Процесс фотосинтеза у растений. Фотосинтез – процесс пластического и энергетического обменов. Хемосинтез

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Зависимость процесса фотосинтеза от факторов внешней среды. Процесс фотосинтеза у растений


Как работает фотосинтез

Фотосинтез – это весь комплекс процессов ассимиляции фотонов и химических субстратов в растительном организме, которые приводят к его росту и развитию. Кроме этого, в фотосинтез  входят:  процессы синтеза пигментов, обеспечивающих поглощение фотонов и первичные фотохимические реакции; синтез соединений, отвечающих за формирование  органов растительного организма  и его приспособление к условиям  окружающей среды. В более узком смысле фотосинтез – это синтез углеводов  под действием  видимого света. Термин фотосинтез был предложен Чарльзом Рейдом Бансом из Чикагского университета в начале прошлого столетия. В Европе этот процесс часто называют ассимиляцией или ассимиляцией углерода.

Многие живые организмы способны к фотосинтезу. Даже в кожном слое млекопитающих идет под действием света синтез химических соединений. Но основными объектами исследования фотосинтеза и практического использования его продуктов являются растения,  водоросли и микроорганизмы. У высших растений основная масса синтезируемых соединений производится в листьях. В других частях также идут фотосинтетические процессы, управляющие развитием  цветков, семян, изменением формы растений и их пространственной ориентацией.

Структурная основа для фотосинтетических процессов

Фотосинтетические процессы в листьях локализованы в специальных органеллах, называемых хлоропластами. Внутреннее пространство хлоропласта заполнено пластинчатыми гранулами зеленого цвета – гранами. Граны представляют собой стопки сильно сплюснутых мешочков – тилакоидами. Стенки тилакоидов – ламеллы – представляют собой тонкие фосфолипидные мембраны, внутри которых находятся липотропные участники  первичных процессов фотосинтеза. К ним относятся белки, пигменты, переносчики электронов и протонов. Внутреннее межмембранное пространство тилакоидов является водной средой, в которой содержатся  водорастворимые  участники процесса. В межгранальном – стромальном – пространстве (также водном),  находятся менее упакованные отдельные тилакоиды и ламеллы.

Строение хлоропласта

Рис.1. Строение хлоропласта.

У  фотосинтезирующих бактерий нет хлоропластов, а участники процесса фотосинтеза расположены в мембранах, которые подобны  ламеллам  высших растений.  Эти мембраны  расположены  под внешней оболочкой микроорганизма и образуют  замкнутое пространство. Замкнутая топология мембранных образований и в хлоропластах, и в бактериях – важное условие, поскольку при функционировании фотосинтетического аппарата на этих мембранах, как и в митохондриях, возникает электрохимический потенциал для протонов.

Физико-химическая основа фотосинтеза

Основная продукция фотосинтеза - это  соединения с высоким восстановительным потенциалом – углеводы.  Рабочим телом фотосинтетической машины в высших растениях и некоторых водорослях  является вода. Процесс фотосинтеза включает  в себя две стадии:

1. Фотолиз,  физическая сущность которого заключается в разложении  воды с помощью квантов света на кислород и водород,  причем кислород  является в  этом  процессе побочным продуктом;

2. Восстановление – получения глюкозы. Основным уравнением фотосинтеза в высших растениях является

6CO2 + 6h3O + Nhν = 6O2 + C6h22O6 + ∆G,

то есть,  реакция идет только за счет энергии света и в  итоге на один шаг реакции в её продуктах запасается ∆G=  686 ккал свободной энергии. Однако, во-первых,  это уравнение объединяет два этапа превращения субстратов:  световой и темновой, и, во-вторых,  в данном уравнении не видны важные промежуточные продукты данной реакции. Поэтому для понимания необходимо записать  эти этапы раздельно:

1.  6CO2+12h3O*+48hν+12НАДФ+18АДФ+18Ф → 6CO2+ 12НАДФН2+ 18АТФ + 6 O*2 →

2.  → C6h22O6 + 6 O*2 + 6h3O + 12НАДФ +18АДФ +18Ф.

Теперь видно, что продуктом световой стадии является восстановленные переносчики НАДФН2 и АТФ, которые в темновой стадии восстановления углекислоты до глюкозы (цикл Кальвина) соответственно окисляются и гидролизуются. Звездочкой отмечен кислород, который получается при  фоторазложении воды. Необходимо отметить, что вода, которая образуется  в  темновой стадии,  содержит другой кислород. 

Схема фотосинтетических биохимических реакций

Рис.2. Схема фотосинтетических биохимических реакций.

Первая стадия фотосинтеза протекает на свету с помощью фотокатализатора. Фотокатализатором, или точнее, сенсибилизатором, в растениях является хлорофилл. Хлорофилл имеет гидрофобную часть и гидрофильную.  То есть хлорофилл обладает амфотерными свойствами, которые способствуют самосборке агрегатов  хлорофилла на границе липид-вода и на поверхности белков, где чередуются гидрофильные и гидрофобные участки. Структура центральной части хлорофилла аналогична гему железа в молекуле гемоглобина или цитохромах и обеспечивает поглощение света в видимом диапазоне. Существует три вида хлорофилла: a,b и c. Спектры поглощения хлорофиллов качественно похожи: в красной области – в районе 660-680 нм,  в синей области – в районе длин волн 450 нм. Существование нескольких химически и физически различающихся форм хлорофиллов  необходимо для того, чтобы сгладить  спектр действия фотосинтеза в видимом участке солнечного спектра.

Красная граница фотосинтеза определяется самыми длинноволновыми формами хлорофилла, и у высших растений располагается в районе 700 нм. Свет в зеленой части спектра, поглощают некоторые пигменты, в частности, каротин, так как  хлорофиллы имеют относительно малое поглощение в этой части спектра.  Кроме этого каротин защищает хлорофилл от деструктивных процессов, которые возникают при длительном нахождении электрона на триплетном уровне.

В  хлоропластах высших растений имеются две фотосистемы – фотосистема 1 (ФС1) и фотосистема 2 (ФС2), которые различаются по составу белков и пигментов. Светособирающая антенна ФС1 поглощает свет с длиной волны 700-730 нм, а ФС2 – 680 – 700 нм. Индуцированное светом окисление реакционных центров двух  фотосистем сопровождается их обесцвечиванием, которое характеризуется изменениями спектров поглощения. Две фотосистемы связаны посредством цепи электронных переносчиков.

ФС2 является источником электронов для ФС1. Индуцируемое светом разделение зарядов в  фотореакционных центрах обеспечивает перенос электрона от воды, разлагаемой в ФС2, к конечному акцептору электрона – молекуле НАДФ+.  Цепь электронного  транспорта, соединяющая две фотосистемы,  в качестве переносчиков электрона включает в себя молекулы пластохинона, отдельный электрон-транспортный белковый комплекс (так называемый b/f-комплекс) и водорастворимый белок пластоцианин (Рс).

В ФС2 от возбужденного центра Р+680 электрон переносится сначала на первичный акцептор феофетин (Рhе), а затем на молекулу пластохинона Qа, прочно связанную с одним из белков ФС2. Затем электрон переносится на вторую молекулу пластохинона Qb, а  Р+680  получает электрон от первичного донора – молекулы хлорофилла.  После двукратного срабатывания реакционного центра ФС2  молекула пластохинона  Qb  получает два электрона и становится  отрицательно заряженной. Эта молекула обладает высоким сродством к протонам, которые она захватывает из стромального пространства. После протонирования  восстановленного пластохинона образуется электрически нейтральная форма этой молекулы (QbН2 или  просто QН2), которая называется пластохинолом. Пластохинол выполняет роль подвижного переносчика двух электронов и двух протонов: покинув ФС2, молекула QН2 может легко перемещаться внутри тилакоидной мембраны, обеспечивая связь ФС2 с другими электрон-транспортными комплексами. Окислительный реакционный центр ФС2 обладает исключительно высоким сродством к электрону, то есть является очень сильным окислителем. Благодаря этому в ФС2 происходит разложение воды. Входящий в состав ФС2 водорасщепляющий комплекс  (ВРК) содержит в своем активном центре группу ионов марганца, которые служат донорами электронов для Р+680   . Отдавая электроны окисленному реакционному центру  Р+680, ионы  марганца становятся «накопителями» положительных зарядов, непосредственно участвующих в реакции окисления воды. В результате последовательного четырехкратного срабатывания реакционного центра ФС2 в Mn-содержащем активном центре  ВРК накапливаются четыре сильных окислительных эквивалента (четыре «дырки») в форме окислительных ионов марганца, которые, взаимодействуя с двумя молекулами воды, катализируют реакцию её разложения. Таким образом, в результате последовательной передачи электронов от ВРК к  Р+680   происходит синхронное разложение сразу двух молекул воды, сопровождающееся выделением одной молекулы кислорода и четырех протонов, которые диффундируют во внутритилакоидное пространство хлоропластов.

Образовавшаяся при функционировании ФС2 молекула пластихинола QН2 диффундирует внутри липидного бислоя тилакоидной мембраны к  b/f-комплексу.  При столкновении она связывается с ним и передает ему два электрона, при этом  два освободившихся протона выходят во внутри тилакоидное пространство. В свою очередь b/f -комплекс служит донором электрона для пластоцианина, который  выполняет роль связующего звена между b/f-комплексом и ФС1. Пластоцианин – это водорастворимый  белок, имеющий в составе своего  активного центра ион меди.  Реакция восстановления и окисления пластоцианина сопровождается изменением валентности иона меди. Молекула пластоцианина быстро перемещается внутри тилакоида, обеспечивая перенос электрона от b/f-комплекса к ФС1. От восстановленного пластоцианина электрон поступает непосредственно к окислительным центрам ФС1. Таким образом, в результате совместного действия ФС1 и ФС2 два электрона от молекулы воды, разлагаемой в ФС2, через цепь электронного транспорта переносятся на молекулу НАДФ+, обеспечивая образование сильного восстановителя НАДФ•Н. Схематически выше описанные процессы представлены на рисунке 1.

Рис.3. Расположение электрон-транспортных комплексов (ФС1, ФС2, b/f-комплекса) и их взаимодействие в тилакоидной мембране.

Расположение электрон-транспортных комплексов взаимодействие в тилакоидной мембране

В состав ФС1 входят: Pc- пластоцианин, P700 – энергетическая ловушка и реакционный центр, первичный акцептор электрона – молекула хлорофилла (А0), вторичные акцепторы – молекула филлохинона (А1) и три переносчика белковой природы (ферредоксин), у некоторых в активном центре находятся атомы железа и серы.

В состав ФС2 входят: фотореакционный центр Р680, первичный акцептор – феофетин (Phe), вторичные акцепторы – молекулы пластохинона (Qa и Qb) и водорасщепляющий комплекс. В переносе электрона от акцепторов ФС1  к НАДФ+ участвуют растворимый в строме белок ферредоксин (Fd) и  связанный с мембраной специальный электрон-транспортный комплекс ферредоксин - НАДФ+ - редуктаза (FNR), функционирующие на внешней стороне тилакоидной мембраны. При восстановлении одной молекулы НАДФ+ до НАДФ•Н  на неё переносятся два электрона и один ион водорода, который захватывается из стромы.

Зачем хлоропластам нужны две системы? Известно, что фотосинтезирующие бактерии, которые используют в качестве  донора электрона для восстановления окисленных реакционных центров различные органические и неорганические соединения (например, Н2S), успешно функционируют с одной фотосистемой.  Дело в том, что энергии одного кванта видимого света недостаточно для эффективного прохождения электроном всего пути по цепи молекул-переносчиков от воды к НАДФ+.

Преобразование энергии в фотосинтетических системах

В настоящее время считается, что ФС1 ведет своё происхождение от зеленых бактерий, а ФС2 – от пурпурных. После того как в ходе эволюции ФС2 «включилась» в единую цепь электронного транспорта (ЦЭТ) вместе с ФС1, стало возможным преодолеть большую разницу окислительно-восстановительных потенциалов таких пар, как  «кислород – вода» и «НАДФ+ - НАДФ•Н».

Перенос электронов по ЦЭТ сопровождается снижением энергии. Этот процесс можно уподобить самопроизвольному движению тела по наклонной плоскости. Уменьшение уровня энергии электрона в ходе его движения  вдоль ЦЭТ не означает, что перенос электрона является энергетически бесполезным процессом. В нормальных условиях функционирования хлоропластов большая часть энергии, выделяющаяся в ходе электронного транспорта, не пропадает бесполезно, а используется для работы специального энергообразующего комплекса клетки, называемого АТФ-синтетазой. Этот комплекс катализирует энергетически невыгодный процесс образования АТФ из АДФ и неорганического фосфата. Поэтому принято говорить, что энергодонорные процессы электронного транспорта сопряжены с энергоакцепторными процессами синтеза АТФ.

Важную роль в обеспечении энергетического сопряжения в мембранах тилакоидов играют процессы протонного транспорта. Синтез АТФ тесно связан с переносом через АТФ-синтетазу трех протонов из тилакоидов в строму. Этот процесс становится возможным потому, что из-за асимметричного расположения переносчиков в мембране функционирование ЦЭТ хлоропластов приводит к накоплению избыточного количества протонов внутри тилакоида: ионы водорода поглощаются снаружи на стадиях восстановления НАДФ+ и образования  пластохинола и выделяются внутри тилакоидов на стадиях разложения воды и окисления пластохинола. Следовательно, продуктами световой стадии фотосинтеза является энергия химических соединений АТФ и НАДФ, которая представляет собой запас энергии света. Эти продукты световой стадии фотосинтеза используются в темновых стадиях для образования органических соединений из углекислого газа и воды. Основными этапами преобразования энергии включают в себя следующие процессы:

1.  Поглощение энергии света пигментами светособирающей антенны;

2.  Перенос энергии возбуждения к фотореакционному центру;

3.  Окисление фотореакционного центра и стабилизация разделенных зарядов;

4.  Перенос электрона по цепи электронного транспорта, образование  НАДФ•Н;

5.  Трансмембранный перенос протонов;

6.  Синтез  АТФ.

Основные свойства фотосинтетического аппарата растений:

1.  Насыщение световой кривой фотосинтеза с ростом освещенности:

Рис.4. По вертикальной оси – скорость ассимиляции углекислоты V, по горизонтальной оси – освещенность листа L.

скорость ассимиляции углекислоты и освещенность листа растения

На графике видно, что кривые роста скорости фотосинтеза имеют выраженное насыщение. Предельное значение насыщения растет с ростом концентрации CO2 в воздухе. Причиной этого явления являются  ограничения  скорости потока электронов в электрон-транспортной цепи, когда скорость их отвода на CO2 лимитируется  его диффузией из окружающей среды.

2.  «Эффект усиления» Эммерсона. Если измерять интенсивность фотосинтеза от двух монохроматических источников света с длинами волн λ1 < 690 нм и λ2 > 690 нм, то она окажется в несколько раз больше, чем интенсивность фотосинтеза при свете той же мощности, но содержащем лишь одну длину волны λ1  или λ2. Это объясняется тем, что для нормального протекания фотосинтеза необходимо сбалансированное возбуждение фотосистем ФС1 и ФС2. В противном случае поток электронов ослабевает. «Память» «эффекта усиления» составляет 1 секунду. Если освещать лист растения поочередно светом с  λ1 и  λ2  с интервалом меньше 1 секунды, то скорость фотосинтеза будет неотличима от скорости при одновременном облучении светом с  λ1 и  λ2  . Это время характеризует время удержания пластохиноном избытка или дефицита электронов между ФС1 и ФС2.

3.  Изменение окислительно-восстановительного состояния цитохромов  b и  f при освещении светом с разными длинами волн. При освещении фотосинтетического аппарата светом с  λ1 < 690 нм цитохромы  восстанавливаются, а  при освещении светом с  λ2 > 690 нм цитохромы окисляются. Это происходит потому, что свет с длиной волны  λ1 возбуждает преимущественно ФС2, направляющую электроны к цитохромам, а свет с длиной волны  λ2 возбуждает в основном ФС1, отсасывающую электроны от цитохромов. 

4.  Эффект Кока-Жолио.  Если зеленый лист растения выдержать в темноте около часа, а затем начать освещать короткими вспышками света,  то выход кислорода будет иметь следующий вид

Рис.5. Количество кислорода, выделяемого на одну вспышку. N – номер вспышки.   На две первые вспышки кислород практически не выделяется, на третью вспышку выделение максимально, на четвертую несколько меньше, далее серия повторяется с периодом 4, и через 20-30 вспышек модуляция сглаживается, и выделения становятся одинаковыми. Эффект объясняется дискретностью работы кислород-выделяющего комплекса. Если вспышка достаточно короткая, так что кислород-выделяющий комплекс успевает получить от Р680 за вспышку только одну дырку, то последовательное одноэлектронное окисление реакционного центра ФС2 изменяет каждый раз суммарную валентность ионов Mn на единицу. А так как не все реакционные центры получают возбуждения во время каждой вспышки, то со временем состояния кислород-выделяющих комплексов разсинхронизируются  и суммарный эффект сглаживается.

5.  Задержанная флуоресценция.  Вслед за затуханием флуоресценции молекулы хлорофилла  (несколько наносекунд) в живом листе наблюдается слабое остаточное свечение с  характерным временем затухания от нескольких секунд  до минуты.

6.  Индукция флуоресценции. При  включении  освещения наблюдается флуоресценция с определенным значением квантового выхода. Через некоторое время начинается рост уровня флуоресценции до нового значения квантового выхода. 

Одноквантовые схемы первичных стадий в фотосинтезе некоторых бактерий

  ·  У серных бактерий всего одна фотосистема: электроны забираются из  h3S и восстанавливают НАДФН с последующим образованием сахаров, то есть цикл переноса электронов не замкнут. Такие бактерии не выделяют кислород.

  ·  У некоторых несерных пурпурных бактерий фотосистема осуществляет только замкнутый цикл переноса электронов.

  ·  Солелюбивые  бактерии запасают энергию непосредственно в виде электрохимического потенциала протонов и последующего синтеза  АТФ с помощью,  так называемого, бактериородопсинового  фотосинтеза.



biofile.ru

Процесс фотосинтеза

Фотосинтез - это процесс, при котором световая энергия поглощается и используется на синтез восстановленных углеродсодержащих соединений из двуокиси углерода и воды. Этот процесс происходит только в освещенной зеленой ткани, потому что хлорофилл играет существенную роль в превращении световой энергии в химическую. Термин фотосинтез был предложен Чарльзом Рейдом Бансом из Чикагского университета в начале этого столетия. В Европе этот процесс часто называют ассимиляцией или ассимиляцией углерода. Большинство американских физиологов растений предпочитают употреблять термин ассимиляция, когда речь идет об образовании новых тканей из углеводов и азотистых соединений.

Значение фотосинтеза нельзя переоценить, потому что вся энергия, содержащаяся в нашей пище, накапливается прямо или косвенно благодаря процессу фотосинтеза, а источником большей части используемой энергии, на которой работают заводы, являются горючие ископаемые, где она была запасена посредством фотосинтеза в далеком прошлом. Лит (1972, 1975) подсчитал, что наземные растения образуют за год 100-109 т сухого вещества, из которых более 2/3 вырабатывают деревья. Общая энергия, ежегодно накапливаемая в растениях при фотосинтезе, приблизительно в 100 раз превышает энергию, содержащуюся в угле, добываемом в течение года во всех шахтах мира. Хотя леса и занимают только 1/3 поверхности суши земного шара, они вырабатывают около 2/3 сухого вещества, в то время как возделываемые земли занимают приблизительно 9% и дают только 9% сухого вещества.

Пока человек не стал широко использовать уголь, большая часть потребляемой им тепловой энергии получалась от сжигания древесины. В настоящее время древесина шире используется как строительный материал и источник получения бумаги, чем в качестве топлива, хотя интерес к последнему опять возрастает. Независимо от того, как используется древесина, необходимо помнить, что содержащиеся в ней энергия и сухое вещество накапливаются благодаря процессу фотосинтеза. В связи с этим рациональное ведение лесного хозяйства должно быть направлено на повышение количества продуктов фотосинтеза на единицу земной поверхности и эффективности их превращения в растительный материал.

Из общего количества солнечного излучения, попадающего на нашу планету, лишь половина доходит до поверхности Земли, только 1/8 имеет длину волны, подходящую для фотосинтеза, и лишь 0,4 % таких лучей (около 1 % от общего объёма энергии) используется растениями. Именно от этого одного процента зависит вся жизнь на Земле.

В процессе фотосинтеза углекислый газ в присутствии хлорофилла реагирует с водой; при этом образуется глюкоза и выделяется кислород:

6CO2 + 6h3O → C6h22O6 + 6O2.

Более грамотной будет запись

CO2 + 2h3O → [Ch3O] + O2 + h3O,

Которая показывает, что выделяющийся кислород образуется из воды. Похожим уравнением описывается и хемосинтез серобактерий:

CO2 + 2h3S → [Ch3O] + 2S + h3O,

Общая схема фотосинтеза

Таким образом, процесс фотосинтеза включает в себя две стадии:

- получение водорода (фотолиз) – при этом кислород выделяется как побочный продукт реакции;

- получение глюкозы (восстановление).

Газообмен в листе происходит через устьица

Интенсивность фотосинтеза на различных длинах волн

Первая стадия фотосинтеза протекает на свету. Световые кванты дают электронам энергию, необходимую для переноса их от хлорофилла или другого фотосинтезирующего пигмента. В ходе первой стадии из АДФ (аденозиндифосфата) и фосфата синтезируется АТФ (аденозинтрифосфат), а НАДФ (никотинамидадениндинуклеотидфосфат) восстанавливается до НАДФ∙h3. Синтез АТФ за счёт энергии световых квантов называется фотофосфорилированием. Этот процесс может быть циклическим (в реакции «работают» одни и те же электроны) и нециклическим (электроны в конце концов доходят до НАДФ и, взаимодействуя с ионами водорода, образуют НАДФ∙h3). Кислород как побочный продукт реакции выделяется только во втором случае.

Для реакций второй стадии свет не нужен. Восстановление CO2 происходит за счет энергии АТФ и накопленного НАДФ∙h3. Углекислый газ связывается с пятиуглеродным сахаром рибулозобисфосфатом, образуя две молекулы трёхуглеродной фосфоглицериновой кислоты (ФГК). Такой процесс получил название C3-фотосинтеза. Последующий цикл реакций (цикл Кальвина) приводит к образованию из ФГК сахара (например, глюкозы), а также ресинтезу рибулозобисфосфата. У некоторых растений (например, сахарного тростника, сои) наблюдается так называемый C4-фотосинтез, в реакциях которого CO2, восстанавливаясь, включается в состав органических кислот, имеющих четыре атома углерода (например, яблочной). При этом поглощение углекислоты идёт гораздо эффективнее, повышается и продуктивность растений.

На скорость фотосинтеза влияют многие факторы. Основными из них являются интенсивность света, концентрация кислорода и углекислого газа, температура окружающей среды. Состояние, когда скорость выделения кислорода растением равна скорости его дыхания, называется точкой компенсации.

Кислород в процессе фотосинтеза может действовать как конкурентный ингибитор, взаимодействуя с рибулозодисфосфатом вместо углекислого газа. При этом образуется одна молекула ФГК и фосфогликолат, сразу расщепляющийся до гликолата. Чтобы вернуть хотя бы часть углерода, связанного в бесполезном гликолате, у растения имеется процесс, называемый фотодыханием. Это зависимое от света потребление кислорода с выделением углекислого газа, заметное лишь у C3-растений, не имеет ничего общего с обычным дыханием. Фотодыхание, в целом, идёт с поглощением энергии; в результате образуется фосфоглицерат, а 25 % углерода теряется в виде CO2. В фотодыхании участвуют хлоропласты, пероксисомы и митохондрии. У C4-растений фотодыхания практически нет, что и является причиной их большей продуктивности.

В связи с энергетической проблемой учёные пытаются провести фотосинтетические процессы искусственно, особенно их первые этапы, когда вода под действием солнечной радиации расщепляется на кислород и водород. Сжигание водорода (с образованием воды) – экологически чистый процесс, который мог бы стать неплохой заменой современным источникам энергии

ПИГМЕНТЫ ХЛОРОПЛАСТОВ

Хлорофилл заслуживает особого внимания, потому что в процессе фотосинтеза он является светопоглощающим пигментом, а также и потому, что создает доминирующую окраску земной поверхности. У некоторых декоративных деревьев и кустарников иногда бывают видны желтые пигменты-каротиноиды. Эти пигменты обнаруживаются и вследствие того, что условия становятся неблагоприятными для синтеза хлорофилла или его сохранения. Листья некоторых разновидностей древесных растений, например, темно-пунцовой формы бука европейского, клена дланевидного, имеют красную или пурпурную окраску из-за присутствия в клеточном соке (а не в пластидах) антоцианов. Многие другие деревья вырабатывают антоцианы осенью. (Образование осенней окраски листьев будет рассмотрено в главе 7). Хлорофилл и каротиноиды встречаются, кроме листовых пластинок, во многих тканях, в том числе в черешках, почках, семядолях, в коровой паренхиме молодых побегов и в феллодерме более старых стеблей некоторых видов. Обычно хлоропласты редко встречаются в эпидермальных клетках, за исключением замыкающих клеток устьиц. Изредка они развиваются в корнях, выставленных на свет.

Интенсивность фотосинтеза листьев древесных растений, как правило, ниже интенсивности фотосинтеза травянистых растений.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ОБРАЗОВАНИЕ ХЛОРОФИЛЛА

Пожелтение, или хлороз листьев - результат их неспособности увеличивать или сохранять содержание хлорофилла. Всесторонним изучением установлено, что это явление зависит от ряда внутренних и внешних факторов

ВНУТРЕННИЕ ФАКТОРЫ

Наиболее важный фактор - генетический потенциал растения, так как иногда в результате мутаций, приводящих к полной потере способности образовывать хлорофилл, возникают ко-роткоживущие альбиносные сеянцы. Чаще процесс синтеза хлорофилла нарушается лишь частично, проявляясь в отсутствии хлорофилла в некоторых участках листьев (пестролистность) или в общем низком содержании хлорофилла. Вследствие этого листья принимают желтоватый оттенок золотистых разновидностей деревьев и кустарников, часто используемых в качестве декоративных растений. Иногда в результате почковых мутаций возникают альбиносные или пестролистные ветви на нормальных в других отношениях деревьях и кустарниках. В синтезе хлорофилла и сборке его в фотосинтетические единицы участвуют многие гены, поэтому в образовании хлорофилла распространены аномалии. Развитие хлоропластов зависит как от ядерной, так и от плас-тидной ДНК, а также от цитоплазматических и хлоропластных рибосом.

Достаточное снабжение углеводами необходимо, по-видимому, для образования хлорофилла, и листья, испытывающие недостаток растворимых углеводов, могут не зеленеть, даже если все прочие условия благоприятные. Такие листья, опущенные в раствор сахара, обычно начинают образовывать хлорофилл. Часто образованию хлорофилла препятствуют вирусы, вызывая "желтуху", характеризующуюся общим хлорозом или бронзовой окраской листовых пластинок, а также просветлением жилок. Крапчатые листья некоторых декоративных растений - результат вирусной инфекции.

ФАКТОРЫ ВНЕШНЕЙ СРЕДЫ

www.coolreferat.com

Зависимость процесса фотосинтеза от факторов внешней среды

Интенсивность и спектральный состав света

В среднем листья поглощают 80 — 85% энергии фотосинтетически активных лучей солнечного спектра (400 — 700 нм) и 25 % энергии инфракрасных лучей, что составляет около 55% от энергии общей радиации. На фотосинтез расходуется 1,5 — 2% поглощенной энергии (фотосинтетически активная радиация — ФАР).

Зависимость скорости фотосинтеза интенсивности света имеёт форму логарифмической кривой (рис.1). Прямая зависимость скорости процесса от притока энергии наблюдается только при низких интенсивностях света. Фотосинтез начинается при очень слабом освещении; Впервые это было показано А. С. Фаминцыным в 1880 г. на установке с искусственным освещением. Света керосиновой лампы оказалось достаточно для начала фотосинтеза и образования крахмала в растительных клетках. У многих светолюбивых растений максимальная (100%) интенсивность фотосинтеза наблюдается при освещенности, достигающей половины от полной солнечной, которая, таким образом, является насыщающей. Дальнейшее возрастание освещенности не увеличивает фотосинтез и затем снижает его.

Зависимость скорости фотосинтеза от интенсивности света у кукурузыРис.1. Зависимость скорости фотосинтеза от интенсивности света у кукурузы

Анализ световых кривых фотосинтеза позволяет получить информацию о характере работы фотохимических систем и ферментативного аппарата. Угол наклона кривой характеризует скорость фотохимических реакций и содержание хлорофилла: чем он больше, тем активнее используется световая энергия. Обычно больше он у теневыносливых растений, обитающих под пологом леса, и у глубоководных водорослей. У этих растений, приспособленных к условиям слабого освещения, хорошо развитый пигментный аппарат позволяет активнее использовать низкие интенсивности света.

Активность фотосинтеза в области насыщающей интенсивности света характеризует мощность систем поглощения и восстановления С02 и определяется концентрацией CO2. Чем выше кривая в области насыщения интенсивности света, тем мощнее аппарат поглощения и восстановления С02. У светолюбивых растений насыщение достигается при значительно большей освещенности, чем у теневыносливых. У теневыносливого печеночного мха маршанции световое насыщение фотосинтеза достигается при 1000 лк, у светолюбивых древесных растений — при 10 — 40 тыс. лк, а у некоторых высокогорных растений Памира (где освещенность достигает максимальных на Земле значений порядка 180 тыс. лк) — при 60 тыс. лк и выше. Светолюбивы большинство сельскохозяйственных и древесных растений, а также водоросли мелководий.

У растений, осуществляющих С3-путь фотосинтеза, насыщение происходит при более низкой интенсивности света, чем у растений с С4-путем превращения углерода, высокая фотосинтезирующая активность которых проявляется только при высоком уровне освещенности.

В области светового насыщения интенсивность фотосинтеза значительно выше интенсивности дыхания. При снижении освещенности до определенной величины интенсивности фотосинтеза и дыхания уравниваются. Уровень освещения, при котором поглощение С02 в процессе фотосинтеза уравновешивается выделением С02 в процессе дыхания, называется световым компенсационным пунктом. Его величину определяют при 0,03% С02 и температуре 20 °С. Значение светового компенсационного пункта неодинаково не только у теневыносливых (составляет примерно 1 % от полного света) и светолюбивых растений (около 3 — 5 % от полного солнечного света), но и у листьев разных ярусов одного и того же растения, оно зависит также от концентрации С02 в воздухе. Чрезмерно высокое освещение резко нарушает процесс биосинтеза пигментов, фотосинтетические реакции и ростовые процессы, что в итоге снижает общую продуктивность растений.

Существенно, что даже кратковременное изменение условий освещенности влияет на интенсивность фотосинтеза. Это важное адаптационное свойство позволяет растениям в фитоценозах полнее использовать свет. Фотосинтетический аппарат «настраивается» на периодические сдвиги освещенности при ветре, на частоту мелькания бликов в доли секунды.

На ход световых кривых фотосинтеза влияют изменения других факторов внешней среды. Например, при низких температурах (12 С) повышение интенсивности света становится малоэффективным. Температурный оптимум у растений с C3-типом фотосинтеза лежит в пределах 25-35 С. Повышение концентрации С02 с увеличением освещенности приводит к возрастанию скорости фотосинтеза (рис.2).

Взаимовлияние интенсивности света и концентрации углекислого газа на скорость фотосинтеза у мхаРис.2. Взаимовлияние интенсивности света и концентрации углекислого газа на скорость фотосинтеза у мха

Почему именно красные лучи наиболее эффективны для фотосинтеза? Во-первых, потому, что энергия 1 кванта красного света (176 кДж/моль = 42 ккал/моль ) вполне достаточна для перехода молекулы хлорофилла на первый синглетный уровень возбуждения S*. Затем эта энергия целиком может быть использована на фотохимические реакции. Энергия же 1 кванта синего света выше (293 кДж/моль = 70 ккал/моль). Поглотив квант синего света, молекула хлорофилла переходит на более высокий уровень синглетного возбуждения S*, и эта излишняя энергия превращается в теплоту при переходе молекулы в состояние S*. Энергия 1 кванта красного света примерно эквивалентна энергии перехода окислительно-восстановительного потенциала системы от Е' 0 = +0,8 В до Е'о = -0,8 В. Энергия 1 кванта инфракрасных лучей уже недостаточна для фотоокисления воды, но у фотосинтезирующих серных бактерий эта энергия вполне обеспечивает фотоокисление h3S в процессе фоторедукции. Поэтому у серных бактерий фотосинтез с участием бактериохлорофилла осуществляется при действии невидимого для человеческого глаза инфракрасного света.

Во-вторых, красный свет всегда присутствует в лучах прямой солнечной радиации. Если солнце находится под углом 90°, то красные лучи составляют примерно 1/4 часть полного солнечного света. Если же солнце стоит низко, красные лучи становятся преобладающими. При стоянии солнца под углом 5 0 красный свет составляет 2/3 от полного. Растения, выращенные на синем и красном свету, существенно различаются по составу продуктов фотосинтеза. По данным Н. П. Воскресенской (1965), при выравнивании синего и красного света по квантам, т. е. при одинаковых для фотохимической стадии фотосинтеза условиях освещения, синий свет уже через несколько секунд экспозиции активирует включение 14С в неуглеводные продукты — амино- и органические кислоты, главным образом в аланин, аспартат, малат, цитрат, и в более поздние сроки (через минуты) — во фракцию белков, а красный свет при коротких экспозициях — во фракцию растворимых углеводов и при минутных экспозициях — в крахмал. Таким образом, на синем свету по сравнению с красным светом в листьях дополнительно образуются неуглеводные продукты.

Эти различия в метаболизме углерода при действии света разного качества обнаружены у целых растений с С3- и С4-путями ассимиляции С02, у зеленых и красных водорослей они сохраняются при различных концентрациях С02 и неодинаковой интенсивности света. Но у изолированных хлоропластов различий в образовании крахмала на синем и красном свету не обнаружено. Полагают, что фоторецептором, с деятельностью которого связаны изменения в метаболизме углерода на синем свету у зеленых растений, являются флавины. Скорость фотосинтеза быстро и значительно увеличивается при добавке небольшого количества (20% от насыщения красного света) синего света к красному. По-видимому, это связано с тем, что фотохимическая стадия фотосинтеза регулируется синим светом.

Концентрация диоксида углерода

Углекислый газ является основным субстратом фотосинтеза его содержание определяет интенсивность процесса. Концентрация СО2 в атмосфере составляет 0,03%. В слое воздуха высотой 100 м над гектаром пашни содержится 550 кг СО2. Из этого количества за сутки растения поглощают 120 кг СО2. Зависимость фотосинтеза от СО2 выражается логарифмической кривой (рис. 3).При концентрации 0,03 % интенсивность фотосинтеза составляет лишь 50 % от максимальной, которая достигается при 0,3% СО2. Это свидетельствует о том, что в эволюции процесс фотосинтеза формировался при большей концентрации СО2 в атмосфере. Кроме того, такой ход зависимости продуктивности фотосинтеза от концентрации С02 указывает на возможность подкормки растений в закрытых помещениях СО2 для получения большего урожая. Такая подкормка СО2 оказывает сильное влияние на урожай растений с С3-типом ассимиляции СО2 и не влияет на растения с С4-типом, у которых существует особый механизм концентрирования СО2.

Зависимость интенсивности фотосинтеза от концентрации углекислого газаРис.3. Зависимость интенсивности фотосинтеза от концентрации углекислого газа

Интенсивность ассимиляции С02 зависит от скорости его поступления из атмосферы в хлоропласты, которая определяется скоростью диффузии С02 через устьица, межклетники и в цитоплазме клеток мезофилла листа. В открытом состоянии устьица занимают лишь 1—2% площади листа, остальная поверхность покрыта плохо проницаемой для газов кутикулой. Однако при наличии кутикулы С02 входит в лист через устьица за единицу времени в таком же количестве, как и без нее. Объясняется это законом Стефана, согласно которому скорость перемещения молекул газа через малые отверстия пропорциональна их окружности, а не площади. Чем меньше отверстие, тем больше отношение окружности к площади. А у края отверстия молекулы в меньшей степени сталкиваются друг с другом и быстрее диффундируют. Поэтому через устьице с апертурой (открытостью) порядка 10 мкм молекулы газа перемещаются с большой скоростью. На процессы открывания и закрывания устьиц влияют С02, насыщенность тканей водой, свет, фитогормоны.

Температура

Первичные фотофизические процессы фотосинтеза (поглощение и миграция энергии, возбужденные состояния) не зависят от температуры. Очень чувствительны к температуре процессы фотосинтетического фосфорилирования. Скорость комплекса энзиматических реакций, сопряженных с восстановлением углерода, при повышении температуры на 10 °С возрастает в 2 — 3 раза (Q10 = 2 — 3).Общая зависимость фотосинтеза от температуры выражается одновершинной кривой (рис. 4). Кривая имеет три основные (кардинальные) температурные точки: минимальную, при которой начинается фотосинтез, оптимальную и максимальную. Интенсивность фотосинтеза при супероптимальных температурах зависит от продолжительности их воздействия на растения. Нижняя температурная граница фотосинтеза у растений северных широт находится в пределах —15 °С (сосна, ель)... —0,5 °С, а у тропических растений — в зоне низких положительных температур 4 — 8 °С. У растений умеренного пояса в интервале 20 — 25 °С достигается максимальная интенсивность фотосинтеза, а дальнейшее повышение температуры до 40 °С приводит к быстрому ингибированию процесса (при 45 °С растения погибают).

Некоторые растения пустынь способны осуществлять фотосинтез при 58 °С. Температурные границы фотосинтеза можно раздвинуть предварительным закаливанием, адаптацией растений к градиенту температур. Наиболее чувствительны к действию температуры реакции карбоксилирования, превращения фруктозо-6-фосфата в сахарозу и крахмал, а также транспорт сахарозы из листьев в другие органы. Необходимо отметить, что влияние на фотосинтез света, концентрации С02 и температуры осуществляется в сложном взаимодействии. Особенно тесно взаимосвязаны свет, действующий на скорость фотохимических реакций, и температура, контролирующая скорость энзиматических реакций. В условиях высокой интенсивности! света и низких температур (5— 10 °С), когда главным фактором, лимитирующим скорость всего процесса, являются ферментативные реакции, контролируемые температурой значения Q10 могут быть > 4. При более высоких температурах Q10 снижается до 2. При низких интенсивностях света Q10 = 1, т. е. фотосинтез относительно независим от температуры, так как его скорость в данном случае ограничивается фотохимическими реакциями.

Зависимость интенсивности фотосинтеза у ели от температурыРис. 4. Зависимость интенсивности фотосинтеза у ели от температуры

Водный режим

Вода непосредственно участвует в фотосинтезе как субстрат окисления и источник кислорода. Другой аспект влияния содержания воды на фотосинтез состоит в том, что величина оводненности листьев определяет степень открывания устьиц и, следовательно, поступления С02 в лист. При полном насыщении листа водой устьица закрываются, что снижает интенсивность фотосинтеза. В условиях засухи чрезмерная потеря воды листом также вызывает закрывание устьиц под влиянием увеличения содержания в листьях абсцизовой кислоты в ответ на недостаток влаги. Длительный водный дефицит в тканях листа при засухе приводит к ингибированию нециклического и циклического транспорта электронов и фотофосфорилирования и к снижению величины отношения ATP/NADPH за счет большего торможения образования АТР. Максимальный фотосинтез наблюдается при небольшом водном дефиците листа (порядка 5 — 20% от полного насыщения) при открытых устьицах.

Минеральное питание

Для нормального функционирования фотосинтетического аппарата растение должно быть обеспечено всем комплексом макро- и микроэлементов. Два основных процесса питания растительного организма - воздушный и корневой — тесно взаимосвязаны. Зависимость фотосинтеза от элементов минерального питания определяется их необходимостью для формирования фотосинтетического аппарата (пигментов, компонентов электронтранспортной цепи, каталитических систем хлоропластов, структурных и транспортных белков), а также для его обновления и функционирования.

Магний входит в состав хлорофиллов, участвует в деятельности сопрягающих белков при синтезе АТРу влияет на активность реакций карбоксилирования и восстановления NADP+. Вследствие этого его недостаток нарушает процесс фотосинтеза. Железо в восстановленной форме необходимо для процессов биосинтеза хлорофилла и железосодержащих соединений хлоропластов (цитохромов, ферредоксина). Дефицит железа резко нарушает функционирование циклического и нециклического фотофосфорилирования, синтез пигментов и изменяет структуру хлоропластов.

Необходимость; марганца для зеленых растений связана с его ролью в фотоокислении воды. Поэтому недостаточность питания по марганцу отрицательно сказывается на интенсивности фотосинтеза. В реакциях фотоокисления воды необходим также хлор. Медь входит в состав пластоцианина, поэтому у растений дефицит меди вызывает снижение интенсивности фотосинтеза. Недостаток азота сильно сказывается на формировании пигментных систем, структур хлоропласта и его общей активности. Концентрация азота определяет количество и активность РДФ-карбоксилазы.

В условиях недостатка фосфора нарушаются фотохимические и темновые реакции фотосинтеза. Особенно резко дефицит фосфора проявляется при высокой интенсивности света, при этом более чувствительными оказываются темновые реакции. Однако при уменьшении содержания фосфора в два раза интенсивность фотосинтеза снижается в меньшей степени, чем ростовые процессы и общая продуктивность растений. Избыток фосфора также тормозит скорость фотосинтеза, по-видимому, вследствие изменения проницаемости мембран.

Уменьшение содержания калия в тканях сопровождается значительным снижением интенсивности фотосинтеза и нарушениями других процессов в растении. В хлоропластах разрушается структура гран, устьица слабо открываются на свету и недостаточно закрываются в темноте, ухудшается водный режим листа, нарушаются все процессы фотосинтеза. Это свидетельствует о полифункциональной роли калия в ионной регуляции фотосинтеза.

Кислород

Процесс фотосинтеза обычно осуществляется в аэробных а условиях при концентрации кислорода 21 %.Увеличение содержания или отсутствие кислорода для фотосинтеза неблагоприятны. Обычная концентрация 02 превышает оптимальную для фотосинтеза величину. У растений с высоким уровнем фотодыхания (бобы и др.) уменьшение концентрации кислорода с 21 до 3% усиливало фотосинтез, а у растений кукурузы (с низким уровнем фотодыхания) такого рода изменение не влияло на интенсивность фотосинтеза. Высокие концентрации 02 (25 - 30%) снижают фотосинтез («эффект Варбурга»). Предложены следующие объяснения этого явления. Повышение парциального давления 0 2 и уменьшение концентрации С02 активируют фотодыхание. Кислород непосредственно снижает активность РДФ-карбоксилазы. Наконец О2 может окислять первичные восстановленные продукты фотосинтеза.

Суточные и сезонные ритмы фотосинтеза

Исследования фотосинтеза растений естественных наземных экосистем были начаты в первой четверти XX в. работами В. Н. Любименко, С. П. Костычева и др. Факторы внешней среды, рассмотренные ранее, действуют совместно и в различных сочетаниях. Однако решающую роль играют свет, температура и водный режим. С восходом солнца интенсивность фотосинтеза возрастает вместе с освещенностью, достигая максимальных значений в 9—12 ч. Дальнейший характер процесса определяется степенью оводненности листьев, температурой воздуха и интенсивностью солнечного света. В полуденные часы интенсивность фотосинтеза не увеличивается: она может оставаться примерно на уровне утреннего максимума (в нежаркие, облачные дни) или несколько снижаться, но тогда к 16 — 17 ч наблюдается повторное усиление процесса. Интенсивность фотосинтеза падает после 22 ч с заходом солнца.

Дневная депрессия фотосинтеза (если имеет место) связана с нарушениями в деятельности фотосинтетического аппарата и оттока ассимилятов при перегреве, поскольку температура листьев в этот период может превышать температуру воздуха на 5—10°С. Если потери воды тканями велики и наблюдается усиление фотодыхания, то устьица в это время закрываются. Сезонные изменения фотосинтеза, изученные О. В. Заленским у растений пустынь и в условиях Арктики, показали, что у пустынных растений они зависят от особенностей онтогенеза, а у эфемеров с коротким вегетационным периодом максимальные интенсивности фотосинтеза наблюдаются в конце марта — середине апреля и совпадают с началом плодоношения. У растений, заканчивающих активную вегетацию в начале лета, сезонный максимум фотосинтеза отмечается перед наступлением летнего покоя.

У длительно вегетирующих деревьев и кустарников сезонный максимум регистрируется в самом начале жаркого и сухого периода. К осени интенсивность фотосинтеза постепенно снижается. У арктических растений сезонные изменения фотосинтеза проявляются в снижении его интенсивности в начале и в конце периода вегетации, когда растения часто подвержены действию заморозков. Максимум фотосинтеза отмечается в наиболее благоприятный период полярного лета.



biofile.ru

Фотосинтез – процесс пластического и энергетического обменов. Хемосинтез

Какое значение имеет фотосинтез для растений?Какое значение имеет фотосинтез для животных, грибов, бактерий?

Фотосинтез, общая характеристика. Все органические вещества, встречающиеся в живой природе, – продукты жизнедеятельности автотрофных организмов, синтезируемых ими из неорганических веществ. Такой процесс называется фотосинтезом. Основная роль в нем принадлежит фотосинтезирующим организмам, главным образом зеленым растениям, использующим для фотосинтеза энергию солнечного света, которая поглощается зеленым пигментом – хлорофиллом.

Кроме зеленых растений, к фотосинтезу способны некоторые прокариоты: цианобактерии (синезеленые), пурпурные и зеленые бактерии.

В ходе фотосинтеза создаются органические вещества, необходимые для жизни и самих фотосинтетиков, и гетеротрофных организмов.

Световая энергия в процессе фотосинтеза превращается в доступную для всех организмов энергию химических связей органических веществ, запасаемую в продуктах фотосинтеза (простые углеводы, крахмал и другие полисахариды). В процессе фотосинтеза зеленые растения и цианобактерии выделяют кислород, который используется при дыхании организмов (зеленые и пурпурные бактерии кислород не выделяют).

В фотосинтезе участвуют пигменты (зеленые – хлорофилл, желтые – каротиноиды), ферменты и другие соединения, упорядоченно расположенные на выростах внутренней мембраны – тилакоидах или в стреме хлоропласта. Тилакоиды представляют собой уплощенные замкнутые мембранные мешочки, которые как бы накладываются друг на друга и образуют структуры – граны, напоминающие стопки монет (рис. 14).Схема фотосинтезаРис. 14. Схема фотосинтезаФазы фотосинтеза. У растений в процессе фотосинтеза выделяют две последовательные фазы – световую и темновую.

Световая фаза фотосинтеза происходит на свету и только на внутренних мембранах хлоропласта – в тилакоидах, в которые встроены молекулы хлорофилла. В реакциях световой фазы участвуют хлорофилл, вода, ферменты и молекулы-переносчики, встроенные в мембраны.

Молекулы хлорофилла поглощают свет, электроны их атомов приходят в возбужденное состояние и перескакивают на орбитали, удаленные от ядра. Вследствие этого связь электронов с ядром ослабевает. Затем электроны подхватываются молекулами-переносчиками и выносятся на наружную сторону мембраны тилакоида (см. рис. 14).

В это же время под воздействием света происходит фотолиз воды, содержащейся в жидком веществе хлоропластов. Молекулы воды разлагаются на протоны водорода (H+) и ионы гидроксида (OH-). Последние отдают свои электроны, которые, в свою очередь, восполняют утраченные молекулами хлорофилла электроны. Гидроксильные группы (OH), соединяясь между собой, образуют молекулы воды и молекулярный кислород (O2), который выступает как побочный продукт фотосинтеза.

Протоны водорода накапливаются на внутренней стороне мембраны тилакоида. Постепенно по обеим сторонам мембраны между разноименно заряженными электронами и протонами водорода возникает разность потенциалов (см. рис. 14). При достижении критического уровня разности потенциалов протоны водорода начинают продвигаться по каналу белка АТФ-синтетазы, встроенного в мембрану тилакоида. Прохождение протонов водорода через канал АТФ-синтетазы сопровождается освобождением энергии, которая запасается в виде синтезируемой АТФ. На наружной стороне мембраны тилакоида протон водорода присоединяет электрон, превращаясь в атомарный водород (H).

В результате световой фазы синтезируются молекулы АТФ, образуется атомарный водород, выделяется молекулярный кислород. Эффективность световой фазы фотосинтеза велика: в результате фотохимических и фотофизических реакций запасается около 96% энергии поглощенного света.

Для осуществления темновой фазы свет не является обязательным условием, она протекает без участия света. Процессы темновой фазы происходят в строме хлоропластов, куда от тилакоидов гран поступают молекулы-переносчики, АТФ, а из воздуха – углекислый газ.

В строме имеется особое вещество – рибулозобифосфат (РиБФ), присоединяющий к себе углекислый газ с образованием шестиуглеродного промежуточного вещества. Оно, в свою очередь, распадается на две молекулы фосфоглицериновой кислоты (ФГК), которая является продуктом фотосинтеза, использующим энергию образующихся в световой фазе АТФ и атомарный водород. Через цепь химических реакций ФГК превращается частично вновь в РиБФ, частично – в глюкозу (см. рис. 14).

Суммарное уравнение фотосинтеза выглядит следующим образом:

6CO2 + 6h3O → C6h22O6 + O2

Значение фотосинтеза. Значение фотосинтеза столь велико, что можно сказать: от него зависит жизнь на нашей планете.

Космическая роль фотосинтеза объясняется тем, что это процесс на Земле, идущий в глобальном масштабе и связанный с превращением энергии солнечного излучения в энергию химических связей сложных органических веществ. Эта космическая энергия, запасаемая зелеными растениями, и составляет основу жизнедеятельности всех организмов – от бактерий до человека.

Важно, что в процессе фотосинтеза образуется молекулярный кислород, который выделяется в атмосферу. В настоящее время в результате сжигания топлива на нашей планете ежегодно расходуется огромное количество кислорода. И только благодаря фотосинтезу поддерживается его необходимое содержание в атмосферном воздухе.Кроме того, вследствие фотосинтеза, протекающего сотни миллионов лет, на Земле накопились запасы каменного угля.

Фотосинтез препятствует увеличению концентрации углекислого газа в атмосфере, предотвращая перегрев атмосферы Земли вследствие так называемого парникового эффекта.

Изучение фотосинтеза имеет существенное значение для развития сельского хозяйства, поскольку урожайность растений напрямую зависит от интенсивности процесса фотосинтеза.

Одно из перспективных направлений изучения механизма фотосинтеза – получение источника энергии, альтернативного нефти и газу. В настоящее время ученые пытаются моделировать процессы фотолиза (расщепления) воды. Если бы это удалось сделать, то водород, образующийся в результате расщепления воды, можно было сжигать в качестве топлива, а продуктом сгорания в этом случае была бы вода. Такой источник энергии экологически чистый и безопасный для окружающей среды.

Хемосинтез. В природе органические вещества синтезируются не только зелеными растениями и фотосинтезирующими бактериями, но и бактериями, не содержащими хлорофилла. Такой процесс синтеза органических веществ называют хемосинтезом. Открыл его известный русский микробиолог С. Н. Виноградский в 1887 г.

Хемосинтез представляет собой автотрофный процесс, происходящий благодаря энергии, которая выделяется при химических реакциях окисления различных неорганических соединений: водорода, сероводорода, серы, оксида железа (II), аммиака и др.

Хемосинтезирующими организмами также являются бактерии, которые используют в качестве источника углерода углекислый газ и энергию химических реакций (а не световую, как это происходит при фотосинтезе). Энергия, выделяющаяся при окислении неорганических веществ, запасается в клетках в форме АТФ.

В водоемах, в которых вода содержит сероводород, живут бесцветные серобактерии. Энергию, необходимую для синтеза органических веществ из углекислого газа, они получают на основе идущих с их участием реакций окисления сероводорода:

h3S + O2 → 2h3O + 2S + энергия

Выделяющаяся сера накапливается в клетках бактерий в виде крупинок свободной серы. При недостатке сероводорода бесцветные серобактерии производят дальнейшее окисление находящейся в них свободной серы до серной кислоты. Образовавшаяся при окислении энергия также используется для синтеза органических веществ из углекислого газа. Огромное количество серобактерий живет в водах Черного моря на глубине более 200 м.

Важную роль в природе играют нитрифицирующие бактерии, живущие в почве и некоторых водоемах и добывающие энергию окислением аммиака и азотистой кислоты. Аммиак в водоемах и почве образуется при гниении белков, там он окисляется бактериями. Этот процесс происходит в почве в колоссальных масштабах, служит источником нитратов и представляет собой важнейший фактор плодородия почвы.

Чрезвычайно широко распространены в природе бактерии, живущие как в пресных водоемах, так и в морях, и окисляющие соединения железа и марганца. Благодаря их жизнедеятельности на дне болот и морей откладывается огромное количество железных и марганцевых руд.

Вопросы и задания

  1. Какие фазы условно выделяют в процессе фотосинтеза растений?
  2. Какие условия необходимы для протекания световой фазы? Где происходят реакции световой фазы?
  3. Каково значение фотосинтеза?
  4. Как вы думаете, почему К А. Тимирязев роль зеленых растений на Земле назвал космической?
  5. Предложите способы влияния человека на интенсивность процесса фотосинтеза в условиях оранжереи или теплицы.
  6. Что такое хемосинтез? Какие организмы способны к хемосинтезу?
  7. Каково значение хемосинтеза в природе? Приведите примеры.

blgy.ru

Сущность и значение фотосинтеза

Синтезируемые в процессе фотосинтеза сахара почти сразу преобразуются в высокополимерные соединения – крахмал, накопленный в виде крахмальных зерен в хлоропластах и лейкопластах; одновременно часть сахаров выделяется из пластид и перемещается по растению в другие места. Сахар, преобразовавшийся в крахмал, тем самым на некоторое время выходит из дальнейших метаболических реакций; однако крахмал может вновь расщепляться до сахара, который окисляется и при этом обеспечивает клетку необходимой энергией.

Когда лучи соответствующей длины волны поглощаются хлоропластом, двуокись углерода химически восстанавливается до сахаров, а газоподобный кислород выделяется в объеме, равным восстановленному СО2. Эти изменения противоположны по направлению изменениям, которые происходят в процессе дыхания. Таким образом, важная роль растений в балансе природы связана и с тем, что они возвращают кислород в атмосферу, который необходим для других организмов.

Обозначивши формулой (СН2О) элементарную единицу молекулы углевода (молекула глюкозы С6Н12О6 построена из шести таких единиц), мы можем записать общее выражение фотосинтеза:

Суммарное уравнение фотосинтеза в свое время предложил Ж-Б. Буссенго. Этот процесс В. Пфеффер в 1887 году назвал фотосинтезом.

В 1842 году Ю. Майер сформулировал закон сохранения и преобразования энергии. Не забыл он и зеленые растения. Он писал, что природа поставила своей задачей перехватить приходящий на Землю свет и преобразовать эту подвижнейшую из сил в твердую форму, сложив ее в запас. Для достижения этой цели она покрыла земную кору растениями. Однако ученые того времени не обратили внимания на это высказывание.

Экспериментальное доказательство о том, что процесс фотосинтеза подчиняется закону сохранения и преобразования энергии сделал   К. А.  Тимирязев в 1867 г. Он показал, что интенсивней всего фотосинтез происходит в тех лучах, которые максимально поглощаются специальным пигментом – хлорофиллом. Поглощенная хлорофиллом энергия света дальше используется на образование органического вещества в растении и выделении О2.

Следовательно, фотосинтез – это процесс, связанный с накоплением света в растении, который собирается в органических веществах. Одновременно К. А. Тимирязев доказал ошибочность взглядов В. Пфеффера,   Ю. Сакса и Г. Дрепера. Последние считали, что фотосинтез интенсивней всего идет в самых ярких для человеческого глаза желтых лучах, а не в тех, которые поглощаются хлорофиллом.

Таким образом, суммарное выражение фотосинтеза отражает суть процесса, который сводится к тому, что на свету в зеленом растении из очень окисленных веществ – углекислого газа и воды – синтезируются органические вещества и выделяется молекулярный О2. В ходе этого синтеза происходит преобразование лучистой энергии в энергию химических связей органических веществ.

Все компоненты системы, принимающие участие в фотосинтезе, содержат кислород, поэтому приведенное уравнение не говорит откуда берется выделяемый при фотосинтезе кислород: из СО2 или Н2О. На протяжении многих лет биологи считали, что световая энергия тратится на расщепление молекулы СО2  и перенос атома С на Н2О с образованием (СН2О). Однако наблюдение за фотосинтезирующими организмами пошатнули эти представления.

Биохимический путь у фотосинтезирующих микроорганизмах аналогичен соответствующим процессам у высших растений, но все же немного отличается от них. Так у бактерий имеется только одна пигментная система, а не две. Кроме того, бактерии отличаются от зеленых растений и по природе своих хлорофиллов. Они содержат бактериохлорофилл и (или) хлоробиумхлорофилл (chlorobium – хлорофилл). Фотосинтез у бактерий отличается и по природе световой стадии. У некоторых бактерий восстановитель образуется за счет части молекул АТФ, синтезируемых в световой фазе, при этом запускается обратный перенос электронов по дыхательной цепи (или по фотосинтетической цепи переноса электронов, в которой включены некоторые компоненты дыхательной цепи). У других бактерий восстановитель восстанавливается аналогично растениям, с той только разницей, что в качестве конечного источника электронов используется не вода, а другие доноры электронов. Кроме того, фотосинтезирующие  бактерии не выделяют О2 в качестве конечного продукта.

Например, фотосинтезирующие пурпурные бактерии используют при фотосинтезе не Н2О, а Н2S, и в качестве побочного продукта фотосинтеза, выделяют не кислород, а серу.

Во многих местах зеленого шара важным природным источником серы служат отложения серы, образовавшиеся именно таким путем. Как видно, эта сера может происходить только с Н2S, разлагаемого в процессе фотосинтеза. Аналогичным путем ведут себя некоторые водоросли, которых можно «приучить» использовать вместо воды газоподобный водород Н2 для восстановления СО2 до (СН2О), т. е. до уровня углевода:

Известно, что в обоих случаях световая энергия растрачивается на разложение (фотолиз) донора водорода, а восстановительная сила, генерируемая таким путем, используется для преобразования СО2 в (СН2О).

Фотосинтез происходит и в тех многочисленных организмах, которые хоть и содержат хлорофилл, но не имеют зеленого цвета, потому что их цвет определяется присутствием других пигментов, маскирующих хлорофилл, например, бурые или красные водоросли.

Если у разных организмов существует какой либо общий механизм, то приведенные данные позволяют предполагать, что у высших растений световая энергия расходуется на разложение воды. Убедится в том, что мысль верна смогли тогда, когда биохимики начали использовать для изучения фотосинтеза Н2О или СО2, меченные тяжелыми изотопами кислорода (18О). В этих опытах было показано, что выделяющийся О2 всегда соответствует по своему  изотопному состоянию кислороду, который содержится в воде, а не а СО2. Вообще, фотолиз воды – это ключ ко всему процессу фотосинтеза, так как на этом этапе световая энергия используется для выполнения химической работы.

В молекуле кислорода, выделяемой при фотосинтезе у высших растений, содержится два атома О, а в молекуле воды – только один, а это значит, что в реакции должны участвовать две молекулы воды. Чтобы получить сбалансированное уравнение, которое бы правильно отражало механизм суммарной реакции, мы должны ввести в обе части этого уравнения еще по одной молекуле воды. Когда вода будет содержать 18О, то мы получим:

Если мы пометили при помощи 18О СО2,  тогда уравнение принимает следующий вид:

Выделяемый при фотосинтезе кислород образуется из вступающей в реакцию воды, образующиеся же молекулы воды, отличаются от тех двух молекул, которые принимают участие в фотосинтезе.

На рис. 1 приведена схема, которая помогает наглядно представить общий ход рассматриваемой реакции.

Рис. 1 Схема общего хода фотосинтеза

На этой схеме видно, что световая энергия используется на разложение воды. При этом выделяется кислород и образуется «водород» (или восстановительная сила), которая тратится:

1) на восстановление СО2 до конечного продукта фотосинтеза (СН2О).

2) на образование новой молекулы воды.

Это очень общее описание фотосинтеза, которое мы с вами будем уточнять в последующих лекциях.

Суммарное выражение фотосинтеза сыграло большую роль в развитии физиологии растений. Оно помогло ученым определить место фотосинтеза в жизни самих растений и существовании жизни на всей планете. Фотосинтез имеет большое значение и для самого растения. Образование органов, их рост тесно связаны с фотосинтезом. В периоды наиболее активного роста дневные приросты сухого вещества достигают от 100 до 500 кг на 1 га. При этом растение должно ассимилировать от 200 до 500 кг СО2, 1–2 кг азота, 0,25–0,5 кг фосфора, 2–4 кг калия, 2–4 кг других элементов и испарить до 1 000 л воды.

Лучистая энергия от солнца до Земли доходит в форме электромагнитных колебаний разной длинной волны. Около 40–45 % излучаемой солнцем энергии приходится на область от 380 до 720 нм. Эта часть спектра воспринимается как видимый свет. Тут располагаются известные цвета: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный.

Пигменты хлоропластов поглощают видимый свет, поэтому эта область была названа физиологически активной радиацией (ФАР). К ФАР со стороны более коротких волн прилегает ультрафиолетовая радиация, а со стороны более длинных – инфракрасная. Инфракрасные лучи не принимают участия в фотосинтезе, но принимают участие в регулировании других процессов жизнедеятельности растений. Коротковолновая радиация (ультрафиолетовая, γ-лучи, космические лучи), как показано, играют большую роль в мутагенезе растений, в изменении их наследственности.

Энергия, запасенная в процессе фотосинтеза за год, приблизительно в 100 раз больше энергии, образуемой при сгорании каменного угля, который добывается во всем мире за это время. Эта энергия используется для образования  органического вещества из неорганического. Каждый год в процессе фотосинтеза растения образуют 155 млрд. т сухого органического вещества.

Органические вещества, которые используют люди, животные, сначала образуются в зеленом листе. Большая часть той энергии, которая используется человеком в различных областях производства – это энергия солнца, преобразованная в зеленом листе и запасенная в каменном угле, нефти, древесине.

Для образования такого большого количества органического вещества растения поглощают на протяжении года 200 млрд. т СО2 и выделяют 145 млрд. т кислорода. Весь кислород атмосферы образовался в процессе фотосинтеза. Таким образом, процессы дыхания и горения смогли произойти только после возникновения фотосинтезирующих организмов.

Содержание СО2 в атмосфере беспрестанно пополняется за счет растворенных в воде карбонатов, бикарбонатов, выделения из почвы, за счет дыхания и горения.

Изучение фотосинтеза и раскрытие его механизмов является одной из наиболее важных и интересных задач физиологии растений. Во-первых, детальное изучение синтеза органических веществ в зеленом растении – один из путей решения проблемы питания в мире. Так как   95 % массы растения образуется в процессе фотосинтеза, то необходима теоретическая основа для увеличения урожая. Во-вторых, детальное изучение химизма фотосинтеза и строения фотосинтетического аппарата на молекулярном уровне открывают путь для моделирования фотосинтеза, и организации производства органических веществ в искусственных условиях. В-третьих, изучение процесса разложения воды зелеными растениями с помощью света и моделирование этого процесса в искусственных условиях позволит человечеству получать водород и использовать его в качестве экологически чистого топлива, что поможет решить энергетическую проблему.



biofile.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта