Регенерант растение. Получение растений-регенерантов методами клеточной инженерии

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Способ получения растений - регенерантов in vitro. Регенерант растение


РЕГЕНЕРАНТ - это... Что такое РЕГЕНЕРАНТ?

  • Регенерант — * рэгенерант * regenerant растение, развившееся (регенерировавшее) в результате морфогенеза (см.) в культуре изолированных тканей () или клеток () растений …   Генетика. Энциклопедический словарь

  • регенерант — регенерирующий реагент; регенерант Реагент, применяемый для регенерации ионита. Примечание. Раствор регенерирующего реагента называется регенерирующий раствор (Не рекомендуется регенерационный раствор ) …   Политехнический терминологический толковый словарь

  • регенерант — regenerantas statusas T sritis augalininkystė apibrėžtis Augalas, išaugęs izoliuotų audinių kultūroje. atitikmenys: angl. regenerant rus. регенерант …   Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

  • Деринат — (новолат. Derinat, натрия дезоксирибонуклеат новолат. (Sodium deoxyribonucleate)) иммуномодулятор, стимулятор гемопоэза, регенерант и репарант. Содержание 1 Описание лекарственной формы …   Википедия

  • Оротовая кислота — Для улучшения этой статьи желательно?: Проставив сноски, внести более точные указания на источники. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное …   Википедия

  • регенерирующий реагент — регенерирующий реагент; регенерант Реагент, применяемый для регенерации ионита. Примечание. Раствор регенерирующего реагента называется регенерирующий раствор (Не рекомендуется регенерационный раствор ) …   Политехнический терминологический толковый словарь

  • regenerant — regenerantas statusas T sritis augalininkystė apibrėžtis Augalas, išaugęs izoliuotų audinių kultūroje. atitikmenys: angl. regenerant rus. регенерант …   Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

  • regenerantas — statusas T sritis augalininkystė apibrėžtis Augalas, išaugęs izoliuotų audinių kultūroje. atitikmenys: angl. regenerant rus. регенерант …   Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

  • Пыльников культура ткани — * пыльнікаў культура тканіны * anther culture метод, при помощи которого используют пыльники или пыльцевые зерна (см.) для получения культуры ткани (см.), состоящей из гаплоидных клеток, и даже всего растения () …   Генетика. Энциклопедический словарь

  • Соматический зародыш эмбриоид — Соматический зародыш, эмбриоид * саматычны зародак, эмбрыёід * somatic embryo or embryoid зародыш, образующийся неполовым путем из соматической клетки растения. В благоприятных условиях С. з. можно заставить регенерировать в целые растения ().… …   Генетика. Энциклопедический словарь

  • botanical_dictionary.academic.ru

    регенеранты - Справочник химика 21

        После оздоровления с помощью вышеперечисленных технологий нормальные растения-регенеранты размножают обычными методами клонального микроразмножения. Для некоторых растений, например цитрусовых, получить морфогенез из меристем малого размера не удается, поэтому требуется разработка оригинальных методов. Лимоны и апельсины оздоровляют и размножают, используя прививки меристем размером 0,14—0,18 мм на пробирочные подвои, полученные из семян. Достоинство такого подхода состоит и в том, что развивающиеся из меристем побеги не имеют ювенильных признаков, при этом цветение и плодоношение ускоряются. [c.199]     Из растений, относительно легко регенерирующих из протопластов, можно назвать картофель, люцерну, маниок, рапс, табак. Для получения растений — регенерантов, высаженных в грунт, требуется, как минимум, 16—18 недель. [c.516]

        Поскольку соматические зародыши представляют собой полностью сформированные растения, данный метод позволяет сократить затраты, связанные с подбором условий укоренения и адаптации растений-регенерантов. Кроме того, преимущество получения соматических эмбриоидов состоит в том, что при использовании соответствующей техники капсулирования из них можно получать искусственные семена. [c.196]

        Получение растений-регенерантов, устойчивых к абиотическим и биотическим стрессовым факторам методами клеточной инженерии. Засуха. Недостаток воды в почве наносит значительно больший урон растениеводству, чем все остальные стрессовые факторы, вместе взятые. Засуха приводит к возникновению водного дефицита в почве и соответственно в растениях, вызывая у них водный стресс. Хотя термин засуха относится главным образом к почвенному водному стрессу, он включает также воздействие жары на растения. Стресс, вызванный водным дефицитом, может быть первичным в случае засухи, а также вторичным при низкотемпературном, тепловом или солевом стрессах. Стресс, вызванный засухой, ведет к прямым или непрямым повреждениям растений, которые обусловлены инактивацией ферментов, нарушением биохимических путей, накоплением токсических веществ, утечкой ионов, дефицитом питания и другими причинами. [c.144]

        В результате слияния протопластов получение растений-регенерантов. При помощи ферментативного гидролиза разрушаются клеточные стенки и образуются раздетые клетки, или протопласты. Они способны к слиянию, и этот процесс называется парасексуальной гибридизацией растительных клеток. Индуктором слияния является полиэтиленгликоль, а образованные гибриды обрабатываются сильным щелочным раствором или диметилсульфоксидом. Техника слияния напоминает образование гибридов животными клетками, однако имеется существенное отличие. Слияние животных клеток позволяет получить только лишь новую клетку, а слияние протопластов является основой получения нового гибридного растения. Парасексуальная гибридизация посредством слияния протопластов дает возможность скрещивать филогенетически отдаленные виды растений, которые невозможно скрестить обычным половым путем, а также комбинировать родительские гены растений в различных вариантах (рис. 31.3). [c.497]

        Следует отметить, что у всех каллусных тканей в процессе культивирования, у некоторых культур уже начиная с 4-го пассажа, заметно снижается, а затем и полностью утрачивается способность к регенерации. Из старых пересадочных культур получить растения-регенеранты не удается. [c.90]

        Таким образом, первые успехи в клональном микроразмножении связаны с культивированием апикальных меристем травянистых растений на соответствующих питательных средах, обеспечивающих в конечном итоге получение растений-регенерантов. [c.107]

        Из перечисленных выше приемов клеточной селекции прямая селекция является наиболее распространенным методом и используется главным образом для выделения растений-регенерантов, устойчивых, например, к гербицидам, антибиотикам, токсинам, тяжелым металлам, солям и другим антиметаболитам. [c.142]

        В процессе культивирования изолированные протопласты регенерируют новую клеточную стенку и превращаются в клетки, способные делиться и давать начало образованию каллусной ткани. На формирование колоний протопластами влияет состав питательной среды. Дальнейшая задача — получение из каллусной ткани растений-регенерантов. [c.155]

        Для отбора клеток, устойчивых к неблагоприятным или стрессовым факторам, наиболее часто применяют прямую селекцию. После выбора нужной популяции необходимо проверить стабильность устойчивости к неблагопрргятному фактору. Это длительный процесс, включающий многочисленные циклы выращивания и пересадки клеток на среды, содержащие селективный фактор или без него. Из стабильных клонов необходимо попытаться регенерировать растения. Получение растений-регенерантов, а также гибридологический анализ подтверждают генетическую природу при- [c.187]

        Третий способ — микрочеренкование побега, сохраняющего апикальное доминирование. Растения-регенеранты, полученные любым другим способом, можно черенковать в стерильных условиях, высаживать на свежую питательную среду, укоренять и адаптировать к полевым условиям либо снова подвергать микрочеренкованию для того, чтобы увеличить количество посадочного материала. [c.196]

        Чем больше размер экспланта, тем легче идет морфогенез, в результате которого получается целое растение, но тем больше вероятность присутствия вирусов в экспланте. У многих видов и сортов растений зона, свободная от вирусных частиц, различна. Так, при клонировании апикальной меристемы картофеля размером 0,2 мм (конус нарастания с одним листовым зачатком) 70 % полученных растений были свободны от У-вируса картофеля, но только 10 % — от Х-вируса. В некоторых случаях не удается найти оптимальное соотношение между размером меристематического экспланта и морфогенезом в нем, и при этом избавиться от вирусной инфекцрш. Приходится дополнять метод культуры меристем термо- или(и) хемитерапией. Так, предварительная термотерапия исходных растений позволяет получать свободные от вирусов растения-регенеранты из меристемных эксплантов размером от 0,3 мм до 0,8 мм. Вместе с тем этот прием может вызвать отставание растений в росте, деформацию органов, увеличение латентных (скрытых) инфекций. [c.199]

        Хотя растительные клетки и ткани принадлежат к более дифференцированным организмам в сравнении, например, с бактериями, тем не менее они способны культивироваться в форме неорганизованной клеточной массы (каллус). Каллусную ткань можно "заставить" формировать зародышеподобные структуры, почки, побеги, а на их основе — растения-регенеранты. Все это происходит благодаря тотипотентности растительных клеток (от лат. 1оШз — все, целый, ро1еп11а — сила, потенция). Понятие "тотипотентность" является клеточной характеристикой в нем отражен потенциал клетки воспроизводить все типы клеток, присущих взрослому организму. Другими словами клетка обладает способностью воспроизводить целый организм. [c.490]

        Ес-ли в качестве биообъекта применяют изолированный зародыш, меристему верхушечных или пазушных почек, то есть интег-рированн то систему, то все получаемые растения-регенеранты буд т полностью соответствовать исходному растению, из которого была взята какая-. ибо интегрированная система из числа вышеназванных. Этим добиваются клонирования интерес тощих нас растений (рис. 140). [c.490]

        В связи с миксоплоидной природой тканей большинства видов растений в культуре in vitro представляет интерес вопрос о плоидности возникающих в культуре растений-регенерантов. [c.120]

        В связи с возможностью получения полиплоидных растений при введении в изолированную культуру ткани диплоидов японский исследователь Мурасиге [48] предложил использовать данный метод для полу-чёния полиплоидов у табака. В нашей лаборатории изучение растений-регенерантов, возникших из одного штамма каллусной ткани . apilla— ris, показало, что часть их является диплоидами, часть три- и тетраплоидами. Некоторые растения оказались химерными по плоидности, [c.120]

        Японские исследователи Наката и Танака получили образование каллусной ткани, эмбриоидов и растений-регенерантов при культивировании пыльников табака [62, 63]. Образовавшиеся растения оказались гаплоидными. Гаплоидные растения были получены при культивировании пыльников риса [ 64, 65 ]. [c.121]

        Рассмотрены литературные и собственные экспериментальные данные по поведению миксоплоидных популяций тканей растений в культуре in vitro, изучению влишия различных факторов на плоидность первичных каллусных тканей и пассируемых культур, плоидности образующихся растений-регенерантов, возможности получения гаплоидных и триплоидных растений в изолированной культуре. [c.274]

        Этапы и методы клонального мнкроразмножения растений. Процесс клонального микроразмножения можно разделить на четыре этапа 1) выбор растения-донора, изолирование эксплантов и получение хорошо растущей стерильной культуры 2) собственно микроразмножение, когда достигается получение максимального количества мериклонов 3) укоренение размноженных побегов с последующей адаптацией их к почвенным условиям, а при необходимости депонирование растений-регенерантов при пониженной температуре (+ 2°, + 10 С) 4) выращивание растений в условиях теплицы и подготовка их к реализации или посадке в поле (рис. 3.8). [c.108]

        Однако, несмотря на некоторые недостатки, данный метод имеет положительные стороны и преимущества. Во-первых, он является эффективным и экономически выгодным, так как в процессе размножения из каждой индивидуальной каллусной клетки при благоприятных условиях культивирования может сформироваться адвентивная почка, дающая начало новому растению. Во-вторых, в ряде случаев он является единственно возможным способом размножения растений в культуре тканей. В-третьих, представляет большой интерес для селекционеров, так как растения, полученные данным методом, различаются генетически и морфофизиологически. Это дает возможность селекционерам проводить отбор растений по хозяйственно-важным признакам и оценивать их поведение в полевых условиях. Этот метод целесообразно применять лишь к тем растениям, для которых показана генетическая стабильность каллусной ткани, а вариабельность между растениями-регенерантами не превышает уровня естественной изменчивости. К таким растениям можно отнести амариллис, томаты, спаржу, некоторые древесные породы и другие культуры. Через каллусную культуру были размножены сахарная свекла, некоторые представители рода Brassi a, кукуруза, рис, пшеница и другие злаковые, подсолнечник, лен, разработаны условия, способствующие регенерации растений из каллуса огурца, картофеля, томатов. [c.115]

        Структурной основой используемого на практике явления служит специфика строения точки роста растений дистальная ее часть, представленная апикальной меристемой, у разных растений имеет средний диаметр до 200 мкм и высоту от 20 до 150 мкм. В более нижних слоях дифференцирующиеся клетки меристемы образуют прокамбий, дающий начало пучкам проводящей системы. Известно, что успех клонального микроразмножения зависит от размера меристематического экспланта, чем больше листовых зачатков и тканей стебля, тем легче идет процесс морфогенеза, заканчивающийся получением целого, нормального пробирочного растения. Вместе с тем зона, свободная от вирусных частиц, очень различна для разных вирусов. Это зависит также от вида и сорта растения. В колеоптиле злаков, например, размеры участка верхушки, не содержащей сосуды, могут достигать до 250 мкм. Такая особенность строения апикальной меристемы исключает проникновение в нее вируса путем быстрого транспортирования по проводящей системе, но допускает возможность медленного распространения через плазмодезмы, соединяющие меристематические клетки. При культивировании апикальной меристемы картофеля величиной 200 мкм на питательной среде и дальнейшее получение из нее растений-регенерантов показали, что среди полученных растений только 10% были свободны от Х-вируса, но 70% — от Y-вируса. [c.116]

        Путем прямой селекции in vitro отобраны клеточные линии петунии, устойчивые к ртути, сорго — к алюминию, моркови — к алюминию и марганцу одновременно суспензионные клеточные культуры дурмана—к кадмию. На кафедре сельскохозяйственной биотехнологии МСХА также проводились работы по получению клеточных линий и растений-регенерантов льна-долгунца, устойчивых к соли нитрата кадмия и изучалось действие этой соли на интактные растения. Экспериментально показано, что присутствие ионов кадмия в почве приводит к торможению роста стеблевой и корневой частей растения, к сокращению на 7—9 дней онтогенетических фаз развития, следующих за фазой елочки по сравнению с контролем, культурные виды накапливают ионы кадмия в вегетативной массе, в то время как дикие — нет. Мезо- и ультраструктурный анализ стеблей льна-долгунца показал, что присутствие кадмия в субстрате приводило к уменьшению количества клеток элементарных волоконец в пучке, к некомпактному расположению клеток элементарных волоконец в лубяных пучках, а также к формированию клеток элементарных волоконец неодинаковых размеров в пределах одного пучка и к различным срокам формирования вторичной клеточной стенки. В результате клеточной селекции были получены растения-регенеранты, обладающие устойчивостью к соли кадмия (Гончарук Е.А., 2000). [c.148]

        Продолжительность термотерапии всецело зависит от состава вирусов и их термостойкости. Если, например, для гвоздики достаточно 10—12-недельного воздействия теплом, то для освобождения хризантемы от Б-вируса этот период длится 12 и более недель. Однако существуют растения, например луковичные культуры, цимбидиум, розы и другие, рост которых угнетается в результате длительной термотерапии in vivo. Для таких растений целесообразно проводить термотерапию растений-регенерантов in vitro. [c.117]

        Помимо положительного действия термотерапии на освобождение растений от вирусов, выявлен положительный эффект высоких температур на точку роста и процессы морфогенеза некоторых цветочных культур (гвоздики, хризантемы, фрезии) в условиях in vitro. Применение термотерапии позволяет увеличить коэффициент размножения на 50—60 %, повысить адаптацию пробирочных растений-регенерантов к почвенным условиям, а также получить более высокий процент безвирусных маточных растений. [c.117]

        Применение термотерапии в сочетании с меристемной культурой позволяет оздоровить более 70 % растений-регенерантов хмеля от вирусного хлороза, 90 % растений земляники, 25 % — черной и красной смородины, 50 % — малины, более 80 % — картофеля. Проверку растений на наличие вирусов, как правило, проводят с помощью иммуноферментного анализа, электронной микроскопии и травянистых растений-индикаторов. Другой способ, применяемый для освобождения растений от вирусов,— хемотерапия. Он заключается в добавлении в питательную среду, [c.117]

        II э т а п — собственно микроразмножение. На этом этапе необходимо добиться получения максимального количества мериклонов, учитывая при этом, что с увеличением субкультивирований увеличивается число растений-регенерантов с ненормальной морфологией и возможно образование растений-мутантов. Как и на первом этапе, используют питательную среду по рецепту Мурасига и Скуга, содержащую различные биологически активные вещества, а также регуляторы роста. Основную роль при подборе оптимальных условий культивирования эксплантов играют соотношение и концентрация внесенных в питательную среду цитокининов и ауксинов. Из цитокининов наиболее часто используют БАП в концентрациях от I до 10 мг/л, а из ауксинов — ИУК и НУК в концентрациях до 0,5 мг/л. При долгом культивировании растительных тканей на питательных средах с повышенным содержанием цитокининов (5—10 мг/л) происходит постепенное накопление их в тканях выше необходимого физиологического уровня, что приводит к появлению токсического действия и формированию растений с измененной морфологией. Вместе с тем возможно наблюдать такие нежелательные для клонального микроразмножения эффекты, как подавление пролиферации пазушных меристем, образование витрифицированных (оводненных) побегов и уменьшение способности растений к укоренению. Отрицательное действие цитокининов возможно преодолеть, по данным Н.В. Катавой и Р.Г. Бутенко, используя питательные среды с минимальной концентрацией цитокининов, обеспечивающих стабильный коэффициент микроразмножения, или чередованием циклов культивирования на средах с низким и высоким уровнем фитогормонов. [c.119]

        Пересадка растений-регенерантов в субстрат является ответственным этапом, завершающим процесс клонального микроразмножения. Наиболее благоприятное время для пересадки пробирочных растений — весна или начало лета. Растения с двумя-тремя листьями и хорошо развитой корневой системой осторожно вынимают из колб или пробирок пинцетом с длинными концами или специальным крючком. Корни отмывают от остатков агара и высаживают в почвенный субстрат, предварительно простерилизованный при 85—90 С в течение 1—2 ч. Для большинства растений в качестве субстратов используют торф, песок (3 1) торф, дерновую почву, перлит (1 1 1) торф, песок, перлит (1 1 1). Исключение составляют семейство орхидных, для которых готовят субстрат, состоящий из сфагнового мха, смеси торфа, листьев бука или дуба, сосновой коры (1 1 1). Приготовленным заранее почвенным субстратом заполняют пикировочные ящики или торфяные горшочки, в которых выращивают растения-регенеранты. Горшочки с растениями помещают в теплицы с регулируемым температурным режимом (20— 22 С), освещенностью не более 5 тыс. лк и влажностью 65—90 %. Для лучшего роста растений создают условия искусственного тумана. В тех случаях, когда нет возможности создать такие условия,горшочки с растениями накрывают стеклянными банками или полиэтиленовыми пакетами, которые постепенно открывают до полной адаптации растений. [c.120]

        Культура изолированных зародышей как вспомогательный метод при отдаленной гибридизации применяется не только для преодоления постгамной несовместимости, но также с целью микроразмножения ценных гибридов. В этом случае микроразмножение идет путем каллусогенеза, индукции морфогенеза и получения растений-регенерантов из каллусной ткани. Техника клонирования незрелых зародышей позволяет размножать ценные генотипы растений на ранних стадиях жизненного цикла. Еще одна возможность применения культуры зародышей — использование ее в клеточной селекции. [c.134]

        Кроме сомаклональной вариабельности, связанной с наследуемыми перестройками генома, отмечены фенотипические изменения ( эпигенетические ), которые могут стабильно передаваться дочерним клеткам, но не проявляться в растениях-регенерантах или их половом потомстве (рис. 3.15). [c.140]

        Высокая степень разнообразия сомаклонов зависит от исходного генотипа, природы и стадии развития экспланта. Например, у различных злаков степень изменчивости среди сомаклонов может значительно различаться у пшеницы (2и = 6х = 42) из 192 исследованных растений-регенерантов 29 % были анеуплоидами, у гексаплоидного овса (2и = 6х = 42) выявлены цитогенетические изменения с такой же частотой, а для куку- [c.140]

        Условия культивирования и, в частности, нарушение гормонального баланса питательной среды — одна из причин возникновения генетического разнообразия культивируемых клеток вследствие нарушения клеточного цикла, в частности митоза. От соотношения фитогормонов, входящих в состав питательных сред, во многом зависит цитогенетическая структура клеточных популяций. Однако морфологическая и цитогенетическая разнокачественность клеточных популяций может возникнуть и вследствие влияния отдельных компонентов питательной среды некоторых минеральных солей, сахарозы или другого источника углеродного питания, витаминов, растительных экстрактов, а также от режима выращивания. Длительное культивирование клеток in vitro также способствует повышению генетического разнообразия сомаклонов. Причем для некоторых видов показано, что, несмотря на присутствие в культуре клеток разной плоидности, регенерировавшие растения были преимущественно диплоидными. Это явление было объяснено тем, что в процессе культивирования отбирались растения-регенеранты с более или менее нормальной морфологией, которые регенерировали, как правило, в первую очередь. [c.141]

        Фиторегуляторы занимают особое место в арсенале средств биотехнологии растений, поскольку являются главными инструментами, позволяющими управлять процессами каллусообразования, дифференцировки, роста и развития растений-регенерантов. [c.348]

    chem21.info

    Способ получения растений - регенерантов in vitro

     

    Использование: биотехнология растений, культивирование тканей и клеток, микроклонирование. Сущность изобретения: растения - регенеранты получают in vitro, при этом для увеличения регенерации в питательные среды для инициации каллуса и формирования регенерантов дополнительно вводят ацетон в количестве 10000 - 20000 мг/л.

    Изобретение относится к биотехнологии, а именно к получению регенератов in vitro.

    Развитие методов биотехнологии, в основе которых лежит выращивание изолированных органов, тканей и клеток на искусственных питательных средах с последующей регенерацией целых растений, определяет все большее внедрение их в практику сельского хозяйства. Они способны значительно ускорить селекционный процесс и значительно расширить границы воздействия человека на живую природу. При разработке методов in vitro, где требуется получение регенерантов для внедрения в процесс селекции, имеют дело с возникновением меристематических зон из каллуса и формированием из последних растений. Эта методика необходима, в первую очередь, при микроклонировании растений, а также для получения сомаклональной вариабельности и при работе на селективных средах, включающих в себя какой-либо селективный фактор (соль, гербициды, токсины фитопатогенных грибов и пр.). В литературе имеются исследования, посвященные разработке способов формирования регенерантов зерновых, в частности пшеницы из каллусной ткани зародыша [1-2] . При использовании этих способов зародыши вычленяют из незрелых зерновок и высаживают на питательную среду для инициации каллуса. Культивирование посаженных зародышей осуществляют в темноте при t = 26оС. Материал просматривают каждые 2-3 дн. с тем, чтобы удалить основной проросток в случае его роста и тем самым способствовать формированию каллуса на поверхности щитка. Визуально формирование каллуса отмечается на 6-10 д., однако рост основного проростка тормозит этот процесс и его приходится обламывать по крайней мере 2 раза, что очень осложняет работу. Нарастание каллуса на щитке может происходить в течение 1-3 нед. и больше. За это время на каллусах оформляются видимые плотные очаги, отличающиеся от рыхлого оводненного каллуса по консистенции и цвету. Каллус с плотными участками оказывается морфогенным и при пересадке его или только одних плотных участков на среду для регенерации формируются сначала зеленые листообразные структуры, а спустя: 2-3 нед. проростки. Следует отметить, что с началом морфогенетического процесса плотный участок, представляющий собой кластер эмбриональных клеток, легко разделяется на отдельности (эмбриоиды), каждая из которых дает проросток, также отсаживаемый отдельно. От посадки экспланта на питательные среды и до выхода растений - регенерантов работа проходит в три этапа: 1. - индукция каллуса и заложение меристематических зон; 2. - формирование регенерантов; 3. - подращивание растений и ускорение их перед высадкой в грунт. На каждом из этих этапов среды отличаются заменой одних добавок на другие, их количеством и соотношением. Такая замена позволяет направлять процесс или в сторону каллусообразования или органогенеза с развитием корней или регенерантов. В процессе разработки оптимальной среды для получения регенерантов из каллуса пшеницы выбрана универсальная среда Мурасиге и Скуга, выпускаемая промышленностью в готовом виде, которая включает в себя следующие компоненты, мг/л : макросоли: Nh5NO3 1650; KNO3 1900; MgSO47h3O 370; CaCl2 2h3O 440; Kh3PO4 170; микросоли: MnSO4h3O 22,3; h4BO3 6,2; ZnSO47 h3O 8,6; CoCl26 h3O 0,025; CuSO45 h3O 0,025, NaMoO42 h3O 0,25; KI 0,83; витамины: тиамин 0,1-10,0; миноинозитол 80-100; пиридоксин 0,5-1,0; никотиновая кислота 0,5-1,0. Исходя из этапов работы по получению растений - регенерантов на указанной среде для каждого этапа предназначаются следующие добавки при культивировании зерновых, в частности пшеницы, мг/л: Среда I (для индукции каллуса и формирования меристематических зон). Среда Мурасиге и Скуга, сахароза 20000-30000, мг/л, агар-агар 6000-7000 мг/л. Дихлорфеноксиуксусная кислота (2,4-Д) 1,5-2,5 мг/л. Среда II (для формирования регенерантов). Среда Мурасиге и Скуга, сахароза 10000-15000 мг/л, агар-агар 6000-7000 мг/л, -нафтилуксусная кислота (АНУ) и кинетин по 0,5-1,0 мг/л. Среда III (для подращивания растений и укоренения их). Среда Мурасиге и Скуга, сахароза 10000-15000 мг/л, агар-агар 6000-7000 мг/л. Добавок нет. При посадке незрелых зародышей зерновых, в частности пшеницы, имеет место массовая регенерация растений. И тем не менее число растений - регенерантов сильно колеблется, в первую очередь, в зависимости от генотипа, но также и от состава культуральных сред. Целью изобретения является разработка способа получения регенерантов растений in vitro, дающего большее количество растений, особенно на селективных средах. Поставленная цель достигается с помощью способа получения регенерантов in vitro, включающего посадку экспланта на питательную среду для инициации каллуса и закладки меристематических зон, выращивание проростков при пересадке меристематических зон на питательную среду для оформления их в регенеранты, а также подращивание и ускорение растений до пересадки в грунт, отличительным признаком которого является то, что в среды для инициации каллуса и формирования регенерантов дополнительно вводят ацетон в количестве 10000-20000 мг/л. Использование ацетона в питательных средах для получения регенерантов высших растений в научно-технической и патентной литературе не описано, что позволяет считать, что предлагаемый способ соответствует критерию изобретения "новизна". Как известно, ацетон относится к группе кетоновых тел, которая включает ацетон, ацетоуксусную кислоту и -оксимасляную кислоту. В организме ацетон распадается на СО2 и Н2О. Способ получения регенерантов in vitro на средах, содержащих ацетон, был апробирован на разных культурах, в том числе пшенице, луке, чесноке, капусте и рапсе. П р и м е р 1 (контроль). Незрелые зародыши пшеницы культивировались на питательной среде следующего состава, мг/л: макро- и микросоли по Мурасиге и Скугу, сахароза 30000, агар-агар 7000; витамины: тиамин 10, миоинозитол 100, пиридоксин и никотиновая кислота по 1,0, 2,4-Д 2,5 (в среде для инициации каллуса или меристематических зон) или АНУ и кинетин по 1,0 (в среде для регенерации). рН 5,6-5,8. На среду I высаживают незрелые зародыши пшеницы щитком вверх в возрасте 10-14 д. после опыления по 20 пробирок каждого образца по 6 зародышей в каждой пробирке - всего 120 зародышей каждого образца. Через 1-2 д. после посадки начинает расти заложенный основной проросток, который следует обломать. Еще через 3-7 д. необходимо просмотреть пробирки и удалить продолжающие расти остатки основного побега. Через 7-10 д. после посадки на поверхности щитка отмечают образование каллуса и его последующее нарастание. В зависимости от генотипа процент образования каллуса составляет 76-85% от числа посаженных зародышей. Каллусы находятся на этой среде 21-28 д. - до появления плотных участков - меристематических очагов, после чего плотные участки переносятся на среду II, на которой из них в течение 4-8 нед. образуются проростки в зависимости от генотипа в 25-30% случаев. Оставшийся после переноса каллус высаживают на среду I для дальнейшего нарастания каллуса и формирования в нем новых меристем. Возможно культивирование незрелых зародышей пшеницы на среде Мурасиге и Скуга следующего содержания, мг/л: сахароза 20000, агар-агар 60000, тиамин 1,0, миоинозитол 80, пиридоксин и никотиновая кислота по 0,5, 2,4-Д 1,5 (в среде для инициации каллуса и меристематических зон) или АНУ и кинетин по 0,6 (в среде для регенерации). рН = 5,6-5,8. На этих средах получены результаты, аналогичные вышеприведенным, с той разницей, что при уменьшении количества 2,4-Д с 2,5 до 1,5 мг/л происходит на 2-3 д. ускорение во времени заложения меристематических зон. Эты данные дают возможность сформулировать основную (базовую) среду I и II для дальнейшей работы, мг/л: среда Мурасиге и Скуга, агар-агар 6500, сахароза 30000, тиамин 10,0, миоинозитол 100, пиридоксин и никотиновая кислота по 0,5, 2,4-Д (в среде I) 2,0 или АНУ и кинетин (в среде II) 0,5 и кинетин 1,0. Полученные проростки переносились на среду III для подращивания и ускорения. Не отмечено разницы в подращивании и укоренении на средах, составленных по- максимуму или по- минимуму (сахароза 15000 мг/л, агар-агар 7000 мг/л или сахароза 10000 мг/л, агар-агар 6000 мг/л. Поэтому для подращивания и укоренения можно рекомендовать в качестве оптимального варианта среду Мурасиге и Скуга, содержащую сахарозу 12000 мг/л и агар-агар 6000 мг/л (базовая среда III). Хорошо развитые растения из пробирок были высажены в грунт, где они дали семена. Следует отметить нарушение в отдельных колосьях растений регенерантов (Ро) фертильности некоторых цветков, которое исчезало у растений первого поколения (Р1). П р и м е р 2 (опыт). Проводят культивирование незрелых зародышей пшеницы на среде с ацетоном следующего состава, мг/л: базовая среда I или II плюс ацетон 5000, 10000, 20000 и 50000. Незрелые зародыши тех же образцов пшеницы культивируют вышеописанным способом (пример 1) щитком вверх в возрасте 10-14 д. после опыления по 20 пробирок каждого варианта по 6 зародышей в каждой пробирке - всего 120 зародышей каждого образца. Просмотр посадок через 2-3 д. обнаружил, что рост основного проростка угнетен: проростки не переходят к росту вообще или растут слабо и в крайнем случае требуется однократное их обламывание, что значительно облегчает работу. В этом воздействии - первое значимое преимущество сред с ацетоном. Дальнейшее развитие каллуса идет интенсивно и через 12-15 д. в нем закладываются меристематические зоны, которые после переноса их на среду для регенерации во множестве формируют регенеранты. Число меристематических зон на среде с ацетоном составляет 87-95% по отношению к числу посаженных зародышей. На этой среде получено 53-65% регенерантов. Следует подчеркнуть высокую активность и непрерывность процесса закладки меристематических зон и связанное с этим увеличение числа регенерантов на среде с ацетоном по сравнению с контролем. Этот эффект является вторым значимым преимуществом сред с ацетоном для получения регенерантов пшениц из каллусной ткани in vitro. Апробировано культивирование незрелых зародышей на базовой среде с ацетоном 5000, 10000, 20000 и 50000 мг/л. Лучшими вариантами по выходу каллуса, меристематических зон и регенерантов следует считать варианты с содержанием ацетона 10000 и 20000 мг/л, при этом между этими вариантами не было принципиальной разницы. При содержании ацетона в среде 5000 мг/л наблюдался слабый эффект. Культивирование зародышей на среде с содержанием ацетона 50000 мг/л привело к гибели эксплантов, поэтому этот вариант не учитывается. Регенеранты, полученные на среде II, подращивались и укоренялись на базовой среде III и высаживались в грунт, где они давали семена. Следует подчеркнуть, что фертильность растений Ро в грунте в варианте 10000 и 20000 мг/л ацетона была в целом практически равна таковой в контроле, но у отдельных растений в колосьях было до 50% стерильных цветков. Как и в контроле, растения Р1 полностью восстанавливали фертильность. Кроме того, у растений Ро и Р1 отмечена высокая кустистость (10-30, стеблей), при этом основная часть побегов была продуктивной. В контроле кустистость была обычной для яровых пшениц - 2-5 побегов. В высокой кустистости опытных растений яровой пшеницы дающей возможность получить в Р1 больший урожай зерна с одного куста - третье преимущество сред с ацетоном для получения регенерантов пшениц из каллусной ткани in vitro. Пример 2 дает возможность рекомендовать среду с ацетоном для пшениц следующего составa: базовая среда плюс ацетон 15000 мг/л. Cледует отметить, что настоящие исследования прошли экспериментальную проверку в течение 3 лет, при этом получены однозначные результаты. В связи с крайне интересными данными способ был апробирован также на культуре in vitro лука при формировании регенерантов и получены аналогичные результаты. П р и м е р 3 (контроль). Проводят культивирование тканей донца луковиц лука с целью микроклонирования их для быстрого размножения новых сортов и ценных селекционных образцов, а также для вегетативного размножения гибридов F1-F2 (когда требуется сохранить их без расщепления) или стерильных межвидовых гибридов. Поскольку донце лука содержит меристематические клетки, для микроклонирования не требуется образования каллуса и закладки в нем меристематических зон, поэтому среда I упраздняется. Посадку экспланта производят на среду II (для регенерации), представленную базовой средой, содержащей вместо кинетина 2,5-3,5 мг/л бензиламинопурина (БАП). Для посадки луковицу освобождают от сухих чешуй, стерилизуют, отмывают стерильной водой, снимают первый ряд сочных чешуй и обрезают так, чтобы донце с остатками сочных чешуй (не более 0,5 см длиной) можно было разрезать на 5-6 участков (0,5 х 0,5 см). Каждый участок высаживается на питательную среду. Следует отметить, что экспланты, взятые с периферийных участков донца дают больше регенерантов, чем взятые из центральных участков. Культивирование проходит на свету при освещении 10-15 тыс.пкс, длине дня 16 ч и t = 20-25оС. Через 2-3 нед появляются первые регенеранты в виде тонких зеленых иголочек, которые по мере их появления освобождают от исходных чешуй и тканей и пересаживают или на среду II для нарастания новых регенерантов, или на среду III для подращивания и укоренения. Показано, что при культивировании эксплантов на среде II, содержащей 2,5 или 3,5 мг/л БАП нет принципиальной разницы с точки зрения выхода регенерантов. Поэтому рекомендуется оптимальная среда - базовая + БАП 3,0 мг/л. Показано, что от 1 экспланта на этой среде можно получить в течение 2,5-3,5 мес. 50-70 растений, причем работу по микроклонированию можно проводить в любое время года. П р и м е р 4 (опыт). Вышеописанным способом проводят культивирование тканей донца лука на базовой среде + БАП 3,0 мг/л + ацетон 10000-20000 мг/л. Не было принципиальной разницы в развитии регенерантов между вариантами 10000 и 20000 мг/л ацетона в среде. Поэтому следует считать оптимальной среду с ацетоном для микроклонирования лука, мг/л: базовая среда + БАП 3,0 + ацетон 20000. На этой среде количество регенерантов увеличилось в 3,5 раза, что составило, в зависимости от генотипа, за 2,5-3,5 мес. 150-300 регенерантов от одного экспланта. Аналогичные данные получены при микроклонировании чеснока. П р и м е р 5. Известно, что регенерация различных сортов и разновидностей капусты затруднена, что служит большим препятствием для работы in vitro и методами генной инженерии с этим объектом. Поэтому был произведен эксперимент по получению регенерантов на среде с ацетоном. Для этого семядоли проростков белокочанной капусты сортов Амагер и Июньская 10, а также капусты брокколи после стерилизации высаживали на агаризированную среду II, представленную базовой средой и содержащей вместо кинитина 2,5-3,5 мг/л БАП. Культивирование проходило на свету при освещении 10-15 тыс.лкс, длине дня 16 ч. и t = 20-25оС. Показано, что на указанных средах ни в одном случае посадки эксплантов не было регенерантов. Поэтому произвели высадку семядолей на среду II с содержанием БАП 3,0 мг/л и дополненную ацетоном 10000-30000 мг/л. На среде с ацетоном 20000 мг/л отмечено появление максимального количества регенерантов: у сорта Амагер число эксплантов с регенерантами составило 10% (в контроле 0%), у сорта Июньская 10 - 80% (в контроле 0%), у брокколи - 11% (в контроле 0%). При посадке эксплантов на среду с ацетоном 10000 мг/л регенерантов практически не было. При посадке на среды, содержащие 30000 мг/л, регенеранты были несколько изуродованными (со скрученными листьями). Таким образом следует считать оптимальной среду с ацетоном для получения регенерантов капусты из семядолей: базовая среда + БАП 3,0 мг/л + ацетон 20000 мг/л. При посадке гипокотиля проростков капусты на оптимальную среду с ацетоном у брокколи получено 44% эксплантов с регенерантами, в контроле - 13%. Аналогичные результаты получены и при посадке in vitro тканей рапса. Таким образом на основании приведенного материала можно сделать вывод, что введение ацетона в питательную среду имеет преимущество в технике получения регенерантов in vitro.

    Формула изобретения

    СПОСОБ ПОЛУЧЕНИЯ РАСТЕНИЙ - РЕГЕНЕРАНТОВ IN VITRO, включающий посадку экспланта на питательную среду для инициации каллуса и закладки меристематических зон, получение проростков при пересадке меристематических зон на питательную среду для формирования регенерантов, подращивание и укоренение растений на питательной среде до высадки их в грунт, отличающийся тем, что в питательные среды для инициации каллуса и формирования регенерантов дополнительно вводят ацетон в количестве 10000-20000 мг/л.

    www.findpatent.ru

    Регенерант - это... Что такое Регенерант?

  • регенерант — регенерирующий реагент; регенерант Реагент, применяемый для регенерации ионита. Примечание. Раствор регенерирующего реагента называется регенерирующий раствор (Не рекомендуется регенерационный раствор ) …   Политехнический терминологический толковый словарь

  • регенерант — regenerantas statusas T sritis augalininkystė apibrėžtis Augalas, išaugęs izoliuotų audinių kultūroje. atitikmenys: angl. regenerant rus. регенерант …   Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

  • РЕГЕНЕРАНТ — орган или часть органа, восстановленная (регенерировавшая) после хирургического его отнятия …   Словарь ботанических терминов

  • Деринат — (новолат. Derinat, натрия дезоксирибонуклеат новолат. (Sodium deoxyribonucleate)) иммуномодулятор, стимулятор гемопоэза, регенерант и репарант. Содержание 1 Описание лекарственной формы …   Википедия

  • Оротовая кислота — Для улучшения этой статьи желательно?: Проставив сноски, внести более точные указания на источники. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное …   Википедия

  • регенерирующий реагент — регенерирующий реагент; регенерант Реагент, применяемый для регенерации ионита. Примечание. Раствор регенерирующего реагента называется регенерирующий раствор (Не рекомендуется регенерационный раствор ) …   Политехнический терминологический толковый словарь

  • regenerant — regenerantas statusas T sritis augalininkystė apibrėžtis Augalas, išaugęs izoliuotų audinių kultūroje. atitikmenys: angl. regenerant rus. регенерант …   Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

  • regenerantas — statusas T sritis augalininkystė apibrėžtis Augalas, išaugęs izoliuotų audinių kultūroje. atitikmenys: angl. regenerant rus. регенерант …   Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

  • Пыльников культура ткани — * пыльнікаў культура тканіны * anther culture метод, при помощи которого используют пыльники или пыльцевые зерна (см.) для получения культуры ткани (см.), состоящей из гаплоидных клеток, и даже всего растения () …   Генетика. Энциклопедический словарь

  • Соматический зародыш эмбриоид — Соматический зародыш, эмбриоид * саматычны зародак, эмбрыёід * somatic embryo or embryoid зародыш, образующийся неполовым путем из соматической клетки растения. В благоприятных условиях С. з. можно заставить регенерировать в целые растения ().… …   Генетика. Энциклопедический словарь

  • genetics_dictionary.academic.ru

    Травы для регенерации кожи. Улучшение регенерации кожи.

    Регенерация кожи, то есть самовосстановление кожного покрова зависит от нескольких факторов.

    К этим факторам относится: объем повреждения кожи, характер повреждения,  расположение поврежденного участка кожи, распространенность болезненного процесса, наличие взаимосвязи между повреждением кожи и наличием хронического заболевания (в том числе психосоматической взаимосвязи), методы для улучшения регенерации кожи, временной промежуток и другие. Разберем указанные методы чуть пристальнее.

    Объем повреждения кожи.

    Большие участки поврежденной кожи требуют больше терпения и внимания. Большие площади поврежденной кожи, при воспалениях, ожогах, становятся угрозой не просто здоровью, но и жизни человека.

    Ведь самый большой орган – кожа – является непосредственным участником в обменных, иммунных, сигнальных процессах тела.

    Характер повреждения кожи.

    Порезы кожи с ровными краями заживают быстрее, чем рваные, травмированные раны, а также быстрее, чем повреждения кожи, вызванные хроническими болезнями.

    Расположение поврежденного участка кожи.

    Ранки могут по-разному заживать на конечностях, на лице, на теле, на волосистой части головы.  

    На скорость репарации, вероятно, влияют: объем воздухообмена, воздействие внешних неблагоприятных факторов, вероятность повторных повреждений, интенсивность локального кожного обмена.

    Распространенность болезненного процесса.

    Локализованные болезни кожи, скорее всего, поддадутся восстановлению лучше и быстрее, чем распространенные и хронические.

    Наличие взаимосвязи между повреждением кожи и наличием хронического заболевания (в том числе психосоматической взаимосвязи).

    В случаях, когда повреждения кожи (сыпь, дерматит, трофические язвы, гнойничковые заболевания и другие) вызваны хронической внутренней интоксикацией, то необходимо проводить очищение и разгрузку от токсинов путем улучшения деятельности выделительных систем.

    Без этих мероприятий заниматься только внешним видом кожи малоперспективно.

    Временной промежуток.

    Сроки восстановления кожного покрова могут колебаться в зависимости от внутренних резервов организма, от возраста, от наличия хронической интоксикации, в зависимости от применяемых методов.

    Методы для улучшения регенерации кожи.

    Химические-синтетические,

    Естественные природные,

    Травнические.

    Химические-синтетические методы для улучшения регенерации кожи.

    Эти методы используются широко в современной косметологии, хирургии, пластической хирургии, дерматологии.

    Они основаны на использовании химических реагентов (кислот, щелочей, поверхностно-активных веществ, катализаторов) с целью быстрой тканевой активации, либо химических медикаментов (витаминов, гормонов) с целью прекращения воспалительного эффекта.

    При этом вещества, использующиеся в этих направлениях,  могут комбинироваться и применяться по очереди в соответствующих программах.

    Как правило, эффекты от этих методов быстрые, кратковременные. Однако, они очень подходящие в экстремальных ситуациях, например, как ожоги, кожные аллергии, а также для целей в хирургической практики с целью минимизации шрамов и быстрой регенерации раневой поверхности.

    Кратковременными методами не рекомендуется пользоваться в том случае, если необходима длительная разгрузка организма от накопленных токсинов, в связи с тем, что быстрые методы дают мгновенный эффект и этим вводят в заблуждение, создавая иллюзию того, что другой работы над телом проводить не требуется.

    Естественные природные методы для улучшения регенерации кожи.

    К ним относятся здоровое питание, соответствующее сезонам года, физкультура, здоровый полноценный сон, чувство счастья и удовлетворенности, благодушие, чистая вода, гармоничные отношения с миром, умеренное воздействие солнечным светом, дыхательные гимнастики, принятие себя.

    Травнические методы для улучшения регенерации кожи.

    Травы с этой целью используются как внутрь ( с целью уменьшения внутренней интоксикации и улучшения функции печени, почек, кишечника), так и наружно с целью местного воздействия на пораженную кожу.

    Травы для регенерации кожи используют в виде свежевыжатых соков, в виде настоев, отваров, настоек, мазей, масел.

    Широко распространенные травы с известным регенерирующим действием:           тысячелистник (солдатская трава), подорожник, лопух.

    Эти растения входят в программы курсов выживания в дикой местности, но также их с успехом можно использовать в бытовых целях.

    На дачных участках   многие выращивают календулу, ромашку. Для личных целей доступно собирать липу, лабазник, черноголовку. Эти травы доступно принимать в виде фиточая внутрь и протираний наружно.

    Фитопримочки можно сочетать с применением натуральных масок для лица или тела. Такой комплекс способствует питанию кожи, улучшению микроциркуляции, ликвидации застойных явлений.

    Фитоумасливание - нанесение на кожу и слизистые оболочки фитоэкстактов на масляных или мазевых основах. Вещества, растворенные в липидной основе хорошо усваиваются липидным слоем кожи и через кровоток попадают в глубокие ткани.

     Меженина Галина Александровна, специалист по фитооздоровлению, провизор.Главная страница

    www.opencentre.ru

    Получение растений-регенерантов методами клеточной инженерии

    Засуха.

    Недостаток воды в почве наносит значительно больший урон растениеводству, чем все остальные стрессовые факторы, вместе взятые. Засуха приводит к возникновению водного дефицита в почве и соответственно в растениях, вызывая у них водный стресс. Хотя термин «засуха» относится главным образом к почвенному водному стрессу, он включает также воздействие жары на растения. Стресс, вызванный водным дефицитом, может быть первичным в случае засухи, а также вторичным при низкотемпературном, тепловом или солевом стрессах. Стресс, вызванный засухой, ведет к прямым или непрямым повреждениям растений, которые обусловлены инактивацией ферментов, нарушением биохимических путей, накоплением токсических веществ, утечкой ионов, дефицитом питания и другими причинами.

    С целью имитации in vitro стрессового эффекта засухи могут применяться питательные среды, которые дополнены осмотически активными веществами, понижающими внешний водный потенциал. В качестве такого селективного агента, для селекции на устойчивость к засухе были использованы полиэтиленгликоль (ПЭГ), представляющий собой непроникающее в клетку осмотически активное вещество. Первое сообщение о выделении клеточных линий табака, устойчивых к стрессу, индуцированному ПЭГ, появилось в 1979 г. (Heyser, Nabors, 1979). Позже для селекции на засухоустойчивость Р. Брессан с соавт. использовал клеточные линии томата, которые подвергались водному стрессу при культивировании каллусной ткани в присутствии ПЭГ 6000 в концентрации 15 %. В результате опытов были отобраны устойчивые каллусные линии, однако устойчивость быстро терялась при культивировании каллуса на среде без осмотика, что указывает на физиологическую природу адаптации. Тестирование каллусных линий на рост в присутствии ПЭГ предложено для идентификации выносливых к засухе генотипов сои. Анализ роста каллусных тканей десяти сортов сои на средах с0,15, 20 % ПЭГ 8000 свидетельствовал о корреляции засухоустойчивости у растений и толерантности к ПЭГ культивируемых клеток. Для получения адаптированных к водному стрессу клеточных линий также применялись среды, содержащие в качестве осмотика 99—880 мМ маннитол. Как и в предыдущем случае, осмотически адаптированные клетки обладали повышенной выносливостью к солевому стрессу.

    Засоление.

    Одним из лимитирующих факторов сельскохозяйственной продуктивности является засоление почв. Около 900 млн. га всех земель нашей планеты имеют повышенное содержание солей, а количество засоленных почв с каждым годом возрастает. Особую тревогу вызывает увеличение в почвах содержания солей, которое происходит в результате их искусственного орошения. Решение данной проблемы во многом зависит от разработки рациональных агротехнических приемов, правильной методологии орошения, использования для полива частично или полностью обессоленной воды. С развитием биотехнологии растений потенциально возможным является получение солевыносливых генотипов у важных сельскохозяйственных культур путем селекции на уровне соматических клеток, слияния протопластов или переноса генов при использовании техники рекомбинантных молекул ДНК.

    Вредное действие засоления имеет комплексный характер и обусловлено как нарушением осмотического баланса клетки, так и прямым токсическим влиянием ионов натрия, хлора на физиологические и биохимические процессы в клетке. Результатом такого действия может быть уменьшение тургора клетки, ингибирование функции мембран и активности ферментов, подавление фотосинтеза, нехватки отдельных ионов из-за нарушения селективного транспорта ионов, использование значительного количества энергии для поддержания толерантности. Основные типы реакций растений, возникающие в ответ на повышение концентрации солей во внешней среде.

    Экспериментальные данные, полученные многими учеными, показывают, что клеточные механизмы выносливости к засолению являются сходными для культивируемых in vitro клеток и целых растений и что селекция на клеточном уровне представляет реальную перспективу получения устойчивых к засолению форм растений.

    Большинство селекционных программ направлены на выделение in vitro клеточных линий, толерантных к присутствию в среде для культивирования клеток хлорида натрия. Так, показано, что выращивая гаплоидные каллусные клетки табака на среде с постоянно увеличивающейся концентрацией солей, получены клеточные линии, способные к росту в присутствии 1 % NaCl. M. Наборе с соав. предварительно обработав суспензионную культуру табака мутагеном (0,15 %ЭМС, 60 мин), путем одноступенчатой селекции выделили клеточные линии, устойчивые к 0,5 % NaCl. Отмечено, что выносливость, полученных регенерантов к засолению, проявлялась на уровне целых растений.

    На кафедре сельскохозяйственной биотехнологии Московской сельскохозяйственной академии им. К. А. Тимирязева проводились исследования по получению солеустойчивых растений на примере яровых твердых и мягких пшениц. Первичным эксплантом служили как изолированные незрелые зародыши, так и гаплоиды. Клеточную селекцию проводили на каллусной ткани, культивируемой на питательной среде, содержащей 0,3 %NaCI или Na2SO4 в течение 5—6 пассажей. В результате исследований были получены устойчивые клеточные линии, а также растения-регенеранты. Тестирование на солеустойчивость первого семенного поколения растении-регенерантов методом регистрации замедленной флоуроесценции показало, что фотосинтетический аппарат некоторых растении-регенерантов по устойчивости к засолению превосходит исходный сорт (Никифорова И. Д., 1993, 1994).

    Солевыносливость растений удается также повысить в результате селекции к одному фактору засоления осмотическому стрессу. Например, клетки томата, адаптированные к водному стрессу, индуцированному полиэтиленгликолем, обладали повышенной устойчивостью к NaС1. Повышенная толерантность к соли обнаружена у клеточных линий моркови, отобранных на среде, содержащей в качестве осмотика маннитол в высокой концентрации (99—870 мМ). Из этих результатов следует, что адаптация клеток к осмотическому стрессу применима для отбора солевыносливых вариантов, а исследования подобного рода представляют интерес для изучения как во взаимодействии, так и независимо друг от друга.

    Металлы.

    Присутствие в почве в большом количестве ионов металлов, токсически влияющих на растения, или недостаток ионов, используемых растениями в качестве питательных веществ, могут быть причиной ионного (минерального) стресса у растений. Особое внимание ученых привлекает изучение стрессов, обусловленных наличием в почве ионов тяжелых металлов, многие из которых токсически влияют как на растительные, так и на животные организмы. Стрессовое состояние у растений может быть индуцировано ионами таких тяжелых металлов, как цинк, кадмий, медь, ртуть; они также довольно часто встречаются и в почвах, механизмы устойчивости к токсическим ионам могут исключать уменьшение проницаемости плазмалеммы, детоксикацию ионов в результате связывания с органическими веществами, компартментализацию в вакуолях, а также изменения структуры ферментов, которые являются их мишенями.

    Работы по клеточной селекции растений на устойчивость к ионным стрессам начаты недавно, но уже имеют положительный результат. Во всех экспериментах используется метод прямой селекции, при котором в качестве селективного агента применяли токсические концентрации солей. Однако создание стрессовых селективных условий in vitro, идентичных таковым в природе, крайне затруднительно. В природных условиях помимо токсического действия ионов накладываются другие факторы, в частности наличие различных веществ, кислотность почвы и т. д. Для селекции на клеточном уровне используют питательные среды, которые хотя не полностью соответствовали естественным стрессовым условиям, все же обеспечивали экспрессию признака устойчивости и давали возможность отбирать нужные варианты.

    Путем прямой селекции in vitro отобраны клеточные линии петунии, устойчивые к ртути, сорго—к алюминию, моркови — к алюминию и марганцу одновременно; суспензионные клеточные культуры дурмана — к кадмию. На кафедре сельскохозяйственной биотехнологии МСХА также проводились работы по получению клеточных линий и растений-регенерантов льна-долгунца, устойчивых к соли нитрата кадмия и изучалось действие этой соли на интактные растения. Экспериментально показано, что присутствие ионов кадмия в почве приводит к торможению роста стеблевой и корневой частей растения, к сокращению на 7—9 дней онтогенетических фаз развития, следующих за фазой «елочки» по сравнению с контролем, культурные виды накапливают ионы кадмия в вегетативной массе, в то время как дикие — нет. Мезо- и ультраструктурный анализ стеблей льна-долгунца показал, что присутствие кадмия в субстрате приводило к уменьшению количества клеток элементарных волоконец в пучке, к некомпактному расположению клеток элементарных волоконец в лубяных пучках, а также к формированию клеток элементарных волоконец неодинаковых размеров в пределах одного пучка и к различным срокам формирования вторичной клеточной стенки. В результате клеточной селекции были получены растения-регенеранты, обладающие устойчивостью к соли кадмия (Гончарук Е. А., 2000).

    Экстремальные температуры.

    Причиной стрессового фактора у растений могут быть относительно высокие или низкие температуры. Работ по клеточной селекции на устойчивость к этим стрессам немного. В изученной нами литературе сведений о клеточной селекции к тепловому шоку не обнаружено, хотя белки теплового шока являются предметом пристального изучения биологов различного профиля. Что касается работ по клеточной селекции к низкотемпературным факторам, то они имеют место.

    Холодовой стресс у растений может быть вызван температурами большого диапазона: от 10—15° до 0°С. Такому стрессу наиболее подвержены растения тропических и субтропических зон. Стойкость растений к охлаждению обусловлена способностью липидов мембран оставаться в жидком состоянии благодаря наличию большой пропорции ненасыщенных жирных кислот и/или повышенного содержания стеролов. Повреждения, вызванные промораживанием растений (температура ниже 0°С)связаны прежде всего с формированием внеклеточного льда. При этом отток воды во внеклеточное пространство приводит к вторичному эффекту, вызванному водным стрессом. Нарушения, вызываемые отрицательными температурами, могут быть предотвращены аккумуляцией антифризных веществ, уменьшением количества несвязанной воды при обезвоживании и увеличением способности переохлаждаться. Большинство авторов отмечают, что у растений происходят глубокие превращения запасных питательных веществ, в частности, у морозоустойчивых древесных растений накопление большого количества жиров, а у менее устойчивых — Сахаров.

    Первые эксперименты, в которых описана возможность использования культивируемых растительных клеток для отбора выносливых к низким температурам клеточных линий, опубликованы в 1976 г. (Dix, Street, 1976). Работы проводились на суспензионных культурах табака и перца, которые после высева на агаризованные среды подвергались в течение 21 дня соответственно температурам — 3° и 4°С. Среди отобранных клонов обнаружены линии, стабильно сохраняющие повышенную холодоустойчивость.

    Основываясь на имеющихся в этой области исследований данных, однозначный ответ о применимости прямой селекции in vitro растений, выносливых к низкой температуре, давать пока рано. Несомненно, однако, что индукция in vitro генетического разнообразия найдет применение для отбора более выносливых вариантов.

    

    biofile.ru

    способ получения растений-регенерантов - патент РФ 2303348

    Изобретение относится к биотехнологии, в частности к способу получения растений-регенерантов различных культур. Проводят подготовку к посадке регенерируемых частей растений путем помещения и удерживания их совместно с другим биологическим объектом в металлической камере, защищающей от воздействия внешних электромагнитных полей в течение семи суток. Посадку выполняют введением частей растений как в стерильную культуру (in vitro), так и в нестерильную культуру (in vivo). Изобретение позволяет в более короткие сроки и с большим выходом получать необходимое количество посадочного материала растений с улучшенными хозяйственно-полезными признаками.

    Изобретение относится к сельскому хозяйству и биотехнологии и может быть использовано в процессах размножения различных культур, в исследованиях по изменению хозяйственно-полезных признаков растений под воздействием биоэнергетического информационного излучения.

    Известны способы получения растений-регенерантов, включающие использование частей растений (семян, побегов, соцветий, луковиц, почек, корней, клубней) путем выделения из этих частей эксплантов, их последующую подготовку к посадке и посадку (см. Н.В.Катаев, Р.Г.Бутенко, Клональное микроразмножение растений, М., Наука, 1983 г.; B.C.Шевелуха, Е.А.Калашников, Е.С.Воронин и др., Сельскохозяйственная биотехнология, Учеб. /2-е изд., перераб. и доп., М., Высшая школа, 2003 г.).

    Известен способ получения частей растения, с их последующей подготовкой и высадкой в стерильную культуру (in vitro) на примере такого растения, как бегония (см. A.Lida, К.Yabe, L.Wasida, V.Saburai, Mass propagation of Begonia tuberhybrida Voss. Piantiets using tissue cuiture, Res. Bull. Aichi. - Ken Agr. Res. Center. Nakagute, Aigchi. 1986, №18, p.186-190).

    К недостаткам известных способов получения растений-регенерантов можно отнести небольшой выход жизнеспособных эксплантов, малое количество одновременно получаемых растений-регенерантов, низкую скорость роста культивируемых растений.

    Задачей настоящего изобретения является устранение указанных недостатков.

    Поставленная задача решается следующим образом: в способе получения растений-регенерантов, включающем использование частей растений, их подготовку к посадке и посадку, согласно изобретению подготовку к посадке осуществляют путем воздействия на части растений (путем обработки частей растений) информационным (биоэнергетическим информационным) полем какого-либо биологического объекта в условиях (в режиме) взаимности (взаимного влияния, биообмена), например, другого растения, причем посадку выполняют введением частей растений как в стерильную культуру (in vitro), так и в нестерильную культуру (in vivo).

    Таким образом, достигаются следующие технические результаты: ускорение процесса размножения, повышение выхода посадочного материала, благодаря биоэнергетической информационной поддержке (стимуляции) частей растений биологическим объектом (например, другим растением) в момент (в период) его активного информационного самоизлучения и получение новых хозяйственно-полезных признаков у размножаемых растений.

    Способ получения растений-регенерантов поясняется практическими примерами осуществления (его реализации), подтверждающих достоверность полученного эффекта результатами сравнительных исследований.

    Пример №1. В качестве частей растения или растения-приемника использовались листья сенполии сорта «Blue Dragons и сорта «Fredettes Risen Star», а в качестве биологического объекта брали, например, другое растение или растение-излучатель, а именно трехдневные проростки кукурузы. Далее выполнялась подготовка к посадке растения-приемника следующим образом: части растения помещали в три изолированные от внешней среды и от воздействия внешних электромагнитных и энергоинформационных полей металлические камеры (№1, №2, №3). Там же размещали биологический объект, например, другое растение или растение-излучатель, а именно трехдневные проростки кукурузы, которые в течение 7 суток (этот срок определяется временем активного информационного самоизлучения проростка кукурузы) воздействовали своим информационным полем (биоэнергетическим информационным полем) на части растения-приемника, то есть листья сенполии. О примерах косвенного доказательства такого воздействия см. например: А.В.Чернетский, О физической природе биоэнергетических явлений и их моделировании, М., 1989 г.; О.В.Бецкий, Миллиметровые волны в биологии и медицине, Радиотехника и электроника, 1993 г, т.38, вып.10, стр.1760-1782 и др. Поскольку растение-приемник и растение-излучатель располагались и находились в замкнутом пространстве и рядом (близко) друг к другу, то есть обеспечивалось локальное размещение растений, то возникают условия взаимности информационного воздействия, взаимного влияния информационных полей растений друг на друга, обеспечивается режим биообмена. Затем листья сенполии извлекали из каждой камеры и поверхностно стерилизовали 0,1%-ным раствором сулемы в течение 5 минут, несколько раз промывали стерильной дистиллированной водой, после чего их делили на фрагменты (5х5 мм) и помещали на искусственные питательные среды Мурасиге и Скуга, дополненные регуляторами роста. Таким образом, части растения вводили в стерильную культуру (in vitro). В качестве контроля были использованы листья обоих сортов сенполии, срезанные с растений и поверхностно простерилиэованные таким же образом. В течение последующих 30 дней проводили наблюдения и учитывали количество жизнеспособных эксплантов, а еще через 30 дней - интенсивность регенерации. После роста на среде для укоренения, растения были высажены в нестерильные условия (in vivo) и выращивались до наступления цветения.

    В результате обработки листьев сенполии информационным полем трехдневного проростка кукурузы, через месяц культивирования, получили следующие результаты: жизнеспособность эксплантов по сравнению с контрольными в камере №3 возросла и составила для сорта «Fredettes Risen Star» - 56%; контрольный - 11%; для сорта «Blue Dragon» в камерах №1 и №2 соответственно 53% и 39%; контрольный - 35%.

    Количество растений-регенерантов на эксплантах из листьев, обработанных информационным полем, было в два раза больше по сравнению с контрольными, а сроки культивирования сократились на 7-10 суток, что позволило перевести их раньше на среду для укоренения. Кроме того, растения-регенеранты отличались от контрольных тем, что они имели интенсивную зеленую окраску. Это было характерно для растений-регенерантов обоих сортов сенпопии. Таким образом, регенерационные способности существенно выросли.

    Растения, прошедшие обработку информационным полем, имели более крупные листья и черешки (на 20-50%), чем контрольные; листья располагались в розетке более компактно; массовое цветение у них наблюдалось через 6 месяцев, тогда как у контрольных - через 12 месяцев. Форма и окраска цветов в опыте и контроле - не отличались.

    Аналогичные результаты были получены при введении частей растений как в стерильную культуру (in vitro), так и в нестерильную культуру (in vivo).

    Пример №2. В качестве частей растения использовались семена подсолнечника, а в качестве биологического объекта брали другое растение - проростки пшеницы сорта «Алтайская-100». Далее семена подсолнечника помещали в изолированные от внешней среды и от воздействия внешних электромагнитных и энергоинформационных полей металлические камеры и в течение 7 суток обрабатывали информационными полями проростков пшеницы, поместив их в непосредственной близости с семенами, для обеспечения условий взаимности информационного воздействия, условий биообмена. По окончании обработки, семена стерилизовали в течение 20 минут в 0,2% растворе сулемы, четырежды промывали дистиллированной стерильной водой и в стерильных условиях ламинар-бокса снимали с семян наружные покровы. От каждого семени отделяли семядоли, которые делили пополам в продольном направлении. Таким образом, от одного семени получали по 4 фрагмента семядолей и зародыш. Полученные фрагменты помещали на искусственные питательные среды Мурасиге и Скуга, дополненные различными регуляторами роста. Изолированные же зародыши культивировали на безгормональной среде Мурасиге и Скуга. В качестве контроля использовали фрагменты семядолей подсолнечника, изолированные от зародышей, поверхностно простерилизованные и культивированные таким же образом. Через две недели после введения в культуру in vitro подсчитывали число и % жизнеспособных эксплантов, а еще через 6 недель - регенерационную способность эксплантов.

    В результате эксперимента выяснилось: жизнеспособность обработанных информационным полем проростков пшеницы, фрагментов семядолей подсолнечника составила 93-100%; контрольных - 67-80%. Жизнеспособность зародышей соответственно - 93%; контрольных - 60%. Регенерационные способности также отчетливо выявились. Только фрагменты семядолей опытных семян проявили способность к регенерации корней, почек и соматических эмбриоидов. Изолированные зародыши росли на безгормональных средах и имели нормальную морфологию только в опытных, обработанных информационным полем образцах. В контрольных же все они имели ненормальную морфологию из-за гипергидратации всех тканей: утолщенный гипокотиль, плохо развитые корни и укороченный побег.

    Пример №3. В качестве части растения использовался лист бегонии, а в качестве биологического объекта - инкубируемое куриное яйцо. Лист бегонии срезали с растения и, обернув срез черенка смоченной в воде ватой, помещали его в металлическую камеру, защищающую лист от воздействия внешних электромагнитных полей, и предпринимали меры по защите листа от влияния повышенной температуры. Затем в течение 7 суток воздействовали на лист информационным полем инкубируемого яйца в условиях биообмена. В этом случае камера с листом и куриным яйцом находилась в инкубаторе, где были созданы условия для развития зародыша в инкубируемом яйце. Известно, что особенно интенсивно зародыш растет в первые сутки: его масса увеличивается более чем в десять раз (см. Инкубаторы / Сост. А.Ф.Зипер - М.: ООО Издательство АСТ; Донецк: Сталкер, 2001. - с.52). Поэтому обработка производилась с первого дня инкубирования. По окончании срока воздействия лист бегонии разрезали на фрагменты с сохранением в каждом из них по одной крупной жилке. Полученные фрагменты помещали в чашку Петри вертикально (морфологически нижним концом вниз) между слоями фильтрованной бумаги, сложенной «гармошкой» и смоченной кипяченой водой. В качестве контроля использовали фрагменты, полученные из листа бегонии, срезанного с того же растения, который не подвергался воздействию информационных полей. Указанные изолированные фрагменты листа бегонии помещали в чашку Петри таким же образом. Через каждые две недели в течение двух месяцев учитывали выживаемость фрагментов, укореняемость, побегообразование и длину корней. Полученные результаты приведены ниже:

    Характеристики потенций к регенерации у изолированных фрагментов листовой пластинки бегонии, n=10 (опыт/контроль)
    Показательна 14 деньна 28 деньна 42 деньна 56 день
    Выживаемость, %100/100 100/100100/100100/100
    Корнеобразование, % 30/090/80100/100 100/100
    Побегообразование, %0/010/0 20/070/40
    Длина корней,     
    мм/фрагмент11/11,5 25/19,4--
    примечание: прочерк означает, что на данные дни учета, длину корней не замеряли, так как корни частично проросли сквозь фильтровальную бумагу

    В результате эксперимента выяснилось: корне- и побегообразование быстрее наступили у фрагментов листа бегонии, обработанного информационным полем куриного яйца. К концу эксперимента в опытной группе побегообразование было больше на 30% по сравнению с контрольной. Развивающиеся побеги в опытной группе опережали по росту и развитию побеги в контрольной группе. Таким образом, информационное поле куриного яйца оказало существенное влияние на регенерационные сроки (в опытной группе на 2 недели раньше отмечено корнеобразование и на 4 недели раньше - побегообразование).

    Использование предлагаемого способа позволит в более короткие сроки и с большим выходом получать необходимое количество посадочного материала растений с улучшенными хозяйственно-полезными признаками.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    Способ получения растений-регенерантов, включающий подготовку частей растений к посадке и посадку, отличающийся тем, что подготовку к посадке осуществляют путем помещения и удерживания регенерируемых частей растений совместно с другим биологическим объектом в металлической камере, защищающей от воздействия внешних электромагнитных полей в течение семи суток, причем посадку выполняют введением частей растений как в стерильную культуру (in vitro), так и в нестерильную культуру (in vivo).

    www.freepatent.ru


    Смотрите также

    Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта