несколько раз больше, чем в почве без растений. В ризосфере, где накапливаются корневые выделения и разлагаются корневые волоски, влажность примерно на 1—2% выше, а реакция среды нейтральная даже в кислой почве. В ней содержится больше продуктов метаболизма и выше концентрация ферментов, ауксинов, витаминов, аминокислот и других биологически активных веществ. В зоне ризосферы в результате увеличения численности микрофлоры значительно возрастает интенсивность микробиологических процессов. По данным Красильникова, трикальцийфосфат, находящийся в недоступном состоянии в стерильной почве, благодаря ризосферной микрофлоре становится доступным. В этой зоне также повышается растворимость железистых и магниевых соединений. Эти данные свидетельствуют о способности микроорганизмов ризосферы менять интенсивность процессов, связанных с улучшением условий питания растений.

В зависимости от вида растения, фазы его развития, почвенных условий и агротехнических приемов складываются взаимоотношения микроорганизмов с растениями. Например, взаимоотношения азотобактера с растениями в основном определяются видом растений и в меньшей степени типом почвы. Бобовые, рис, табак и другие культуры стимулируют развитие этих бактерий, а хлопчатник — тормозит.

Примером позитивного взаимоотношения микроорганизмов с растениями служит симбиоз между клубеньковыми бактериями и бобовыми культурами, при котором растения получают значительную часть необходимых питательных веществ от микроорганизмов. В этом случае можно говорить о симбиотрофизме, т. е. о благоприятном взаимодействии микроорганизмов и растений, между которыми возникли симбиотические отношения. Ещё не так давно большое значение придавалось истинному симбиозу между бактериями и растениями. В настоящее время известно, что для питания очень важны любые взаимоотношения между растениями и микроорганизмами.

Микроорганизмы ризосферы питаются корневыми выделениями и, в свою очередь, выделяют метаболиты или синтезируют доступные для растений питательные вещества. По мнению некоторых исследователей, микроорганизмы могут становиться конкурентами растений, поскольку в процессе развития используют питательные вещества почвы. Однако такие опасения необоснованны, поскольку биологическое закрепление, т. е. использование минеральных питательных веществ бактериальными клетками и превращение их в органические формы, — временное явление. Заключенные в клетки бактерий вещества становятся питательным резервом почвы. При минерализации микробной биомассы почва обогащается усвояемыми питательными веществами, поступающими из биологического фонда.

Микроорганизмы поставляют растениям также стимулирующие их развитие биологически активные вещества. Почва в зоне ризосферы богата витаминами, ауксинами, аминокислотами и другими веществами, выделяемыми микроорганизмами. Кроме того, микроорганизмы в ризосфере некоторых растений выделяют антибиотики, предохраняющие растения от болезней. Тесные взаимоотношения между бактериями и растениями определяют так называемое бактериотрофное питание растений.

В природе часто встречается сожительство растений с грибами. Около и на поверхности корней многих деревьев и других растений развиваются грибы, образуя так называемую микоризу. Микоризообразующие грибы снабжают растения питательными веществами, полученными при разложении растительных остатков и почвенного гумуса. Микоризные грибы значительно увеличивают поверхность соприкосновения растений с почвой и создают условия для лучшего поглощения питательных веществ. Взаимоотношения между корнями и грибной микрофлорой до настоящего времени изучены еще недостаточно.

Кроме взаимовыгодных отношений между микроорганизмами и растениями, в природе встречаются противоположные формы, например паразитизм. Паразитизм возникает особенно часто в севообороте с монокультурами. В результате этого происходит накапливание фитопатогенных микроорганизмов, приводящее к утомлению почвы. Эти микроорганизмы вызывают болезни растений или, выделяя токсические вещества, тормозят развитие растений и в результате — формирование урожая. Борьба с этим явлением обычно заключается в правильном чередовании, культур.

Пошон и др. (1961) считают, что ризосфера населена преимущественно непатогенными микроорганизмами. При вспышке заболевания соответствующий патогенный вид накапливается в значительных количествах около корней заболевшего растения. Патогенные микроорганизмы вступают в антагонистические отношения с другими микроорганизмами, что оказывает влияние на плотность популяции и активность вредных для растений видов. Численность и состав микрофлоры в значительной степени зависит от характера заболевания растения. Так, в ризосфере растений, восприимчивых или зараженных фузариозом, накапливается больше бактерий, актиномицетов и почвенных грибов, чем в ризосфере устойчивых и незараженных видов. В ризосфере растений табака, пораженных черной корневой гнилью, численность микроорганизмов значительно больше, чем в ризосфере здоровых растений. Однако следует отметить, что ризосфера служит чем-то вроде микробиологической буферной зоны, в которой микрофлора не только улучшает питание растений, но и предохраняет их от патогенных микроорганизмов.

Микроорганизмы ризосферы играют защитную роль, используя продукты метаболизма, выделяемые растениями в период вегетации, и освобождают от них почву корневой зоны.

Известно, что в отсутствие микрофлоры растения могут расти и питаться, однако процессы развития и воспроизводства их резко заторможены. Ризосферная микрофлора, по-видимому, принимает участие не только в поставке, но и в усвоении питательных веществ растениями. Установлено, что растение само «определяет» численность и видовой состав ризосферной микрофлоры. По мнению некоторых исследователей, корневые выделения растений — это фактор, имеющий первостепенное значение при определении численности и состава ризосферной микрофлоры. Результаты исследований, проведенных в Болгарии, показали, что содержание аминокислот в корневых выделениях не является характерным показателем ризосферной микрофлоры у растений. Показано, что аминокислотный состав корневых выделений у различных растений неодинаков. Так, в корневых выделениях овса в наибольшем количестве обнаружены аминомасляная кислота и триптофан; пшеницы — аминомасляная кислота, триптофан, глутамин и аланин; фасоли — аминомасляная кислота и тирозин; люцерны — глутамин, треонин, пролин, тирозин и валин. При выращивании растений на оптимально удобренных площадях характер изменения количественного содержания и состава аминокислот в корневых выделениях и в самой микрофлоре аналогичен. Под влиянием удобрений происходят изменения численности и состава ризосферной микрофлоры. Наиболее часто меняются соотношения между отдельными группами или видами микроорганизмов. Следовательно, корневые выделения влияют на ризосферную микрофлору, но не являются при этом основным фактором, определяющим ее численность и состав.

На численность и состав ризосферной микрофлоры влияют и почвенноклиматические условия. Изменение почвенных условий под влиянием различных агротехнических приемов отражается на жизнедеятельности ризосферной микрофлоры. Болгарскими исследователями изучаются изменения численности и активности ризосферной микрофлоры под влиянием агроприемов с целью направленного воздействия на микроорганизмы. Для изучения влияния растений и почвенных условий на ризосферную микрофлору были проведены вегетационные опыты с шестью культурами — фасолью, кукурузой, пшеницей, хлопчатником, томатами и перцем, высеянными в песок (контроль) с питательной смесью Гельригеля. Параллельно при одинаковом водном режиме и других прочих условиях растения выращивали на смолнице и коричневой лесной почве. Ризосферную микрофлору этих растений изучали в корневой, прикорневой и ризосферной зонах.

Полученные результаты показывают, что тип почвы незначительно влияет на ризосферную микрофлору, тогда как растения оказывают значительное влияние на ее численность и состав. Численность бактерий, источником питания которых служит органический или минеральный азот, различается в зависимости от зоны ризосферы, а также от вида растения. Растения влияют и на соотношение бактерий, использующих органический или минеральный азот, которое в контрольном варианте (почва без растений как смолница, так и коричневая лесная) равно 1:1. Изменение этого соотношения под влиянием определенного вида растений свидетельствует об их специфическом воздействии на микроорганизмы ризосферы. Следовательно, в зависимости от потребности в азоте растения в определенной степени могут регулировать численность и состав ризосферной микрофлоры, которая играет важную роль в снабжении их усвояемым азотом.

Растения влияют также на численность бактерий ризосферы, которые переводят в усвояемые формы труднорастворимые органические и неорганические фосфорные соединения. Численность этих бактерий в ризосфере вегетирующих растений меняется независимо от типа почвы. При сравнении численности бактерий, использующих органические и минеральные формы азота или фосфора у различных растений, отмечается следующее: непосредственно на корнях хлопчатника, томатов и перца увеличивается количество бактерий, использующих минеральные формы азота и труднорастворимые фосфаты; в корневой зоне фасоли, кукурузы и пшеницы относительно высоко количество бактерий, использующих органические формы азота и минеральные формы фосфора. Следовательно, в одной и той же ризосферной зоне наблюдается тенденция к одновременному увеличению бактерий, связанных как с минеральными формами азота, так и с трудноусвояемыми фосфатами, или бактерий, использующих органические формы азота и минеральные формы фосфора. Вполне вероятно, что благодаря ризосферной микрофлоре растения приобретают способность активно развиваться при наличии в почве различных форм азота и фосфора, причем достаточное количество доступного азота позволяет им использовать больше органических форм фосфора, и наоборот.

Микрофлора в ризосфере представлена в основном бактериями (до 99%), тогда как актиномицеты и грибы встречаются довольно редко. Среди бактерий преобладают виды, участвующие в процессах минерализации. Нитрифицирующие, целлюлозоразлагающие, азотобактер и другие

бактерии реже встречаются в ризосфере растений. Численность нитрифицирующих бактерий существенно меняется в зависимости от типа почвы и незначительно — под влиянием растений.

Следовательно, в определенных условиях развития растений проявляется избирательность к ризосферной микрофлоре, которая выражается в увеличении некоторых групп бактерий в почве непосредственно на корнях или на расстоянии 3—5 мм от них.

Численность ризосферной микрофлоры и накопление полезных микроорганизмов зависят от условий питания растений. Большое значение имеет активность микроорганизмов, а не их количество. В зоне ризосферы растений создаются особые условия, отличающиеся от окружающих, что сказывается на физиологических особенностях микроорганизмов. Активность аммонифицирующих бактерий довольно низкая в ризосфере, особенно в корневой зоне. Следовательно, в этой зоне необходимо увеличить количество микроорганизмов, способствующих азотному питанию растений, путем внесения дополнительного источника питания, т. е. органических и органо-минеральных удобрений.

Под влиянием агротехнических приемов в ризосфере растений меняется численность фосфорных бактерий. Фосфатазная активность бактерий, изолированных из почвы без растений и ризосферы, существенно не различается. Следовательно, в фосфорном питании растений главную роль играет количество находящихся в ризосфере микроорганизмов.

На популяции нетипичных ризосферных микроорганизмов — азотфиксирующих, целлюлозоразлагающих и нитрифицирующих — растения не оказывают непосредственного влияния. Основной фактор, влияющий на эти микроорганизмы, — почва. Агротехнические приемы (удобрение, полив и т. д.) приводят к значительным изменениям численности этих бактерий в почве, но к небольшим — в ризосфере растений. Исследования активности азотобактера и его способности выделять витамин B12 показали, что под влиянием растений и агроприемов меняются его физиологические особенности. Так, в одной и той же почве количество витамина В12, выделяемого азотобактером, в значительной степени зависит от вида растения. Азотобактер из ризосферы пшеницы, выращиваемой на неудобряемых площадях, выделяет в 3 раза меньше витамина В12, чем такой же штамм, но развивающийся в удобренной и известкованной почве. Среди растений, выращиваемых при одинаковом почвенном режиме, пшеница имеет наибольшую численность антагонистов азотобактера по сравнению с люцерной, кукурузой и другими культурами. Однако численность антагонистов азотобактера в ризосфере пшеницы снижается при выращивании растений на оптимально удобренных площадях. Штаммы Az. chroococcum, изолированные из ризосферы растений, выделяют большие количества гиббереллина и бета-индолил-уксусной кислоты. Следовательно, для повышения полезного эффекта типичной ризосферной микрофлоры, пока он обусловлен азотным и фосфорным питанием растений, необходимы мероприятия, способствующие увеличению численности этих микроорганизмов.

Исследования ризосферной микрофлоры, а также факторов и приемов, оказывающих на нее влияние, позволяют выяснить основные закономерности регуляции жизнедеятельности микрофлоры с целью повышения ее значения в питании растений. Особенно это относится к основным сельскохозяйственным культурам, где выяснение этих вопросов позволит проводить агротехнические мероприятия, улучшающие взаимоотношения между микрофлорой и растением.

В литературе немало данных о распространении микроорганизмов в ризосфере и корневой зоне различных растений. Это относится как к количеству, так и к видовому их составу, показывает значение микрофлоры для роста и развития растений.

В Болгарии проводятся исследования по изучению состава и численности микроорганизмов в прикорневой зоне растений. Динчев, исследовав ризосферу кукурузы, высказал предположение, что количество ризосферных бактерий зависит от корневых выделений этой культуры и от типа почвы. Радучев и Пешков, изучая микрофлору ризосферы винограда, установили, что максимум численности аммонифицирующих и денитрифицирующих бактерий приходится на фазу цветения.

Проведены исследования ризосферной и корневой микрофлоры пшеницы в фазы кущения и колошения и кукурузы во время цветения.

При внесении азотных и фосфорных удобрений в ризосфере пшеницы возрастает суммарная биологическая активность за счет увеличения численности микрофлоры и перегруппировки основных форм бактерий, что благоприятно сказывается на развитии пшеницы.

При возделывании пшеницы в монокультуре значительно возрастает численность бактерий, использующих минеральные формы азота, достигая 70—80% общего количества микроорганизмов. Возрастает также количество актиномицетов и спорообразующих бактерий, переводящих усвояемый азот в сложные и трудно минерализуемые органические соединения. В результате отмечается снижение урожайности пшеницы.

В ризосфере пшеницы, возделываемой после подсолнечника и кукурузы, высока численность аммонифицирующих микроорганизмов. После гороха увеличивается доля микрофлоры, участвующей в процессах минерализации, а количество спорообразующих видов снижается почти наполовину, в корневой зоне пшеницы также возрастает численность аспорогенных бактерий рода Pseudomonas. Как активные аммонификаторы эти бактерии, вероятно, способствуют поступлению усвояемого азота в почву и накоплению определенных продуктов метаболизма — ростовых веществ. Следовательно, горох в качестве предшественника пшеницы вызывает благоприятные изменения в количестве и составе ризосферной микрофлоры. Аналогичные результаты были получены и при возделывании пшеницы по пару.

В ризосфере пшеницы, возделываемой после кукурузы, подсолнечника и гороха, также усиливается интенсивность процессов минерализации. В этой зоне возрастают суммарная биологическая и аммонифицирующая активность почвы, что положительно сказывается на развитии пшеницы и на ее урожайности. Установлена положительная корреляция между урожайностью пшеницы и численностью ризосферной микрофлоры, участвующей в процессах минерализации.

В ризосфере и корневой зоне кукурузы и пшеницы в монокультуре отмечается тенденция к приросту микрофлоры, усваивающей минеральные формы азота.

В ризосфере кукурузы, возделываемой в севообороте по сравнению с монокультурой увеличивается численность аммонифицирующих микроорганизмов. Наиболее четко это выражено после гороха и пара, где численность аммонифицирующих бактерий достигает 80% от общего количества ризосферной и корневой микрофлоры. В зависимости от условий возделывания в ризосферной микрофлоре кукурузы происходят изменения, определяющие урожайность этой культуры.

Микрофлора ризосферы табака изучена довольно слабо. Большинство результатов относится к отдельным видам бактерий. Еще Костычев и др. установили, что Az. chroococcum приспособлен к ризосфере табака и является как бы его спутником. Красильников относит табак к растениям, которые не подавляют развитие этих бактерий. Ампова изучала бактериальную флору табака. Исследования, проведенные Войновой-Райковой и Гущеровым, показали, что Az. chroococcum встречается в больших количествах в почвах табачных плантаций.

Ампова установила, что ризосферная корневая микрофлора табака изменяется в течение вегетационного периода. В начале вегетации ее численность невысока, но значительно увеличивается во время цветения растений, т. е. в период наиболее интенсивно протекающих жизненно важных процессов. В конце вегетации численность бактерий и актиномицетов также весьма значительна, что, по-видимому, вызвано увеличением количества корневых остатков в ризосфере и накоплением органической массы, подлежащей разложению.

В период цветения в ризосфере и корневой зоне хорошо развитых растений табака встречается большое количество аспорогенных флуоресцентных бактерий семейства Pseudomonaceae. Среди них многие активно продуцируют питательные и ростовые вещества с высокой биологической активностью. У отстающих в развитии растений табака численность аспорогенных флуоресцентных бактерий в ризосфере значительно меньше, а в корневой зоне встречаются в основном спорообразующие бактерии.

Этот факт можно объяснить торможением развития табака вследствие нарушения биологического равновесия в составе ризосферной микрофлоры, что подтверждает взаимозависимость между ризосферной микрофлорой и питанием и развитием данной культуры.

В ризосфере табака количество Az. chroococcum также увеличивается. Высокую численность этих бактерий в ризосфере Войнова-Райкова объясняет способностью табака подавлять развитие антагонистов азотобактера.

Из вышесказанного становится ясным, что под влиянием растительности меняются численность и состав микроорганизмов, а, следовательно, и интенсивность процессов, в которых они участвуют. Такие изменения — результат взаимодействия растений и микроорганизмов — определяют степень развития и питание культур. В связи с этим необходимо проводить изучение микрофлоры ризосферы для разработки приемов, благоприятно влияющих на ее развитие и состав, и, следовательно, на улучшение питания растений и получение высоких урожаев. Правильное возделывание культур имеет решающее значение для создания позитивных взаимоотношений между растениями и почвенной микрофлорой. Так, в севообороте предшественник служит средством целенаправленного изменения ризосферной микрофлоры и улучшения питания растений.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Взаимодействие микроорганизмов с высшими растениями.

Любые студенческие работы ДОРОГО, КАЧЕСТВЕННО

100 руб. бонус за первый заказ. Всего 3 вопроса:

Узнать стоимость работы

Тесное сожительство микроорганизмов с растениями и животными в широком смысле называется симбиозом (от греч. symbiosis – совместная жизнь). При длительном сосуществовании между микро- и макроорганизмом происходит процесс их совместной коэволюции.

Эндосимбиозы.симбиоз клубеньковых бактерий с бобовыми растениями.

1888 г. М. Бейеринком, который выделил чистую культуру клубеньковых бактерий и показал, что стерильные семена образуют растения с характерными клубеньками, если их обрабатывать чистыми культурами выделенных бактерий.

Клубеньковые бактерии относятся к роду Rhizobium. ( Rhizobium trifolii – растение-хозяин клевер, Rhizobium phaseoli – растение-хозяин фасоль, Rhizobium leguminosarum – растение-хозяин горох)

Клубеньковые бактерии – это грамотрицательные подвижные палочки. Они относятся к микроаэрофильным микроорганизмам, способным развиваться при низком парциальном давлении кислорода в среде. Клубеньковые бактерии хемогетеротрофы, т. е. в качестве источника углеро-

да и энергии используют органические вещества, часто нуждаются в некоторых витаминах – тиамине, пантотеновой кислоте, биотине. Они обычно существуют свободно в почве. При свободном существовании в почве используют связанный азот, т. е. утрачивают способность фиксировать азот атмосферы.

Клубеньковые бактерии обладают выраженной специфичностью в отношении бобовых растений: каждый их вид вызывает образование клубеньков на корнях одного или группы близких видов бобовых.

(лектины – гликопротеины, обладающие свойством обратимо и избирательно связывать углеводы и углеводные детерминанты биополимеров без образования ковалентной связи и изменения их стр-ры)

Процесс инфицирования начинается с адгезии клеток бактерий на поверхности корневых волосков. В клетках корневых волосков бобовых синтезируются особые вещества – хемоаттрактанты для бактерий. К таким соединениям, в частности, относятся флавоноиды и изофлавоноиды. Флавоноиды и изофлаво-

ноиды индуцируют экспрессию бактериальных nod-генов, которые отвечают за синтез Nod-факторов (белков-нодулинов), обеспечивающих межвидовое взаимодействие.

В этой трубке, называемой инфекционной нитью, находятся интенсивно размножающиеся бактерии.  Развитие собственно клубенька начинается, когда инфекционная нить достигает тетраплоидной клетки ткани коры. При этом происходит усиленная пролиферация как самой тетраплоидной клетки, так и соседних диплоидных клеток. Индуцирует пролиферацию индолилуксусная кислота .

На стадии бактероидов происходит фиксация молекулярного азота.У клубеньковых бактерий за фиксацию атмосферного азота ответственен nif-оперон, который локализован в Sуm-плазмидах,также находятся hos-гены, обусловливающие узнавание хозяина, и nod-гены, определяющие способность об-

разовывать клубеньки. Гены nif-оперона детерминируют синтез нитрогеназы – основного фермента, участвующего в фиксации молекулярного азота. Нитрогеназа состоит из двух компонентов: Fe-белка и FeMо-белка. Нитрогеназа очень чувствительна к наличию молекулярного кислорода и инактивируется им, поэтому в клубеньках бобовых растений синтезируется защитное вещество – пигмент леггемоглобин, обладающий высоким сродством к кислороду. Образование леггемоглобина – это

специфический результат симбиоза: простетическая группа (протогем) синтезируется бактероидами, а белковый компонент – при участии растения. Клубеньки с леггемоглобином имеют розовый цвет и способны фиксировать молекулярный азот. При разрушении леггемоглобина образуются зеленые пигменты биливердины, а клубеньки, содержащие такие пигменты, молекулярный азот не фиксируют.

Взаимоотношение бактерий рода Bradyrhizobium с бобовыми растениями тропического и в ряде случаев умеренного поясов. Соя – формирует симбиотические отношения с бактериями Bradyrhizobium

japonicum. На корневых волосках образуются клубеньки, в которых клетки бактерий имеют раздутую форму (бактероиды) и продуцируют фермент нитрогеназу.

Химизм фиксации азота у Frankia аналогичен таковому у клубеньковых бактерий, однако он более экономичен с точки зрения потребления АТФ. Способны к азотфиксации и в свободноживущем.

Примером взаимовыгодных эндосимбиозов являются взаимоотношения азотфиксирующих бактерий родов Chromatium и Klebsiella с тропическими растениями Peretta и Psichoteria. На листьях этих растений в результате симбиоза с бактериями образуются своеобразные клубеньки.

Эндосимбиозы цианобактерий Anabaena azollae с водным папоротником Azolla. У папоротника, растущего на поверхности стоячих тропических водоемов, цианобактерии содержатся в полостях листьев. Цианобактерии – многоклеточные организмы, отдельные их клетки при отсутствии связанного азота превращаются в специализированные формы, получившие название гетероцисты, в которых и происходит фиксация атмосферного азота. В гетероцистах нитрогеназа защищена от ингибирующего действия молекулярного кислорода за счет образования дополнительных поверхностных оболочек.

Взаимовыгодные экзосимбиотические взаимоотношения складываются у высших растений с микроорганизмами, находящимися на поверхности листьев, стеблей и плодов, а также корней.

На поверхности надземной части растений (в филлосфере) всегда находится большое количество бактерий и грибов, получивших название эпифитных (от греч. epi – вокруг, phitos – растение). Преобладают клетки бактерий вида Pantoea agglomerans и молочнокислых бактерий. Микробы-эпифиты питаются веществами (углеводами, аминокислотами), выделяемыми растениями. Продукты жизнедеятельности эпифитных микроорганизмов могут поглощаться высшими растениями с каплями росы и влиять на их рост. К микробным метаболитам, положительно влияющим на развитие растения, относятся ауксины, витамины, антибиотики.

students-library.com

Взаимоотношения между микроорганизмов с растениями by Aisholpan Aichka on Prezi

add logo here Понятие и виды взаимодействия микроорганизмов с высшими растениями

Взаимодействие – это взаимная связь, согласованность действийРастения вступают в тесные взаимоотношения с содержащейся в почве микрофлорой. Некоторые бактерии и грибы, обитающие в почве и на корнях, постепенно переходят в наземную часть развивающегося растения и расселяются на ней.Отсюда неизбежно взаимодействие высших растений и микроорганизмов.По мнению Н. Ф. Реймерса, микроорганизмы – это организмы, величина которых от 50 до 500 мкм Учёный В. Б. Богорад относит к микроорганизмам – невидимые простым глазом растительные и животные организмы.Иногда употребляется термин «микробы»– это общее название микроскопически малых организмов, к которым относятся бактерии, актиномицеты, дрожжи, некоторые грибы.По определению, данного В. Б. Богорадом, высшие растения- это автотрофные формы, имеющие расчленение на листья, стебли и корниВысшие растения как все живые существа постоянно взаимодействуют с микроорганизмами, являясь одной из природных сред обитания микробов.«взаимодействия микроорганизмов с высшими растениями»- это взаимная связь организмов величиной от 50 до 500 мкм с автотрофными формами, имеющими расчленение на листья, стебли и корни.

Взаимоотношения микроорганизмов с растениямиРастения выделяют во внешнюю среду различные органические соединения – сахара, органические кислоты, нуклеотиды, аминокислоты, витамины, стимуляторы роста, представляющие собой легкодоступный и весьма разнообразный субстрат для питания микроорганизмов. Поэтому не случайно, что корневая система и наземные органы растений обильно населены микроорганизмами.По мнению К.А. Лукумской (1987), влияние микробов на высшие растения может быть полезным или вредным для последнихВлияние микроорганизмов (Полезное):- минерализации органических веществ, тем самым, переводя их в усвояемую для растений форму-микроорганизмы выделяют ряд биотических веществ (витамины, гормоны)-защищают от некоторых фитопатогенных микроорганизмов(вредное ): -микробы вызывают заболевания растений-образуют токсические вещества-выступают как конкуренты высших растений, поглощая усвояемые питательные веществаВлияние микроорганизмов на высшие растенияВзаимодействие микроорганизмов с высшими растениями носит разносторонний характер. Имеются мирные сожители – эпифиты (обитатели поверхности организмов), ризосферные микроорганизмы и грибы-микоризообразователи, приносящие пользу обоим организмам. Наряду с безвредными микроорганизмами существуют фитопатогенные (болезнетворные) микробы, вызывающие отравления и заболевания растений. Исключительный случай взаимодействия микробов с высшими растениями представляют многочисленные примеры симбиоза. Иногда, даже трудно определить, является высший организм субстратом, и микроорганизмы размножаются на нём, либо наоборот, высшее растение паразитирует на микробах. Например, клубеньковые бактерии образуют на корнях (чаще бобовых) растений наросты, заселённые бактериями. С течением времени бактерии разрушаются в клубеньках, и растение использует вещества, запасённые микробами (паразитизм растения на бактериях)

Виды взаимодействия микроорганизмов с высшими растениямиРазличные виды взаимодействия микроорганизмов с высшими растениями изучались рядом биологов. Академик В.А. Шапиро выяснил, что «в течение вегетативного периода растение выделяет в почву до половины синтезированных веществ. Растение кормит микроорганизмы, а ризосферные бактерии разлагают гумус и обеспечивают растение минеральным питанием. Когда вегетативный период заканчивается, растения выделяют ингибиторы и тормозят развитие микроорганизмов»

Биолог Ф.Ю. Гельцер разработала теорию симбиотрофности растений, утверждающую, что растения питаются только при посредничестве микроорганизмов-симбионтов, на примере микоризы

К.Т. Сухоруков развил представление об активном и пассивном иммунитете. Б.А. Рубин рассматривал иммунитет как весьма сложный процесс взаимодействия патогенного начала и растения, в котором существенная роль принадлежит окислительно-восстановительным явлениям Симбиотические взаимодействия между микроорганизмами и высшим растениям

Симбиоз – весьма распространенное явление. Понятие о симбиозе было сформулировано во второй половине XIX века немецким ученым де Бари, который понимал симбиоз в широком смысле слова как взаимосвязи между двумя или несколькими организмами.

Симбионты высших растений, представленные микроорганизмами, разнообразны .

Почва представляет собой благоприятную среду для развития ризосферных микроорганизмов. Приблизительные подсчеты показывают, что в 1г почвы содержится 1х109 бактерий, 1х105 грибов, 1х105 актиномицетов, 1х103 водорослей. Суммарная масса всех микробных клеток в пахотном слое составляет примерно 6-7 т на 1 га. Естественно, такое колоссальное количество живых клеток оказывает многообразное и разностороннее влияние на процессы, происходящие в почве, и на жизнь высших растений.Микрофлора ризосферы, принимая участие в процессах трансформации органических веществ в почве, обеспечивает растения необходимыми элементами минерального питания и некоторыми биологически активными веществами. Кроме того, микроорганизмы ризосферы разлагают многие токсичные для растений соединения, обеззараживая почву.

Микрофлору зоны корня принято подразделять на микрофлору ризопланы – микроорганизмы, непосредственно поселяющиеся на по-верхности корня, и микрофлору ризосферы – микроорганизмы, населяющие область почвы, прилегающей к корню.Численность микроорганизмов в ризоплане и ризосфере (Р) в сотни и даже тысячи раз превышает их содержание в окружающий почве (П), что можно выразить отношениемНа численность и групповой состав микрофлоры ризопланы и ризосферы оказывает влияние:

-тип почвы,

-климатические условия,

-характер растительного покрова

-стадия развития растений.

Корни растений стимулируют или угнетают микроорганизмов в разной степени. Бобовые растения чаще всего стимулируют развитие микробов. В ризосфере клеверов, например, обнаружено значительно больше микроорганизмов, чем в зоне корней злаков и деревьев.

Корневые выделения растений в случае длительного выращивания одних и тех же культур на одних и тех же площадях приводят к «почвенному утомлению». Такая обстановка в сочетании с одинаковым по составу растительным опадом вызывает селекцию отдельных групп, видов микроорганизмов и их чрезмерное развитие в почвах. Следствием этого являются стойкие заболевания растений (при развитии патогенных для растений микроорганизмов)Как правило, в динамике численности микроорганизмов ризопланы и ризосферы наблюдаются два максимума: первый приходится на фазу кущения растений, второй – на фазу цветения и начало плодоношения. В зоне молодого корня доминируют неспорообразующие бактерии рода Pseudomonas и некоторые микроскопические грибы. К фазе цветения растений их сменяют бациллы; актиномицеты, образующие активные вещества – антибиотики, угнетающие развитие патогенов на корнях; клечаткоразрушающие бактерии, которые принимают участие в разложении органических веществ отмирающих корней. Корневые выделения растений, несомненно, служат селективным фактором в формировании микробной ассоциации ризосферы. Например, в ризосфере пшеницы ведущая роль принадлежит микобактериям, в то время как в ризосфере клевера преобладают флюоресцирующие бактерии рода PseudomonasИнтенсивно протекающие микробиологические процессы трансформации веществ в ризосфере обусловливают накопление в ней водорастворимых элементов минерального питания растений. Выделяемые бактериями угольная и другие минеральные и органические кислоты способствуют растворению и усвоению растениями труднодоступны соединений, таких, как фосфаты кальция, силикаты калия и магния. Синтезируемые микроорганизмами витамины (тиамин, витамин В12, пиридоксин, рибофлавин, пантотеновая кислота и др.) и ростовые вещества (гиббереллин, гетероауксин) оказывают стимулирующее действие на ростовые процессы растений. Многие сапрофитные бактерии ризосферы являются антагонистами фитопатогенных микробов и выполняют роль санитаров в почве.

Ризосферный эффект более ярко выражен в песчаных почвах и менее – в гумусных. В пустынных районах ризосфера является, по-видимому, единственной зоной, где активно развивается микрофлора. В любой почве изменения окружающей среды, включая агротехнические мероприятия, оказывают меньшее воздействие на микроорганизмы в ризосфере по сравнению с обитателями почвы. Ризосферная зона представляет собой своеобразную «буферную» систему, препятствующую воздействию среды на микрофлоруВлияние фитопатогенных микроорганизмов на высшие растенияПервые сведения о патологических изменениях в тканях растений были сделаны М. С. Ворониным (1867) при изучении образования клубеньков на корнях люпина. Это явление, хотя и симбиотическое, дало возможность обратить внимание на паразитический характер жизни микроорганизмов в растениях.

Практически во всех группах микроорганизмов имеются возбудители болезней растенийГруппы фитопатогенных микроорганизмовПервое место среди фитопатогенных микробов принадлежит грибам, второе место занимают бактерии и вирусы, и лишь небольшой процент болезней растений вызывают актиномицеты. Растения больше поражаются грибами, чем бактериями. Это связано с более кислой средой тканей растений, которая благоприятствует развитию больше грибов, чем бактерий. Тем не менее, известно довольно много бактериальных болезней растений (бактериозами)Источники заражения фитопатогенными микроорганизмами различны. Одним из важнейших источников заражения являются семена. Попадая внутрь или на поверхность семян, фитопатогенные микроорганизмы находят подходящее место для перезимовки. При прорастании семян они могут заражать всходы, а затем по проводящим сосудам передвигаться в растения и заражать взрослые растения в период вегетации. Кроме того, больные семена могут служить источником распространения инфекции.

Заболевание могут распространять зеленые растения, в которых микробы хорошо сохраняются и переносятся в новые районы вместе с зараженными растениями (черенки, окулировочные материалы — глазки). Одним из основных источников заражения бактериозами являются остатки больных растений. Особенно долго и хорошо фитопатогенные микроорганизмы сохраняются в деревянистых частях растений.Некоторые виды насекомых также могут являться источником первичной инфекции. Большую опасность в распространении бактериозов представляют капельки дождя с мелкими частицами остатков больных растений, которые ветром и воздушными течениями разносятся на далекие расстояния.

Переносить фитопатогенные микроорганизмы может также и вода — поливная, вода рек и других источников.

Человек может распространять заболевания растений на большие расстояния при перевозке семян и посадочного материала, а также при обработке растений, уходе за ними в период вегетации Проникший в ткани растения паразит выделяет различные вещества, комплекс которых получил название токсинов. В состав токсинов входят ферменты, могут входить некоторые органические кислоты и амины, специфические полисахариды и другие разнообразные соединения. Выделяя токсины, паразит убивает клетки растения-хозяина, питаясь продуктами разложения этих мертвых клеток. Иными словами, в ряде случаев имеется настоящий внутренний сапрофитизм. Как установили исследования К. Т. Сухорукова и его учеников, гриб, вызывающий заболевание, известное под названием вилта хлопчатника, действительно убивает своими выделениями клетки растения-хозяина и затем их использует для своего питания. Паразитические формы грибов и бактерий возникли из сапрофитических форм, и явление эндосапрофитизма свидетельствует об этом. Такое же явление можно отметить для гриба Botrytis hyssoidea. Он проникает через отмершие ткани как сапрофит в верхушку луковицы, затем становится паразитом, развиваясь на живых, растущих тканях, убивая их, продолжает на них своё развитие как сапрофит Особенно токсичными выделениями, убивающими клетки растения-хозяина, отличаются факультативные паразиты, которые могут жить как сапрофиты. Поселяясь на живом растении, они предварительно его убивают. В большинстве случаев такие факультативные паразиты являются мало специализированными.

Облигатные (обязательные) паразиты обычно строго специализированы в отношении растения-хозяина. Многочисленные примеры строгой специализации дают ржавчинные и головневые грибы-паразитыВыводы1) Взаимодействие микроорганизмов с высшими растениями – это взаимная связь организмов величиной от 50 до 500 мкм с автотрофными формами, имеющими расчленение на листья, стебли и корни.

2) Между высшими растениями и микроорганизмами существуют различные симбиотические взаимоотношения, приносящие пользу взаимодействующим организмам. К симбионтам высших растений относятся ризосферные и эпифитные микроорганизмы, клубеньковые бактерии, грибы-микоризообразователи.

3) Практически во всех группах микроорганизмов имеются возбудители заболеваний растений. Различают 4 фазы поражения растения паразитом. Проникнув в клетку, фитопатогенные микробы нарушают нормальный ход физиологических процессов в растении.

4) Устойчивость растений против инфекционных заболеваний называется иммунитетом. Существуют анатомо-морфологические и физиологические особенности растений, способствующие их невосприимчивости к инфекциям. Особое место занимают фитонциды и фитоалексины.1) Белозерский А.Н., Микулинский С.Р. Успехи советской биологии. – М.: Знание, 1967. – 72с.

2) Биологические основы сельского хозяйства: Учеб. для студ. пед. вузов/ Ващенко И.М., Лошаков В.Г. и др.; Под ред. Ващенко И.М. – М.: Издательский центр «Академия», 2004. – 544с.

3) Богорад В.Б., Нехлюдова А.С. Краткий словарь биологических терминов. /Под ред. Генкеля П.А. – М.: Государственное учебно-педагог. изд-во министерства просвещения РСФСР, 19633. – 236с.

4) Большая Советская Энциклопедия. (В 30-ти томах) т. 1 /Под ред. Прохорова Н.В. – М.: Изд-во « Советская Энциклопедия», 1969. – 640с., ил.

5) Ботаника: Морфология и анатомия растений: Учебн. Пособие для студ. пед. ин-тов /А.Е. Васильев и др. – М.: Просвещение, 1988. – 480с.

6) Верзилин Н.М., Корсунская В.М. Общая методика преподавания биологии. Учебник для студентов биол. фак-ов пед. ин-тов. – М.: «Просвещение», 1972. – 368с.

7) Гарибова Л.В., Сидорова И.И. Грибы. – М.: «Просвещение», 1997. – 352с., цв. ил.

8) Гельцер Ф.Ю. Симбиоз с микроорганизмами – основа жизни растений. – М.: Изд-воЛитератураC7207бАдилмурат Айшолпан

prezi.com

Взаимодействие микроорганизмов с высшими растениями

Федеральное агентство по образованию РФ

ГОУ ВПО «Шадринский государственный педагогический институт»

Факультет педагогики и методики начального образования

Кафедра биологии с методикой преподавания

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Взаимодействие микроорганизмов с высшими растениями

Научный руководитель:

ст. преподаватель кафедры биологии с

методикой преподавания

Ревякина Г.А.

Шадринск 2005

Содержание

Введение

Глава 1. Основы взаимодействия микроорганизмов с высшими растениями

1.1 Понятие и виды взаимодействия микроорганизмов с высшими растениями

1.2 Симбиотические взаимодействия микроорганизмов с высшими растениями

1.3 Влияние фитопатогенных микроорганизмов на жизнедеятельность высших растений

Выводы по главе I

Глава 2. Место и роль знаний о взаимодействия микроорганизмов с высшими растениями в школьном курсе биологии

2.1 Использование знаний о взаимодействии микроорганизмов с высшими растениями на уроках биологии

2.2 Практическое применение знаний о взаимодействии микроорганизмов с высшими растениями во внеурочной работе

Выводы по главе II

Заключение

Библиографический список

Приложение

Введение

Развитие современной науки привело к тому, что в основе естественнонаучной картины мира лежит живой организм и его взаимодействия. Одним из центральных вопросов современной биологической науки является вопрос о взаимодействии микроорганизмов с высшими растениями, обеспечивающее регуляцию жизненных процессов. Именно взаимодействие микроорганизмов с высшими растениями регулирует слаженность физиологических процессов, упорядоченность развития организмов, способность их к адаптации в меняющихся условиях.

В настоящее время биологические исследования характеризуются особым вниманием к вопросам повышения урожайности растений и уменьшения их заболеваемости при помощи микроскопически малых организмов. Это основано на изучении разнообразных видов взаимодействия микроорганизмов с высшими растениями, основы которых изучаются уже в школьном курсе биологии.

Микробиологи В.П. Израильский и Н.А Красильников изучали важные микробиологические процессы в почве и их возбудителей. М.М. Кононова и Г.Л. Селибер исследовали состав микробного населения различных почв, М.П. Корсакова, Е. Н. Мишустин занимались вопросами динамики развития почвенной микрофлоры и эколого-географической изменчивости почвенных бактерий. К. И. Рудаков выделил закономерности распространения микробов в зависимости от географических и экологических факторов среды. Проблемы взаимоотношения микроорганизмов с высшими растениями раскрыты в трудах Н.И. Вавилова, А.В. Рыбалко, М.В. Фёдорова, Б.П. Токина и других ученых.

Материал о фитопатогенных микроорганизмах использовала в методике преподавания биологии Г.Г. Захарченко. Особое внимание изучению микоризы, ризосферных и эпифитных микроорганизмов на уроках биологии уделила В.М. Пакулова. Важность связи полученных знаний с их практическим применением рассматривал И.Д. Зверев.

Тема взаимодействия микроорганизмов с высшими растениями методике преподавания биологии изучена недостаточно. «Обязательный минимум содержания основного общего образования по биологии» включает изучение бактерий и грибов – возбудителей заболеваний растений (1998).

Взаимодействие микроорганизмов с высшими растениями создает базу для развития отраслей растениеводства, обеспечивая человечество экологически чистыми продуктами питания, поэтому теоретические и практические знания и умения, формируемые при изучении курса биологии, могут применяться в практической деятельности.

В связи с актуальностью проблемы нами определена тема выпускной квалификационной работы: «Взаимодействие микроорганизмов с высшими растениями».

Цель исследования: изучить виды взаимодействия микроорганизмов с высшими растениями и возможность использования этих знаний в школьном курсе биологии.

Объект исследования : влияние микроорганизмов на растения

Предмет исследования : виды взаимодействия микроорганизмов с высшими растениями.

В соответствии с целью, объектом и предметом были определены задачи исследования:

1) Проанализировать имеющуюся по данной теме специальную, биологическую и педагогическую и методическую литературу.

2) Выявить особенности симбиотического взаимодействия микроорганизмов с высшими растениями.

3) Выяснить влияние фитопатогенных микроорганизмов на жизнедеятельность высших растений.

4) Показать возможность использования этих знаний в школьном курсе биологии.

Выпускная квалификационная работа состоит из введения, двух глав, выводов, заключения, библиографического списка, приложения. Объем работы – 55 страниц машинописного текста. Список литературы включает 45 источников.

Глава I . Основы взаимодействия микроорганизмов с высшими растениями

1.1 Понятие и виды взаимодействия микроорганизмов с высшими растениями

Растения вступают в тесные взаимоотношения с содержащейся в почве микрофлорой. Некоторые бактерии и грибы, обитающие в почве и на корнях, постепенно переходят в наземную часть развивающегося растения и расселяются на ней (15, 256). Отсюда неизбежно взаимодействие высших растений и микроорганизмов.

По мнению Н. Ф. Реймерса, микроорганизмы – это организмы, величина которых от 50 до 500 мкм (36, 102).

Учёный В. Б. Богорад относит к микроорганизмам – невидимые простым глазом растительные и животные организмы (3, 124). Иногда употребляется термин «микробы » – это общее название микроскопически малых организмов, к которым относятся бактерии, актиномицеты, дрожжи, некоторые грибы (3, 24).

Мы в своей работе будем придерживаться определения микроорганизмов, данного Н. Ф. Реймерсом.

По определению, данного В. Б. Богорадом, высшие растения - это автотрофные формы, имеющие расчленение на листья, стебли и корни (3, 47).

Высшие растения как все живые существа постоянно взаимодействуют с микроорганизмами, являясь одной из природных сред обитания микробов.

Взаимодействие – это взаимная связь, согласованность действий (24, 48).

Из выше сказанного сформулируем определение «взаимодействия микроорганизмов с высшими растениями » - это взаимная связь организмов величиной от 50 до 500 мкм с автотрофными формами, имеющими расчленение на листья, стебли и корни.

Растения выделяют во внешнюю среду различные органические соединения – сахара, органические кислоты, нуклеотиды, аминокислоты, витамины, стимуляторы роста, представляющие собой легкодоступный и весьма разнообразный субстрат для питания микроорганизмов. Поэтому не случайно, что корневая система и наземные органы растений обильно населены микроорганизмами.

По мнению К.А. Лукумской (1987), влияние микробов на высшие растения может быть полезным или вредным для последних (см. Рис. 1).

Влияние микроорганизмов

Полезное вредное

Рис. 1 Влияние микроорганизмов на высшие растения.

Взаимодействие микроорганизмов с высшими растениями носит разносторонний характер. Имеются мирные сожители – эпифиты (обитатели поверхности организмов), ризосферные микроорганизмы и грибы-микоризообразователи, приносящие пользу обоим организмам. Наряду с безвредными микроорганизмами существуют фитопатогенные (болезнетворные) микробы, вызывающие отравления и заболевания растений. Исключительный случай взаимодействия микробов с высшими растениями представляют многочисленные примеры симбиоза. Иногда, даже трудно определить, является высший организм субстратом, и микроорганизмы размножаются на нём, либо наоборот, высшее растение паразитирует на микробах. Например, клубеньковые бактерии образуют на корнях (чаще бобовых) растений наросты, заселённые бактериями. С течением времени бактерии разрушаются в клубеньках, и растение использует вещества, запасённые микробами (паразитизм растения на бактериях) (16, 315).

Из разносторонних влияний микроорганизмов на высшие растения вытекают различные виды взаимодействия (см. Рис 2).

Виды взаимодействия

Симбиотические паразитические (фитопатогенные)

Рис. 2 Виды взаимодействия микроорганизмов с высшими растениями.

Различные виды взаимодействия микроорганизмов с высшими растениями изучались рядом биологов. Академик В.А. Шапиро выяснил, что «в течение вегетативного периода растение выделяет в почву до половины синтезированных веществ. Растение кормит микроорганизмы, а ризосферные бактерии разлагают гумус и обеспечивают растение минеральным питанием. Когда вегетативный период заканчивается, растения выделяют ингибиторы и тормозят развитие микроорганизмов» (42, 27).

mirznanii.com


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта