Влияние на растения воды. 15. Водный дефицит. Временное и глубокое завядание. Водный стресс. Влияние на растение недостатка воды.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

4.1. Влияние внешних условий на поступление воды в растение. Влияние на растения воды


Как влияет вода на растения: физиология растений

#1

Как влияет вода на растения: физиология растений. В жизни растения окружают нас повсеместно. Зеленые растения обеспечивают нашу планету кислородом, значит без них невозможна жизнь на планете Земля, поэтому важно знать, под действием каких факторов происходит их рост. Вода - очень важный компонент, необходимый для жизни растений. В среднем, для нормального существования растению необходимо 75-80% воды от его массы. Содержание воды в растении зависит от условий среды, возраста растения и его вида. ;

#2

Интересно, как влияет вода на растения? Вода в растениях встречается в двух формах: связанная и свободная. Связанная вода выполняет структурную функцию, обеспечивает функционирование ферментов, органоидов и клетки в целом. Свободная вода обладает высокой подвижностью, выполняет транспортную функцию - в ней растворены питательные вещества, которые она доставляет ко всем частям растения. Вода обеспечивает терморегуляцию растений, участвует в процессе фотосинтеза, является средой, в которой происходит обмен веществ.

#3

Чтобы знать больше о растениях, необходимо заниматься их изучением. Как называется наука о растениях? Изучением растений занимается ботаника. Ботаника - это комплексная наука, которая занимается изучением внутреннего и внешнего строения, особенностей распространения, жизнедеятельности, экологических характеристик (взаимодействие с окружающей средой) и эволюцию (развитие) растений. Ботанику хорошо нужно знать людям, которые занимаются разведением растений, чтобы обеспечить им все необходимые для нормального развития условия.

#4

Часто встречаются любители, которые увлекаются цветами, но плохо разбираются в ботанике, поэтому случается такое, что иногда люди не знают видовых названий своих комнатных растений. Ответ на вопрос, связанный с тем, как узнать название комнатного растения, ;очень прост. В настоящее время существует много справочников-определителей растений. Если такого определителя дома нет, можно воспользоваться онлайн-определителем растений. Для того чтобы определить название растения, необходимо указать его жизненную форму, тип побега, расположение листьев на стебле, их форму, окраску, поверхность, цветок, соцветие и др.

#5

Не менее важен вопрос о размножении растений. Так, как происходит опыление у растений? Можно выделить 2 типа опыления: самоопыление (перенос пыльцы из пыльника на рыльце пестика того же растения) и перекрестное опыление (перенос пыльцы с 1 растения на рыльце пестика другого). Перекрестное опыление осуществляется при помощи ветра или насекомыми. В зависимости от типа опыления растения приобрели ряд приспособлений (яркая окраска цветка и аромат у насекомоопыляемых, легкая и мелкая пыльца у ветроопыляемых, одновременное созревание тычинок и пестиков у самоопыляемых растений).

#6

Изучая растения, очень важно знать, о том, ;как свет влияет на растения. ;Солнечный свет - важный фактор, влияющий на жизнь растений, без которого невозможен их рост и развитие. Свет неоднороден по спектральному составу: красные и оранжевые лучи - главные поставщики энергии для фотосинтеза; синие и фиолетовые лучи - участвуют в фотосинтезе, участвуют в образовании белков, УФ-лучи стимулируют синтез некоторых витаминов, задерживают рост растений и повышают их холодостойкость. ;

uznay-kak.ru

ВЛИЯНИЕ НА РАСТЕНИЯ НЕДОСТАТКА ВОДЫ

В естественных условиях очень часто даже в обычные ясные дни поступление воды в растение не успевает за ее расходованием. Образуется водный дефицит, который легко обнаружить, определяя содержание воды в листьях в разные часы суток. Измерения показали, что в полуденные часы содержание воды в листьях примерно на 25–28% меньше по сравнению с утренними. Увеличение водного дефицита сопровождается уменьшением водного потенциала листьев. Именно поэтому в дневные часы водный потенциал листьев как правило, наименьший (более отрицательный).

Полуденный водный дефицит представляет собой нормальное явление и особенной опасности для растительного организма не представляет. Значительному увеличению водного дефицита препятствует сокращение транспирации в ночные часы. В нормальных условиях водоснабжения перед восходом солнца листья растений насыщены водой. Однако при определенном сочетании внешних условий водный дефицит настолько возрастает, что не успевает восстанавливаться за ночь. В утренние часы листья растений уже недонасыщены водой, появляется остаточный утренний водный дефицит (Л.С. Литвинов). В последующие дни, если снабжение водой не улучшится, недостаток воды будет все больше и больше нарастать. В некоторых случаях может наблюдаться завядание растений и утрачивается тургор. Первые фазы завядниия сходны с первыми фазами плазмолиза, так как в силу уменьшения содержания воды объем клетки сокращается. Однако в дальнейшем течение процессов завядания и плазмолиза различно. При плазмолизе происходит отставание цитоплазмы от клеточной оболочки, а при завядании сокращающаяся в силу потери воды цитоплазма тянет за собой оболочку. На оболочке образуются как бы складки, она теряет первоначальную форму, что и вызывает потерю прямостоячего положения тканей и организма в целом. Завядание не означает, что растение погибло. Если своевременно снабдить растение водой, то тургор восстанавливается, жизнедеятельность организма продолжается, правда, с большими или меньшими повреждениями.

Различают два типа завядания. Причиной временного завядания чаще всего бывает атмосферная засуха, когда доступная вода в почве есть, однако низкая влажность воздуха, высокая температура настолько увеличивают транспирацию, что поступление воды не поспевает за ее расходованием. При временном завядании в основном теряют тургор листья. Чаще всего это наблюдается в полуденные часы. В ночные часы растения оправляются и к утру вновь находятся в тургесцентном состоянии. Временное завядание не проходит без последствий. При потере тургора устьица закрываются, фотосинтез резко замедляется, растение не накапливает сухого вещества, а только тратит его. Однако все же, временное завядание сравнительно легко переносится растением.

Глубокое завядание наступает тогда, когда в почве почти не остается доступной для растения воды. В этих условиях даже небольшая транспирация вызывает все возрастающий водный дефицит и глубокое завядание, при котором происходит общее иссушение всего растительного организма. Растущие молодые листья оттягивают воду от стебля и корневой системы. Последствия такого завядания могут быть необратимыми и губительными.

Вместе с тем непродолжительное завядание может рассматриваться как один из способов защиты растения от гибельного обезвоживания. Так, при завядании благодаря устьичным и внеустьичным регулирующим механизмам транспирация резко сокращается, что позволяет растительному организму в течение определенного промежутка времени сохранить воду и не погибнуть от полного высыхания. Завядание может происходить при разной потере воды. У растений тенистых местообитаний с малоэластичными клеточными оболочками потеря воды, равная 3–5%, уже вызывает завядание. Однако есть и такие растения, у которых завядание наступает только при 20–30%-ном водном дефиците. Водный дефицит и завядание вызывают сдвиги в физиологической деятельности растения. Эти изменения могут быть более или менее сильными, обратимыми и необратимыми, в зависимости от длительности обезвоживания и от вида растения.

За начало страдания растений от недостатка воды обычно принимается появление остаточного утреннего водного дефицита. Одновременно в этот же период прекращается плач растений. Последствия водного дефицита многообразны. Прежде всего, в клетках понижается содержание свободной воды, одновременно возрастает концентрация клеточного сока. Происходят глубокие изменения в цитоплазме, увеличивается ее вязкость. Возрастает проницаемость мембран. Листья, подвергшиеся завяданию, при помещении в воду выделяют значительное количество солей и других растворимых соединений. Усиленный выход солей (экзоосмос) наблюдается также из клеток корня, подвергнутых завяданию. Одновременно эти клетки теряют способность к поглощению питательных веществ. Изменения связаны с нарушениями в структуре мембран, которые наблюдаются при снижении содержания воды ниже 20% от массы.

В результате нарушения гидратных оболочек меняется конфигурация белков-ферментов и, как следствие, их активность. Особенно резко падает активность, ферментов, катализирующих процессы синтеза. Вместе с тем активность ферментов, катализирующих процессы распада, возрастает. Крахмал распадается на сахара. Завядание приводит к увеличению активности ферментов, катализирующих распад белков (протеолиз). Содержание белкового азота резко падает, а небелкового – возрастает. Распад белков при обезвоживании может быть настолько глубоким, что наступает гибель растения.

Изменяется нуклеиновый обмен. Показано, что при возрастании водного дефицита усиливается распад РНК, возрастает активность рибонуклеаз, приостанавливается синтез ДНК. Возможно, что изменение в нуклеиновом обмене является одной из причин остановки синтеза белков

При рассмотрении вопроса о влиянии происходящих при завядании процессов распада на жизнедеятельность организма надо, по-видимому, учитывать два обстоятельства. С одной стороны, этот процесс приводит к увеличению концентрации клеточного сока и в этой связи представляет собой защитную реакцию организма. С другой стороны, усиление процессов распада приводит к тяжелым физиологическим нарушениям и даже к гибели организма.

Недостаток воды изменяет и такие основные физиологические процессы, как; фотосинтез и дыхание. При обезвоживании устьица закрываются, это резко снижает поступление СО2 в лист и, как следствие, интенсивность фотосинтеза падает. Однако уменьшение содержания воды снижает интенсивность фотосинтеза и у растений, не имеющих устьиц (мхи, лишайники). Обезвоживание нарушает структуру хлоропластов, а также конформацжю ферментов, участвующих в процессе фотосинтеза, уменьшает их активность, нарушается процесс фотофосфорилирования (И.А. Тарчевский). Что касается интенсивности дыхания , то в первый период завядания она даже возрастает. Это связано с тем, что в результате усиления под влиянием завядания процесса распада крахмала возрастает количество Сахаров – основного субстрата дыхания. При этом сахара в основном накапливаются в листьях, так как отток ассимилятов при засухе резко тормозится. Вместе с тем при недостатке воды в клетках энергия, выделяющаяся в процессе дыхания, не аккумулируется в АТФ, а в основном выделяется в виде тепла (В.Н. Жолкевич). Таким образом, при завядании энергия дыхания не может быть использована растением.

Из всех физиологических процессов наиболее чувствительным к недостатку влаги является процесс роста. Наблюдения показывают, что в самый начальный период, когда растение испытывает недостаток влаги, фотосинтез еще идет, дыхание осуществляется нормальным путем, а рост уже приостанавливается (Н.А. Максимов). Это объясняется несколькими причинами. Уменьшение содержания воды прекращает редупликацию ДНК, а, следовательно, деление клеток. Вторая фаза роста клеток (фаза растяжения) идет за счет усиленного поступления воды. В условиях недостатка воды эта фаза резко тормозится. Клетки, образовавшиеся в условиях засухи, отличаются малым размером. Недостаток воды приводит и к другим анатомическим изменениям – большему развитию механических тканей. Торможение процессов роста, наблюдаемое при недостатке воды, может также явиться следствием нарушения гормонального обмена. Действительно, показано, что при недостатке воды увеличивается активность ингибиторов роста (абсцизовой кислоты и этилена).

Таковы общие закономерности страдания растительного организма под влиянием водного стресса. Надо заметить, что отдельные органы растения страдают не в одинаковой степени и в определенной последовательности. При начинающемся водном дефиците в растении наблюдается перераспределение воды. Молодые листья оттягивают воду от более старых, а также от корневой системы. Отмирают корневые волоски. Усиливаются процессы опробковения корней. Указанные изменения приводят к значительному сокращению зоны, участвующей в поглощении воды, к снижению проницаемости клеток корня для воды. Именно это определяет тот факт, что после длительного завядания растения оправляются медленно. Более того, способность корневых систем к поглощению воды после завядания полностью не восстанавливается. После достижения растением полного тургора процессы обмена также восстанавливаются не сразу, так как водный стресс вызывает нарушения в системах регуляции.

Рассматривая в целом процессы, происходящие в растении под влиянием недостатка воды, необходимо отметить, что они проходят разные этапы. Известно, что при воздействии неблагоприятных условий среды в организме развиваются приспособительные процессы. На начальных этапах недостаток воды вызывает в растительном организме физиологические изменения, повышающие его устойчивость. К таким процессам относится осморегуляция – накопление осмотически действующих веществ, таких как ионы (в первую очередь К+) и органические вещества (органические кислоты, аминокислоты). Благодаря этому вода удерживается (повышается соотношения связанной воды к свободной), и клетки предохраняются от высыхания. Однако накопление ионов небезопасно, т. к. может привести к ингибированию ферментов. В силу этого основное приспособительное значение имеет образование при водном стрессе растворимых органических соединений – сорбитола, глицинбетаина, и в первую очередь пролина. В условиях водного дефицита содержание пролина возрастает во много раз. Показано, что у ряда растений (ячмень, хлопчатник и др.) содержание пролина увеличивается почти в 100 раз. Такой фитогормон как абсцизовая кислота, накапливающаяся при стрессе, также способствует образованию этой аминокислоты. Пролин действует как осморегулятор, способствует удержанию воды, предотвращает дегидратацию белков, вызываемую засухой, увеличивает оводненность мембран и стабилизирует их структуру. Опыты показали, чего растения, способные к. осморегуляции, в условиях стресса сохраняют фотосинтез на более высоком уровне.

Необходимо отметить особую роль хлоропластов в регуляции водоудерживающей способности листьев. В начальный период стресса содержание воды в хлоропластах увеличивается, и они набухают. В период усиления водного дефицита хлоропласты теряют воду медленнее по сравнению с клеткой в целом и могут служить дополнительным резервуаром воды. Это является одной из причин, что при засухе процесс фотосинтеза снижается медленно и при небольшом водном дефиците даже возрастает. Способность растительного организма сохранять при засухе способность к накоплению сухого вещества проявляется и в изменениях путей фотосинтеза. Предполагается, что САМ-путь наряду с конституционным способом, когда САМ-путь экспрессируется в течение всего онтогенеза, может формироваться и как адаптация в ответ на действие водного стресса. В качестве сигнала может быть сочетание влияния водного дефицита и недостатка, углекислого газа, вызванного закрытием устьиц. В результате передачи сигнала в ядро происходят изменения экспрессии генов, кодирующих ферменты С4 и САМ-пути, например ФЕП-карбоксилазы. Как уже рассматривалось, САМ или С4-путь позволяют расходовать воду в 3–5 раз экономнее по сравнению с растениями C3-пути.

В условиях водного стресса происходят заметные изменения и в гормональной системе. Это, прежде всего, выражается в накоплении таких фитогормонов как АБК и этилен. Абсцизовая кислота вызывает уменьшение транспирации при одновременном усилении поглощения воды корневой системой. В этой: связи проявляется ее ведущая роль в процессах водного обмена. Наряду с этим, как правило, содержание таких фитогормонов как ауксины и гиббереллины уменьшается. Изменение соотношения фитогоромонов приводит к торможению роста, что также может рассматриваться как защитная реакция.

В условиях водного дефицита при закрытых устьицах в клетках тормозится поступление углекислого газа. Недостаток СО2 вызывает ослабление фотосинтеза и как следствие некоторый избыток кислорода. Как уже упоминалось в этих условиях возможно накопление супероксидных радикалов или других АФК. Это приводит к развитию перекисного окисления липидов и повреждению мембран. В этой связи важным моментом адаптации растений к условиям засухи является развитие антиоксидантной системы и образование соответствующих ферментов, в первую очередь СОД.

Как и при других стрессорах важное значение в обеспечении устойчивости при засухе имеет образование особых стрессовых белков. Это, например большая группа белков-дегидринов (LEA-белки). Эти белки обычно синтезируются в период позднего эмбриогенеза, когда происходит естественное обезвоживание семян. Как уже отмечалось синтез таких белков индуцируется АБК (см. с. 356). При обезвоживании LEA-белки предохраняют клеточные структуры от деградации, связывая воду. Возрастает роль белков, участвующих в транспорте воды через мембраны – аквапоринов. Защита ДНК при засухе осуществляется другими стрессовыми белками – шаперонами. Значение этих белков заключается в поддержании целостности ДНК при обезвоживании.

Вместе с тем дальнейшее воздействие недостатка воды приводит к таким нарушениям, которые вызывают повреждение организма. Эти нарушения могут иметь обратимый и необратимый характер.

Затянувшееся завядшие может привести растение к гибели. В крайних случаях при внезапном и очень большом напряжении всех метеорологических факторов растение гибнет от высыхания (захват) или высоких температур (запал). Однако обычно гибель растений от водного дефицита наступает еще до их полного высыхания, и причиной ее являются нарушения обмена веществ. Особенно опасно в этом отношении нарушение нуклеинового и белкового обмена. Прекращение синтеза и усиление распада белка, снижение его содержания ниже критического уровня приводят к необратимым изменениям. Организм не может восстановить способность к новообразованию белка, а без этого невозможна жизнь. Глубокий распад сложных органических соединений ведет к образованию промежуточных продуктов распада (например, аммиака), которые, накапливаясь, отравляют организм. Не исключено также, что обезвоживание приводит к повреждению из-за резкого повышения концентрации клеточного сока и сдвига рН в кислую сторону.

Необходимо отметить, что растения на протяжении онтогенеза относятся к недостатку воды неодинаково. У каждого вида растений существуют критические периоды, т. е. периоды наибольшей чувствительности к снабжению водой. Исследования показали, что именно периоды наибольшего роста данного органа или всего растительного организма в целом наиболее чувствительны к недостатку воды. С агрономической точки зрения критические периоды – это периоды, когда наиболее интенсивно растут и формируются те органы, ради которых данное растение возделывают. Особенно чувствительными к недостатку воды являются периоды формирования пыльцы и оплодотворения (Ф.Д. Сказкин, В.В. Аникиев).

 

ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ

ЗАСУХОУСТОЙЧИВЫХ РАСТЕНИЙ

По отношению к воде все растения делятся на четыре экологические группы: 1) водные растения, которые погружены в воду целиком или частично,– гидрофиты; 2) растения увлажненных местообитаний – гигрофиты; 3) растения, обитающие в среде со средним уровнем обеспеченности водой, не имеющие ясно выраженных приспособлений к избытку или недостатку воды, – мезофиты; 4) растения, обитающие в среде, характеризующейся резким недостатком воды, – ксерофиты.

Остановимся на физиологической характеристике ксерофитов. Ксерофиты – растения засушливых местообитаний, которые в высокой степени обладают способностью к приспособлению процессе онтогенеза к перерывам в водоснабжении. Ксерофиты не представляют собой физиологически однородной группы. Некоторые ксерофиты обладают малой интенсивностью транспирации, вместе с тем ряд ксерофитов характеризуется интенсивной транспирацией (Н.А. Максимов). Возможность переносить резко засушливые условия достигается разными физиологическими средствами. Классификация этих растений наиболее полно разработана П.А. Генкелем. С некоторыми упрощениями ксерофиты можно разделить на следующие группы:

1. Растения, запасающие влагу (ложные ксерофиты, по Н.А. Максимову). К этой группе растений относятся суккуленты, прежде все кактусы, а также растения, принадлежащие к семейству толстянковых (Crassulaceae – Sedum, Sempervivum). Эти растения накапливают влагу в толстых, мясистых стеблях или в утолщенных листьях. Листовыми суккулентами являются агавы, алоэ, очиток, молодило. К стеблевым суккулентам относятся кактусы, молочаи. Испаряющая поверхность сильно сокращена. Листья часто редуцированы, вся поверхность покрыта толстым слоем кутикулы, благодаря этому они являются ограничено транспирирующими растениями. Суккуленты обладают неглубокой, но широко распространяющейся корневой системой. Клетки корня характеризуются сравнительно низкой концентрацией клеточного сока. Эта группа растений произрастает в районах, где резко засушливые периоды сменяются периодами дождей, их корневая система приспособлена к поглощению этой дождевой воды. В остальное время они живут за счет воды, запасаемой в мясистых органах, причем эта вода тратится чрезвычайно медленно. По мере уменьшения содержания воды в клетках интенсивность транспирации падает.

Суккуленты обладают своеобразным обменом веществ, получившим название САМ – метаболизм. У растений с этим типом обмена днем устьица закрыты, а ночью они открываются, что обеспечивает резкое уменьшение расходования воды в процессе транспирации. Углекислый газ накапливается в ночной период в виде органических кислот. В дневные часы акцептированный СО2 высвобождается и используется в процессе фотосинтеза. Указанная особенность позволяет этим растениям осуществлять фотосинтез при закрытых днем устьицах. Все же фотосинтез у таких растений идет чрезвычайно медленно. Поэтому для них характерно крайне медленное накопление сухого вещества и низкие темпы роста. Следствием специфического обмена веществ является большое содержание связанной воды и высокая вязкость цитоплазмы.

Растения этой группы не являются устойчивыми к засухе, к водному стрессу. Так, кактусы обезвоживание переносят сравнительно плохо (следствие невысокой эластичности цитоплазмы), начинают страдать и погибают. Вместе с тем они устойчивы к высоким температурам. Таким образом, это растения, запасающие воду и экономно ее расходующие в процессе медленного роста.

2. Эвксерофиты (настоящие ксерофиты) – растения, обладающие способностью резко сокращать транспирацию в условиях недостатка воды. Для этой группы растений характерен ряд приспособлений к сокращению потери воды: высокая эластичность цитоплазмы, низкая оводненность, высокая водоудерживающая способность и вязкость. Низкий осмотический потенциал клеточного сока позволяет поглощать воду из почвы, обделенной водой. В ряде случаев подземные органы этих растений, особенно в верхних частях, покрыты толстым слоем пробки. Иногда пробкой покрываются и стебли. Листья покрыты толстым слоем кутикулы, многие имеют волоски. Некоторые представители этой группы растений имеют различные типы дополнительной защиты устьиц. К ним можно отнести расположение устьиц в ямках, закупоривание устьичных щелей восковыми и смолистыми пробочками. Соприкосновение устьичных щелей с окружающей средой уменьшается также у некоторых растений путем свертывания листьев в трубку. Вместе с тем для этой группы растений характерна в высокой степени способность переносить обезвоживание, состояние длительного завядания. Особенно хорошо переносят потерю воды растения с жесткими листьями (склерофиты), которые и в состоянии тургора имеют сравнительно мало воды. Эти растения характеризуются большим развитием механических тканей. Листья у них жесткие, что позволяет при потере тургора избежать механических повреждений. К этой группе растений относится саксаул, песчаная акация, аристида, некоторые полыни и др.

3. Гемиксерофиты (полуксерофиты) – это растения, у которых сильно развиты приспособления к добыванию воды. У них глубоко идущая, сильно разветвленная корневая система. Клетки корня обладают, как правило, высокой концентрацией клеточного сока, низким (очень отрицательным) водным потенциалом. Благодаря указанным особенностям эти растения могут использовать для сбора воды очень большие объемы почвы. Их корневые системы достигают даже грунтовых вод, если последние лежат не слишком глубоко. Растения данного типа обладают хорошо развитой проводящей системой. Листья у них тонкие, с очень густой сетью жилок, что сокращает путь передвижения воды к живым клеткам листа до минимума. Это растения с очень высокой интенсивностью транспирации. Даже в очень жаркие, сухие дни они держат устьица открытыми. Благодаря высокой интенсивности транспирации температура листьев значительно понижается, что позволяет осуществлять процесс фотосинтеза при высоких дневных температурах. К таким тонколистным, высокотранспирирующим ксерофитам принадлежат степная люцерна, дикий арбуз, шалфей, резак. Листья некоторых из них покрыты волосками. Волоски создают как бы экран, который дополнительно защищает листья от перегрева.

4. Растения, избегающие засуху (псевдоксерофиты). Эти растения не обладают признаками засухоустойчивости, но имеют короткий вегетационный период, приурочивая весь жизненный цикл к периоду дождей. Эфемеры переносят засуху в виде семян (маки), а эфемероиды – в виде луковиц, корневищ, клубней (нарцисс, ревень и др.).

5. Пойкилоксерофиты – растения, не регулирующие своего водного режима. В период засухи эти растения впадают в состояние анабиоза (согласно П.А. Генкелю – криптобиоза). Криптобиоз – это состояние, при котором обмен веществ либо прекращается, либо резко тормозится, однако вся организация жизни сохраняется. К этой группе растений относится большинство лишайников, некоторые водоросли, папоротники и небольшое число покрытосеменных. Отличительной особенностью пойкилоксерофитов является способность протопласта при сильном обезвоживании переходить в гель. Эта группа растений может, не теряя жизнеспособности, доходить до воздушно-сухого состояния и в таком виде переносить периоды засух. После дождей растения этого типа быстро переходят к нормальной жизнедеятельности. Таким образом, обезвоживание для них является не патологией, а нормальным физиологическим состоянием.

Таковы основные типы ксерофитов. Естественно, что в природе нет строгого разграничения и существует много переходных типов. В узком смысле слова устойчивыми к засухе являются лишь эвксерофиты и пойкилоксерофиты, которые действительно способны переносить обезвоживание.

С практической точки зрения чрезвычайно важным является вопрос, чем определяется степень устойчивости к засухе растений среднего типа – мезофитов, к которым относятся и все наши культурные растения. Известно, что культурные растения сильно различаются по признаку засухоустойчивости. Такие сельскохозяйственные культуры, как сорго, просо, кукуруза, морковь, отличаются значительной устойчивостью к засухе. В выяснении этого вопроса большую роль сыграли работы выдающихся русских физиологов В.Р. Заленского, Н.А. Максимова, П.А. Генкеля и др. Благодаря их исследованиям выяснилось, что засухоустойчивость – это комплексный признак, связанный с целым рядом физиологических особенностей. Основным, определяющим признаком для отдельных видов и сортов культурных растений является их способность переносить недостаток воды без резкого снижения ростовых процессов и урожайности. В свою очередь это свойство определяется, по-видимому, прежде всего устойчивостью цитоплазмы, особенно мембран митохондрий и хлоропластов, или их способностью сохранять особенности структуры при уменьшении гидратных оболочек, окружающих молекулы белка, а также устойчивостью ферментных систем. Иначе говоря, засухоустойчивость определяется способностью растительного организма как можно меньше изменять процессы обмена веществ в условиях недостаточного водоснабжения. Так, засухоустойчивые сорта обладают способностью поддерживать синтетическую деятельность ферментов на высоком уровне даже при сильном завядании (Н.М. Сисакян), а также способностью сохранять сопряженность окисления и фосфорилирования.

Большое значение имеют также анатомо-морфологические признаки. В 1904 г. известным русским физиологом В.Р. Заленским было показано, что анатомическая структура листьев правильно изменяется в зависимости от их ярусности. Оказалось, что чем выше расположен лист, тем более в нем выражены определенные признаки: меньше клетки и величина устьиц, большее число устьиц и жилок на единицу поверхности листа, сильнее развита палисадная паренхима. Одновременно чем выше расположен лист, тем более высокой транспирацией и большей интенсивностью фотосинтеза он обладает. Указанные закономерности получили название закона Заленского. При изучении причин данного явления выяснилось, что оно является следствием худшего водоснабжения верхних листьев. Одновременно было показано, что у листьев растений, выращенных в более засушливых условиях, проявляются те же изменения, как и у листьев более верхнего яруса. В связи с этим совокупность названных анатомо-физиологических признаков получила название ксероморфной структуры. Растения, листья которых обладают ксероморфной структурой, более устойчивы к засухе. Для характеристики устойчивости того или иного растения к засухе имеет значение величина транспирационного коэффициента. Этот показатель может служить характеристикой, указывающей на более экономное расходование воды. Сравнение расходования воды с накоплением сухого вещества растением правомерно потому, что интенсивность того и другого процесса связана в определенной мере со степенью открытости устьиц.

При оценке и выведении засухоустойчивых сортов важно учитывать совокупность всех рассмотренных признаков. В настоящее время делаются попытки получения трансгенных растений, у которых в геном вводятся гены, кодирующие ферменты синтеза протекторных соединений, например, пролина.

Наряду с селекционной работой предложены методы так называемого предпосевного закаливания растений к засухе. Было подмечено, что растения, перенесшие засуху, становятся более устойчивыми к обезвоживанию. Однако если завяданию подвергается взрослое растение, темпы роста и продуктивность его снижаются. В этой связи П.А. Генкелем предложено проводить подсушивание намоченных семян перед посевом. Из таких семян вырастают растения, более устойчивые к засухе. По-видимому, при подсушивании перестраивается кон-формация белков-ферментов, и они становятся менее чувствительными к потере воды. Вместе с тем новые клетки и органы, возникающие из меристем, перенесших обезвоживание, характеризуются сравнительной мелкоклеточностью и другими ксероморфными признаками и, как следствие, большей устойчивостью.

В ряде исследований показано увеличение устойчивости растений к засухе при намачивании семян в растворах микроэлементов, например, бора, меди (М.Я. Школьник). Имеются также данные, что улучшение условий питания путем внесения удобрений (например, калийных) способствует более экономному расходованию воды, снижает транспирационный коэффициент. Повышению засухоустойчивости растений способствует обработка растений гормональными веществами, в частности абсцизовой кислотой. С этой целью также используют аналоги цитокининов (картолин) и ретарданты (хлорхолинхлорид).

Важными мерами борьбы с засухой являются агротехнические меры, направленные на сберехение влаги (черные пары, весеннее боронование, прикатывание почвы и др.). Большое значение для создания благоприятных климатических условий имеет культивирование лесных полос. Показано, что лесные полосы повышают влажность воздуха на прилегающих плантациях, уменьшают силу ветра, что, в свою очередь, снижает потерю воды растениями в процессе транспирации.

 

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

15. Водный дефицит. Временное и глубокое завядание. Водный стресс. Влияние на растение недостатка воды.

При интенсивной транспирации или иссушении почвы, когда поступление воды в растения прекращается, происходит значительная потеря ее растительными клетками, которая не пополняется поглощением влаги из почвы, в результате чего создается водный дефицит, часто наблюдаемый у растений в наиболее жаркие часы. При водном дефиците листья теряют тургор, завядают, повисают. Водный дефицит (W) определяется по формуле: W=(1-m/m1)100, m-масса высечек до насыщения их водой, m1-масса после насыщения их водой.

В жестких условиях жаркого летнего дня при недостатке воды в почве происходит значительное нарушение водного баланса, которое проявляется в потере тургора растением — завядании. Завядание еще не указывает на утрату растением жизнеспособности. При обеспечении растений водой тургор восстанавливается и их нормальная жизнедеятельность возобновляется. Но завядание не проходит для растения бесследно: чем оно было глубже и длительнее, тем серьезнее его последствия. Различают два типа завядания растений: временное и длительное. Первое наблюдается обычно в полуденные часы. При этом сильнее всего расходующие воду органы, а именно листья теряют тургор и вянут, остальные части растения, сохраняют тургесцентность. При ослаблений транспирации к вечеру водный дефицит снижается, а в ночные часы за счет активной деятельности корневой системы водный баланс полностью восстанавливается. Длительное завядание наступает, когда в почве почти не остается доступной для растения влаги. В этих условиях водный баланс растения за ночь не восстанавливается. Такой не покрываемый к утру водный дефицит получил название остаточного дефицита. Завядающие листья оттягивают воду из других частей растения: молодых растущих верхушек, корней, плодов. Происходит отмирание корневых волосков, поглотительная деятельность корней значительно снижается. Поэтому даже после полива водный баланс растения восстанавливается лишь через несколько дней. Последствия такого завядания могут быть необратимыми и губительными. При устойчивом завядании растений увеличивается скорость распада РНК, белков и одновременно возрастает количество небелковых азотсодержащих соединений. Влияние водного дефицита на углеводный обмен листа выражается вначале в снижении моно- и дисахаридов из-за снижения интенсивности фотосинтеза. Затем количество моносахаридов может возрастать в результате гидролиза полисахаридов. При длительном водном дефиците наблюдается уменьшение количества всех форм Сахаров. Фотосинтез тормозится не сразу: при неглубоком водном дефиците (8—10 %) его интенсивность даже немного возрастает и лишь при сильном и продолжительном — уменьшается.

Снижение содержания воды в клетке ниже оптимального уровня, вызывающее нарушения метаболизма, называется водным стрессом. Одним из показателей водного стресса является депрессия водного потенциала. Для типичной клетки листа мезофитов установлены три степени водного стресса: мягкий стресс — снижение водного потенциала не более чем на 1 МПа; умеренный (средний) стресс — снижение водного потенциала на 1,5 МПа; суровый стресс — снижение водного потенциала более чем на 1,5 МПа. Первые видимые признаки водного стресса – закрывание устьиц, завядание листьев и молодых стеблей и прекращение роста. Степень водного стресса часто оценивают количественно при помощи таких показателей, как дефицит насыщения, относительное содержание воды.

studfiles.net

Влияние недостатка воды на растение

В естественных условиях очень часто даже в обычные ясные дни поступления воды в растение не успевает за ее расходованием. Образуется водный дефицит, который легко обнаружить, определяя содержание воды в листьях в разные часы суток. Измерения показали, что в полуденные часы содержание воды в листьях примерно на 25—28% меньше по сравнению с утренними. Увеличение водного дефицита сопровождается уменьшением водного потенциала листьев. Именно поэтому в дневные часы водный потенциал листьев, как правило, наименьший (более отрицательный).

Полуденный водный дефицит представляет собой нормальное явление и особенной опасности для растительного организма не представляет. Значительному увеличению водного дефицита препятствует сокращение транспирации в ночные часы. В нормальных условиях водоснабжения перед восходом солнца листья растений насыщены водой. Однако при определенном сочетании внешних условий водный дефицит настолько возрастает, что не успевает восстанавливаться за ночь. В утренние часы листья растений уже недонасыщены водой, появляется остаточный утренний водный дефицит (Л.С. Литвинов). В последующие дни, если снабжение водой не улучшится, недостаток воды будет все больше и больше нарастать. В некоторых случаях может наблюдаться завядание растений и утрачивается тургор. Первые фазы завядания сходны с первыми фазами плазмолиза, так как в силу уменьшения содержания воды объем клетки сокращается. Однако в дальнейшем течение процессов завядания и плазмолиза различно. При плазмолизе происходит отставание цитоплазмы от клеточной оболочки, а при завядании сокращающаяся в силу потери воды цитоплазма тянет за собой оболочку. На оболочке образуются как бы складки, она теряет первоначальную форму, что и вызывает потерю прямостоячего положения тканей и организма в целом. Завядание не означает, что растение погибло. Если своевременно снабдить растение водой, то тургор восстанавливается, жизнедеятельность организма продолжается, правда, с большими или меньшими повреждениями.

Различают два типа завядания.. Причиной временного завядания чаще всего бывает атмосферная засуха, когда доступная вода в почве есть, однако низкая влажность воздуха, высокая температура настолько увеличивают транспирацию, что поступление воды не поспевает за ее расходованием. При временном завядании в основном теряют тургор листья. Чаще всего это наблюдается в полуденные часы. В ночные часы растения оправляются и к утру вновь находятся в тургесцентном состоянии. Временное завядание не проходит без последствий. При потере тургора устьица закрываются, фотосинтез резко замедляется, растение не накапливает сухого вещества, а только тратит его. Однако все же, временное завядание сравнительно легко переносится растением.

Глубокое завядание наступает тогда, когда в почве почти не остается доступной для растения воды. В этих условиях даже небольшая транспирация вызывает все возрастающий водный дефицит и глубокое завядание, при котором происходит общее иссушение всего растительного организма. Растущие молодые листья оттягивают воду от стебля и корневой системы. Последствия такого завядания могут быть необратимыми и губительными. Вместе с тем непродолжительное завядание может рассматриваться как один из способов защиты растения от гибельного обезвоживания. Так, при завядании благодаря устьичным и внеустьичным регулирующим механизмам транспирация резко сокращается, что позволяет растительному организму в течение определенного промежутка времени сохранить воду и не погибнуть от полного высыхания. Завядание может происходить при разной потере воды. У растений тенистых местообитаний с малоэластичными клеточными оболочками потеря воды, равная 3—5%, уже вызывает завядание. Однако есть и такие растения, у которых завядание наступает только при 20—30%-ном водном дефиците. Водный дефицит и завядание вызывают сдвига в физиологической деятельности растения. Эти изменения могут быть более или менее сильными, обратимыми и необратимыми, в зависимости от длительности обезвоживания и от вида растения.

За начало страдания растений от недостатка воды обычно принимается появление остаточного утреннего водного дефицита. Одновременно в этот же период прекращается плач растений. Последствия водного дефицита многообразны. Прежде всего, в клетках понижается содержание свободной воды, одновременно возрастает концентрация клеточного сока. Происходят глубокие изменения в цитоплазме, увеличивается ее вязкость. Возрастает проницаемость мембран. Листья, подвергшиеся завяданию, при помещении в воду выделяют значительное количество солей и других растворимых соединений. Усиленный выход солей (экзоосмос) наблюдается также из клеток корня, подвергнутых завяданию. Одновременно эти клетки теряют способность к поглощению питательных веществ. Изменения связаны с нарушениями в структуре мембран, которые наблюдаются при снижении содержания воды ниже 20% от массы. В результате нарушения гидратных оболочек меняется конфигурация белков-ферментов и, как следствие, их активность. Особенно резко падает активность ферментов, катализирующих процессы синтеза. Вместе с тем активность ферментов, катализирующих процессы распада, возрастает. Крахмал распадается на сахара. Завядание приводит к увеличению активности ферментов, катализирующих распад белков (протеолиз). Содержание белкового азота резко падает, а небелкового — возрастает. Распад белков при обезвоживании может быть настолько глубоким, что наступает гибель растений.

Изменяется нуклеиновый обмен. Показано, что при возрастании водного дефицита усиливается распад РНК, возрастает активность рибонуклеаз, приостанавливается синтез ДНК. Возможно, что изменение в нуклеиновом обмене является одной из причин остановки синтеза белков. При рассмотрении вопроса о влиянии происходящих при завядании процессов распада на жизнедеятельность организма надо, по-видимому, учитывать два обстоятельства. С одной стороны, этот процесс приводит к увеличению концентрации клеточного сока и в этой связи представляет собой защитную реакцию организма. С другой стороны, усиление процессов распада приводит к тяжелым физиологическим нарушениям и даже к гибели организма. Недостаток воды изменяет и такие основные физиологические процессы, как фотосинтез и дыхание. При обезвоживании устьица закрываются, это резко ухи о снижает поступление С02 в лист и, как следствие, интенсивность фотосинтеза падает. Однако уменьшение содержания воды снижает интенсивность фотосинтеза и у растений, не имеющих устьиц (мхи, лишайники). Обезвоживание нарушает структуру хлоропластов, а также конформацию ферментов, участвующих в процессе фотосинтеза, уменьшает их активность, нарушается процесс фотофосфорилирования (И.А. Тарчевский). Что касается интенсивности дыхания, то в первый период завядания она даже возрастает. Это связано с тем, что в результате усиления под влиянием завядания процесса распада крахмала возрастает количество Сахаров — основного субстрата дыхания. При этом сахара в основном накапливаются в листьях, так как отток ассимилятов при засухе резко тормозится. Вместе с тем при недостатке воды в клетках энергия, выделяющаяся в процессе дыхания, не аккумулируется в АТФ, а в основном выделяется в виде тепла (В.Н. Жолкевич). Таким образом, при завядании энергия дыхания не может быть использована растением. Из всех физиологических процессов наиболее чувствительным к недостатку влаги является процесс роста. Наблюдения показывают, что в самый начальный период, когда растение испытывает недостаток влаги, фотосинтез еще идет, дыхание осуществляется нормальным путем, а рост уже приостанавливается (НА. Максимов). Это объясняется несколькими причинами. Уменьшение содержания воды прекращает редупликацию ДНК, а, следовательно, деление клеток. Вторая фаза роста клеток (фаза растяжения) идет за счет усиленного поступления воды. В условиях недостатка воды эта фаза резко тормозится. Клетки, образовавшиеся в условиях засухи, отличаются малым размером. Недостаток воды приводит и к другим анатомическим изменениям — большему развитию механических тканей. Торможение процессов роста, наблюдаемое при недостатке воды, может также явиться следствием нарушения гормонального обмена. Действительно, показано, что при недостатке воды увеличивается активность ингибиторов роста (абсцизовой кислоты, этилена).

Недостаток воды в тканях растений создается, когда расход воды при транспирации превышает ее поступление. Водный дефицит может возникнуть в жаркую солнечную погоду к середине дня, при этом увеличивается сосущая сила листьев, что активирует поступление воды из почвы. Растения регулируют уровень водного дефицита, меняя отверстость устьиц. Обычно при завядании листьев водный дефицит их восстанавливается в вечерние и ночные часы (временное завядание). Глубокое завядание наблюдается при отсутствии в почве доступной для растения воды. Это завядание чаще всего приводит растения к гибели.

Характерный признак устойчивого водного дефицита — сохранение его в тканях утром, а также прекращение выделения пасоки из срезанного стебля. Действие засухи в первую очередь приводит к уменьшению в клетках свободной воды, что изменяет гидратные оболочки белков цитоплазмы и сказывается на функционировании белков-ферментов. При длительном завядании снижается активность ферментов синтеза и активируются гидролитические процессы, в частности протеолиз, что ведет к увеличению содержания в клетках низкомолекулярных белков. В результате гидролиза полисахаридов в тканях накапливаются растворимые углеводы, отток которых из листьев замедлен. Под влиянием засухи в листьях снижается количество РНК вследствие уменьшения ее синтеза и активации рибонуклеаз. В цитоплазме наблюдается распад полирибосомных комплексов. Изменения, касающиеся ДНК, происходят лишь при длительной засухе. Из-за уменьшения свободной воды возрастает концентрация вакуолярного сока. Изменяется ионный состав клеток, облегчаются процессы выхода из них ионов.

В большинстве случаев суммарный фотосинтез при недостатке влаги снижается, хотя иногда на начальных этапах обезвоживания наблюдается некоторое увеличение его интенсивности. Снижение скорости фотосинтеза может быть следствием:

1) недостатка СО2 из-за закрывания устьиц,

2) нарушения синтеза хлорофиллов,

3) разобщения транспорта электронов и фотофосфорилирования,

4) изменений в фотохимических реакциях и реакциях восстановления СО2,

5) нарушения структуры хлоропластов,

6) задержки оттока ассимилятов из листьев при длительном водном дефиците.

При обезвоживании у растений, не приспособленных к засухе, значительно усиливается интенсивность дыхания (возможно, из-за большого количества субстратов дыхания — сахаров), а затем постепенно снижается. У засухоустойчивых растений в этих условиях существенных изменений дыхания не наблюдается или отмечается небольшое усиление.

В условиях водного дефицита быстро тормозятся клеточное деление и особенно растяжение, что приводит к формированию мелких клеток. Вследствие этого задерживается рост самого растения, особенно листьев и стеблей. Рост корней в начале засухи даже ускоряется и снижается лишь при длительном недостатке воды в почве. Корни реагируют на засуху рядом защитных приспособлений: опробковением, суберинизацией экзодермы, ускорением дифференцировки клеток, выходящих из меристемы, и др.

Таким образом, недостаток влаги вызывает значительные и постепенно усиливающиеся изменения большинства физиологических процессов у растений.

Таковы общие закономерности страдания растительного организма под влиянием водного стресса. Надо заметить, что отдельные органы растения страдают не в одинаковой степени и в определенной последовательности. При начинающемся водном дефиците в растении наблюдается перераспределение воды. Молодые листья оттягивают воду от более старых, а также от корневой системы. Отмирают корневые волоски. Усиливаются процессы опробковения корней. Указанные изменения приводят к значительному сокращению зоны, участвующей в поглощении воды, к снижению проницаемости клеток корня для воды. Именно это определяет тот факт, что после длительного завядания растения оправляются медленно. Более того, способность корневой системы к поглощению воды после завядания полностью не восстанавливается. После достижения растением полного тургора процессы обмена также восстанавливаются не сразу, так как водный стресс вызывает нарушения в системах регуляции.

Рассматривая в целом процессы, происходящие в растении под влиянием недостатка воды, необходимо отметить, что они проходят разные этапы. Известно, что при воздействии неблагоприятных условий среды в организме развиваются приспособительные процессы. На начальных этапах недостаток воды вызывает в растительном организме физиологические изменения, повышающие его устойчивость. К таким процессам относится осморегуляция — накопление осмотически действующих веществ, таких как ионы (в первую очередь К+) и органические вещества (органические кислоты, аминокислоты). Благодаря этому вода удерживается (повышается соотношения связанной воды к свободной), и клетки предохраняются от высыхания. Однако накопление ионов небезопасно, т. к. может привести к ингибированию ферментов. В силу этого основное приспособительное значение имеет образование при водном стрессе растворимых органических соединений — сорбитола, глицинбетаина, и в первую очередь пролина. В условиях водного дефицита содержание пролина возрастает во много раз. Показано, что у ряда растений (ячмень, хлопчатник и др.) содержание пролина увеличивается почти в 100 раз. Такой фитогормон как абсцизовая кислота, накапливающаяся при стрессе, также способствует образованию этой аминокислоты. Пролин действует как осморегулятор, способствует удержанию воды, предотвращает дегидратацию белков, вызываемую засухой, увеличиваем оводненность мембран и стабилизирует их структуру. Опыты показали, что растения, способные к осморегуляции, в условиях стресса сохраняют фотосинтез на более высоком уровне.

Необходимо отметить особую роль хлоропластов в регуляции водоудерживающей способности листьев. В начальный период стресса содержание воды в хлоропластах увеличивается, и они набухают. В период усиления водного дефицита хлоропласты теряют воду медленнее по сравнению с клеткой в целом и могут служить дополнительным резервуаром воды. Это является одной из причин, что при засухе процесс фотосинтеза снижается медленно и при небольшом водном дефиците даже возрастает. Способность растительного организма сохранять при засухе способность к накоплению сухого вещества проявляется и в изменениях путей фотосинтеза. Предполагается, что САМ-путь наряду с конституционным способом, когда САМ-путь экспрессируется в течение всего онтогенеза, может формироваться и как адаптация в ответ на действие водного стресса. В качестве сигнала может быть сочетание влияния водного дефицита и недостатка углекислого газа, вызванного закрытием устьиц. В результате передачи сигнала в ядро происходят изменения экспрессии генов, кодирующих ферменты С4 и САМ-пути, например ФЕП-карбоксилазы. Как уже рассматривалось, САМ или С4-путь позволяют расходовать воду в 3—5 раз экономнее по сравнению с растениями С3-пути.

В условиях водного стресса происходят заметные изменения и в гормональной системе. Это, прежде всего, выражается в накоплении таких фитогормонов как АБК и этилен. Абсцизовая кислота вызывает уменьшение транспирации при /,, одновременном усилении поглощения воды корневой системой. В этой связи проявляется ее ведущая роль в процессах водного обмена. Наряду с этим, как правило, содержание таких фитогормонов как ауксины и гиббереллины уменьшается. Изменение соотношения фитогоромонов приводит к торможению роста, что также может рассматриваться как защитная реакция.

В условиях водного дефицита при закрытых устьицах в клетках тормозится поступление углекислого газа. Недостаток С02 вызывает ослабление фотосинтеза и как следствие некоторый избыток кислорода. Как уже упоминалось и этих условиях возможно накопление супероксидных радикалов или других АФК. Это приводит к развитию перекисного окисления липидов и повреждению мембран. В этой связи важным моментом адаптации растений к условиям засухи является развитие антиоксидантной системы и образование соответствующих ферментов, в первую очередь СОД. Как и при других стрессорах важное значение в обеспечении устойчивости при засухе имеет образование особых стрессовых белков. Это, например большая группа белков-дегидринов (LEA-белки). Эти белки обычно синтезируются в период позднего эмбриогенеза, когда происходит естественное обезвоживание семян. Как уже отмечалось синтез таких белков индуцируется АБК. При обезвоживании LEA-белки предохраняют клеточные структуры от деградации, связывая воду. Возрастает роль белков, участвующих в транспорте воды через мембраны — аквапоринов. Защита ДНК при засухе осуществляется другими стрессовыми белками — шаперонами. Значение этих белков заключается в поддержании целостности ДНК при обезвоживании. Вместе с тем дальнейшее воздействие недостатка воды приводит к таким нарушениям, которые вызывают повреждение организма. Эти нарушения могут иметь обратимый и необратимый характер. Затянувшееся завядание может привести растение к гибели. В крайних случаях при внезапном и очень большом напряжении всех метеорологических факторов растение гибнет от высыхания (захват) или высоких температур (запал). Однако обычно гибель растений от водного дефицита наступает еще до их полного высыхания, и причиной ее являются нарушения обмена веществ. Особенно опасно в этом отношении нарушение нуклеинового и белкового обмена. Прекращение синтеза и усиление распада белка, снижение его содержания ниже критического уровня приводят к необратимым изменениям. Организм не может восстановить способность к новообразованию белка, а без этого невозможна жизнь. Глубокий распад сложных органических соединений ведет к образованию промежуточных продуктов распада (например, аммиака), которые, накапливаясь, отравляют организм. Не исключено также, что обезвоживание приводит к повреждению из-за резкого повышения концентрации клеточного сока и сдвига рН в кислую сторону.

Необходимо отметить, что растения на протяжении онтогенеза относятся к недостатку воды неодинаково. У каждого вида растений существуют критические периоды, т. е. периоды наибольшей чувствительности к снабжению водой. Исследования показали, что именно периоды наибольшего роста данного органа или всего растительного организма в целом наиболее чувствительны к недостатку воды. С агрономической точки зрения критические периоды — это периоды, когда наиболее интенсивно растут и формируются те органы, ради которых данное растение возделывают. Особенно чувствительными к недостатку воды являются периоды формирования пыльцы и оплодотворения.



biofile.ru

Действие недостатка воды на растение

В естественных условиях очень часто даже в обычные ясные дни поступления воды в растение не успевает за ее расходованием. Образуется водный дефицит, который легко обнаружить, определяя содержание воды в листьях в разные часы суток. Измерения показали, что в полуденные часы содержание воды в листьях примерно на 25—28% меньше по сравнению с утренними. Увеличение водного дефицита сопровождается уменьшением водного потенциала листьев. Именно поэтому в дневные часы водный потенциал листьев, как правило, наименьший (более отрицательный).

Полуденный водный дефицит представляет собой нормальное явление и особенной опасности для растительного организма не представляет. Значительному увеличению водного дефицита препятствует сокращение транспирации в ночные часы. В нормальных условиях водоснабжения перед восходом солнца листья растений насыщены водой. Однако при определенном сочетании внешних условий водный дефицит настолько возрастает, что не успевает восстанавливаться за ночь. В утренние часы листья растений уже недонасыщены водой, появляется остаточный утренний водный дефицит (Л.С. Литвинов). В последующие дни, если снабжение водой не улучшится, недостаток воды будет все больше и больше нарастать. В некоторых случаях может наблюдаться завядание растений и утрачивается тургор. Первые фазы завядания сходны с первыми фазами плазмолиза, так как в силу уменьшения содержания воды объем клетки сокращается. Однако в дальнейшем течение процессов завядания и плазмолиза различно. При плазмолизе происходит отставание цитоплазмы от клеточной оболочки, а при завядании сокращающаяся в силу потери воды цитоплазма тянет за собой оболочку. На оболочке образуются как бы складки, она теряет первоначальную форму, что и вызывает потерю прямостоячего положения тканей и организма в целом. Завядание не означает, что растение погибло. Если своевременно снабдить растение водой, то тургор восстанавливается, жизнедеятельность организма продолжается, правда, с большими или меньшими повреждениями.

Влияние засухи на растение

Если в почве имеется недостаточное количество доступной для растения воды, то отрицательное влияние перегрева становится особенно сильным. Перегрев вызывает повреждение растения, называемое запалом. Запал обнаруживается через некоторое время в виде различно окрашенных некротических пятен на листьях. На пшенице появляются желтые пятна, на овсе — красные, у большинства растений — коричневые.

Засохшее растение

Засохшее растение

Встречается и другой вид повреждений от атмосферной засухи — захват. Он наблюдается реже, чем запал, и проявляется в том случае, когда при сравнительно не очень высоких температурах наблюдаются сильный ветер и большая сухость воздуха. При этом листья просто высыхают, сохраняя зеленую окраску.

Недостаток воды в тканях растений (водный дефицит) может возникнуть в жаркую солнечную погоду к середине дня, при этом увеличивается сосущая сила листьев, что активирует поступление воды из почвы. Растение регулирует уровень водного дефицита открытием или закрытием устьиц. В этот период происходит временное завядание листьев. Обычно в вечерние и утренние часы это явление устраняется.

Отсутствие в почве доступной для растения воды приводит к глубокому завяданию. Это завядание чаще всего приводит к гибели растения. Характерным признаком устойчивого водного дефицита является сохранение его в тканях утром, прекращение выделения пасоки из срезанного стебля. Действие засухи приводит в первую очередь к уменьшению в клетках свободной воды, что нарушает гидратные оболочки белков цитоплазмы и сказывается на функции белков-ферментов.

При длительном завядании снижается активность ферментов синтеза и активируются гидролитические процессы, что приводит к возрастанию содержания в клетках низкомолекулярных белков. В результате гидролиза полисахаридов в тканях накапливаются растворимые углеводы. В листьях снижается количество РНК, наблюдается распад полирибосомных комплексов, возрастает концентрация вакуолярного сока, облегчается выход ионов из клеток.

Происходит снижение скорости фотосинтеза из-за недостатка СО2, нарушения синтеза хлорофилла и АТФ, изменения в течение фотохимических реакций и задержки оттока ассимилятов из листьев.

При обезвоживании у растений, не приспособленных к засухе, значительно усиливается интенсивность дыхания, а у засухоустойчивых растений такое явление не наблюдается.

В условиях водного дефицита тормозятся клеточное деление и особенно растяжение, что приводит к формированию мелких клеток. Вследствие этого задерживается рост листьев, стебля растения в целом.

При водном дефиците происходит гидролиз полимеров, в том числе и белков. Распад белков идет с образованием аммиака, который может оказывать отравляющее действие на клетки.

Приспособление растений к засухе. Известно, что растения неодинаково реагируют на перегрев и обезвоживание в разные периоды онтогенеза. У каждого вида в онтогенезе имеется такой период, когда недостаток воды резко сказывается на течении всех физиологических процессов, этот период называется критическим периодом. Из этого, однако, не следует, что остальные периоды своего развития растение не нуждается в воде и не страдает от ее недостатка.

Установлено, что вязкость цитоплазмы, ее эластичность в критический период резко падают, что и является одним из условий высокой чувствительности растений к перегреву и обезвоживанию в этот период развития. В критический период происходят интенсивные ростовые процессы и образование новых органов — цветков.

Ф.Д. Сказкин считал, что высшие растения в своем онтогенезе повторяют черты далекого прошлого и во время формирования половых органов и оплодотворения нуждаются в повышенной обводненности тканей. Сказкин считает, что началом критического периода следует считать момент появления материнских клеток пыльцы в археспориальной ткани пыльников, а концом данного периода — оплодотворение.

У растений засушливых местообитаний — ксерофитов — вырабатывались приспособления, позволяющие переносить засухи. Группа ксерофитов очень разнообразна. По способности переносить условия засухи различают следующие их типы (по П.А. Генкелю)



biofile.ru

Влияние жесткой воды на растения

 

Полив жесткой водой губителен для растений

Все живое существовать без воды не сможет. Ни люди, ни животные, ни тем более растения, которые и существуют за счет непосредственно воды. Но как обеспечить растениям надлежащий уход? Бывает так, что и стоят вроде на солнце, и поливаешь их в меру, а в результате все равно чахнут на глазах. Жесткая вода для растений конечно не важна, но вот вода для них может быть губительной. Нужно очень четко прослеживать баланс, иначе погубить урожай с такой водой достаточно просто.

 

Жесткость – подвиды и нюансы в работе с растениями

 

Чтобы растение хорошо шло в рост, чтобы был хороший урожай вода, солнце и удобрения должны найти ту тонкую грань баланса, чтобы нигде не было излишков. Как определить, что и с чем смешивать? Прежде всего, нужно разобраться с показаниями жесткости. Все-таки солнце, тепло и минеральные удобрения поддаются измерению больше, чем показатели жесткости.

На сегодня есть несколько понятий известковости, по которым воду оценивают в разных странах. В этом списке представлены:

  • Россия;
  • Англия;
  • Франция;
  • Германия
  • США

У каждой из этих стран есть свои показатели известковости, и выбирая средства для ее понижения, потребитель всегда должен помнить об этих особенностях. Растения для жесткой воды не важны, ей вообще все равно, где образовывать накипь. Но если инструкция к применению средства от жесткости попадется из другой страны, то потребителю лучше иметь под рукой следующую табличку, она поможет ему быстро перевести одни градусы в  другие.

Страна и единица

Значение приравненное к российскому показателю

Российский миллиграмм

Немецкий градус

Французский -/-

Американский -/-

1

2,804

5,005

50,05

Один градус можно перевести в миллиграммы на эквивалент литр как 0,36. Кроме того понятие известковости воды делиться на две составляющих. Бывает растворимая и нерастворимая известковость. Так вот все средства по умягчению – это средства для борьбы с временной (растворимой) жесткостью. Проще говоря, это карбонаты и гидрокарбонаты солей. Они легко убираются путем простого кипячения или замораживания воды. Но если вода нужна для колхозного поля или же в собственном доме есть целая оранжерея растений, то постоянно нагревать воду означает только одно. Где-то есть емкость, на которой вся жесткость и останется. И будут уже не растения для жесткой воды, а вся накипь на одной поверхности, которую придется чистить постоянно.

К тому же любому агроному следует понимать, что вода в разных районах страны земного шара разная и состав ее будет разный. Так, что где-то что-то нужно думать с очищением и умягчением, а где то можно поливать смело. Так вода в Ленинградской области сама по себе очень мягкая. Ее спокойно можно пить сразу из под крана и растениям жесткая вода данной области ничем не грозит, т.к. в ней допустимый уровень жесткости.

Если растений в доме не так уж много и есть возможность покупать специальную воду для полива, то лучше работать по такой схеме, в случае же если это плантации теплиц, то следует поставить умягчающе-очищающие установки и подпитывать свои растения хорошей сбалансированной водой. В этом случае могут пригодиться мембранные устройства. Ведь чтобы получить хорошую заданную воду, нужно установить соответствующую мембрану. Зато растения точно не будут погибать от плохой воды.

 

Растения и вода – основные требования

 

Растения без воды не выживут, это аксиома. Только разве кактусы могут просуществовать долгое время без жидкости. Остальные аквариумные растения для жесткой воды или какой-то другой, рассматриваются как главный потребитель. Они не будут расти и цвести без нее.

В обязательном порядке, при оценке воды для полива проверяют ее реакцию на примеси. Чтобы растения чувствовали себя хорошо, нужна нейтральная или слабокислая реакция. То есть излишков любых примесей в воде быть не должно. И тогда она отлично будет сотрудничать с растениями.

Где потребитель может достать воду для полива? Вариантов, как известно, немного. Это центральное водоснабжение, свой колодец или скважина и наконец, ближайшие первичные источники, в том числе и дождевая вода.

С водопроводной водой по идее должно быть все нормально, но излишек жесткости и хлорированности делает ее применение ограниченным. Или же нужно монтировать систему очищения.

Вода из скважины или колодца хороша тем, что там достаточное количество минералов и всяких примесей. Здесь есть только один риск, примеси могут быть в излишке. И тогда никакого положительного эффекта от полива такой водой не будет.

Если брать воду из близ лежащего озера, то там может быть огромное количество самых разных примесей – и химикаты, и разложившиеся частицы и слитые в эту воду отходы. В общем, целый букет, никому не нужных примесей.

 

Почему лучше использовать дождевую воду?

 

Лучше всего использовать для полива дождевую воду. Растения для жесткой воды не подходят, а вот для дождевой, которая намного мягче водопроводоной они идеальны. Кроме этого, дождевая вода – это всегда вода с большим количеством растворенного кислорода. Это естественная среда для роста и плодоношения растений. Правда нужно учитывать и экологическую безопасность района, где выпал дождь. Если район неблагополучный, то все достоинства дождевой воды могут погасить кислотные дожди. Чтобы использовать дождевую воду, потребитель должен следовать определенным правилам.

Дождевую воду нельзя собирать, как минимум в течение получаса после начала проливного дождя, если до этого его долго не было. Стекая по крыше, вода собирает весь мусор, который уже скопился на ней. И только спустя минут двадцать уже начинает идти чистая вода, которую смело потом можно использовать для поливов.

Что касается известковости воды, то постоянная хорошо влияет на обменные процессы в растениях, помогает им хорошо идти в рост и плодоносить, а временная, та самая с которой можно бороться, нарушает кислотно-щелочной баланс в растениях. Важно помнить, что поливать растения жесткой водой нельзя, т.к. происходит резкий рост количества щелочных примесей, и у растений могут наблюдаться хлорозы из-за подобных примесей.

Что касается растений для жесткой воды в аквариуме, то там нужно помнить еще и о том, что кроме растений, есть еще и рыбки, и тритоны, и улитки. В этом случае воду умягчают путем подкисления. Для этого используют безвредную и слабенькую щавелевую кислоту. Но полностью устранять кальций и магний нельзя. Без них и растения быстро погибнут и рыбки. Иногда еще советуют применять растворимую соль. С ней реакции в воде происходят быстрее. А выделяющийся азот еще и подпитывает растения. Придется перечитать немало литературы потребителю, чтобы понять, как составить правильную воду для аквариума.

vodopodgotovka-vodi.ru

4.1. Влияние внешних условий на поступление воды в растение

Поступление воды через кор­невые системы зависит от температуры. С понижением температуры скорость поступления воды резко сокращается. Это может оказать заметное влияние на жизнь растительного организма, особенно в осенний период, когда испарение идет еще достаточно интенсивно, а поступление воды задерживается из-за пониженной температуры. В результате растения завядают и даже могут погибнуть от обезво­живания. Причин, по которым понижение температуры вызывает уменьшение поступления воды, по-видимому, несколько: 1) повыша­ется вязкость воды и, как следствие, снижается ее подвижность; 2) уменьшается проницаемость протоплазмы для воды; 3) уменьша­ется скорость всех метаболических процессов. Последнее обстоятель­ство, по-видимому, должно сказаться или непосредственно (ослабле­ние активного поступления), или косвенно, через уменьшение по­ступления солей и, как следствие, уменьшение осмотического давления клеток корня. Снижение аэрации почвы также тормозит по­ступление воды. Это можно наблюдать, когда после сильного дождя, когда все промежутки почвы заполнены водой и вместе с тем на солнце при сильном испарении растения завядают. Все условия, снижающие метаболизм, такие, как недостаток кислорода, избыток СО2, дыхатель­ные яды, уменьшают поступление воды. Однако все они в еще боль­шей степени снижают поступление ионов.

Большое значение имеет содержание воды в почве, а также кон­центрация почвенного раствора. Естественно, вода поступает в ко­рень только тогда, когда сосущая сила корня больше сосущей силы почвы, иначе говоря, когда водный потенциал корня ниже водного потенциала почвы. Всякое уменьшение влажности почвы снижает по­ступление воды. Чем меньше воды в почве, тем с большей силой она удерживается и тем меньше ее водный потенциал. Для того чтобы в растение поступила вода, должен существовать градиент водного по­тенциала в системе почва — растение — атмосфера. Надо также учи­тывать, что уменьшение содержания воды в корне затрудняет ее дальнейшее продвижение к сосудам ксилемы. Это объясняется тем, что при уменьшении содержания воды сопротивление ее передвиже­нию по клеткам корня растет. Подсыхающие клеточные оболочки оказывают значительное сопротивление передвижению воды. Сопро­тивление корневой системы передвижению воды при ее недостатке настолько велико, что это может сни­жать транспирацию, т. е. служит средством для ее регуляции.

С физиологической точки зрения удобно выделить следующие фор­мы почвенной влаги, различающиеся по степени доступности их для растения. Гравитационная вода заполняет крупные проме­жутки между частицами почвы, она хорошо доступна растениям. Од­нако, как правило, она легко стекает в нижние горизонты под влия­нием силы тяжести, вследствие чего бывает в почве лишь после дож­дей. Капиллярная вода заполняет капиллярные поры в почве. Эта вода также хорошо доступна для растений, она удерживается в капиллярах силами поверхностного натяжения и поэтому вниз не стекает. Пленочная вода окружает коллоидные частицы почвы. Вода из периферических слоев гидратационных оболочек может по­глощаться клетками корня. Вместе с тем, чем ближе к коллоидным частицам располагаются молекулы воды, тем с большей силой они удерживаются и, как следствие, менее доступны для растения. Гигроскопическая вода адсорбируется сухой почвой при по­мещении ее в атмосферу с 95% относительной влажности воздуха. Эта форма воды полностью недоступна для растения.

Количество воды в процентах, при котором растение начинает за­вядать, называют коэффициентом завядания, или влаж­ностью завядания. Влажность, при которой наступает завядание на данной почве, мало зависит от вида растения. Это связано, по-видимому, с тем, что растения завядают в тот момент, когда вода в почве перестает пере­двигаться. Однако было показано, что если завядание начинается при одной и той же влажности, то промежуток времени от завядания до гибели (интервал завядания) у растений может быть различным.

Так, для растений бобов интервал завядания составляет несколько суток, тогда как для проса — несколько недель. Все это сказывается на устойчивости растений к засухе. Основное значение при опреде­лении показателя влажности завядания имеет тип почвы. Одно и то же растение на черноземе завядает при значительно более высокой влажности, чем на подзоле. Это связано с тем, что черноземные поч­вы более тонкого механического состава с большей силой удержива­ют почвенную влагу. Влажность завядания еще не дает представле­ния о количестве воды, полностью недоступной растению, поскольку при завядании какое-то количество воды продолжает поступать в растительный организм. В связи с этим было введено понятие мерт­вый запас влаги в почве — это количество воды, полностью недоступ­ное растению. Мертвый запас зависит исключительно от типа поч­вы, ее механического состава. Чем больше глинистых частиц в почве, тем больше мерт­вый запас влаги. Почвы более тонкого механического состава харак­теризуются и большей влагоёмкостью. Количество доступной для растительного организма воды представляет разность между полной влагоёмкостью (максимальное количество воды, удерживаемое поч­вой без стекания) и мертвым запасом. В связи со сказанным пере­гнойные суглинистые почвы обладают не только наибольшим мерт­вым запасом, но и наибольшим запасом доступной влаги.

studfiles.net


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта