Выделение кислорода растениями. Исследование атмосферного воздуха и влияния автомобильных выхлопов на состояние здоровья человека

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Исследовательская работа «Выделение кислорода растениями». Выделение кислорода растениями


Какое дерево выделяет больше кислорода?

don-t-wake-me-1394178

Наши читатели не раз задавали нам вопрос: «Какое дерево больше всего выделяет кислорода?». Можно было бы с уверенностью ответить: «Это тополь», однако не все так просто. Кислородная продуктивность зависит не только и не столько от породы дерева. Необходимо также учитывать его возраст, размеры, место произрастания, сезонную активность. Но и это еще не все… Попробуем разобраться в деталях и начнем с истории вопроса.

Опыты Пристли

Еще много веков назад ученых заинтересовала проблема улучшения качества воздуха, его очистки. Уже давно было известно, что при дыхании воздух «ухудшается». Работал в данной области и английский священник, естествоиспытатель и химик Джозеф Пристли (1733–1804). Он сделал предположение, что растения могут улучшать состав воздуха. В 1771 году Пристли проделал простой, но очень информативный опыт. Он поместил под стеклянный герметичный колпак мышь. Через некоторое время зверек начал судорожно корчиться, широко открывать рот и вскоре умер.

d15676

Джозеф Пристли

Пристли пришел к выводу о том, что чистый воздух под колпаком кончился, а выдыхаемый мышью стал не пригоден для дыхания. Во втором эксперименте он поместил вместе с мышью под колпак мяту, растущую в горшочке. В соседстве с растением мышь свободно дышала герметично закрытая колпаком. Ученый продолжил свои опыты, меняя условия: ставил колпак с мышью и растением на окно, убирал в темный шкаф… И сделал абсолютно правильный вывод о том, что растения на свету «улучшают» воздух, «испорченный» дыханием и горением. Так Джозеф Пристли стал одним из первооткрывателей кислорода, углекислого газа и фотосинтеза.

Фотосинтез

В процессе фотосинтеза происходит разложение воды на кислород, который выделяется в атмосферу, и водород, идущий на восстановление углекислого газа, следствием чего является образование органических веществ. Учеными установлено, что при фотосинтезе образуются не только углеводы, но и белки. А углекислый газ попадает в растение не только из воздуха через устьица, но и в виде углекислоты поглощается корнями из почвы.

Наблюдать процесс выделения кислорода можно на очень простом опыте, который является одним из популярных в школьном курсе биологии. Водное растение элодея (фрагмент побега) помещается в сосуд с водой. Растение накрывают воронкой, на свободный конец которой надевают пробирку и ставят рядом с источником света. Через некоторое время в клетках элодеи образуется кислород, он скапливается в межклетниках. Сквозь срез стебля газ выделяется в виде непрерывного потока пузырьков и накапливается в пробирке. Доказать, что это кислород, не представляет особого труда. Достаточно опустить в пробирку тлеющую лучину. Данный опыт интересен и тем, что доказывает прямую зависимость интенсивности выделения кислорода от степени освещения. Удаляя и приближая источник света к растению можно наблюдать изменение скорости образования пузырьков кислорода.

У теневыносливых растений пик активности фотосинтеза наблюдается в полутени.

sun-into-smoked-forest-1393605-1280x960

Зависимость от света

Скорость фотосинтеза прямо пропорциональна увеличению интенсивности света.

Это интересно

Но при уровне освещения 10 000 люкс нарастание скорости фотосинтеза, а следовательно и выделения кислорода, прекращается. Дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза.

Следует заметить, что интенсивность фотосинтеза (и выделение кислорода) различна у разных видов растений:

  • у теневыносливых растений пик активности фотосинтеза наблюдается в полутени;
  • у светолюбивых интенсивность фотосинтеза высока только при полном солнечном освещении.

У деревьев также прослеживаются периодические изменения в интенсивности фотосинтеза. Угнетение процесса фотосинтеза происходит в полуденные часы, когда устьица на листьях закрываются с целью уменьшения испарения и потери растением влаги.

Опыты показали, что освещение растений постоянно в течение 24 часов не увеличивает процесс фотосинтеза. Депрессия фотосинтеза наступает в ночные часы, что коррелируется внутренними факторами. Интересен и тот факт, что зеленый лист может использовать в процессе фотосинтеза только 1 % падающей на него солнечной энергии.

Зависимость от температуры

Не только свет, но и температура окружающей среды влияет на процесс образования органических веществ и выделение кислорода. Максимальная интенсивность фотосинтеза у большинства растений умеренного пояса отмечается в диапазоне от +20 до +28 °С. При повышении температуры интенсивность фотосинтеза падает, а интенсивность дыхания, наоборот, возрастает.

Опыты показали, что освещение растений постоянно в течение 24 часов не увеличивает процесс фотосинтеза.

Зависимость от углекислого газа и загрязнений

Огромное влияние на процесс фотосинтеза оказывает содержание углекислого газа в воздухе. В среднем концентрация углекислого газа невелика и составляет 0,03 % объема воздуха. Повышение концентрации всего лишь на 0,01 % способствует повышению продуктивности фотосинтеза и урожайности растения вдвое. Незначительное понижение концентрации углекислого газа, наоборот, резко снижает продуктивность процесса фотосинтеза.

Как никакой другой фактор влияет на фотосинтез уровень загрязнения воздуха. При высокой загазованности (в крупном городе около автомагистралей) интенсивность фотосинтеза падает в 10 раз.

Собственное дыхание растений

Не следует забывать, что растение, как и любой другой живой организм, круглосуточно дышит, выделяя углекислый газ и поглощая произведенный кислород. Ведь дыхание — процесс, обратный фотосинтезу. Кроме того, ночью фотосинтез останавливается, но растение продолжает дышать. Поэтому количество выделенного деревом кислорода реально получается ниже, так как часть его оно использует для дыхания.

Устойчивый лесной биоценоз сколько выделяет кислорода, столько же его и потребляет. Дополнительный кислород производит только активно растущее дерево или молодняки. Старовозрастные деревья могут, наоборот, потреблять кислорода больше.

Фотосинтез в цифрах

Ежегодно растительность Земли связывает 170 млрд т углерода, и ежегодно в растениях синтезируется около 400 млрд т органических веществ.

Наиболее высокая производительность кислорода отмечена у дуба и лиственницы (6,7 т/га), у сосны и ели (4,8—5,9 т/га). Ежегодно 1 га средневозрастного (60-летнего) соснового леса поглощает 14,4 т углекислоты и выделяет 10,9 т кислорода. За тот же период 1 га 40-летней дубравы поглощает 18 т углекислоты и выделяет 13,9 т кислорода.

Зеленые насаждения на площади 1 га поглощают за 1 ч столько углекислоты, сколько в течение этого времени выдыхают 200 человек. При образовании 1 т абсолютно сухой древесины независимо от древесной породы поглощается в среднем 1,83 т углекислоты и выделяется 1,32 т кислорода.

Для обеспечения поглощения нормы кислорода 1 человеком в год (400 кг) необходимо иметь площадь лесов на 1 человека 0,1—0,3 га. Одно крупное дерево выделяет столько кислорода, сколько нужно 1 человеку в сутки для дыхания.

Рекордсмен

green-stats-1167070-1919x2714 - копия - копия

Приблизительно можно считать, сколько в дереве сухого вещества по массе, столько же по массе это дерево за всю свою жизнь выделило в атмосферу кислорода.

Соответственно, чем дерево крупнее и быстрее растет – тем больше оно выделяет кислорода в атмосферу. Тополь, действительно, одно из самых быстрорастущих деревьев, потому и кислорода он выделяет больше других за время жизни. Взрослый тополь в возрасте 25–30 лет выделяет в 7 раз больше кислорода, чем такое же растение ели. Тополь также хорошо увлажняет воздух и устойчив к загрязнению воздуха.

Часть накопленного органического вещества используется в процессе дыхания самого дерева и разложения его отмерших частей.

Пылезащитные свойства

Говоря о роли деревьев в улучшении качеств воздуха, не следует забывать о пылезащитных свойствах. Нагляднее всего это продемонстрируют цифры. Шероховатые крупные листья вяза удерживают в 6 раз больше пыли, чем гладкие листья тополей. На высоте 1,5 м от земли задерживается в 8 раз больше пыли, чем на вершине кроны (на высоте около 12 м). В течение года 1 га елового леса задерживает 32 т пыли, а 1 га дубравы – 56 т.

Ионы и фитонциды

pine-tree-1443708-1920x1280Кислород, образуемый в лесных насаждениях, насыщен ионами отрицательного заряда, в отличие от кислорода, выделяемого фитопланктоном океанов. Количество отрицательных ионов зависит от состава лесов: больше всего их образуется в лиственничных и сосновых лесах.

В настоящее время учеными установлена фитонцидная активность почти для всех видов деревьев и кустарников средней полосы России. Так, 1 га березового леса в сутки выделяет до 3 кг фитонцидов, а можжевелового – до 30 кг. При этом отмечается высокая противомикробная активность фитонцидов хвойных деревьев.

 

givoyles.ru

Растения выделяют кислород

Растения выделяют кислород под воздействием света в результате реакции фотосинтеза. Если у большинства растений этот процесс протекает незаметно, то в аквариуме мы имеем возможность наблюдать за этим интересным и захватывающим явлением.

Растения выделяют кислород

Аквариумные растения выделяют кислород уже через полчаса (час) после включения света. На обратной стороне листьев быстрорастущих растений (ротала, гигрофилы) появляются мелкие пузырьки. Это и есть кислород. Спустя некоторое время ими будут усеяны все верхние листья , и пузырьки начнут, отрываясь, всплывать к поверхности. Аквариум в это время выглядит необычайно красивым, настоящим, живым. Спустя 9-10 часов этот процесс прекращается, и растения засыпают (появляется необходимость в темновой фазе фотосинтеза).

Растения выделяют кислород только на свету. В темноте кислород не образуется. Вот почему на ночь нужно включать аэрацию аквариума.

Плотно засаженный аквариум днем достигает 100% насыщенности кислородом только за счет выделения его растениями. При этом за ночь этот показатель падает до 60%, что в принципе допустимо и вреда не приносит. Но, все же, следует помнить, что чем больше кислорода, тем чище аквариум, быстрее рост растений и здоровее рыбы.

Аквариумные растения выделяют кислород максимально только при достаточно ярком освещении, оптимальном количестве углекислоты в аквариуме и, как не странно, 100% насыщением воды кислородом. Объясняется это тем, что первые два элемента необходимы для осуществления фотосинтеза, а кислород необходим для дыхания, которое косвенно влияет на фотосинтез. Это еще одна причина, по которой в аквариуме должна быть установлена аэрация.

Если растения активно выделяют кислород, вода в аквариуме подкисляется, что в большинстве случае положительно сказывается на их росте. Процесс переработки органики микроорганизмами происходит наиболее слаженно и эффективно. Уровень токсических веществ опускается сразу к минимальным значениям.

Если на растениях не образуются пузырьки кислорода, то процесс фотосинтеза протекает наименее эффективно. В этом случае нужно проверить уровень углекислоты в аквариуме или пересмотреть осветительные установки. Еще одно важное замечание, что растворенные в воде газы не вытесняют друг друга. То есть, кислород не может вытеснять углекислый газ и наоборот, что очень важно.

maksimov.com.ua

Какое дерево выделяет больше кислорода?

Марина Куликова, кандидат биологических наук

Наши читатели не раз задавали нам вопрос: «Какое дерево больше всего выделяет кислорода?». Можно было бы с уверенностью ответить: «Это тополь», однако не все так просто. Кислородная продуктивность зависит не только и не столько от породы дерева. Необходимо также учитывать его возраст, размеры, место произрастания, сезонную активность. Но и это еще не все… Попробуем разобраться в деталях и начнем с истории вопроса.

Опыты Пристли

Еще много веков назад ученых заинтересовала проблема улучшения качества воздуха, его очистки. Уже давно было известно, что при дыхании воздух «ухудшается». Работал в данной области и английский священник, естествоиспытатель и химик Джозеф Пристли (1733–1804). Он сделал предположение, что растения могут улучшать состав воздуха. В 1771 году Пристли проделал простой, но очень информативный опыт. Он поместил под стеклянный герметичный колпак мышь. Через некоторое время зверек начал судорожно корчиться, широко открывать рот и вскоре умер.

d15676

Джозеф Пристли

Пристли пришел к выводу о том, что чистый воздух под колпаком кончился, а выдыхаемый мышью стал не пригоден для дыхания. Во втором эксперименте он поместил вместе с мышью под колпак мяту, растущую в горшочке. В соседстве с растением мышь свободно дышала герметично закрытая колпаком. Ученый продолжил свои опыты, меняя условия: ставил колпак с мышью и растением на окно, убирал в темный шкаф… И сделал абсолютно правильный вывод о том, что растения на свету «улучшают» воздух, «испорченный» дыханием и горением. Так Джозеф Пристли стал одним из первооткрывателей кислорода, углекислого газа и фотосинтеза.

Фотосинтез

В процессе фотосинтеза происходит разложение воды на кислород, который выделяется в атмосферу, и водород, идущий на восстановление углекислого газа, следствием чего является образование органических веществ. Учеными установлено, что при фотосинтезе образуются не только углеводы, но и белки. А углекислый газ попадает в растение не только из воздуха через устьица, но и в виде углекислоты поглощается корнями из почвы.

Наблюдать процесс выделения кислорода можно на очень простом опыте, который является одним из популярных в школьном курсе биологии. Водное растение элодея (фрагмент побега) помещается в сосуд с водой. Растение накрывают воронкой, на свободный конец которой надевают пробирку и ставят рядом с источником света. Через некоторое время в клетках элодеи образуется кислород, он скапливается в межклетниках. Сквозь срез стебля газ выделяется в виде непрерывного потока пузырьков и накапливается в пробирке. Доказать, что это кислород, не представляет особого труда. Достаточно опустить в пробирку тлеющую лучину. Данный опыт интересен и тем, что доказывает прямую зависимость интенсивности выделения кислорода от степени освещения. Удаляя и приближая источник света к растению можно наблюдать изменение скорости образования пузырьков кислорода.

У теневыносливых растений пик активности фотосинтеза наблюдается в полутени.

sun-into-smoked-forest-1393605-1280x960

Зависимость от света

Скорость фотосинтеза прямо пропорциональна увеличению интенсивности света.

Это интересно

Но при уровне освещения 10 000 люкс нарастание скорости фотосинтеза, а следовательно и выделения кислорода, прекращается. Дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза.

Следует заметить, что интенсивность фотосинтеза (и выделение кислорода) различна у разных видов растений:

  • у теневыносливых растений пик активности фотосинтеза наблюдается в полутени;
  • у светолюбивых интенсивность фотосинтеза высока только при полном солнечном освещении.

У деревьев также прослеживаются периодические изменения в интенсивности фотосинтеза. Угнетение процесса фотосинтеза происходит в полуденные часы, когда устьица на листьях закрываются с целью уменьшения испарения и потери растением влаги.

Опыты показали, что освещение растений постоянно в течение 24 часов не увеличивает процесс фотосинтеза. Депрессия фотосинтеза наступает в ночные часы, что коррелируется внутренними факторами. Интересен и тот факт, что зеленый лист может использовать в процессе фотосинтеза только 1 % падающей на него солнечной энергии.

Зависимость от температуры

Не только свет, но и температура окружающей среды влияет на процесс образования органических веществ и выделение кислорода. Максимальная интенсивность фотосинтеза у большинства растений умеренного пояса отмечается в диапазоне от +20 до +28 °С. При повышении температуры интенсивность фотосинтеза падает, а интенсивность дыхания, наоборот, возрастает.

Опыты показали, что освещение растений постоянно в течение 24 часов не увеличивает процесс фотосинтеза.

Зависимость от углекислого газа и загрязнений

Огромное влияние на процесс фотосинтеза оказывает содержание углекислого газа в воздухе. В среднем концентрация углекислого газа невелика и составляет 0,03 % объема воздуха. Повышение концентрации всего лишь на 0,01 % способствует повышению продуктивности фотосинтеза и урожайности растения вдвое. Незначительное понижение концентрации углекислого газа, наоборот, резко снижает продуктивность процесса фотосинтеза.

Как никакой другой фактор влияет на фотосинтез уровень загрязнения воздуха. При высокой загазованности (в крупном городе около автомагистралей) интенсивность фотосинтеза падает в 10 раз.

Собственное дыхание растений

Не следует забывать, что растение, как и любой другой живой организм, круглосуточно дышит, выделяя углекислый газ и поглощая произведенный кислород. Ведь дыхание — процесс, обратный фотосинтезу. Кроме того, ночью фотосинтез останавливается, но растение продолжает дышать. Поэтому количество выделенного деревом кислорода реально получается ниже, так как часть его оно использует для дыхания.

Устойчивый лесной биоценоз сколько выделяет кислорода, столько же его и потребляет. Дополнительный кислород производит только активно растущее дерево или молодняки. Старовозрастные деревья могут, наоборот, потреблять кислорода больше.

Фотосинтез в цифрах

Ежегодно растительность Земли связывает 170 млрд т углерода, и ежегодно в растениях синтезируется около 400 млрд т органических веществ.

Наиболее высокая производительность кислорода отмечена у дуба и лиственницы (6,7 т/га), у сосны и ели (4,8—5,9 т/га). Ежегодно 1 га средневозрастного (60-летнего) соснового леса поглощает 14,4 т углекислоты и выделяет 10,9 т кислорода. За тот же период 1 га 40-летней дубравы поглощает 18 т углекислоты и выделяет 13,9 т кислорода.

Зеленые насаждения на площади 1 га поглощают за 1 ч столько углекислоты, сколько в течение этого времени выдыхают 200 человек. При образовании 1 т абсолютно сухой древесины независимо от древесной породы поглощается в среднем 1,83 т углекислоты и выделяется 1,32 т кислорода.

Для обеспечения поглощения нормы кислорода 1 человеком в год (400 кг) необходимо иметь площадь лесов на 1 человека 0,1—0,3 га. Одно крупное дерево выделяет столько кислорода, сколько нужно 1 человеку в сутки для дыхания.

Рекордсмен

green-stats-1167070-1919x2714 - копия - копияПриблизительно можно считать, сколько в дереве сухого вещества по массе, столько же по массе это дерево за всю свою жизнь выделило в атмосферу кислорода.

Соответственно, чем дерево крупнее и быстрее растет – тем больше оно выделяет кислорода в атмосферу. Тополь, действительно, одно из самых быстрорастущих деревьев, потому и кислорода он выделяет больше других за время жизни. Взрослый тополь в возрасте 25–30 лет выделяет в 7 раз больше кислорода, чем такое же растение ели. Тополь также хорошо увлажняет воздух и устойчив к загрязнению воздуха.

Часть накопленного органического вещества используется в процессе дыхания самого дерева и разложения его отмерших частей.

Пылезащитные свойства

Говоря о роли деревьев в улучшении качеств воздуха, не следует забывать о пылезащитных свойствах. Нагляднее всего это продемонстрируют цифры. Шероховатые крупные листья вяза удерживают в 6 раз больше пыли, чем гладкие листья тополей. На высоте 1,5 м от земли задерживается в 8 раз больше пыли, чем на вершине кроны (на высоте около 12 м). В течение года 1 га елового леса задерживает 32 т пыли, а 1 га дубравы – 56 т.

Ионы и фитонциды

pine-tree-1443708-1920x1280Кислород, образуемый в лесных насаждениях, насыщен ионами отрицательного заряда, в отличие от кислорода, выделяемого фитопланктоном океанов. Количество отрицательных ионов зависит от состава лесов: больше всего их образуется в лиственничных и сосновых лесах.

В настоящее время учеными установлена фитонцидная активность почти для всех видов деревьев и кустарников средней полосы России. Так, 1 га березового леса в сутки выделяет до 3 кг фитонцидов, а можжевелового – до 30 кг. При этом отмечается высокая противомикробная активность фитонцидов хвойных деревьев.

sadovodka.ru

Какие растения продуцируют основной объем кислорода на планете

Со школьной скамьи все помнят, что леса — это легкие нашей планеты. Но, как выяснилось, это не совсем верное утверждение. Да, кислород для нашей атмосферы действительно производят зеленые растения. В ходе фотосинтеза они поглощают углекислый газ и выделяют кислород. Но леса играют в этом процессе не единственную и далеко не главную роль.

Какие растения продуцируют основной объем кислорода на планете

По подсчетам ученых, растения нашей планеты ежегодно вырабатывают более 140 тонн кислорода. Около 60% этого объема расходуется на процессы окисления и разложения органических веществ, то есть всевозможных остатков растительных и животных организмов. А оставшаяся часть поглощается в результате дыхания обитателями планеты. Экваториальные леса являются крупнейшими производителями кислорода на планете. Но они же являются и крупнейшими его потребителями. Дело в том, что влажные леса обладают наибольшим биоразнообразием и плотностью животного населения среди всех экосистем планеты. Жизнью там пропитан буквально каждый миллиметр пространства. Многие существа потребляют в процессе дыхания кислород, а гниющие растительные остатки тратят на себя оставшуюся часть полезного газа. Таким образом, получается, что эти леса производят кислород, достаточный только для их собственного существования. Чуть лучше обстоят дела в лесах умеренного пояса, где пространство не так изобилует жизнью. Но и хвойные леса, как выяснили ученые, нельзя назвать основными производителями кислорода планеты в полном смысле этого слова.

Откуда же тогда берется на планете кислород, количество которого достаточно для существования всего человечества и миллиардов других живых существ? Как оказалось, главным производителем полезного кислорода на планете является фитопланктон. Да, именно эти невидимые труженики обеспечивают существование большей части жизни как в океане, так и на суше. К фитопланктону относятся одноклеточные водоросли и цианобактерии, способные продуцировать кислород. По подсчетам ученых, мировой фитопланктон вырабатывает в 10 раз больше кислорода, чем расходует сам. А на разложение органических остатков в океанах тратится гораздо меньше кислорода, чем на суше.

Какие растения продуцируют основной объем кислорода на планете

Таким образом, около 40% производимого фитопланктоном кислорода не расходуется на месте, а поступает в атмосферу. Благодаря этим микроскопическим созданиям существует жизнь в жарких пустынях и в полярных областях, где нет своих производителей кислорода. Ну и конечно, благодаря работе фитопланктона существует на планете все человечество. Поэтому не стоит забывать, что Земля — это наш общий дом, к которому нужно относиться бережнее. Ведь даже крошечные водоросли играют в существовании планеты такую важную роль.

travelask.ru

Исследовательская работа «Выделение кислорода растениями»

Выделение кислорода растениями Автор: Земляных Дарья Сергеевна Российская Федерация, Тюменская область, Бердюжский район, с. Полозаозерье, филиал МАОУ «СОШ с. Бердюжье» Полозаозерская СОШ, 6 класс.

Научный руководитель: Усольцева Лариса Петровнаучитель химии и биологии филиала МАОУ «СОШ с. Бердюжье» Полозаозерская СОШ. 2016 Земляных Дарья Сергеевна Российская Федерация, Тюменская область, Бердюжский район, с. Полозаозерье, филиал МАОУ «СОШ с. Бердюжье» Полозаозерская СОШ, 6 класс. Содержание Введение………………. ………………………………..…………….……2 Глава 1. Обзор литературы……………………………..……………..……3 Глава 2. Экспериментальная часть……………………….………….…….5 Заключение……………………………………………………………….....8 Список использованной литературы………………………………..….….9 Приложение………………………………………..………………………..10 Введение Известно, что растения поглощают углекислый газ и выделяют кислород. В интернете опубликован такой факт: в естественных условиях летом дерево средней величины за 24 часа выделяет столько кислорода, сколько необходимо для дыхания трех человек, а 1 га зеленых насаждений за 1 ч поглощает 8 л углекислого газа и выделяет в атмосферу количество кислорода, достаточное для поддержания жизнедеятельности 30 человек. Кислород нужен для процесса дыхания, он расходуется на процессы горения, в том числе огромным количеством различных транспортных средств. Чем больше растений, тем больше кислорода. В данной работе мы хотели бы выяснить, все ли растения выделяют одинаковое количество кислорода. Гипотеза: разные растения выделяют разное количество кислорода. Цель работы: определение количества кислорода выделяемого разными растениями. Задачи: 1)изучить литературу по данному вопросу; 2)изучить методику поставки опыта; 3)провести эксп

educontest.net

Исследование атмосферного воздуха и влияния автомобильных выхлопов на состояние здоровья человека

ЦЕЛИ И ЗАДАЧИ ПРОЕКТА

Цель проекта:

Выявить зависимость загрязнения воздуха от интенсивности движения различных видов транспорта и влияние загрязнения воздуха на самочувствие людей.

Задачи проекта:

– Изучить состав воздуха– Познакомиться с основными источниками загрязнения воздуха– Изучить влияние автомобильного транспорта на окружающую среду города– Исследовать атмосферный воздух в районе автомагистрали, которая проходит через микрорайон Ветлянка– Опросить жителей микрорайона Ветлянка с целью выявления зависимости заболеваний от состояния окружающей среды

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Основные источники загрязнения воздуха

В большинстве городов мира воздух загрязнён. То, чем он засорён, на ладони не ощутить, глазом не увидеть, но ежегодно на головы жителей городов падает до 100 кг загрязняющих веществ. Загрязнители могут быть естественного (природного) или искусственного происхождения. Естественные загрязнители — космические частицы, вулканический пепел и др., искусственные — отходы производственной деятельности, выбросы транспорта. Основные источники загрязнения — автотранспорт (40–70%), отопление (20%), промышленность (14%), сжигание мусора (5%).

Большой проблемой, особенно для жителей городов, становится запылённость — насыщенность воздуха твёрдыми частицами. Пылью считаются любые твёрдые частицы, взвешенные в воздухе. Безвредной пыли не существует. Экологическая опасность её для человека определяется природой и концентрацией в воздухе.

Пыль можно подразделить на две большие группы.

1. Мелкодисперсная пыль состоит из лёгких частиц размером до 10–6 м. Она может находиться в воздухе длительное время и, попадая с воздухом в лёгкие при дыхании, накапливаться в организме.

2. Крупнодисперсная пыль состоит из тяжёлых и малоподвижных частиц, быстро выпадает из воздуха при отсутствии ветра, образуя пылевые отложения (например, пыль на мебели, полу, окне и т. д.).

Твёрдые частицы оседают на поверхности зданий, на почве и растениях, не только загрязняя их, но и затрудняя процессы дыхания растительных объектов. Загрязнение воздуха отрицательно сказывается на состоянии здоровья человека и животных: механические частицы, дым и копоть в воздухе вызывают лёгочные заболевания.

Запылённость воздуха увеличивается за счёт промышленной пыли, газовых выбросов в атмосферу, распашки почв, опустынивания земель под влиянием деятельности человека.

С целью изучения состава атмосферного воздуха и его загрязнённости я провел следующую практическую работу.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Поглощение углекислого газа и выделение кислорода растениями при фотосинтезе

Опыт 1. Поглощение углекислого газа и выделение кислорода растениями при фотосинтезе

Цель: рассмотреть процессы поглощения углекислого газа растениями и выделения ими кислорода при фотосинтезе.

В литровую банку (лучше с притёртой пробкой) поместил 3–4 ветки комнатного растения герань (размером чуть меньше высоты банки) с большим количеством листьев. Банку с ветками заполнил водой, закрыл стеклом и опрокинул в кристаллизатор с водой. Стекло отвел в сторону, а в банку снизу подвел изогнутую стеклянную трубку.

Через трубку заполнил банку на 2/3 выдыхаемым воздухом и на 1/3 углекислым газом, полученным действием кислоты на мел. Когда из банки была вытеснена почти вся вода (для растений следует оставить слой воды 5–10 мм), вынул трубку, снова закрыл банку под водой стеклом, вынул из воды, перевернул и поставил на стол.

С помощью зажжённой лучинки убедился, что в банке углекислый газ.

Банку закрыл притёртой пробкой и поставил на свет. Был недостаток солнечного освещения. Поэтому вместо солнечного освещения использовал электрическое. Для этого поместил растение на расстоянии 30 см от лампы.

Через 4 дня проверил наличие углекислого газа в банке с помощью зажжённой лучинки. Зажжённая лучинка ярко горела. Следовательно в банке нет углекислого газа, а находится кислород. Значит, углекислый газ поглощается в процессе фотосинтеза.

Опыт 2. Выделение кислорода растениями при фотосинтезе

В стакан с водой поместили водное растение элодею. Поставили стакан с растением на яркий свет и собирали выделяемый кислород, как показано на фотографии, методом вытеснения воздуха, т. к. кислород малорастворим в воде.

Через 6 дней обнаружили кислород при помощи тлеющей лучинки. При внесении тлеющей лучинки в пробирку, она ярко загоралась, следовательно в пробирке находится кислород, который образовался в процессе фотосинтеза.

Вывод: на свету в растениях протекает процесс фотосинтеза, при котором они поглощают углекислый газ и выделяют кислород.

В естественных условиях летом дерево средней величины за 24 часа выделяет столько кислорода, сколько необходимо для дыхания трех человек, а 1 га зеленых насаждений за 1 ч поглощает 8 л углекислого газа и выделяет в атмосферу количество кислорода, достаточное для поддержания жизнедеятельности 30 человек.

Изучение влияния автомобильного транспорта на окружающую среду города

Все виды современного транспорта наносят большой ущерб биосфере, но наиболее опасен для нее автомобильный транспорт. Сегодня в мире примерно 600 млн штук автомобилей. В среднем каждый из них выбрасывает в сутки 3,5 – 4 кг угарного газа, значительное количество оксидов азота, серу, сажу. При использовании этилированного (с добавками свинца Pb), бензина этот высокотоксичный элемент попадает в выхлопы. “Вклад” автомобильного транспорта в загрязнение атмосферы составляет сегодня не менее 30%.

Методика исследования: анкетирование

Проводил анкетирование владельцев автомобилей. Полученные данные обобщил.

Я собираю информацию о влиянии автомобильного транспорта на окружающую среду нашего города. Буду вам благодарен, если вы ответите на несколько вопросов, связанных с этой проблемой.

1. Какой критерий был для вас основным при покупке автомобиля?

A. Престижность маркиБ. Экономичность в эксплуатацииB. Потребности семьиГ. Минимальная цена автомобиля

2. Пользуетесь ли вы общественным транспортом?

А. ДаБ. НетВ. В исключительных случаях

3. Водите ли вы машину с умеренной скоростью?

А. ДаБ. НетВ. Не всегда

4. “Гоняете” ли вы двигатель в холостом режиме?

А. ДаБ. НетВ. Иногда

5. Регулярно ли вы проводите профилактику, держите в исправности воздушные и масляные фильтры?

А. ДаБ. НетВ. Не всегда

6. Моете ли вы в летнее время машину в реке или в пруду?

А. Да, частоБ. НетВ. Никогда

7. Какая из причин, заставляющих вас следить за уровнем СО в автомобильных выхлопах, является для вас наиболее веской?

А. Вероятность быть оштрафованным ГАИБ. Ответственность за состояние воздуха в нашем городеВ. Иные причины

8. Известно ли вам, что автомобильный транспорт – основной источник загрязнения воздуха в городе?

А. ДаБ. НетВ. Для меня этот факт не имеет значения

9. Приходилось ли вам испытывать недомогание из–за высокого уровня загазованности воздуха в городе (головная боль, резь в глазах, кашель и т. п.)

А. ЧастоБ. Очень редкоВ. НикогдаГ. Затрудняюсь ответить

 

Исследование атмосферного воздуха в районе автомагистрали, которая проходит через микрорайон Ветлянка

Целью моей работы была выявить зависимость загрязнения воздуха от интенсивности движения различных видов автотранспорта и влияние загрязнения воздуха на самочувствие людей.

Исследования проводились по следующему плану:

1. Характеристика участка трассы: ширина проезжей части; число сторон и полос движения; интенсивность движения (количество единиц различных видов транспорта за определенное время)

2. Обнаружение загрязняющих веществ в атмосферном воздухе:

А) Определение кислотности и ионного состава снега;Б) Определение пылевых загрязнений (осаждение на липкой ленте).

3. Социологические исследования:

А) Составление опросного листаБ) Опрос местных жителейВ) Обработка результатов

После инструктажа по технике безопасности я выполнил необходимые измерения и взял пробы снега, провел химические анализы. На основании полученных результатов делались предположения о зависимости уровня загрязнения воздуха от интенсивности движения и от наличия заторов на дороге и давались этому объяснения.

Во внеурочное время проводился социологический опрос местных жителей и исследование влияния загрязнения воздуха на самочувствие жителей домов, окна которых выходят на дорогу.

Автомобильный транспорт в процессе функционирования оказывает неблагоприятное воздействие на окружающую воздушную среду: он выделяет с отработанными газами токсичные вещества, способствующие заболеванию людей. Работа транспорта приводит к формированию над городом дымо–пылевого купола, что влияет на количество солнечной радиации, поступающей с поверхности Земли. Загрязненный воздух действует на здания, сооружения, вызывая эрозию и химическую коррозию арматуры.

Количественный расчет транспортных загрязнителей воздуха носит относительный характер. В первую очередь ведется учет интенсивности транспортного потока. Для этого я выбрал участок улицы с наиболее интенсивным транспортным потоком, помня при этом, чтобы он был безопасным и удобным для наблюдателя–счётчика. Подсчёт транспорта велся по определенным временным промежуткам – с 9 до 10 часов и с 14 до 15 часов. В этом случае отсчёт машин в выбранной точке ведется с интервалом: 10 мин – отсчёт; 10 мин – отдых и т. д. в течение 1 часа, а результат расчёта умножается на 2. Так я выявил “самый загазованный день недели”. Перед выходом на уличный пост я ознакомился с марками автомобильного транспорта. Для этого я принял следующее их условное разделение на 4 группы:

1. Грузовые автомобили с бензиновыми двигателями (ГАЗ, ЗИЛ) – группа – Г1.2. Грузовые автомобили с дизельными двигателями (МАЗ, КАМАЗ, большегрузные фургоны) – группа Г2.3. Автобусы с бензиновыми двигателями (КАВЗ, ПАЗ, ЛАЗ, ГАЗель) – группа А1.4. Все остальные легковые машины и иномарки – группа Л2.

Для точного определения химического состава загрязняющих воздух транспортных выхлопов нужна специальная аппаратура. Но можно сделать это проще, получив данный, которые затем использовать для целей сравнительно – статического анализа. Экспериментальным путем установлено, что масса выбрасываемого загрязняющего вещества зависит от типа автомобиля, марки автомобиля, вида топлива, технического состояния машины. Расчет ведется для каждого из основных типов автомобилей и вида загрязнителя отдельно по формуле M = m • k • r, где M – масса определяемого загрязняющего вещества (например CO), выброшенного одним автомобилем данного типа на протяжении 1 км; m – удельный выброс (г/км) определенного загрязнителя, установленный экспериментальным путем; k, r – коэффициент влияния факторов, определяющих техническое состояние каждого типа автомобилей на выброс определенного вида загрязнителя.

Результаты исследований показали:

1) Ширина проезжей части автомагистрали улицы Ленина в районе Ветлянки составляет 5,5 м2) Движение двустороннее3) Интенсивность движения в среднем 22 транспортных ед/ч4) Средняя скорость движения около 40 км/ч, светофоры отсутствуют, но недалеко от школы имеется железнодорожный переезд, который часто бывает закрыт, что создает заторы. Продолжительность заторов в среднем 5–30 мин.

Выбросы при малых скоростях движения автомобилей и торможении в 3–5 раз больше, чем при больших скоростях. В связи с этим загрязнение воздуха в городах существенно зависит от ширины улиц, числа перекрестков, железнодорожных переездов и т. д. В несколько раз возрастают выбросы при неисправности двигателей, в связи с чем большое значение имеет контроль за состоянием двигателей при выходе автомобилей из автопарка.

Вывод: чтобы уменьшить пагубное влияние автомобилей на природу следует:

1) Уменьшать содержание вредных веществ в выхлопных газах. Схему работы двигателя нужно изменить так, чтобы рационально использовать более экологически чистое, чем этилированный бензин, горючее. Разработаны специальные добавки (катализаторы), обеспечивающие более полное сгорание топлива и уменьшающие количество ядовитых газов в выхлопах. Экологически чище заправка автомобилей не бензином, а сжиженным газом или спиртом, выхлопы от таких автомобилей менее опасны.

Автозаправочная станция в Бразилии предлагает в качестве топлива бензин, смесь бензина с этиловым спиртом и просто этиловый спирт с добавкой метанола, чтобы водители его не пили. Машины с двигателями, работающие на метаноле, используются в Бразилии уже более 10 лет.

В перспективе – использование водорода, получаемого при разложении воды.

2) Рационально организовать движение транспорта. Чтобы уменьшить количество выбросов, движение по улицам желательно делать безостановочным, так как особенно много выхлопных газов автомобили выделяют в момент торможения и набора скорости. Особенно высоко содержание выхлопных газов в атмосфере у светофоров и в местах заторов движения. В часы “пик”, если у перекрестков образуются пробки автотранспорта, машины выжигают кислород и насыщают атмосферу выхлопными газами. Этого не произойдет, если у перекрестков организовать “зеленую волну”, когда скорость автомобилей регулируется так, чтобы их постоянно встречал зеленый свет светофора. В будущем на смену современному автомобилю придет электромобиль. И, конечно, человек будет чаще пользоваться велосипедом и ходить пешком.

 

Следующим этапом моей работы было обнаружение загрязняющих веществ в атмосферном воздухе.

Снег – один из наиболее информативных и удобных индикаторов загрязнения воздушной среды. На его запыленность оказывают влияние природные факторы и особенно ветровой режим. Правильный отбор проб – залог успешного результата анализа. После появления устойчивого снежного покрова перевернутой литровой стеклянной банкой отбирал пробу по всей глубине снежной толщи. Пробу клал в полиэтиленовый пакет, а в помещении давал снегу растаять. Весь объем растаявшего снега фильтровал через предварительно взвешенный фильтр, который после высушивания также взвешивал. Разница в массе показала пылевое загрязнение снега.

Масса фильтра до опыта – 900 мгМасса фильтра после опыта – 1070 мгМасса загрязняющих веществ – 170 мг

Кислотность измерял с помощью универсальной индикаторной бумаги по значению водородного показателя pH. Значение pH для чистых атмосферных осадков должно быть равно 7. Водородный показатель нашей пробы снега составляет pH=6. Это говорит о том, что среда слабокислая, за счет растворения углекислого газа, сернистого газа транспортных выбросов.

Затем членами экологического объединения “ГЕО” был проведен социологический опрос местных жителей домов ул. Ленина, окна которых выходят на дорогу.

Содержание опросного листа:*

1) Пол, возраст, образование, время проживания в доме.2) Как Вы оцениваете состояние своего здоровья? Каковы наиболее частые заболевания?3) Сколько респираторных заболеваний Вы перенесли в прошедшем году?4) Связываете ли Вы проблему здоровья с состоянием окружающего воздуха?5) Как по Вашему мнению можно улучшить состояние воздуха?

Опрос местных жителей показал, что наиболее часто встречающимися заболеваниями являются сердечно–сосудистые и заболевания дыхательных путей. Большинство опрошенных связывают проблемы своего здоровья с состоянием окружающего воздуха, который загрязняется выхлопными газами автотранспорта. Особенно, большое количество вредных веществ поступает в атмосферу во время частых заторов, т.к. водители не выключают двигатели в зимнее время, простаивая у железнодорожного переезда. Местные жители считают, что улучшить ситуацию можно следующими мероприятиями:

1) Посадка большого количества деревьев вдоль автотранспорта2) Улучшение сан. очистки района3) Соблюдение санитарных норм при размещении промышленных предприятий и городской свалки.4) Постройка мусороперерабатывающего завода

ЗАКЛЮЧЕНИЕ

Значительную роль в нейтрализации и ослаблении негативных воздействий промышленных зон города на людей и живую природу в целом играют зеленые насаждения. Высаживаемы на городских улицах зеленые насаждения помимо декоративно–планировочной и рекреационной выполняют очень важную защитную и санитарно–гигиеническую роль. Не все растения способны выжить в современных условиях города. Деревья и кустарники, высаживаемые на запыленных улицах, должны выдерживать мощный натиск цивилизации. Мы хотим, чтобы растения не только радовали наш глаз, дарили прохладу в знойный день, но и обогащали воздух живительным кислородом. Далеко не каждому растению это под силу.

Растения, произрастающие в условиях крупного города, – настоящие “спартанцы”. Рост деревьев здесь весьма затруднен из–за загрязнения окружающей среды. На 1 км2 крупного города ежегодно выпадает до 30 т различных веществ, что в 4–6 раз больше, чем в сельской местности.

Основными породами в средней полосе являются липа, тополь, клен, каштан, береза, лиственница, ясень, рябина, ель, дуб, около 30 видов кустарников. Последние часто используются для создания живых изгородей. Какова же роль зеленых насаждений в очистке воздуха? В листьях дерева хлорофилловые зерна поглощают углекислый газ и выделяют кислород. Деревья очищают от углекислого газа приземный слой воздуха толщиной приблизительно 45 м.

Среди разнообразных пород деревьев, используемых для озеленения городов, особыми свойствами отличается каштан. Одно взрослое дерево каштана очищает от поступающих выхлопных газов пространство объемом до 20 тыс. м3. При этом, в отличие от многих других деревьев,  каштан разлагает ядовитые вещества почти без ущерба для своего здоровья.

Устойчив к загрязнению воздуха и тополь. По количеству поглощаемого углекислого газа и выделяемого кислорода 25–летний тополь превосходит ель в 7 раз, а по степени увлажнения воздуха — почти в 10 раз. Так что для оздоровления воздуха вместо семи елей (трех лип или четырех сосен) можно посадить один тополь, который к тому же хорошо улавливает пыль.

Листва деревьев активно улавливает пыль и снижает концентрацию вредных газов, причем эти свойства у разных пород проявляются в разной степени. Хорошо задерживает пыль листва вяза и сирени (лучше, чем листья тополя). Так, посадка из 400 молодых тополей за летний сезон улавливает до 340 кг пыли, а вяза — в 6 раз больше. Акация, неприхотливый быстрорастущий шиповник и ряд других растений тоже обладают подобными свойствами.

При сгорании 1 л горючего в двигателе автомобиля в воздух попадает 200—400 мг свинца.

Деревья тяжело переносят свинцовое отравление. Верхний порог концентрации свинца для растений пока не установлен. Некоторые растения, например мхи и лиственница, поглощают его в относительно больших количествах, а береза, ива, осина — значительно меньше. Концентрируя свинец, растения тем самым очищают воздух. В течение вегетационного периода одно дерево может накопить столько свинца, сколько его содержится в 130 л бензина. Простой расчет показывает, что для нейтрализации вредного действия одного автомобиля необходимо не менее 10 деревьев.

Зеленые насаждения играют большую роль в борьбе с шумом. Высаженные между источниками шума и жилыми домами деревья снижают уровень шума на 5 – 10%. Кроны лиственных деревьев поглощают до 26% падающей на них звуковой энергии. Крупные лесные массивы снижают уровни шума авиационных моторов на 22—56% по сравнению с открытым местом (на одном и том же расстоянии от источника шума). Даже небольшой слой снега на ветвях деревьев усиливает поглощение шума.

Наилучшим стражем тишины считается ель. Даже у самой шумной магистрали можно жить спокойно, если защитить свой дом рядом зеленых елей. И неплохо бы посадить рядом каштаны.

Деревья с широкими кронами и кустарники, посаженные вдоль тротуаров, улучшают микроклимат улиц.

Деревья и кустарники, произрастающие в городе, ежедневно и ежечасно проводят огромную работу: поглощают пыль и углекислый газ, вырабатывают кислород, выполняют санитарно–защитные, водоохранные и шумозащитные функции, формируют микроклимат и своеобразный облик города.

Зеленые насаждения служат не только украшением, они — подлинные защитники здоровья людей.

В современном мире порой возникают ситуации, которые представляют реальную опасность для человечества. Чаще всего люди сами способствуют их возникновению: либо по недомыслию, либо из–за недостатка информации. В одиночку с такими ситуациями не справится, однако правильный выбор действий в критической обстановке обеспечивается наличием определенных знаний и умением их использовать. Поэтому на занятиях кружка обсуждаются вопросы экологии и безопасности человека.

 

Выводы

1) Воздух – смесь газов. Постоянные составные части воздуха – N2, O2, инертные (благородные) газы. Переменные части воздуха – CO2, пары воды, О3. Содержание их может меняться в зависимости от природных и промышленных условий.

К случайным частям воздуха относятся: пыль, микроорганизмы, пыльца растений, оксиды серы, азота, и др.

2) Основными источниками загрязнения воздуха являются: автотранспорт, промышленность, сжигание мусора

3) Анкетирование владельцев автомобилей показало, что основным критерием при покупке автомобиля являются потребности семьи, в редких случаях автомобилисты пользуются общественным транспортом, любят проехаться “с ветерком”, “гоняют” двигатель в холостом режиме, регулярно проводят профилактику, следят за уровнем СО в автомобильных выхлопах, т.к. боятся быть оштрафованными в ГАИ. Знают, что автотранспорт – основной источник загрязнения воздуха. Большинство водителей никогда бы не поменяли бы свой автомобиль на более экологичный.

4) Исследование атмосферного воздуха в районе автомагистрали, которая проходит через микрорайон Ветлянка показало, что водородный показатель снежной пробы равен 6, что говорит, что среда – слабо-кислая, что является следствием растворения выхлопных газов автомобилей.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

1) Б. Небел «Наука об окружающей среде», в 2-х томах, Москва, 19932) Научно-методический журнал «Химия в школе», № 2, 20083) Научно-методический журнал «Биология в школе», № 3, 2007

Автор:

Титев Олег Николаевич, ученик 11 класса

Научный руководитель:

Красникова Татьяна Николаевна,учитель химии

МОУ СОШ г. Балашова Саратовской области

Полный текст работы: http://static.livescience.ru/vozduh/vozduh.pdf

 

livescience.ru

Образование кислорода в природе и получение его в технике

Миллионы лет непрерывно происходит потребление кислорода.

Он в огромных количествах расходуется на медленное и быстрое окисление, на горение и взрыв, а состав воздуха остается неизменным, содержание кислорода в нем не уменьшается.

Как же воздух пополняется кислородом?

Еще в конце XVIII века был поставлен опыт, который поможет нам ответить на этот вопрос.

Под стеклянный колпак была помещена зажженная свеча. Некоторое время свеча горела, но вскоре погасла:

кислород воздуха под колпаком был весь израсходован. Время горения свечи было зафиксировано.

Предполагая, что растения играют какую-то роль в образовании кислорода, опыт был повторен. Рядом с зажженной свечой положили пучок мяты. Горящую свечу и мяту накрыли тем же колпаком. Лучи солнечного света, проникая через стекло колпака, падали на растение, освещая его зеленые листья. Прошло много времени — больше, чем в первом опыте, — но свеча не гасла и продолжала гореть обычным пламенем. Так было установлено, что зеленые листья растений изменяют состав воздуха и на свету выделяют кислород. Одновременно было открыто, что растения извлекают из воздуха углекислый газ.

Никто в то время не мог еще объяснить суть этого замечательного явления. Честь открытия роли растений в жизни нашей планеты принадлежит великому русскому ученому Клименту Аркадьевичу Тимирязеву.

Если посмотреть через микроскоп на срез зеленого листа, то в клетках, похожих на пчелиные соты, можно увидеть зеленые зерна — хлоропласты. Их также называют хлорофилловыми зернами. В каждой клеточке листа содержится от 25 до 50 хлорофилловых зерен. Это о ник говорил Тимирязев: «Хлорофилловое зерно — тот фокус, та точка в мировом пространстве, где солнечный луч, превращаясь в химическую энергию, становится источником всей жизни на земле».

Что же происходит в зеленых листьях растений? В листьях имеются многочисленные отверстия — устьица, которые служат растению для дыхания и питания. Через эти устьица из воздуха в листья проникает углекислый газ. Своими корнями растение всасывает влагу из земли и подает ее к листьям по тонким капиллярам ствола и стеблей.

Под влиянием света и тепла солнечных лучей в хлорофилловых зернах листа между водой и углекислотой происходит сложная химическая реакция — фотосинтез. В результате образуются продукты, переходящие в виноградный сахар и кислород.

Виноградный сахар имеет особое название — глюкоза, которое произошло от греческого слова «глюкос», означающего «сладкий».

Молекулы глюкозы состоят из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. На образование 1 молекулы глюкозы необходимо 6 молекул углекислого газа (СO2) и 6 молекул воды (Н2O). При этом должно выделиться 6 молекул кислорода. Следовательно, когда образуется 1 грамм глюкозы, освобождается более 1 грамма, или около 900 кубических сантиметров, чистого кислорода.

Так под влиянием солнечного света и тепла в хлорофилловых зернах растений, живущих на земле и под водой, происходит образование кислорода, которым непрерывно пополняется наша планета.

Растения являются неиссякаемым источником необходимого для жизни кислорода, и их по праву можно назвать «зеленой фабрикой кислорода».

До последнего времени считали, что кислород, который выделяется из растений при фотосинтезе, отщепляется от углекислого газа. Полагали, что в хлорофилловых зернах под действием света происходит расщепление молекулы углекислого газа на кислород и углерод. Углерод, вступая в реакцию с водой, образует, в конечном счете, глюкозу, а кислород выделяется в атмосферу.

В настоящее время существует другая теория. Считают, что в хлорофилловых зернах под действием солнечных лучей происходит распад не молекулы углекислого газа, а молекулы воды. При этом образуется кислород, который выделяется в атмосферу, и водород, который в соединении с углекислым газом дает глюкозу.

Теория эта получила свое экспериментальное подтверждение в 1941 году в опытах А. П. Виноградова, который впервые применил для изучения фотосинтеза тяжелый изотоп кислорода О18.

Поливая растение водой, содержащей тяжелый изотоп О18, А. П. Виноградов наблюдал, что чем больше тяжелого изотопа кислорода О18 содержалось в воде, которой поливали растение, тем больше его находили в выделяющемся кислороде.

Если поливать растение обычной водой и поместить его в атмосферу углекислого газа, содержащего тяжелый изотоп кислорода О18, то в выделяющемся при фотосинтезе кислороде изотоп О18 не обнаруживается.

Эти опыты убедительно показали, что при фотосинтезе в зеленых листьях растений кислород получается не за счет углекислого газа, а за счет разложения воды. Водород, входящий в состав воды, вместе с углекислотой идет на образование глюкозы.

Глюкоза в листьях не остается. Она, как растворимое питательное вещество, разносится по всему растению и служит ему пищей и строительным материалом для образования клетчатки. Из клетчатки состоят корни, стволы, стебли и листья растений.

Часть глюкозы превращается в крахмал и откладывается в плодах и зернах.

Для жизни и развития растения необходимы солнечный свет и непрерывное поступление к нему углекислого газа и воды. В процессе питания растения воздух вокруг него обогащается кислородом и обедняется углекислым газом. Благодаря работе ветра воздух перемешивается, и таким образом у листьев растения поддерживается постоянная концентрация углекислого газа.

А как же обеспечивается подача углекислого газа к листьям в жаркую безветренную погоду? В такую погоду молекулы углекислого газа, беспорядочно двигаясь в воздушном пространстве, очутившись около зеленого листа, вдруг резко поворачивают к нему.

Какая сила заставляет их свернуть к листу?

Если наполнить двумя различными газами сосуд, разделенный перегородкой, и затем осторожно вынуть ее, газы перемешаются, образуя однородную смесь. Такое же явление можно наблюдать, если привести в соприкосновение два различных раствора.

Если разделить между собой два различных газа или раствора, поместив между ними перегородку из желатины, кожи или другого мелкопористого материала, можно заметить, как через некоторое время по обеим сторонам перегородки концентрации газов или растворов будут одинаковы.

Процессы самопроизвольного перемешивания газов или жидкостей, а также проникновение их через полупроницаемые перегородки называются диффузией.

Скорость диффузии тем больше, чем больше разница в концентрациях диффундирующих веществ.

Вот почему, как только концентрация углекислого газа у зеленого листа становится меньше, чем на некотором расстоянии от него, воздух около листа пополняется молекулами углекислого газа из близлежащих слоев атмосферы. Их места занимают сотни, тысячи и миллионы молекул углекислого газа из более отдаленных частей пространства.

Одновременно с процессом диффузии углекислого газа идет процесс диффузии кислорода от зеленого листа в более отдаленные пространства, где концентрация его меньше.

Под водой, как и на суше, растения питаются углекислым газом и вырабатывают глюкозу и крахмал, освобождая кислород.

Откуда же берется углекислый газ в воде. Он образуется при дыхании животных и растений, живущих под водой. Кроме того, он попадает туда из воздуха, растворяясь в поверхностных слоях воды. Перемешиванием, или диффузией, углекислый газ проникает вглубь.

Углекислый газ хорошо растворяется в воде. Его растворимость при низких температурах в 35 раз больше растворимости кислорода. В литре воды при температуре 0° и давлении 760 миллиметров растворяется 50 кубических сантиметров кислорода, а углекислого газа — более 1700 кубических сантиметров. Хотя при температуре воды 20° углекислого газа в литре растворится примерно половина от этого количества, но и этого достаточно, чтобы растения, находящиеся под водой, не испытывали недостатка в углекислом газе. На зеленой поверхности подводных растений происходит тот же процесс усвоения углерода, что и на воздухе.

Налейте в стакан обыкновенной водопроводной воды и пропустите через нее углекислый газ. Опустите в воду растение и накройте его воронкой. На узкую часть воронки наденьте пробирку, наполненную водой. Вынесите стакан с растением на солнечный свет. Через несколько часов в пробирке соберется заметное количество газа. Снимите пробирку с узкой части воронки и под водой

Растение, находясь под водой, при питании выделяет кислород.

заткните ее пробкой. Теперь можно вынуть пробирку из воды и опрокинуть ее пробкой вверх. Оставшаяся в пробирке вода опустится на дно, а газ окажется над водой. Откройте пробку. Так как плотность кислорода несколько больше плотности воздуха, кислород некоторое время (пока не продиффундирует в воздух) останется в пробирке. Опустите в пробирку тлеющую лучинку, и вы убедитесь в том, что газ, который выделился из растения, — кислород.

Образующийся в воде кислород равномерно распределяется по всей толще воды, насыщая ее. Если кислорода окажется больше, чем его может раствориться в воде при данной температуре, избыток его уйдет в воздух. Если его будет меньше, то недостающее количество кислорода дополнится из воздуха.

Не совсем верно утверждать, что кислород равномерно распределяется по всей толще воды. На разной глубине вода имеет различную температуру. А мы знаем, что чем выше температура, тем меньше растворится в ней кислорода. Поэтому в разное время года, на различных глубинах концентрация растворенного в воде кислорода различна. В неглубоких водоемах разница в количестве растворенного кислорода в верхних и нижних слоях не очень велика, и ею можно пренебречь.

Растения, живущие на земле или под водой, не только выделяют кислород, но и поглощают его. Как и любой живой организм, растения дышат. Часть кислорода, которая образуется при питании растений, потребляется ими при дыхании.

Если после долгой зимней ночи войти в закрытое помещение, где находилось много цветов, чувствуется такая духота, как будто здесь долгое время находилось много людей. Растения израсходовали часть кислорода воздуха на дыхание, и в помещении образовался избыток углекислого газа.

Итак, кислород в природе совершает непрерывный круг. При дыхании человека, животных и растений, при горении твердого и жидкого топлива кислород расходуется и образуется углекислый газ. Этот газ идет на питание растений, которые возвращают кислород обратно в воздух.

Растения играют важную роль в жизни человека. Они не только кормят и согревают нас — они веками обеспечивают постоянное содержание кислорода в воздухе, без чего невозможна жизнь на Земле.

А не меняется ли содержание кислорода в воздухе зимой, когда остаются зелеными только хвойные деревья?

Зимой количество кислорода, выделяемого растениями, сокращается, но запасы его в атмосфере чрезвычайно велики. Если бы в течение тысячи или даже двух тысяч лет вообще не было никакого возвращения кислорода, а происходило только его потребление, то общее количество израсходованного кислорода не превысило бы 0,1 процента всего запаса кислорода в атмосфере. Запасы кислорода в воздухе неисчислимы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта