Реферат: Экофизиологическая роль фотопериодизма у растений. Световая стадия развития растений понятие о фотопериодизме
Световая стадия развития и фотопериодизм | Биология. Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест
Тема:
Развитие растений
Работы В. И. Разумова показали, что растение нуждается не в фотопериоде, как таковом, а в условиях для прохождения световой стадии. Оказалось, что можно выращивать даже растения короткого дня на непрерывном свете, лишь бы этот свет был достаточно низкой напряженности и воспринимался бы как темнота. В опыте Разумова просо бухарское, памирское и иркутское выращивалось сначала на коротком дне, а остальную часть суток — при освещении в 10 люксов. У всех этих сортов не наступало задержки в выметывании метелки при таком освещении. У проса воронежского и безенчукского только дополнительное освещение в 0,5 люкса не вызывало задержки. И, наконец, просо монгольское, корейское и китайское давало метелку только на коротком дне. Освещение в 0,5 люкса уже вызывало задержку в выбрасывании метелки.
Из изложенного ясно, что учение о фотопериодизме не может считаться особой теорией развития и является лишь частью этой теории.
Особенно ясным и убедительным фактом, доказывающим стадийную природу фотопериодизма, является так называемое фотопериодическое последействие, открытое русским ученым Эгизом и изученное более подробно Разумовым. Оказывается, для ускорения плодоношения вовсе нет необходимости воздействовать на растения соответствующим фотопериодом в течение всей его жизни. Для этого достаточно подвергать его этому воздействию в течение сравнительно короткого времени в период, предшествующий образованию цветочных органов. Материал с сайта http://worldofschool.ru
После стадии яровизации, на скорость прохождения которой световой режим не оказывает никакого влияния, наступает следующая стадия развития, световая. Для прохождения этой стадии одни растения нуждаются в определенном сроке пребывания на свету, так как у них свет ускоряет наступление плодоношения, другие же растения нуждаются в определенном сроке пребывания в темноте, так как у них свет задерживает плодоношение. Первые и будут растения длинного дня, у них на световой стадии развитие всего скорее идет при непрерывном свете. У растений короткого дня те стадийные изменения, которыми обусловливается прохождение световой стадии, скорее протекают в темноте. Но так как в непрерывной темноте растения не могут существовать в силу прекращения процесса фотосинтеза, то для этих растений оказывается необходимой периодическая смена света и темноты, причем в течение светлого периода суток у них идут процессы питания, а в течение темного периода стадийные изменения.
Укорачивания дня имеет значение для образования клубней у картофеля и для перехода ряда древесных пород в состояние зимнего покоя. Независимо оттого как проходит световая стадия — при коротком или при длинном дне, — переход к покою связан в первую очередь с укорочением дня.
Последний вопрос имеет и очень большое практическое значение. В условиях длинного северного дня многие культурные растения не впадают в состояние покоя и вымерзают полностью или очень страдают от морозов.
45.Фотопериодизм. Эволюционные аспекты фотопериодизма. Значение света, темноты, их продолжительности и чередования фаз для жизнедеятельности.
Фотопериодизм — реакция живых организмов (растений и животных) на суточный ритм освещённости, продолжительность светового дня и соотношение между темным и светлым временем суток (фотопериодами).
Под действием реакции фотопериодизма растения переходят от вегетативного роста к зацветанию. Эта особенность является проявлением адаптации растений к условиям существования, и позволяет им переходить к цветению и плодоношению в наиболее благоприятное время года. Помимо реакции на свет, известна также реакция на температурные воздействия — яровизация растений.
За восприятие фотопериодических условий у растений отвечают особые рецепторы листьев (например, фитохром).
Растения делят на длиннодневные, зацветают при непрерывной суточной освещенности более 12 часов и короткодневные, зацветают при непрерывной суточной освещенности менее 12 часов. Есть и нейтральные, для цветения им необходимо 12 часов. В умеренных широтах короткие дни весной, а длинные — в середине лета. Поэтому короткодневные цветут весной и осенью, а длиннодневные — летом.
Известно, что длина светового дня, кроме времени года, зависит от географического положения местности. Короткодневные виды живут и произрастают в основном в низких широтах, а длиннодневные – в умеренных и высоких. У видов с обширными ареалами северные особи могут отличаться по типу фотопериодизма от южных. Таким образом, тип фотопериодизма – это экологическая, а не систематическая особенность вида.
По мере повышения географической широты критическая длина дня возрастает. Например, переход в диапаузу яблоневой листовертки на широте 32° происходит при продолжительности светлого периода суток, равной 14 ч, 44° – 16 ч, 52° – 18 ч. Критическая длина дня часто служит препятствием для широтного передвижения растений и животных, для их интродукции.
Фотопериодизм растений и животных – наследственно закрепленное, генетически обусловленное свойство. Однако фотопериодическая реакция проявляется лишь при определенном воздействии других факторов среды, например в определенном интервале температур. При некотором сочетании экологических условий возможно естественное расселение видов в несвойственные им широты, несмотря на тип фотопериодизма.
Фотопериодизм известен также у животных — насекомых,рыб,птиц,млекопитающих. Реакция на длину светового дня регулирует начало брачного периода,линьки, зимнейспячкии т. д.
46. Биоритмы и возраст. Хронобиологическая трактовка тезиса «Старость и болезнь – это стеснённая в своей свободе жизнь».
Каждый возрастной период постнатального онтогенеза характеризуется неповторимой циркадианной временной организацией по всем основным биоритмологическим параметрам (МЕЗОР, амплитуда, акрофаза). Специфика циркадианной организации в онтогенезе человека показана на исследованиях параметров ряда гомеостатических систем (углеводного, липилного, белкового, энергетического и др балансов). В 1980г. Губиным Г.Д. была выдвинута концепция,согласно которой циркадианная организация живой системы, все амплитудно-фазовые отношения испытывают изменения в онтогенезе. Организм представляется в форме спирали с постепенно возрастающими ее оборотами (наращиваение амплитуд в циркадианной организации биологических процессов) с последующим,на поздних этапах онтогенеза, сокращением оборотов спирали (угасание амплитуд осцилляции), а так же идущим процессам сдвига акрофаз (гипотеза «волчка»). Циркадианная организация биологических процессов в период постнатального онтогенеза млекопитающих изменяется строго закономерно по одному из важнейших критериев - амплитуде. Закономерность: становление циркадианных ритмов на ранних этапах онтогенеза, развитие их до максимума в молодом и зрелом возрасте и последующее поступательное угасание амплитуд в старости. Если принять за 100 % архитектонику циркадианной амплитудно-фазовой характеристики зрелого возраста крыс и выразить результаты в относительных единицах планиметра, то по хроноструктуре, в частности, углеводного гомеостаза, этапы постнатального онтогенеза будут иметь следующие значения : в инфантильном возрасте 22,5, в ювенильном 28, в молодом 58, в зрелом 100, в предстарческом 27,9, в старческом 9,9. Используя такой геометрический прием выражения надежности циркадианной организации биосистем, можно констатировать, что уровень надежности хроноструктуры в зрелом возрасте превышает таковой в старости в 12,33 раза. Таким образом, наглядно иллюстрируется положение, что старость – это стесненная в своей свободе жизнь. О максимальной надежности циркадианной организации биопроцессов в зрелом возрасте свидетельствуют так же величины хронодезмов. В молодом и зрелом возрасте все изученные показатели гомеостатических систем имеют mах хронодезмы. В предстарческом и старческом возрастают процессы внутренней десинхронизации. В общем,Временная организация в зрелом возрасте характеризуются макс степени надежности, макс количества здоровья,упорядоченности и гормоничности. Исходные биоритмы быстрее восстанавливаются в молодом возрасте и медленнее в старческом.
studfiles.net
Реферат - Экофизиологическая роль фотопериодизма у растений
Приднестровский государственный университет им. Т.Г. Шевченко
Кафедра ботаники и экологии
Курсовая работа по физиологии растений
На тему: Экофизиологичсекая роль фотопериодизма у растений
Тирасполь, 2009
Оглавление
Введение
1. Понятие фотопериодизма
2. Локализация фотопериодической реакции
3. Практическое использование явления фотопериодизма
Заключение
Литература
Введение
Огромное влияние на жизнедеятельность растений и животных оказывает соотношение светлого (длина дня) и темного (длина ночи) периодов суток в течение года. Реакция организмов на суточный ритм освещения, выражающаяся в изменении процессов их роста и развития, называется фотопериодизмом. Регулярность и неизменная повторяемость из года в год данного явления позволила организмам в ходе эволюции согласовывать свои важнейшие жизненные процессы с ритмом этих временных интервалов. Под фотопериодическим контролем находятся практически все метаболические процессы, связанные с ростом, развитием, жизнедеятельностью и размножением растений.
Центральным моментом развития организма является переход от вегетативного роста к репродуктивному развитию (у цветковых растений – к цветению). Условия среды могут влиять на реализацию генетической информации и тем самым ускорять или замедлять наступление определенных этапов развития, в первую очередь переход растения к цветению. Таким образом, развитие растений совершается при взаимодействии генетических потенций и факторов внешней среды. Основными факторами среды, оказывающими влияние на переход растения к репродукции – к цветению, является температура и продолжительность дневного освещения.
1. Понятие фотопериодизма
Понятия фотопериод и фотопериодизм были введены в науку американскими физиологами растений У. Гарнером и Г.А. Аллардом (1920-1923).
Фотопериодизм – ритмические изменения морфологических, биохимических и физиологических свойств и функций под влиянием чередования и длительности световых и темновых интервалов.
ФОТОПЕРИОДИЧЕСКИЕ ГРУППЫ — группы растений с различной фотопериодической реакцией, названные по длине дня, ускоряющей их зацветание.
В зависимости от этого растения делятся на:
1. Нейтральные растения (НР) — длина дня не оказывает заметного влияния, растения цветут по достижении определенного возраста или размера. Обычно нейтральные растения происходят из экваториальных областей.
2. Длиннодневные растения (ДДР) — зацветают только в том случае, если длина дня больше некоторой критической величины. ДДР происходят из умеренных областей с равномерным увлажнением по сезонам.
3. Короткодневные растения (КДР) — зацветают только тогда, когда длина дня меньше, чем некоторая критическая величина. Они происходят из субтропических и тропических областей с зимним максимумом увлажнения. (Есть и растения с количественной реакцией на короткий день: цветение ускоряется на коротком дне, хотя длина дня не играет принципиальной роли).
4. Длиннокороткодневные растения (ДКДР) — для цветения необходима определенная последовательность: сначала длинные дни, а затем короткие. Эти растения настроены на благоприятный осенний период.
5. Короткодлиннодневные растения (КДДР) — для цветения необходима смена коротких дней на длинные (но не наоборот). Благоприятный период у этой группы ассоциируется с весенним сезоном.
6. Среднедневные растения (СДР) — для цветения необходим определенный интервал длины дня: ни при увеличенной, ни при уменьшенной длине дня эти растения не цветут. Это — сравнительно редкий тип регуляции цветения.
7. Амфифотопериодичные растения (АФПР) — для цветения неблагоприятен узкий интервал, а при большей или меньшей длине дня цветение наступает. Этот тип физиологических ответов также достаточно редок.
Отнесение растений к той или иной фотопериодической группе не связано с конкретной оптимальной длиной дня, а дает представление о том, ускоряется ли переход к цветению при увеличении или уменьшении длительности освещения в каждом фотопериоде. Среди растений есть виды и разновидности, как с качественным, так и с количественным типам фотопериодических ответов растений. Для короткодневных с качественной реакцией решающим фактором служит длина темнового периода. Кратковременное освещение этих растений в середине темнового периода препятствует их переходу к цветению. Прерывание светового периода темнотой не влияет на сроки цветения. Длиннодневные растения не нуждаются в периодах темноты и зацветают на непрерывном свету.
Свет и его роль в жизни растений.
Живая природа не может существовать без света, так как солнечная радиация, достигающая поверхности Земли, является практически единственным источником энергии для поддержания теплового баланса планеты, создания органических веществ фототрофными организмами биосферы, что в итоге обеспечивает формирование среды, способной удовлетворить жизненные потребности всех живых существ.
Биологическое действие солнечного света зависит от его спектрального состава, продолжительности, интенсивности, суточной и сезонной периодичности.
Солнечная радиация представляет собой электромагнитное излучение в широком диапазоне волн, составляющих непрерывный спектр от 290 до 3 000 нм. Ультрафиолетовые лучи (УФЛ) короче 290 им, губительные для живых организмов, поглощаются слоем озона и до Земли не доходят. Земли достигают главным образом инфракрасные (около 50% суммарной радиации) и видимые (45%) лучи спектра. На долю УФЛ, имеющих длину волны 290-380 нм, приходится 5% лучистой энергии. Длинноволновые УФЛ, обладающие большой энергией фотонов, отличаются высокой химической активностью. В небольших дозах они оказывают мощное бактерицидное действие, способствуют синтезу у растений некоторых витаминов, пигментов, а у животных и человека — витамина D; кроме того, у человека они вызывают загар, который является защитной реакцией кожи. Инфракрасные лучи длиной волны более 710 нм оказывают тепловое действие.
В экологическом отношении наибольшую значимость представляет видимая область спектра (390-710 нм), или фотосинтетически активная радиация (ФАР), которая поглощается пигментами хлоропластов и тем самым имеет решающее значение в жизни растений. Видимый свет нужен зеленым растениям для образования хлорофилла, формирования структуры хлоропластов; он регулирует работу устьичного аппарата, влияет на газообмен и транспирацию, стимулирует биосинтез белков и нуклеиновых кислот, повышает активность ряда светочувствительных ферментов. Свет влияет также на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цветения и плодоношения, оказывает формообразующее воздействие.
Световой режим любого местообитания зависит от его географической широты, высоты над уровнем моря, состояния атмосферы, растительности, сезона и времени суток, солнечной активности и т. д. Поэтому разнообразие световых условий на нашей планете чрезвычайно велико: от таких сильно освещенных территорий, как высокогорья, пустыни, степи, до сумеречного освещения в водных глубинах и пещерах. В разных местообитаниях различаются не только интенсивность света, но и его спектральный состав, продолжительность освещения, пространственное и временное распределение света разной интенсивности и т.д. Соответственно, разнообразны и приспособления растений к жизни при том или ином световом режиме.
Экологические группы растений по отношению к свету.
По отношению к количеству света, необходимого для нормального развития, растения подразделяют натри экологические группы.
Светолюбивые, или гелиофиты, с оптимумом развития при полном освещении; сильное затенение действует на них угнетающе. Это растения открытых, хорошо освещенных местообитаний: степные и луговые травы, прибрежные и водные растения (с плавающими листьями), большинство культурных растений открытого грунта, сорняки и др.
Тенелюбивые, или теневые, с оптимальным развитием в пределах 1/10-1/3 от полного освещения, т.е. для них приемлемы области слабой освещенности. К тенелюбам относятся растения нижних затененных ярусов сложных растительных сообществ — темнохвойных и широколиственных лесов, а также водных глубин, расщелин скал, пещер и т.д. Тенелюбами являются и многие комнатные и оранжерейные растения. В лесах Беларуси и России типичными теневыми растениями являются копытень европейский, ветреница дубравная, сныть обыкновенная, чистотел большой, кислица обыкновенная, майник двулистный и др.
Теневыносливые растения имеют широкую экологическую амплитуду выносливости по отношению к свету. Они лучше растут и развиваются при полной освещенности, но хорошо адаптируются и к слабому свету. К ним относится большинство видов зоны смешанных лесов — ель, пихта, граб, бук, лещина, бузина, брусника, ландыш майский и др.
Адаптация растений к световому режиму.
Под влиянием различных условий светового режима у растений выработались соответствующие приспособительные качества. Прежде всего это касается величины листовых пластинок: у гелиофитов по сравнению с теплолюбивыми они обычно более мелкие. Ориентация листьев у светолюбов вертикальная или имеет разный угол по отношению к солнечным лучам, чтобы избежать избыточного света и перегрева. Листья теневыносливых растений, напротив, ориентированы к свету всей поверхностью листовой пластинки и расположены так, чтобы не затенять соседние листья (листовая мозаика).
У многих гелиофитов поверхность листовой пластинки блестящая, покрыта светлым восковым налетом, густо опушена, что способствует отражению палящих солнечных лучей или ослаблению их действия.
Световые и теневые растения имеют четкие различия и по анатомическому строению. Так, у гелиофитов хорошо развиты осевые органы с оптимальным соотношением ксилемы и механических тканей, менее сложные по форме листья с характерной дифференцировкой мезофилла на столбчатый и губчатый, высокой степенью жилкования, большим числом устьиц на единицу поверхности листа. У светолюбивых растений количество хлоропластов, приходящихся на единицу площади листовой пластинки, в несколько раз больше, чем у тенелюбивых. Сами хлоропласты у гелиофитов более мелкие и светлые (с малым содержанием хлорофилла), способные к изменению ориентировки и перемещениям в клетке: на сильном свету они занимают постенное положение и становятся «ребром» к направлению лучей, что защищает хлорофилловое разрушения.
Теневыносливые растения встречаются в местообитаниях с различным световым режимом благодаря увеличению ассимилирующей поверхности, снижению интенсивности дыхания и уменьшению относительной массы нефотосинтезирующих тканей, увеличению размеров хлоропластов и концентрации хлорофилла. Кроме того, в листьях наблюдается слабая дифференцировка на столбчатый и губчатый мезофилл или таковая совсем отсутствует, отмечается сравнительно малое количество устьиц и т. д.
Таким образом, способность воспринимать длину дня и реагировать на нее широко распространена в мире живых существ. Это означает, что живые организмы способны ориентироваться во времени, т. е. они обладают биологическими часами. Другими словами, для многих организмов характерна способность ощущать суточные, приливные, лунные и годичные циклы, что позволяет им заранее готовиться к предстоящим изменениям среды.
Правильно подобрав режимы освещения, температуры и другие факторы, наиболее соответствующие биоритмам, можно заметно повысить жизнедеятельность и продуктивность разводимых животных и растений, причем без каких-либо дополнительных затрат. Например, благодаря увеличению в теплицах, оранжереях и парниках светового дня до 12-15 ч зимой выращивают овощные культуры и декоративные растения, ускоряют рост и развитие рассады. Продлив за счет искусственного освещения световой период зимой, можно увеличить яйценоскость кур, уток, гусей, регулировать размножение пушных зверей на зверофермах.
Влияние качества света на развитие.
Много внимания было уделено исследователями качеству света, необходимого для цветения растений. Красный свет воспринимается растениями как свет в процессе развития, а сине-фиолетовая часть спектра – как темнота. Однако при увеличении интенсивности синего света он тоже начинает восприниматься растениями как свет. Опыты показывают, что если выровнять интенсивность света по числу квантов, то красный и синий свет становиться одинаково эффективным.
Важно выяснить в каких условиях проходят соответствующие изменения у растений короткого и длинного дня. Как показали опыты, во время пребывания растения в темноте на небольшой отрезок времени, в несколько минут, прервать темноту, то цветения не наступает. Того же самого можно достигнуть, давая этим растениям мигающий свет, где интервалы между светом равны секундами или минутами. У развития и важным является лишь то, чтобы в сумме число освещения соответствовало числу часов, характерному для длинного дня [4].
фотопериодизм растение свет
2. Локализация фотопериодических реакций
Фотопериодические воздействия воспринимаются главным образом листьями, а не апексами побега. У большинства растений максимальной чувствительность к фотопериоду обладают листья, только что прекратившие рост. Для дурнишника, зацветание которого индуцируется одним короткодневным фотопериодом, для фотоиндукции зацветания достаточно нескольких квадратных сантиметров листа. Основную роль в восприятии фотопериода листом играет фитохром. Предполагается, что его темновое превращение может служить способом измерения времени по типу песочных часов. Вспышка красного света устанавливает фазу эндогенного ритма.
Необходимость большой поверхности листьев и достаточной интенсивности света для перехода к цветению у многих растений объясняется потребностью растущих меристем в ассимилятах. Устранение СО2 из воздуха во время светового периода снижает инициацию цветения у некоторых короткодневных растений и длиннодневных растения.
У фотопериодически нейтральных растений переход к зацветанию обеспечивается возрастным изменениям.
Таким образом, сущность фотопериодической реакции заключается в том, что циклическое чередование света и темноты переводит растение из вегетативного в репродуктивное состояние.
Фотопериодизм, представляет собой приспособительную реакцию, позволяющую растениям зацветать в определённое, наиболее благоприятное время года. Как правило, длиннодневные растения северные, а короткодневные – южные. Для короткодневных растений более благоприятны повышенные ночные температуры, тогда как для длиннодневных – пониженные. Фотопериодическая реакция затрагивает не только процесс развития растений, но и вызывает некоторые изменения ростовых процессов.
Растения сильно различаются по числу фотопериодических циклов (числу суток с определённой длинной дня), которые вызывают затем переход к цветению одним растениям достаточно одного цикла, иначе говоря, воздействия определенной длинной дня в течение одних суток. Другим растениям необходимо получить определенную длину дня в течении 25 суток (25 циклов). Таким образом, фотопериодическое воздействие необходимо растительному организму лишь на протяжении определенного периода, после чего растение зацветает уже при любом соотношении дня и ночи. Это явление называют фотопериодической индукцией .
Исследования, проведенные на растениях короткого дня, показали, что для их перехода к образованию репродуктивных органов (цветению) важна длительность не дня, а ночи. Иначе говоря, для короткодневных растений необходим теневой период определенной длины. Если в середине темнового периода дать хотя бы вспышку света, то растение короткого дня к цветению уже не переходит. Так, если 14-часовая ночь прерывается освещением на 10 мин, то короткодневные растения не зацветают. Для длиннодневных растений нужен именно длинный световой период.
Фотопериодическое воздействие вызывается светом малой интенсивности. Так, достаточно прервать темновой период суток вспышкой света интенсивностью в 3-5 люкс, чтобы короткодневные растения не зацвели. Даже лунный свет препятствует переходу к цветению короткодневных растений. Фотосинтез при таких интенсивностях освещения еще не идет. Эти данные показывают относительную независимость явлений фотопериодизма от фотосинтеза. Вместе с тем, по мнения М.Х. Чайлахяна, переходу растений к цветению должен предшествовать определенный период нормального протекания фотосинтеза.
Фотопериодическая реакция растений наиболее успешно проходит лишь в лучах определенной длины волны, что доказано опытами американских ученых Хендрикса и Борствика. Наиболее активными в смысле задержки цветения сои оказались красные лучи (длина 600Нм). Сине-фиолетовые лучи (используемые при фотосинтезе) оказались не активными. Таким образом спектр действия фотопериодической реакции оказался совпадающим со спектром действия фитохрома. Это подтверждается тем, что действие вспышки красного света (Фк ) на задержку цветения короткодневных растений снимается действием дальнего красного света (Фдк ). В ночной период Фдк под влиянием дальних красных лучей превращается вФк, и это способствует началу реакций, приводящих короткодневные растения к цветению. При вспышке красного света Фк превращается в Фдк, и это ингибирует реакции, приводящие к цветению. Следовательно, для перехода к цветению короткодневных растений нужно меньшее содержание активного фитохрома, поглощающего дальние красные лучи, тогда как для перехода к цветению длиннодневных необходимо его более высокое содержание.
Для фотопериодического действия рецепторным(воспринимающим) органом является лист. В опытах, проведенных с короткодневными растениями, в частности хризантемой, воздействию короткого дня подвергали либо листья, либо обезлиственные побеги. С этой целью указанные части растения закрывали на определенное время пакетами из непроницаемой для света бумаги. Оказалось, что растение зацветало в том случае, если воздействию укороченного дня подвергали только листья или листья вместе с точкой роста. Те растения, у которых воздействию короткого дня подвергали только точку роста или обезлиственные побеги, не зацветали.
Таким образом, именно листья являются органами, воспринимающими фотопериодическое воздействие, под влиянием которого происходят ответные изменения в точке роста. Результатом этих изменений является превращение вегетативной почки в цветочную. Это дало основание М.Х. Чайланяну предположить, что в листе вырабатываются вещества (гормоны), которые вызывают переход к цветению. Оказалось далее, что возникающие в листе вещества по преимуществу локализуются в том побеге, где они образуются, так как передвижение идет от листьев к точке роста, расположенной на том же побеге.
Интересные результаты дали опыты с прививками. Оказалось, что, если побеги с листьями короткодневного растения ( например хризантемы), выдержанного на коротком дне, привит на растение этого же типа, выдержанного на длинном дне, то последнее зацветает. Это подтвердило положение, что в листьях первого растения образуется гормональные вещества, которые при прививке вызывают изменения – развитие цветочной почки — у второго растения. Важные результаты были получены при прививках длиннодневных растений на короткодневные и обратно. Оказалось, что при прививке растений топинамбура (растение короткого дня) на цветущее растение подсолнечника (растение короткого дня) топинамбур зацветал при длинном дне. Сходные результаты были получены в опытах в которых длиннодневные растения прививались на цветущее короткодневное. Таким образом, исследователи показали, что листья, выдержанные на соответствующем фотопериоде, содержат вещества, вызывающие цветение в независимости от условий, в которых содержаться остальные растения. При этом вещества, вызывающие цветение, идентичны как для короткодневных, так и для длиннодневных растений[3].
3. Практическое использование явления фотопериодизма
Размножение клубнями.
Способность к клубнеобразованию формируется в процессе онтогенеза постепенно и проявляется после завершения ювенильного этапа в процессе клубнеобразования вначале развиваются столоны – стебли с измененной геотропической реакцией(1-я фаза), а затем на них формируются клубни (2-я фаза). Наиболее существенное влияние на клубнеобразование оказывают температура и длина дня. При этом у одной группы растений клубни образуются только в условиях короткого дня, а у другой – как при коротком, так и при длинном дне. В опятах с прививками растений, не образующих клубни, на клубненосы (например, томатов на картофель, подсолнечника на топинамбур) было выяснено, что стимул клубнеобразования у фотопериодически чувствительных клубненосов вырабатывается в листьях, что он не обладает видоспецифичностью и имеет гормональную природу. Оказалось, что в этом процессе взаимодействуют основные группы фитогормонов: ауксин подавляет клубнеобразование; гиббереллины, индуцирующие рост стеблей, усиливают рост столонов и тем самым в определенном отношении способствуют росту клубней. Наиболее значительное влияние на формирование клубней оказывают цитокинины. В условиях короткого дня в корнях и столонах наблюдается высокое содержание цитокининов, а в листьях – абсцизинов. При длинном дне в листьях выше содержание гиббереллинов, а в стеблевых почках – ауксинов.
Согласно М.Х. Чайлахяну, механизм гормональной индукции клубнеобразования у видов, образующих клубни на коротком дне, включает в себя две фазы. В начале из листьев в нижние стеблевые почки поступают гиббереллины и абсцизины. Поскольку при коротком дне соотношение их сдвинуто в сторону преобладания абсцизинов (АБК/ГА), ускоренный рост столонов, вызываемый гиббереллином, тормозиться. Во время второй фазы образуются клубни, рост которых регулируется более высокой концентрацией цитокинина в корнях и столонах по сравнению с ауксином (ЦК/ИУК).
В условиях длинного дня при неблагоприятном для клубнеобразования соотношении гормонов ( в листьях ГА/АБК, в корнях – ИУК/Цк) происходит образование и рост корней и столонов. Таким образом, стимулом клубнеобразования, вырабатываемым в листьях, служит определенное соотношение гиббереллинов и абсцизинов, влияющее на первую фазу клубнеобразования.
Развитие и рост клубней поддерживается притоком к ним продуктов фотосинтеза, образуемых в листьях. При этом интенсивность транспорта ассимилятов в клубни коррелирует с содержанием в них ауксинов и гиббереллинов, создающих оттрагирующую силу клубней. Именно поэтому при интенсивном клубнеобразвании замедляется рост надземных частей растения.
У сортов картофеля, выращиваемых в условиях короткого дня, вначале идет рост надземных частей, а затем – интенсивное столоно-и клубнеобразование. Для сортов, образующих клубни и при длинном дне, характерен более протяженный период вегетации, когда развивается надземная масса, а формирование клубней начинается с ускорением дня во второй половине лета [1].
Размножение луковицами.
Если большинство клубненосов образует клубни на коротком дне, то для луковичных растений, напротив, характерно формирование луковиц на длинном дне. Возможно, это связано с эколого-географическим происхождением разных видов. Регуляция образования луковиц изучено гораздо слабее, чем регуляция клубнеобразования. Органами, рецептирующими действие фотопериода, в данном случае также являются листья. В опытах Ф.Э.Реймерса выдерживание даже части листьев на коротком дне замедляло формирование луковицы. Фотопериодический стимул может передаваться от одного побега лука к другому только при условии, что второй побег обезлиствен. Если же побеги с листьями подвергаются воздействию разных фотопериодов, то луковицу формирует, лишь побег, находившийся на длинном дне. При образовании луковиц фотпериодический стимул, как при клубнеобразовании и цветении, по-видимому, является комплексом фитогормонов. Так, формирование луковицы сопровождается уменьшением активности ауксинов, а повышение из концентрации ведет к росту листьев и луковичных чешуй в длину. Однако вегетативное размножение луковичных растений связано не столько с формирование луковицы, сколько с образованием на ней пазушных побегов – будущих дочерних луковичек, «деток». Они закладываются в период зимнего покоя луковиц. Обнаружено, что под действием кинетина, ГА3 и ИУК, нанесенных на донце луковицы, значительно усиливается образование почек, формирующих дочерние луковички. Тот же эффект наблюдается при повышении температуры зимнего хранения луковиц или при удалении цветоносного побега. Прорастание клубней и луковиц происходит по истечении периода покоя. У луковичных растений в отличии от семян и почек, ростовые процессы полностью не прекращаются. В период покоя, хотя и очень медленно, формируются новые органы. Выход из состояния окоя ускоряется после обработки луковиц низкой температурой, т.е. после яровизации. Состояние покоя луковиц поддерживается высоким содержанием в них АБК, а при прорастании снижается уровень ингибиторов и повышается содержание ауксинов, цитокининов и гиббериллинов.
Знание принципов регуляции состояния покоя клубней и луковиц позволяет предотвращать их прорастание в период хранения, например лука и картофеля, с помощью многих ингибиторов роста, таких, как гидразид малеиновой кислоты [1].
Регуляция цветения у покрытосеменных растений.
В любом онтогенезе происходит постепенная реализация генетической информации, заключенной в ДНК. Молекулярные основы наследственной информации, связанные с редупликацией ДНК (хранением), транскрипцией (передачей) и трансляцией (реализацией) генетической информации, очень универсальны и обнаруживают большую общность во всем мире растительных организмов. В то же время выявляется широкое разнообразие видовой и фазовой специфичности регуляции пути от ДНК до белка, которая, в частности, зависит от условий среды.
Соответственно, кроме фотопериодической реакции, регуляторными механизмами развития являются температурные и возрастные факторы. Все эти условия не исключают, а дополняют друг друга.
В результате световых и темновых реакций фотопериодизма синтезируются гормональные регуляторы цветения. В результате этих преобразований в точках роста происходят изменения вегетативного морфогенеза на репродуктивный. В случае, если происходит блокировка любого из звеньев ДНК – РНК — белок, цветение не наступает.
Рецепторная роль листа в фотопериодической реакции заставляет предполагать, что у всех растений это свойство связано с каким-то фундаментальным процессом. Эту общую основу ищут в нескольких направлениях, а именно в роли фитохрома или эндогенного циркадного (суточного) ритма или отводят основную роль окислительно- восстановительным процессам листа, а именно взаимодействию процессов фотосинтеза и дыхания.
По этому воззрению, на свету получают большое значение процессы, связанные с восстановлением СО2 и фотофосфолирированием, а в темноте – с окислительным фосфорилированием.
Таким образом, в листе происходит функциональное взаимодействие митохондрий и хлоропластов, регулируемое светом и темнотой, сопряженное с биосинтезом гормональных веществ.
Таково дальнейшее течение гормональной концепции развития растений, многие звенья которой еще пока гипотетичны. Все опыты по влиянию фитогормонов и других физиологически активных веществ представляет большой интерес с точки зрения того, что развитие растений обусловлено исторически в эволюционном процессе, однако проявляются различно, в зависимости от внешних условий, в связи с приспособлением растений к окружающим условиям, т.е. к длине дня, температуре и т.д.[4]
С. С. Шаин экспериментально доказал, что при посеве растений длинного дня радами с севера на юг, а короткого дня- с востока на запад они лучше развиваются и дают больший урожай. Растения, высеянные рядами с севера на юг, лучше освещаются, потому что лучи падают перпендикулярно к ним в утренние и вечерние часы, когда сравнительно больше длинноволновой фракции спектра. В полдень, когда в солнечном свете сравнительно много коротковолновых лучей, растения в рядах затеняют друг друга. Следовательно, посевы с рядами, расположенными с востока на запад, получают больше коротковолновых лучей в течении дня, чем при посеве с севера на юг.
В опятах лаборатории фотосинтеза Украинской сельскохозяйственной академии при пунктирных посевах кукурузы с ориентацией рядов с севера-востока на юго-запад КПД фотосинтеза за вегетационный период повышается на 0,15-0,21% по сравнению с ориентацией рядов с севера на юг. Урожайность зерна кукурузы при этом возросла на 10-13%. Современные методы измерения фотосинтетически активной радиации показали, что при высоте солнца над горизонтом 20о и в течении дня спектральный состав ФАР почти не изменяется. Кроме того, большая продуктивность посевов с определенной ориентацией рядов обуславливается не только условиями освещения. При разной ориентации рядов растений условия корневого питания и водного режима также будут неодинаковыми, что, в свою очередь, влияет на поглощение и использование ФАР.
Повышенную продуктивность посевов с определенной ориентацией рядов канадский ученый У. Питтман объясняет реакцией корневой системы на направленность магнитных силовых линий Земли. В результате этого создаются лучшие условия растений. Направленность рядов имеет большое значение при посевах и посадках лесных пород, а также при уборках, уходе за молодняком. В южных широтах и в условиях резко выраженного климата широтное распоряжение рядов деревьев имеет положительное значение, так как лучше обеспечивается их взаимная защита от избыточной радиации и перегрева. В северных широтах более эффективно меридиальное расположение рядов, что способствует лучшему прогреванию почвы в междурядьях[5].
Заключение
Под контролем фотопериода находятся самые разнообразные процессы. Так, у многих растений от длины дня зависит перестройка работы меристемы побега и образование цветков. При определенной длине дня возникают и почки у многих деревьев. Земляника образует расселительные побеги — усы — при наступлении длинных дней. Сбрасывание листьев у репчатого лука и тюльпанов происходит на длинном дне, а у березы и осины — на коротком. Образование запасающих органов (кочанов у капусты, клубней у диких видов картофеля и топинамбура) также зависит от длины дня. Растения пустынь могут изменять листья С-3 типа на С-4 и наоборот, а водные растения — сменяют подводные листья на надводные, получая из внешней среды фотопериодический сигнал. Из всего выше сказанного понятно что, фотопериодизм играет очень важную роль в жизни растений.
Литература
1. Полевой В.В. «Физиология растений». М.: Высшая школа. 1989.
2. Э.Ф. Шабельская. «Физиология растений». Минск: Высшая школа, 1987.
3. Н.И. Якушкина. «Физиология растений». М.: Просвещение, 1980.
4. П.А. Генкель. «Физиология растений». М.: Просвещение, 1975.
5. С.И. Лебедев «Физиология растений». М.: ВО «Агропромиздат» 1988.
6. Р. Ван Дер Вин, Г. Мейер «Свет и рост растений». М., 1962 г.
7. Рубин Б.А. «Курс физиологии растений». М.: Москва, 1982 г.
8. Чайлахян М.Х. «Фотопериодическая и гормональная регуляция клубнеобразования у растений». М.: 1984 г.
www.ronl.ru
Фотопериодизм
Он был открыт В. Гарнером и Г. Аллардом (1920). Огромный вклад в изучение этого явления внесли отечественные ученые М. X. Чайлахян, В. Н. Любименко, В. И. Разумов, Б. С. Мошков и др. Фотопериодизм - это способность растений переходить к цветению только при определенном соотношении длины темного и светлого периода суток. Он выражается в изменении процессов роста и развития, обеспечивающих адаптацию онтогенеза конкретного вида растений к сезонным особенностям климатических условий в данном месте его произрастания. Длина дня и ночи используется растением как астрономические часы, показывающие лучшее время перехода к активному цветению, развитию клубней и луковиц или подготовки к сезонным неблагоприятным условиям (В. М. Катунский, 1940). В процессе эволюции сформировались три основные группы растений с различной фотопериодической реакцией: длиннодневные, короткодневные, нейтральные.
Длиннодневные растения (ДДР) — рожь, ячмень, пшеница и др. — требуют для своего развития длинного дня и короткой ночи, зацветают при длине дня больше определенной (критической) продолжительности (рис.). На рисунке показано влияние длины дня на развитие хризантемы, в таблице — приложении к рисунку — на цветение шпината и периллы.
Короткодневные растения (КДР) — просо, соя, рис и др. — требуют для своего развития длинной ночи и короткого дня, зацветают при длине дня меньше определенной (критической) продолжительности.
Нейтральные растения — томат, некоторые сорта хлопчатника и др. — зацветают при любой длине дня.
Большинство растений длинного дня произрастает и возделывается в районах умеренного климата. Растения короткого дня, южного, тропического происхождения не переходят к цветению в условиях длинного дня этих зон. Это важно при видовом и сортовом районировании сельскохозяйственных культур. У разных видов и сортов растений минимальный фотопериодический индуктивный период составляет от 1 до 25 сут (циклов) и приводит к последующему зацветанию растений независимо от длины дня. Для короткодневных растений необходим непрерывный темновой период определенной длины. Если его прервать коротким (10 мин) светом, то индукции цветения не будет. Для длиннодневных растений требуется длинный световой период, который ускоряет их развитие. Индукция вызывается светом очень малой интенсивности (3—5 лк).
Фотопериодическая реакция растений наиболее успешно проходит в лучах определенных длин волн (С. Хендрикс и X. Бортсвик, 1952), совпадающих со спектром действия фитохрома. В индукции цветения участвует фитохром (система ф^^пфд^). который отвечает за восприятие соотношения света и темноты. Полагают, что белок фитохрома — это фермент, катализирующий синтез какого-то физиологически активного вещества. В ночной период Фдк превращается в Фк и это способствует началу реакций, приводящих короткодневные растения к цветению. При вспышке красного света (660 нм) Фк превращается в Фдк и это ингибирует реакции, приводящие к цветению.
Если растение короткого дня. например хризантему, выращивать на длинном дне. оно не зацветает. Однако растение зацветает при временном затенении только листьев светонепроницаемой тканью. Следовательно, воспринимают фотопериодическое возоздействие листья, в которых имеется фитохром. В листьях под действием соответствующего фотопериода проходят процессы, приводящие к образованию особых веществ, которые передвигаются по стеблю и приводят к заложению в конусе нарастания цветочных зачатков.
Какова природа возникающего в листьях стимула цветения? М. X. Чайлахян (1937) выдвинул гипотезу двухкомпонентной гормональной системы зацветания (флориген) (рис.). Предполагается, что в гормональный комплекс флоригена входят гиббереллины и гипотетические антезины. Цветение возможно лишь при наличии и благоприятном соотношении в растении двух компонентов флоригена — гиббереллина и антезина. У длиннодневных растений образование цветочных стеблей зависит от наличия гиббереллина, который накапливается в достаточном количестве лишь на длинном дне. Второй гормон цветения — антезин у длиннодневных растений всегда присутствует в достаточном количестве.
При выращивании длиннодневных растений на коротком дне они не цветут, так как не хватает гиббереллина. Поэтому опрыскивание гиббереллином вызывает зацветание длиннодневных растений на коротком дне. У короткодневных растений антезин образуется только на коротком дне, содержание же гиббереллина достаточно высокое при любой длине дня. Поэтому опрыскивание короткодневных растений гиббереллином не вызывает их зацветания на длинном дне. Следовательно, зацветание длиннодневных растении лимитирует гиббереллин, а короткодневных — антезин. Поскольку в листьях цветущих короткодневных и длиннодневных растений присутствуют эти фитогормоны, то прививка этих листьев к нецветущим растениям вызывает их зацветание при неблагоприятном фотопериоде.
Следует упомянуть и о некоторых аспектах практического использования фотопериодической реакции при выращивании культурных растений. Изменяя длину светотемнового периода у культур, выращиваемых в защищенном грунте, можно регулировать цветение декоративных растений и получать цветы к любому сроку, а также собирать несколько урожаев овощных и зеленных культур в течение года. Выращивание ДДР на коротком дне в вегетационных домиках с прерыванием темноты вспышкой света позволит не только стимулировать цветение растении и получать хороший урожай, но и значительно снизить себестоимость продукции за счет экономии электроэнергии.
В открытом грунте можно собрать несколько урожаев ДДР (редис, репа и др.), если в ранний период и во время формирования корнеплодов закрыть растения ящиками или темной пленкой, создавая им 12-часовой день. У земляники после получения весной первого урожая можно вызвать новое формирование цветков, если на некоторое время закрывать их, так как для формирования цветков им необходим короткий день. Затем растения снова открывают и они дают плоды уже на длинном дне. В этих условиях можно собрать два урожая за сезон.
Изменение фотопериодической реакции во время уборки сахарного тростника позволит сохранить качество урожая и при длительном периоде уборки. Для этого в ночные часы плантации короткое время освещают прожекторами, что вызывает замедление процессов старения в тканях.
Сочетание слабой освещенности и низкой температуры с учетом фотопериодической реакции можно использовать для выгонки цветов, кустарников, хранения картофеля и другой сельскохозяйственной продукции. Необходимо напомнить, что картофель и другая продукция не будут прорастать, если их освещать слабым дальним красным светом. Красный свет, наоборот, будет стимулировать прорастание клубней.
Этап размножения. Это период заложения, роста, развития и созревания семян и плодов у растений, размножающихся семенами, и клубней, луковиц и других органов у вегетативно размножающихся растений. Этап размножения начинается с оплодотворения. Завязавшиеся семена становятся мощными аттрагирующими центрами, куда начинают передвигаться из других частей растения значительные количества метаболитов и минеральных веществ. Биохимические процессы в семенах при их росте и созревании противоположны таковым при прорастании. При участии гидролаз и синтетаз из моносахаридов синтезируется крахмал, из органических кислот и глицерина — жиры, из аминокислот — запасные белки. В семенах при созревании содержание сухого вещества быстро увеличивается, а воды снижается. У сочноплодных растений образование плода стимулируется фитогормонами, поступающими из образующихся семян. Из вегетативных органов растения идет активный приток в ткани плода питательных веществ. После завершения роста плода происходят процессы, обеспечивающие его полное созревание. Плоды становятся мясистыми, плотность мякоти снижается. Размягчение плодов — результат гидролиза пектиновых веществ клеточных стенок, крахмала и жиров.
В результате гидролиза крахмала увеличивается содержание в плодах простых сахаров и яблочной, лимонной и других органических кислот, продолжается синтез белков. Происходят разрешение дубильных веществ, синтез душистых эфиров. альдегидов и кетонов. При разрушении хлорофилла и синтезе каротиноидов и антоцианов окраска плодов изменяется от зеленой до желтой и красной.
Начало созревания плодов связано с синтезом в них этилена. Применяя этилен, можно ускорить созревание и достижение плодами товарного состояния. Для задержки этих процессов в плодах при хранении их в камерах уменьшают содержание ... в газовой смеси и повышают ..., что снижает синтез этилена в плодах. У многолетних поликарпических растении наряду с плодовыми побегами н почками ежегодно образуются и вегетативные. Поэтому многолетние растения- достигнув зрелости, плодоносят ежегодно.
Экспериментально показано (М. X. Чаилахян, В. Н. Хрянин, 1982), что экспрессия генов, определяющих пол у двудомных (конопля, шпинат) и однодомных растении с раздельнополыми цветками (огурец, кукуруза), зависит от соотношения цитокинина и гиббереллинов, на которое влияют различные внешние воздействия. факторы внешней среды, которые благоприятствуют синтезу цитокининов в корневой системе, вызывают проявление женского пола, в то время как факторы, способствующие синтезу гиббереллинов в листьях, обусловливают проявление мужского пола (рис.).
studfiles.net
Развитие представления о фотопериодизме
С 1920 г., времени открытия фотопериодизма Гарнером и Аллардом, на протяжении почти целого десятилетия изучение фотопериодической реакции развивалось как самостоятельное направление исследований.
Лишь по истечении этого срока произошло сближение этого направления с исследованиями, устанавливающими природу процесса яровизации. В дальнейшем представления о фотопериодизме значительно изменились, что заставляет сейчас совершенно иначе формулировать основные понятия, относящиеся к этой области физиологии развития. Наметим основные этапы развития наших знаний о действии светового режима на развитие растений.
Гарнер и Аллард установили существование фотопериодической реакции, наблюдая за развитием различных сортов табака в штате Виргиния, в Арлингтоне. Один из сортов табака (Мерилэндский Мамонт), возделывающийся в Южных штатах и дающий там цветки, плоды и семена, при культуре в Арлингтоне хорошо рос, но растения оставались в вегетативном состоянии. Только в зимние месяцы при культуре растений этого сорта происходило цветение. Это наблюдение послужило основой для постановки ряда опытов, устанавливающих значение отдельных элементов всего комплекса условий при зимней культуре растений в оранжерее. Оказалось, что цветение, наблюдавшееся у табачных растений этого сорта только зимой, не зависит ни от интенсивности света, ни от температурных условий, ни от влажности воздуха, а определяется только малой длиной зимнего дня в Арлингтоне. Установив, что соотношение продолжительности светлой и темной частей суток определяет характер развития растений, остающихся в вегетативном состоянии или переходящих к цветению, Гарнер и Аллард провели широкое испытание фотопериодической реакции различных растений.
Это испытание действия дня различной продолжительности на развитие и формообразование растений привело к заключению о существовании двух резко выраженных групп растений — короткого и длинного дня.
Понятия короткого и длинного дня не отличаются должной определенностью, и впоследствии пришлось перейти к иной группировке растений по фотопериодической реакции. В настоящее время, после широкого испытания действия на растения дня различной продолжительности (до 24-часового освещения включительно), мы делим растения на следующие две группы: 1) растения, для которых условием перехода к цветению является действие дня определенной ограниченной продолжительности;
2) растения, переходящие к цветению при действии на них дня неограниченной продолжительности, т. е. непрерывного освещения. За первой группой растений и сейчас сохраняется название короткодневные, а растения второй группы называют длиннодневными. Приведенные названия имеют несколько условный смысл, ибо в группу короткодневных приходится относить такие растения, как некоторые сорта сои, зацветающие на 12—13-часовом дне. Коротким такой день могут называть только жители умеренного пояса, привыкшие считать длинными лишь летние дни северных стран. Необходимо отметить, что довольно значительное число видов оказалось фотопериодически нейтральным, т. е. растения этих видов не обнаруживают ясной фотопериодической реакции и зацветают при любом продолжительности дня, допускающей существование растении. Эти виды составляют третью группу растений по фотопериодической реакции — фотопериодически нейтральных. Сюда относится довольно значительное количество видов тропической зоны.
Открытие фотопериодизма вскоре было дополнено очень интересными наблюдениями, побудившими впоследствии совершенно изменить представление о фотопериодической реакции. Вначале считалось, что определенное соотношение светлой и темной частей суток — условие, действие которого должно иметь место на протяжении всего периода развития растений. Но работами русских исследователей было установлено, что для получения соответствующей фотопериодической реакции достаточно выдерживать растение при данном фотопериоде (т. е. длине дня) лишь ограниченное время. В дальнейшем на развитии этих растений, помещенных в условия иной продолжительности дня, сказывается последействие первоначального фотопериодического режима. Это явление фотопериодической индукции или фотопериодического последействия, как оно было названо, подвергалось обстоятельному изучению В. И. Разумовым (1935) в лаборатории Н. А. Максимова.
Установление существования фотопериодического последействия в свете развитых выше представлений по физиологии развития растений можно формулировать как установление детерминирующего действия фотопериода на развитие побега. Длина дня оказалась фактором, определяющим судьбу органов, образуемых меристемой точки роста. Принципиальное значение этого результата работ русских исследователей было очень большим, так как он позволял рассматривать фотопериодическую реакцию как следствие изменений в меристеме, предопределяющих дальнейшее развитие растений. Изучение фотопериодизма, составлявшее на первых порах обособленное направление исследований, отныне стало одним из путей анализа процессов детерминации перехода точек роста к формированию репродуктивных образований. Поэтому и произошло сближение исследовательской работы в области яровизации и фотопериодизма.
Но при изучении детерминирующего действия фотопериода на развитие растений пришлось встретиться со значительно более сложной физиологической реакцией, чем это имеет место при яровизации. При выдерживании прорастающих семян в условиях пониженной температуры при аэрации действие этих факторов непосредственно сказывается на процессах, протекающих в меристеме зародышей семян. При фотопериодической реакции соответствующий фотопериод действует непосредственно не на точку роста побега, а на листья растения. Изменение формообразовательной деятельности точки роста под влиянием фотопериода определенного характера наступает как следствие процессов, протекающих в листьях. Таким образом, в данном случае мы сталкиваемся с пространственным расчленением отдельных реакций, составляющих звенья всего процесса детерминации деятельности точек роста побегов. Это обстоятельство делает изучение фотопериодической реакции более сложным, чем других этапов развития растений, и приводит к постановке ряда вопросов, специфических именно для решения проблемы фотопериодизма.
Резюмируя коротко изложенные выше сведения об основных этапах развития учения о фотопериодизме, можно сказать что оно возникло как экстенсивное сравнительно-физиологическое изучение фотопериода, при непрерывном действии которого растение проходит определенный цикл развития. В настоящее время изучение фотопериодизма носит по преимуществу характер углубленного изучения механизма прохождения детерминационных процессов, вызываемых действием фотопериода. Более подробное ознакомление с фотопериодической реакцией растений мы начнем, следуя не истории развития наших знаний в этой области, а возможно полному последовательному описанию этой реакции на основе новых исследований.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
www.activestudy.info
Фотопериодизм
Количество просмотров публикации Фотопериодизм - 271
Органогенез
Каждый этап в развитии растений связан с образованием новых органов. Процесс формирования органов растений называют органогенез.
Возникновению новых органов предшествуют физиолого-биохимические процессы, вызывающие образование новых структур в соответствии с общей программой развития организма, закодированной в геноме каждого организма.
Доказательством того, что органогенез осуществляется под генетическим контролем, являются результаты экспериментов с водорослью Acetobularia, проведенные Геммерлингом.
Acetobularia – одноклеточная морская водоросль, размеры клетки которой 5-10 см. Эта одноклеточная водоросль имеет достаточно четкую форму: шляпка, стебелек, ризоид. Разные виды различаются по форме шляпки. Ядро расположено в ризоидальной части клетки:
Шляпка состоит из мешковидных вместилищ – цист, служащих для размножения.
Эксперименты Геммерлинга:
1. удаляют шляпку. Она вскоре регенерирует, воспроизводя точно такую же форму шляпки;
2. удалить шляпку и ризоид и вместо удаленного ризоида пересадить кусочек ризоида с ядром другого вида Acetobularia;
3. шляпка регенерируется, но она будет иметь вид шляпки того вида водоросли, от которой был взят ризоид с ядром.
Результаты этих экспериментов дают основание считать, что в ядре образуются специфические РНК, которые поступают в стебелек и управляют морфогенезом шляпки через синтез белков. В случае если ингибировать синтез белков или их транскрипцию, то регенерация вообще не происходит.
У многоклеточных растений механизм регуляции морфогенеза не отличается от аналогичных процессов у Acetobularia, но, однако, запуск генетических программ зависит от сигналов, поступающих из других клеток. Этим сигналом являются гормоны.
Подтверждение того, что именно гормоны являются переключателями общей программы развития, получено в культуре тканей (экспериментальный метод выращивания тканей вне организма).
Этот метод показал действие гормональных факторов на процессы морфогенеза. Было выявлено, что добавление только ауксина вызывает рост клеток растяжением. Смесь ауксин + цитокинин, следовательно, деление клеток с образованием каллусной ткани (клетки не дифференцируются).
Изменение концентрационного соотношения ИУК и ЦК (высокая концентрация ИУК + низкая концентрация ЦК) – в каллусной ткани индуцируется образование корней. В случае если повысить концентрацию ЦК, то корнеобразование подавляется, а в каллусной ткани происходит закладка и рост стеблевых почек. Высокая концентрация ИУК и ЦК – рост каллуса вообще прекращается. Один ЦК видимого влияния вообще не оказывал. Т.е. высокая концентрация ИУК в сочетании с низкой концентрацией ЦК – запуск программы корнеобразования. Высокое содержание ЦК в присутствии ИУК – активизируются гены, ответственные за программу побегообразования.
Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, последовательность реализации программы развития конкретного растительного организма строго детерминирована в геноме растения. Но сроки наступления того или иного этапа, продолжительность этапа могут варьировать исходя из условий внешней среды.
Важнейшим фактором, который влияет на переход растений к генеративному этапу, является фотопериод, ᴛ.ᴇ. относительная продолжительность светового и темнового периода суток. Зависимость развития растений от фотопериода принято называть фотопериодизмом.
В 1920 ᴦ. Гарнер и Аллард выявили, что есть растения, которые начинают цвести только в условиях короткого дня (табак, хризантема, соя, просо). Другие же растения, напротив - переходят к генеративной фазе только на длинном дне, когда продолжительность светового периода от 11 до 24 часов (Заполярье). Соответственно, первые растения стали называть короткодневные (длина дня от 6 до 15 ч.), вторые – длиннодневные. Растения, которые зацветают независимо от фотопериода – нейтральные.
Фотопериодические воздействия воспринимаются листьями. Основную роль в данном выполняет фоторецепторный белок – фитохром.
Для растений основным экологическим фактором является свет, его количество и качество, ᴛ.ᴇ. спектральный состав света. Свет регулирует ростовые процессы и развитие. Когда проростки двудольных растений появляются из почвы, они согнуты в 3 погибели, ʼʼкрючокʼʼ гипокотиль защищает точку роста при продвижении через почвенные частицы. Освещение гипокотиля коротким красным светом (λ = 660 нм) ускоряет его развертывание, и он быстро принимает вертикальное положение. Но если облучить длинным красным светом (λ = 730 нм) – ускорения не происходит.
Эти наблюдения привели к открытию особого пигмента – фитохрома. Это фоторецепторный белок, относящийся к хромопротеидам. Его хромофорная часть состоит их 4 пиррольных колец, а аминокислотная часть представлена 2 субъединицами. Хромофорная часть этого пигмента реагирует на свет и должна быть в 2 формах: одна форма обозначена как Фкс, способна поглощать свет с λ = 660 нм, имеет сине-голубую окраску и представляет собой окисленную форму; другая форма, Фдкс, поглощает свет λ = 730 нм (между видимым красным и инфракрасным), имеет сине-зеленый цвет и является восстановленной формой. Окисленная и восстановленная формы имеют разные конформации. Эти 2 формы могут под влиянием света с определенной длиной волны превращаться друг в друга.
Активной является форма Фдкс, но эта форма весьма нестабильна.
Неактивная форма (Фкс) обнаруживается в разных частях клетки и в разных органах. Активная форма связывается с мембранами, в основном, с плазмалеммой и вызывает активацию многих физиологических процессов: прорастание семян, удлинение стебля, инициацию роста листьев, цветение.
Механизм действия фитохрома до конца не выяснен. Первичные реакции связывают с изменением мембранной проницаемости для ионов Са2+, активируются Са-зависимые протеинкиназы и как вторичная реакция – изменение активности факторов транскрипции, специфических для фоторегулируемых генов, что приводит к синтезу определенных ферментов.
Результатом является повышение концентрации цитокининов и гиббереллинов, которые и оказывают эффект на формирование структур организма под действием света͵ называемого фотоморфогенезом.
referatwork.ru
Фотопериодизм
Реакция организмов на сезонные изменения длины дня получила название фотопериодизма. Его проявление зависит не от интенсивности освещения, а только от ритма чередования темного и светлого периодов суток.
Фотопериодическая реакция живых организмов имеет большое приспособительное значение, так как для подготовки к переживанию неблагоприятных условий или, наоборот, к наиболее интенсивной жизнедеятельности требуется довольно значительное время. Способность реагировать на изменение длины дня обеспечивает заблаговременные физиологические перестройки и пригнанность цикла к сезонным сменам условий. Ритм дня и ночи выступает как сигнал предстоящих изменений климатических факторов, обладающих сильным непосредственным воздействием на живой организм (температуры, влажности и др.). В отличие от других экологических факторов ритм освещения влияет лишь на те особенности физиологии, морфологии и поведения организмов, которые являются сезонными приспособлениями в их жизненном цикле. Образно говоря, фотопериодизм — это реакция организма на будущность.
Хотя фотопериодизм встречается во всех крупных систематических группах, он свойствен далеко не всем видам. Существует много видов с нейтральной фотопериодической реакцией, у которых физиологические перестройки в цикле развития не зависят от длины дня. У таких видов либо развиты другие способы регулирования жизненного цикла (например, озимость у растений), либо они не нуждаются в точном его регулировании. Например, там, где нет резко выраженных сезонных изменений, большинство видов не обладает фотопериодизмом. Цветение, плодоношение и отмирание листьев у многих тропических деревьев растянуто во времени,, и на дереве одновременно встречаются и цветки и плоды. В умеренном климате виды, успевающие быстро завершить жизненный цикл и практически не встречающиеся в активном состоянии в неблагоприятные сезоны года, также не проявляют фотопериодических реакций, например многие эфемерные растения.
Различают два типа фотопериодической реакции: короткодневный и длиннодневный. Известно, что длина светового дня, кроме времени года, зависит от географического положения местности. Короткодневные виды живут и произрастают в основном в низких широтах, а длиннодневные —в умеренных и высоких. У видов с обширными ареалами северные особи могут отличаться по типу фотопериодизма от южных. Таким образом, тип фотопериодизма — это экологическая, а не систематическая особенность вида.
У длиннодневных растений и животных увеличивающиеся весенний и раннелетний дни стимулируют ростовые процессы и подготовку к размножению. Укора
collectedpapers.com.ua