У растений мейоз. Мейоз и его фазы. Характеристика фаз мейоза. Размножение организмов. Сходства митоза и мейоза

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

13. Мейоз, последовательность фаз мейоза и его значение. У растений мейоз


Митоз и мейоз: отличия и сходства

Митоз и мейоз

Содержание:

  • Что такое митоз
  • Фазы митоза
  • Что такой мейоз
  • Фазы мейоза
  • Биологическое значение митоза и мейоза
  • В многогранной науке биологии есть множество интересных и в то же время немного запутанных тем, и одной из них без сомнения являются способы деления клетки: митоз и мейоз. На первый взгляд налицо сходства митоза и мейоза – и там и там происходит деление клеток, но в тоже время между ними есть и значительные отличия. Но для начала разберем с вами, что такое митоз, что такое мейоз и каково их биологическое значение.

    Что такое митоз

    Митозом в биологии принято называть самый распространенный способ деления всех соматических клеток (клеток тела) любого живого существа. При нем из исходной материнской клетки образуются две дочерние, которые являются абсолютно одинаковыми по свойствам, как друг с другом, так и с материнской клеткой. Митоз наиболее распространен в природе, ведь именно он лежит в основе деления всех неполовых клеток (нервных, костных, мышечных и т. д.).

    Фазы митоза

    Деление клетки через митоз состоит из четырех фаз:

    • интерфаза – период жизни клетки между двумя митозами, именно в это время происходит ряд важных процессов, предшествующих делению клетки: синтезируются белки и молекулы АТФ, каждая хромосома удваивается, образуя по две сестринские хромосомы, которые скрепляются одной центромерой. По сути, интерфазу можно назвать подготовительным этапом к митозу, по времени она в десятки раз продолжительнее самого митоза.
    • профаза – в ней происходит утолщение хромосом, состоящих из двух сестринских хроматид, которые скреплены вместе центромерой. Под конец этой фазы ядрышки и ядерная мембрана исчезают, хромосомы разбегаются по всей клетки.
    • метафаза – при ней происходит дальнейшая спирилизация хромосом, которые в это время очень удобно наблюдать через микроскоп.
    • анафаза – в этой фазе происходит деление центромер, сестринские хроматиды отделяются друг от друга и отходят к противоположным концам клетки.
    • телофаза – последняя фаза митоза, при которой происходит деление цитоплазмы. Хромосомы раскручиваются и снова образуют ядрышки и ядерные мембраны. И таким вот образом из одной клетки получается две.

    Суть митоза на картинке.

    суть митоза

    Что такой мейоз

    А что же мейоз? И в чем различия митоза и мейоза? Итак, мейозом принято называть тип репродуктивного деления клетки, приводящий к образованию из одной клетки аж целых четырех. Но новообразованные клетки обладают лишь половинным гаплоидным набором хромосом. Что же это значит? А то, что, по мнению некоторых биологов, мейоз даже не является, строго говоря, размножением клетки, так как это способ образования гаплоидных клеток, то бишь спор (у растений) и гамет (у животных). Сами гаметы только после оплодотворения, которое и будет в нашем случае половым размножение, послужат образованию нового организма.

    Суть мейоза на картинке.

    суть мейоза

    Фазы мейоза

    И, разумеется, фазы мейоза отличаются от аналогичных, у митоза. Профаза в мейозе в разы длиннее, так как в ней происходит коньюгация – соединение гомологичных хромосом и обмен генетической информацией. В анафазе центромеры не делятся. Интерфаза очень короткая и ДНК в ней не синтезируется. Клетки, образованные в результате двух мейотических делений содержат одинарный набор хромосом. И только при слиянии двух клеток: материнской и отцовской, восстанавливается диплоидность. Также помимо всего прочего мейоз протекает в два этапа, известные как мейоз І и мейоз ІІ.

    Опять-таки наглядное сравнение митоза и мейоза и их фаз вы можете увидеть на картинке.

    Митоз и мейоз

    Биологическое значение митоза и мейоза

    Теперь же попробуем объяснить максимально просто не только в чем отличие митоза от мейоза но и каково их биологическое значение. Посредством митоза размножаются все неполовые клетки организма, а мейоз – всего лишь способ образования именно половых клеток, но только у животных организмов, у растений же благодаря мейотическому делению размножаются споры, а затем из этих спор уже путем митоза образуются половые клетки растений – гаметы.

    www.poznavayka.org

    Биология для студентов - 13. Мейоз, последовательность фаз мейоза и его значение

    Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

    Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

    Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

    Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом. Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

    Профаза 1 подразделяется на стадии:

    • лептотена (завершение репликации ДНК),
    • зиготена (конъюгация гомологичных хромосом, образование бивалентов), 
    • пахитена (кроссинговер, перекомбинация генов), 
    • диплотена (выявление хиазм, 1 блок овогенеза у человека), 
    • диакинез (терминализация хиазм).

    Деление клетки мейоз

    1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1; 9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

    Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

    Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

    Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

    Второе мейотическое деление (мейоз 2) называется эквационным.

    Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

    Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

    Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

    Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

    Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

    Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

    vseobiology.ru

    Мейоз и его фазы. Характеристика фаз мейоза. Размножение организмов. Сходства митоза и мейоза

    О живых организмах известно, что они дышат, питаются, размножаются и погибают, в этом состоит их биологическая функция. Но за счет чего это все происходит? За счет кирпичиков - клеток, которые тоже дышат, питаются, погибают и размножаются. Но как это происходит?

    О строении клеток

    Дом состоит из кирпичей, блоков или бревен. Так и организм можно разделить на элементарные единицы - клетки. Все разнообразие живых существ состоит именно из них, отличие лежит лишь в их количестве и видах. Из них состоят мышцы, костная ткань, кожа, все внутренние органы - настолько сильно они различаются в своем назначении. Но вне зависимости от того, какие функции выполняет та или иная клетка, все они устроены примерно одинаково. Прежде всего, у любого "кирпичика" есть оболочка и цитоплазма с расположенными в ней органоидами. Некоторые клетки не имеют ядра, их называют прокариотическими, однако все более или менее развитые организмы состоят из эукариотических, имеющих ядро, в котором хранится генетическая информация.

    Органоиды, расположенные в цитоплазме, разнообразны и интересны, они выполняют важные функции. В клетках животного происхождения выделяют эндоплазматическую сеть, рибосомы, митохондрии, комплекс Гольджи, центриоли, лизосомы и двигательные элементы. С помощью них и происходят все процессы, которые обеспечивают функционирование организма.

    мейоз и его фазы

    Жизнедеятельность клеток

    Как уже было сказано, все живое питается, дышит, размножается и умирает. Это утверждение справедливо как для цельных организмов, то есть людей, животных, растений и т. д., так и для клеток. Это удивительно, но каждый "кирпичик" обладает своей собственной жизнью. За счет своих органоидов он получает и перерабатывает питательные вещества, кислород, выводит все лишнее наружу. Сама цитоплазма и эндоплазматическая сеть выполняют транспортную функцию, митохондрии отвечают в том числе за дыхание, а также обеспечение энергией. Комплекс Гольджи занимается накоплением и выводом продуктов жизнедеятельности клетки. Остальные органоиды также участвуют в сложных процессах. И на определенном этапе своего жизненного цикла клетка начинает делиться, то есть происходит процесс размножения. Его стоит рассмотреть более подробно.

    Процесс деления клеток

    Размножение - одна из стадий развития живого организма. То же относится и к клеткам. На определенном этапе жизненного цикла они входят в состояние, когда становятся готовы к размножению. Прокариотические клетки просто делятся надвое, удлиняясь, а потом образовывая перегородку. Этот процесс прост и практически полностью изучен на примере палочковидных бактерий.

    С эукариотическими клетками все обстоит несколько сложнее. Они размножаются тремя разными способами, которые называются амитоз, митоз и мейоз. Каждый из этих путей имеет свои особенности, он присущ определенному виду клеток. Амитоз различия митоза и мейозасчитается самым простым, его также называют прямым бинарным делением. При нем происходит удвоение молекулы ДНК. Однако веретено деления не образуется, так что этот способ является наиболее энергетически экономичным. Амитоз наблюдается у одноклеточных организмов, в то время как ткани многоклеточных размножаются с помощью других механизмов. Однако он иногда наблюдается и там, где снижена митотическая активность, например, в зрелых тканях.

    Иногда прямое деление выделяют как разновидность митоза, однако некоторые ученые считают это отдельным механизмом. Протекание этого процесса даже в старых клетках происходит довольно редко. Далее будут рассмотрены мейоз и его фазы, процесс митоза, а также сходства и различия этих способов. По сравнению с простым делением они более сложны и совершенны. Особенно это касается редукционного деления, так что характеристика фаз мейоза будет наиболее подробной.

    Важную роль в делении клетки имеют центриоли - специальные органоиды, как правило, располагающиеся рядом с комплексом Гольджи. Каждая такая структура состоит из 27 микротрубочек, сгруппированных по три. Вся конструкция имеет цилиндрическую форму. Центриоли непосредственно участвуют в формировании веретена деления клетки в процессе непрямого деления, о котором речь пойдет дальше.

    Митоз

    Продолжительность существования клеток различается. Некоторые живут пару дней, а какие-то можно отнести к долгожителям, поскольку их полная смена происходит очень редко. И практически все эти клетки размножаются с помощью митоза. У большинства из них между периодами деления проходит в среднем 10-24 часа. Сам митоз занимает небольшой период времени - у животных примерно 0,5-1 сходства митоза и мейозачас, а у растений около 2-3. Этот механизм обеспечивает рост клеточной популяции и воспроизводство идентичных по своему генетическому наполнению единиц. Так соблюдается преемственность поколений на элементарном уровне. При этом число хромосом остается неизменным. Именно этот механизм является наиболее распространенным вариантом репродукции эукариотических клеток.

    Значение этого вида деления велико - этот процесс помогает расти и регенерировать тканям, за счет чего происходит развитие всего организма. Кроме того, именно митоз лежит в основе бесполого размножения. И еще одна функция - перемещение клеток и замена уже отживших. Поэтому считать, что из-за того, что стадии мейоза сложнее, то и его роль гораздо выше, неправильно. Оба эти процесса выполняют разные функции и по-своему важны и незаменимы.

    Митоз состоит из нескольких фаз, различающихся по своим морфологическим особенностям. Состояние, в котором клетка находится, будучи готовой к непрямому делению, называют интерфазой, а непосредственно процесс разделяется еще на 5 стадий, которые необходимо рассмотреть подробнее.

    анафаза мейоза

    Фазы митоза

    Находясь в интерфазе, клетка готовится к делению: происходит синтез ДНК и белков. Эта стадия подразделяется на еще несколько, в ходе которых происходит рост всей структуры и удвоение хромосом. В этом состоянии клетка пребывает до 90% всего жизненного цикла.

    Остальные 10% занимает непосредственно деление, разделяющееся на 5 стадий. При митозе клеток растений также выделяется препрофаза, которая отсутствует во всех других случаях. Происходит образование новых структур, ядро перемещается к центру. Формируется препрофазная лента, размечающая предполагаемое место будущего деления.

    Во все же остальных клетках процесс митоза проходит следующим образом:

    Таблица 1

    Наименование стадииХарактеристика
    ПрофазаЯдро увеличивается в размерах, хромосомы в нем спирализуются, становятся видимыми в микроскоп. В цитоплазме образуется веретено деления. Зачастую происходит распад ядрышка, однако это происходит не всегда. Содержание генетического материала в клетке остается неизменным.
    ПрометафазаПроисходит распад ядерной мембраны. Хромосомы начинают активное, но беспорядочное движение. В конечном счете, все они приходят в плоскость метафазной пластинки. Этот этап длится до 20 минут.
    МетафазаХромосомы выстраиваются вдоль экваториальной плоскости веретена деления примерно на равном расстоянии от обоих полюсов. Численность микротрубочек, удерживающих всю конструкцию в стабильном состоянии, достигает максимума. Сестринские хроматиды отталкиваются друг от друга, сохраняя соединение лишь в центромере.
    АнафазаНаиболее короткая стадия. Хроматиды разделяются и отталкиваются друг от друга в направлении ближайших полюсов. Этот процесс иногда выделяют отдельно и называют анафазой А. В дальнейшем происходит расхождение самих полюсов деления. В клетках некоторых простейших веретено деления при этом увеличивается в длину до 15 раз. И этот подэтап носит название анафаза В. Длительность и последовательность процессов на данной стадии вариабельна.
    ТелофазаПосле окончания расхождения к противоположным полюсам хроматиды останавливаются. Происходит деконденсация хромосом, то есть их увеличение в размерах. Начинается реконструкция ядерных оболочек будущих дочерних клеток. Микротрубочки веретена деления исчезают. Формируются ядра, возобновляется синтез РНК.

    После завершения деления генетической информации происходит цитокинез или цитотомия. Под этим термином подразумевается образование тел дочерних клеток из тела материнской. При этом органоиды, как правило, делятся пополам, хотя возможны исключения, образуется перегородка. Цитокинез не выделяют в отдельную фазу, как правило, рассматривая его в рамках телофазы.

    Итак, в самых интересных процессах задействованы хромосомы, которые несут генетическую информацию. Что же это такое и почему они так важны?

    О хромосомах

    Еще не имея ни малейшего понятия о генетике, люди знали, что многие качества потомства зависят от родителей. С развитием биологии стало очевидно, что информация о том или ином организме хранится в каждой клетке, и часть ее передается будущим поколениям.

    В конце 19 века были открыты хромосомы - структуры, состоящие из длинной процесс мейозамолекулы ДНК. Это стало возможно с совершенствованием микроскопов, и даже сейчас рассмотреть их можно лишь в период деления. Чаще всего открытие приписывают немецкому ученому В. Флемингу, который не только упорядочил все то, что было изучено до него, но и внес свой вклад: он одним из первых исследовал клеточную структуру, мейоз и его фазы, а также ввел термин "митоз". Само понятие "хромосома" было предложено чуть позже другим ученым - немецким гистологом Г. Вальдейером.

    Структура хромосом в момент, когда они четко видны, довольно проста - они представляют собой две хроматиды, соединенные посередине центромерой. Она является специфической последовательностью нуклеотидов и играет важную роль в процессе размножения клеток. В конечном итоге хромосома внешне в профазе и метафазе, когда ее можно лучше всего разглядеть, напоминается букву Х.

    В 1900 году были открыты законы Менделя, описывающие принципы передачи наследственных признаков. Тогда стало окончательно ясно, что хромосомы - это именно то, с помощью чего передается генетическая информация. В дальнейшем учеными был проведен ряд экспериментов, доказывающих это. И тогда предметом изучения стало и то влияние, котрое на них оказывает деление клетки.

    Мейоз

    В отличие от митоза этот механизм в итоге приводит к образованию двух клеток с набором хромосом в 2 раза меньше исходного. Таким образом процесс мейоза служит переходом от диплоидной фазы к гаплоидной, причем в первую очередь стадии мейозаречь идет о делении ядра, а уже во вторую - всей клетки. Восстановление же полного набора хромосом происходит в результате дальнейшего слияния гамет. В связи с уменьшением количества хромосом этот метод еще определяют как редукционное деление клетки.

    Мейоз и его фазы изучали такие известные ученые, как В. Флеминг, Э. Страсбургрер, В. И. Беляев и другие. Исследование этого процесса в клетках как растений, так и животных, продолжается до сих пор - настолько он сложен. Изначально этот процесс считался вариантом митоза, однако практически сразу после открытия он все-таки был выделен как отдельный механизм. Характеристика мейоза и его теоретическое значение были впервые в достаточной степени описаны Августом Вайсманом еще в 1887 году. С тех пор изучение процесса редукционного деления сильно продвинулось, но сделанные выводы пока не были опровергнуты.

    Мейоз не следует путать с гаметогенезом, хотя оба эти процесса тесно связаны. В образовании половых клеток участвуют оба механизма, однако между ними есть ряд серьезных отличий. Мейоз происходит в две стадии деления, каждая из которых состоит из 4 основных фаз, между ними есть короткий перерыв. Длительность всего процесса зависит от количества ДНК в ядре и структуры хромосомной организации. В целом он гораздо более продолжителен в сравнении с митозом.

    Кстати, одна из основных причин значительного видового разнообразия - именно мейоз. Набор хромосом в результате редукционного деления разбивается надвое, так что появляются новые комбинации генов, в первую очередь потенциально повышающие приспособляемость и адаптивность организмов, в итоге получающих те или иные наборы признаков и качеств.

    Фазы мейоза

    Как уже было упомянуто, редукционное клеточное деление условно делят на две стадии. Каждая из этих стадий разделена еще на 4. И первая фаза мейоза - профаза I в свою очередь подразделяется еще на 5 отдельных этапов. Поскольку изучение этого процесса продолжается, в дальнейшем могут быть выделены и другие. Сейчас же различают следующие фазы мейоза:

    Таблица 2

    Наименование стадииХарактеристика
    Первое деление (редукционное)

    Профаза I

    лептотенаПо-другому этот этап называют стадией тонких нитей. Хромосомы выглядят в микроскопе как спутанный клубок. Иногда выделяют пролептотену, когда отдельные ниточки еще сложно разглядеть.
    зиготенаСтадия сливающихся нитей. Гомологичные, то есть сходные между собой по морфологии и в генетическом отношении, пары хромосом сливаются. В процессе слияния, то есть конъюгации, образуются биваленты, или тетрады. Так называют довольно устойчивые комплексы из пар хромосом.
    пахитенаСтадия толстых нитей. На этом этапе хромосомы спирализуются и завершается репликация ДНК, образуются хиазмы - точки контакта отдельных частей хромосом - хроматид. Происходит процесс кроссинговера. Хромосомы перекрещиваются и обмениваются некоторыми участками генетической информации.
    диплотенаТакже называется стадией двойных нитей. Гомологичные хромосомы в бивалентах отталкиваются друг от друга и остаются связанными только в хиазмах.
    диакинезНа этой стадии биваленты расходятся на периферии ядра.
    Метафаза IОболочка ядра разрушается, формируется веретено деления. Биваленты перемещаются к центру клетки и выстраиваются вдоль экваториальной плоскости.
    Анафаза IБиваленты распадаются, после чего каждая хромосома из пары перемещается к ближайшему полюсу клетки. Разделения на хроматиды не происходит.
    Телофаза IЗавершается процесс расхождения хромосом. Происходит формирование отдельных ядер дочерних клеток, каждое - с гаплоидным набором. Хромосомы деспирализуются, образуется ядерная оболочка. Иногда наблюдается цитокинез, то есть деление самого тела клетки.
    Второе деление (эквационное)
    Профаза IIПроисходит конденсация хромосом, клеточный центр делится. Разрушается ядерная оболочка. Образуется веретено деления, перпендикулярное первому.
    Метафаза IIВ каждой из дочерних клеток хромосомы выстраиваются вдоль экватора. Каждая из них состоит из двух хроматид.
    Анафаза IIКаждая хромосома делится на хроматиды. Эти части расходятся к противоположным полюсам.
    Телофаза IIПолученные однохроматидные хромосомы деспирализуются. Образуется ядерная оболочка.

    Итак, очевидно, что фазы деления мейоза гораздо сложнее, чем процесс митоза. Но, как уже было упомянуто, это не умаляет биологической роли непрямого деления, поскольку они выполняют разные функции.

    Кстати, мейоз и его фазы наблюдаются и у некоторых простейших. Однако, как правило, он включает в себя лишь одно деление. Предполагается, что такая одноступенчатая форма позднее развилась в современную, двухступенчатую.

    Отличия и сходства митоза и мейоза

    На первый взгляд кажется, что различия двух этих процессов очевидны, ведь это совершенно разные механизмы. Однако при более глубоком анализе оказывается, что различия митоза и мейоза не так уж глобальны, в конце концов они приводят к образованию новых клеток.

    Прежде всего стоит поговорить о том, что есть общего у этих механизмов. По сути совпадения всего два: в одинаковой последовательности фаз, а также в том, что характеристика мейозаперед обоими видами деления происходит репликация ДНК. Хотя, что касается мейоза, до начала профазы I этот процесс не завершается полностью, заканчиваясь на одной из первых подстадий. А последовательность фаз хоть и аналогична, но, по сути, происходящие в них события совпадают не полностью. Так что сходства митоза и мейоза не так уж и многочисленны.

    Различий же гораздо больше. Прежде всего, митоз происходит в соматических клетках, в то время как мейоз тесно связан с образованием половых клеток и спорогенезом. В самих фазах процессы не полностью совпадают. Например, кроссинговер в митозе происходит во время интерфазы, и то не всегда. Во втором же случае на этот процесс приходится анафаза мейоза. Рекомбинация генов в непрямом делении обычно не осуществляется, а значит, он не играет никакой роли в эволюционном развитии организма и поддержании внутривидового разнообразия. Количество получившихся в результате митоза клеток - две, и они в генетическом смысле идентичны материнской и обладают диплоидным набором хромосом. Во время редукционного деления все иначе. Результат мейоза - 4 гаплоидных клетки, отличающихся от материнской. Кроме того, оба механизма значительно различаются по длительности, и это связано не только с различием в количестве ступеней деления, но и длительностью каждого из этапов. Например, первая профаза мейоза длится намного дольше, ведь в это время происходит конъюгация хромосом и кроссинговер. Именно поэтому ее дополнительно делят на несколько стадий.

    В общем и целом сходства митоза и мейоза достаточно незначительны по сравнению с их отличиями друг от друга. Перепутать эти процессы практически невозможно. Поэтому сейчас даже несколько удивляет то, что редукционное деление раньше считалось разновидностью митоза.

    Последствия мейоза

    Как уже было упомянуто, после окончания процесса редукционного деления, вместо материнской клетки с диплоидным набором хромосом образуются четыре гаплоидных. И если говорить про различия митоза и мейоза - это самое значительное. Восстановление необходимого количества, если речь идет о половых клетках, происходит после оплодотворения. Таким образом, с каждым новым поколением не происходит удвоения количества хромосом.

    Кроме того, во время мейоза происходит рекомбинация генов. В процессе размножения это приводит к поддержанию внутривидового разнообразия. Так что тот факт, что даже родные братья и сестры порой сильно отличаются друг от друга - именно результат мейоза.

    Кстати, стерильность некоторых гибридов в животном мире - тоже проблема редукционного деления. Дело в том, что хромосомы родителей, принадлежащих к разным видам, не могут вступить в конъюгацию, а значит, процесс образования полноценных жизнеспособных половых клеток невозможен. Таким образом, именно мейоз лежит в основе эволюционного развития животных, растений и других организмов.

    fb.ru

    Био: Мейоз

    Мейоз - способ деление эукариотических клеток, при котором из одной диплоидной формируется 4 гаплоидные. В результате мейоза число хромосом уменьшается в 2 раза. поэтому его еще называют редукционным делением (правильнее редукционным называть только первое деление мейоза, а второе - эквационное).  Мейозом образуются половые клетки животных и споры высших растений (из которых развиваются гаметофиты - половое поколение, образующее гаметы путем митоза). При мейозе происходит два быстро следующих друг за другом деления, каждое из которых состоит из 4 уже известных нам  фаз: профазы, метафазы, анафазы и телофазы; между двумя делениями может быть короткая интерфаза, но никогда не происходит репликации ДНК.

    Ход мейоза.

    Перед началом мейоза (как и перед началом митоза) происходит удвоение наследственной информации клетки, т.е. ДНК реплицируется, и хромосомный набор имеет формулу 2n4с.первое деление мейоза - редукционное. Профаза 1. 2n4c . Самая длительная фаза мейоза. Ее часто делят на пять стадий (лептотена, зиготена, пахитена, диплотена и диакинез). Хромосомы укорачиваются и становятся видимыми как обособленные структуры. Гомологичные хромосомы, происходящие из ядер материнской и отцовской гамет, приближаются одна к другой и конъюгируют. Они одинаковой длины, их центромеры занимают одинаковое положение, и они обычно содержат одинаковое число генов, расположенных в одной и той же линейной последовательности. Пары конъюгирующих гомологичных хромосом называют бивалентами. Биваленты укорачиваются и утолщаются, становятся ясно видны.  Гомологичные хромосомы, составляющие бивалент, частично разделяются, становится видно, что каждая состоит из двух хроматид. Хромосомы остаются соединенными в нескольких точках – хиазмах. В каждой хиазме происходит обмен участками хроматид в результате разрывов и соединений, в которых участвуют две из имеющихся в хиазме четырех нитей. В результате гены из одной хромосомы оказываются  связанными с генами другой хромосомы, что приводит к новым генным комбинациям в образующихся хроматидах. Этот процесс называется кроссинговер. После кроссинговера гомологичные хромосомы не расходятся, а остаются прочно связанными.  В клетке центриоли мигрируют к полюсам, ядрышки и ядерная мембрана разрушаются, образуются нити веретена деления.  Метафаза 1. 2n4c. Биваленты выстраиваются в экваториальной плоскости, образуя метафазную пластинку. Их центромеры ведут себя как единые структуры и организуют прикрепленные к ним нити веретена деления. В результате тянущего усилия каждый бивалент оказывается на экваторе, а обе его центромеры равноудалены от экватора (снизу и сверху).  Анафаза 1. 1n2c * 2 (к каждому полюсу клетки!) Имеющиеся у каждого бивалента две центромеры еще не делятся, но сестринские хроматиды уже не примыкают одна к другой. Нити веретена тянут центромеры, каждая из которых связана с двумя хроматидами, к противоположным полюсам веретена. В результате хромосомы разделяются на два гаплоидных набора, попадающих в дочерние клетки. Гомологичные хромосомы каждой пары расходятся к полюсам независимо от хромосом другой пары. Телофаза 1. 1n2c в каждой образующейся клетке. Расхождение гомологичных центромер и связанных с ними хроматид к противоположным полюсам означает завершение первого деления мейоза. Число хромосом в одном наборе стало вдвое меньше, но находящиеся на каждом полюсе хромосомы состоят из двух хроматид. Вследствие кроссинговера эти хроматиды генетически неидентичны. Веретена и их нити обычно исчезают. Иногда после этой фазы хромосомы деспирализуются и возникает ядерная оболочка. Затем происходит деление цитоплазмы. Иногда не наблюдается этой фазы, и клетка переходит от анафазы1 к профазе2. Второе деление мейоза - эквационное.  Интерфаза 2.1n2c в каждой клетке. Эта стадия обычна только в животных клетках; продолжительность варьирует. Фаза S отсутствует, и дальнейшей репликации ДНК не происходит. Синтезируются необходимые вещества, главным образом, АТФ.

    Профаза 2. 1n2c. Если не было телофазы1, то этой стадии тоже нет (обратные процессы). Ядерные мембраны и ядрышки разрушаются,  хроматиды укорачиваются и утолщаются. Центриоли перемещаются к противоположным полюсам, появляются нити веретена. Хроматиды располагаются таким образом, что их длинные оси перпендикулярны оси веретена первого деления мейоза. 

    Метафаза 2. 1n2c.  Центромеры ведут себя как двойные структуры. Они организуют нити веретена, направленные к обоим полюсам, и таким образом выстраиваются по экватору веретена.

    Анафаза 2.  1n1c * 2 (к каждому полюсу клетки!) .  Центромеры делятся, и нити веретена деления растаскивают их к противоположным полюсам. Центромеры тянут за собой отделившиеся друг от друга хроматиды, которые теперь называются хромосомами. 

    Телофаза 2. 1n1c (в каждой клетке).  Сходна с телофазой митоза. Хромосомы деспирализуются, растягиваются и после этого плохо различимы.  Нити веретена исчезают, а центриоли реплицируются. Вокруг каждого ядра, которое содержит теперь гаплоидное число хромосом, образуется ядерная мембрана. Далее следует деление цитоплазмы. Образуется 4 дочерние клетки. 

    Значение мейоза:  1. Половое размножение.  Предотвращение удвоения числа хромосом в каждом последующем поколении.  2. Генетическая изменчивость. Мейоз создает возможности для возникновения в гаметах новых генных комбинаций.

    Сходства митоза и мейоза:

    -       способы деления эукариотических клеток; -       одинаковые фазы: профаза, метафаза, анафаза, телофаза; -       перед клеточным делением происходит удвоение ДНК, спирализация хромосом. Черты отличия митоза и мейоза
    1.      Одно деление; 2.      В метафазе по экватору выстраиваются удвоенные хромосомы; 3.      Конъюгация и кроссинговер отсутствуют; 4.      Между делениями имеется интерфаза, в которую происходит удвоение ДНК; 5.      Образуются две диплоидные клетки.

    Видео на тему:

    1.      Два быстро следующих друг за другом деления; 2.      По экватору выстраиваются пары гомологичных хромосом; 3.      Гомологичные хромосомы конъюгируют, происходит кроссинговер; 4.      Между двумя делениями мейоза нет интерфазы (короткая) и не происходит удвоение ДНК; 5.      Образуются четыре гаплоидные клетки.

    myblog-bio.blogspot.com

    Типы мейоза и его биологическое значение — МегаЛекции

    Мейоз

    Основные понятия и определения

    Мейозом называется особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в 2 раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение). Часто уменьшение числа хромосом называется редукцией.

    Исходное число хромосом в мейоцитах (клетках, вступающих в мейоз) называется диплоидным хромосомным числом (2n) Число хромосом в клетках, образовавшихся в результате мейоза, называется гаплоидным хромосомным числом (n).

    Минимальное число хромосом в клетке называется основным числом (x). Основному числу хромосом в клетке соответствует и минимальный объем генетической информации (минимальный объем ДНК), который называется геном. Количество геномов в клетке называется геномным числом (Ω). У большинства многоклеточных животных, у всех голосеменных и многих покрытосеменных растений понятие гаплоидности–диплоидности и понятие геномного числа совпадают. Например, у человека n=x=23 и 2n=2x=46.

    Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Мейотическое распределение хромосом по дочерним клеткам называется сегрегацией хромосом.

     

    Краткая история открытия мейоза

    Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений – Э.Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900). Изучение мейоза продолжается до сих пор.

     

    Общий ход мейоза

    Типичный мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называют редукционным, реже – гетеротипным. Во втором делении число хромосом не изменяется; такое деление называют эквационным (уравнивающим), реже – гомеотипным. Выражения «мейоз» и «редукционное деление» часто используют как синонимы.

    Интерфаза

    Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Таким образом, деление клетки начинается на синтетической стадии клеточного цикла. Поэтому мейоз образно называют преждевременным митозом. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с.

    При наличии центриолей происходит их удвоение таким образом, что в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

    Первое деление мейоза (редукционное деление, или мейоз I)

    Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

    Профаза 1 (профаза первого деления) состоит из ряда стадий:

    Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей. Раннюю лептотену, когда нити хромосом видны еще очень плохо, называют пролептотена.

    Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это хромосомы, сходные между собой в морфологическом и генетическом отношении. У нормальных диплоидных организмов гомологичные хромосомы – парные: одну хромосому из пары диплоидный организм получает от матери, а другую – от отца. При конъюгации образуются биваленты. Каждый бивалент – это относительно устойчивый комплекс из одной пары гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Один синаптонемальный комплекс может связывать только две хроматиды в одной точке. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

    Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК (образуется особая пахитенная ДНК). Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

    Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

    Диакинез (стадия расхождения бивалентов). Отдельные биваленты располагаются на периферии ядра.

    Метафаза I (метафаза первого деления)

    В прометафазе I ядерная оболочка разрушается (фрагментируется). Формируется веретено деления. Далее происходит метакинез – биваленты перемещаются в экваториальную плоскость клетки.

    Анафаза I (анафаза первого деления)

    Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит. Процесс распределения хромосом по дочерним клеткам называется сегрегация хромосом.

    Телофаза I (телофаза первого деления)

    Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

    В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

    Интеркинез

    Интеркинез – это короткий промежуток между двумя мейотическими делениями. Отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

    Второе деление мейоза (эквационное деление, или мейоз II)

    В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

    Профаза II (профаза второго деления)

    Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

    Метафаза II (метафаза второго деления)

    Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут лежать в одной плоскости, могут быть параллельны друг другу или взаимно перпендикулярны.

    Анафаза II (анафаза второго деления)

    Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

    Телофаза II (телофаза второго деления)

    Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

     

    Типы мейоза и его биологическое значение

    В общем случае в результате мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам или зооспорам. Эти типы мейоза характерны для низших эукариот, грибов и растений. Споровый мейоз тесно связан со спорогенезом. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

    Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

    Ход мейоза находится под контролем генотипа организма, под контролем половых гормонов (у животных), фитогормонов (у растений) и множества иных факторов (например, температуры).

     

    megalektsii.ru

    Характеристика мейоза

    Мейозом (редукционным делением) называют такое непрямое деление клеток, при котором дочерние клетки получают гаплоидный (одинарный) набор хромосом.

    Процесс уменьшения диплоидного (двойного) набора хромосом до одинарного (гаплоидного) называется редукцией числа хромосом, поэтому процесс непрямого деления клеток, сопровождающийся появлением гаплоидного набора хромосом у дочерних клеток, называется редукционным.

    Мейоз состоит из двух последовательно протекающих мейотических делений, между которыми интерфаза практически отсутствует.

    Первое мейотическое деление, как и при митозе, начинается с профазы (следует помнить, что исходные (родительские) клетки имеют диплоидный набор хромосом, но тетраплоидное количество ядерного вещества). Профаза длится от нескольких часов до нескольких недель. За это время двухроматидные хромосомы (каждая) спирализуются и выявляются в своей структуре. Гомологичные (парные) хромосомы сближаются и конъюгируют (переплетаются). При конъюгации двух гомологичных хромосом образуется единая структура, состоящая из четырех хроматид, называемая бивалентом.

    Конъюгация гомологичных хромосом приводит к тому, что возникающие биваленты способствуют обновлению ядерного вещества у хромосом за счет кроссинговера.

    Кроссинговер — обмен ядерным веществом у конъюгировавших гомологичных хромосом.

    В ряде случаев кроссинговера при конъюгации не происходит и вновь возникшие хромосомы после конъюгации остаются неизменными. Кроссинговер имеет большое значение в передаче признаков родителей потомкам, так как в результате его протекания происходит перекомбинация генов, что может способствовать либо гибели организмов, либо лучшей их выживаемости в условиях среды обитания.

    В остальном профаза-I не отличается от таковой для обычного митоза, и ее результат тот же. После профазы-I клетка вступает в метафазу-I.

    Метафаза-I аналогична таковой для метафазы обычного митоза, но имеет и свои особенности. В ней каждая бивалента прикрепляется к тянущим нитям веретена, разделяется на хромосомы и набор к концу метафазы остается диплоидным (в митозе он становился тетраплоидным). После завершения метафазы-I клетка вступает в анафазу-I.

    Анафаза-I протекает аналогично анафазе в митозе, при этом к полюсам клетки, случайно распределяясь, расходятся гомологичные хромосомы. В конце анафазы-I около полюсов клетки возникает гаплоидный набор хромосом (с диплоидным количеством ядерного вещества, так как каждая хромосома содержит две хроматидные нити). По числу хромосом это деление будет редукционным, так как число хромосом по сравнению с родительской клеткой уменьшилось вдвое, т. е. произошла редукция числа хромосом, но не ядерного вещества. Наличие в клетке двойного количества ядерного вещества является побудительной причиной для второго мейотического деления.

    Телофаза-I следует за анафазой-I и существенно не отличается от телофазы митоза, но имеет свои специфические особенности. После возникновения первичной мембраны между клетками происходит восстановление клеточного центра, перетяжка отделяет одну клетку от другой. Но в отличие от митоза, деспирализации хромосом не происходит, ядра не образуется. Длительность телофазы-I невелика. Интерфаза между первым и вторым делением отсутствует. Сразу после телофазы-I клетка вступает во второе мейотическое деление (в него вступают одновременно обе клетки, возникшие в результате первого деления).

    Второе мейотическое деление начинается с профазы-II. Профаза-II сильно отличается от профазы-I, так как у родительских клеток нет ядра, хромосомы четко выражены и спирализированы. Процессы этой фазы сводятся к тому, что центриоли клеточного центра расходятся к разным полюсам клеток и возникает веретено деления. Хромосомы концентрируются на экваторе клеток, и далее наступает метафаза-II.

    Метафаза-II напоминает метафазу-I, т. е. хромосомы прикрепляются к тянущим нитям веретена, между хроматидными нитями возникает пространство, центриоли делятся и в клетках возникает диплоидный набор хромосом (а был гаплоидный). Далее клетки вступают в анафазу-II.

    Анафаза-II протекает так же, как и при митозе. В результате анафазы-II около каждого полюса двух родительских клеток возникает гаплоидное число хромосом и гаплоидное количество ядерного вещества, далее клетки вступают в телофазу-II.

    Телофаза-II протекает так же, как и при митозе.

    В результате мейоза в целом возникает четыре дочерние клетки, обладающие гаплоидным набором хромосом (n) и гаплоидным количеством ядерного вещества (с). Эти клетки в зависимости от процесса могут быть все равноценные (например, сперматозоиды при сперматогенезе) либо различные (одна яйцеклетка и три сопутствующие клетки, которые затем редуцируются при овогенезе). При мейозе образуются и споры растений (при спорогенезе).

    Биологическая роль мейоза состоит в том, что он создает предпосылки для реализации полового процесса. В конечном счете мейоз непосредственно (гаметогенез у животных) или опосредованно (спорогенез у растений) создает предпосылки к осуществлению полового процесса (слияния гамет), который приводит к обновлению наследственного (ядерного) вещества у потомства, что позволяет последнему легче приспособиться к условиям существования в среде обитания.

    Общая характеристика гаметогенеза

    Гаметогенез — процесс образования половых клеток (гамет). Гаметами называют половые клетки, с помощью которых реализуется половой процесс. По характеру гамет различают два типа половых клеток: мужские половые клетки (сперматозоиды или спермии) и женские половые клетки (яйцеклетки).

    Сперматозоиды являются мужскими половыми клетками, имеющими органоиды движения — жгутики (как правило, один). Спермии жгутиков не имеют и состоят только из головки. Сперматозоид образован жгутиком и головкой, которая состоит из ядра и слоя цитоплазмы. Главная биологическая функция сперматозоида и спермия — достичь яйцеклетки и слиться с ней. Поэтому мужские гаметы имеют короткий срок жизни и небольшой запас питательных веществ. Спермии характерны для растений и приспособлены к пассивному перемещению в процессе оплодотворения.

    Женские половые гаметы являются яйцеклетками. Это крупные неподвижные клетки, богатые запасом питательных веществ. Их главная биологическая функция — обеспечить развитие зародыша после слияния с мужской гаметой. Аналогично протекает и спорогенез у растений.

    По характеру формирования гамет различают сперматогенез и овогенез (оогенез).

    Общая характеристика сперматогенеза

    Сперматогенез — процесс формирования мужских половых клеток (мужских гамет, сперматозоидов).

    У животных сперматогенез осуществляется в мужских половых железах — семенниках (яичках). Мужская половая железа имеет три зоны: I — зона размножения клеток; II — зона роста клеток; III — зона созревания клеток.

    В зоне размножения клетки митотически делятся и в конечном итоге образуют сперматогонии. Сперматогонии переходят в зону роста, растут до определенного размера и переходят в зону созревания.

    В зоне созревания сперматогонии превращаются в сперматоциты 1-го порядка, которые способны к мейозу, что делает возможным образование (в будущем) мужских гамет. При образовании сперматозоидов, сперматоциты 1-го порядка подвергаются собственно сперматогенезу, т. е. вступают в мейотическое деление. Они имеют диплоидный набор хромосом и тетраплоидное количество ядерного вещества. В результате первого мейотического деления из сперматоцитов 1-го порядка образуются сперматоциты 2-го порядка. Они имеют гаплоидный набор хромосом, но диплоидное количество ядерного вещества.

    Сперматоциты 2-го порядка вступают во второе мейотическое деление и из них образуются по два сперматозоида (из двух сперматоцитов 1-го порядка образуется четыре сперматозоида). На этом сперматогенез завершается.

    Итак, при сперматогенезе из одной исходной клетки (сперматоцита 1-го порядка) образуется четыре равноценных гаметы — сперматозоида, обладающих гаплоидным набором хромосом и гаплоидным количеством ядерного вещества.

    Общая характеристика овогенеза (оогенеза)

    Овогенез (оогенез) — образование женских гамет (яйцеклеток).

    Яйцеклетка — женская половая клетка, обладающая достаточно крупными размерами, содержащая большое количество питательных веществ, не способная к передвижению.

    Овогенез реализуется в женских половых железах — в яичниках. В результате овогенеза из одной исходной клетки образуется одна женская гамета, обладающая гаплоидным набором хромосом и гаплоидным количеством ядерного вещества.

    Основными клетками яичников, участвующими в овогенезе, являются оогонии — клетки с диплоидным набором хромосом, которые в дальнейшем способны образовывать ооциты. Из оогониев образуются ооциты 1-го порядка. Эти ооциты имеют диплоидный набор хромосом и тетраплоидное количество ядерного вещества и способны к мейозу. Ооциты 1-го порядка представляют собой особое состояние клеток и отличаются от оогониев, так как последние способны к митозу, а первые — к мейозу.

    Ооциты 1-го порядка вступают в первое мейотическое деление, в результате которого образуются две неравноценные клетки — ооцит 2-го порядка (крупная клетка с гаплоидным набором хромосом, но диплоидным количеством ядерного вещества; в этой клетке сосредоточена практически вся масса исходной клетки — ооцита 1-го порядка) и вторая клетка — первое полярное тельце (подобна ооциту 2-го порядка, за исключением массы тела, которая очень мала по сравнению с массой ооцита 2-го порядка).

    Далее следует второе мейотическое деление. В его результате из ооцита 2-го порядка образуется одна яйцеклетка и второе полярное тельце, а из первого полярного тельца образуется два вторых полярных тельца.

    Следовательно, при овогенезе из одной исходной клетки образуется только одна яйцеклетка.

    Особенности сперматогенеза и овогенеза у растений

    У растений при гаметогенезе мейотического деления не происходит, так как гаметы образуются в организмах полового поколения (в гаметофитах), клетки которого являются гаплоидными из-за того, что гаметофит развивается из спор. Споры образуются при спорогенезе, при котором осуществляется мейоз, поэтому споры обладают гаплоидным набором хромосом и гаплоидным количеством ядерного вещества. Схема спорогенеза в целом напоминает сперматогенез, отличаясь от такового лишь тем, что в результате спорогенеза образуются гаплоидные споры, а при сперматогенезе — гаплоидные сперматозоиды.

    Сперматогенез у растений происходит в антеридиях и не сопровождается мейозом. Овогенез у высших растений происходит в архегониях (кроме покрытосеменных растений). Более подробно этот вопрос будет рассмотрен в подразделе, посвященном развитию растений.

    www.polnaja-jenciklopedija.ru

    Споровый мейоз. Особенности образования гамет у высших растений. Микроспорогенез и мегаспорогенез. Роль митоза и мейоза в образовании гамет у растений

    Подробности Категория: Генетика

    Споровый тип мейоза характерен для высших споровых растений, многоклеточных водорослей и многих грибов, для которых характерно чередование поколений – гаплоидного, размножающегося бесполым путем, и диплоидного, размножающегося половым путем. Процесс образования гамет у растений носит название микроспорогенеза( образование мужских гамет) и мегаспорогенеза( образование женских гамет) . Микроспорогенез протекает в мужской репродуктивной сфере – андроцее. Элементом андроцея яв-ся тычинка, состоящая из тычиночной нити и пыльника. Внутри пыльника имеются пыльцевые гнезда, содержащие многоклеточную археспориальная ткань (2n). Из каждой клетки археспориальной ткани (материнской клетки микроспор) в результате мейоза образуется 4 микроспоры(n), каждая из которых, в свою очередь дает пыльцевое зерно(мужской гаметофит). Микроспора делится путем митоза , в результате чего образуется большая вегетативная клетка, внутри которой плавает маленькая генеративная клетка, которая затем, делится митозом еще раз, давая начало двум спермиям. Зрелое пыльцевое зерно покрыто двойной оболочкой: экзиной (внешней) и интиной (внутренней).Мегаспорогенез протекает в женской репродуктивной сфере- в гинецее. Морфологически гинецей представлен пестиком(или пестиками). В состав пестика входят: рыльце, столбик и завязь. Внутри завязи есть семязачатки(один или несколько). Внутреннее содержимое семязачатка представляет собой нуцеллус. Покровы семязачатка образованы двойным или одиночным интегументом. В нуцеллусе семязачатка имеется одна археспориальная клетка (2n), способная делиться путем мейоза ( у ивы и некоторых других растений археспорий многоклеточный). В результате мейоза из археспор.клетки(материнской клетки мегаспор) образуется 4 гаплоидные мегаспоры (n). Вскоре три из них отмирают, а одна из них увеличивается в размерах и трижды делится путем митозов. В результате образуется восьмиядерный зародышевый мешок ( женский гаметофит). Два из них словаются, образуя диплоидное ядро. Большая клетка с диплоидным ядром располагается в центре и называется центральной. Семь ядер разделяются на семь клеток. Три маленьких гаплоидных клетки помещаются возле одного конца мешка( клетки антиподы), еще три маленьких гаплоидных – возле другого (клетки синергиды). Одна из трех маленьких гаплоидных клеток у одного из полюсов ( возле микропиле) яв-ся яйцеклеткой. Мейоз лежит в основе образования половых клеток (гамет) у животных и спор у растений. Обеспечивает возможность полового размножения и комбинативную изменчивость потомства

    eksdan.ru


    Смотрите также

    Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта