Половое размножение у растений. Половое размножение и его биологический смысл.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Половое размножение организмов. Половое размножение у растений


Половое размножение организмов :: SYL.ru

Размножение - это воспроизведение организмом себе подобных организмов. Благодаря ему обеспечивается непрерывность жизни. Существует два способа образования новых организмов: бесполое и половое размножение. Бесполое, в котором принимает участие только один организм, осуществляется с помощью деления клетки пополам, спорообразования, почкования или вегетативно. Оно характерно в основном для примитивных организмов. При бесполом размножении новые организмы являются копией родительского. Половое размножение происходит с помощью половых клеток, называемых гаметами. В нем в основном принимают участие два организма, что способствует появлению новых особей, отличающихся от родительских. Многим животным свойственно чередование бесполого и полового размножения.

половое размножение

Виды полового размножения

Существуют такие виды полового размножения:

  • двуполое;
  • гермафродитное;
  • партеногенез, или девственное размножение.

половое размножение

Раздельнополое размножение

Раздельнополое размножение характеризуется слиянием гаплоидных гамет, которое называют оплодотворением. При оплодотворении образуется диплоидная зигота, содержащая генетическую информацию обоих родителей. Для раздельнополого размножения характерно наличие полового процесса.

Типы полового процесса

Есть три типа полового процесса:

  1. Изогамия. Она характеризуется тем, что все гаметы подвижны и имеют одинаковые размеры.
  2. Анизогамия, или гетерогамия. Гаметы имеют различные размеры, существуют макрогаметы и микрогаметы. Но обе гаметы способны к движению.
  3. Оогамия. Для нее характерно наличие крупной неподвижной яйцеклетки и небольшого сперматозоида, способного к движению.

виды полового размножения

Гермафродитизм

Гермафродитизм отличается от двуполого размножения тем, что одна особь производит и женские, и мужские гаметы, делая возможным самооплодотворение. Он свойственен примитивным организмам, отличающимся сидячим, малоподвижным или паразитическим образом жизни: простейшим, некоторым кишечнополостным, плоским червям, олигохетам, ракообразным, некоторым моллюскам, отдельным видам рыб и ящериц, а также большинству цветковых растений.

Партеногенез

Некоторые организмы способны развиваться из неоплодотворенной клетки. Такое половое размножение называют партеногенезом. С его помощью размножаются муравьи, пчелы, осы, тли и некоторые растения. Разновидностью партеногенеза является педогенез. Оно характеризуется девственным размножением личинок. С помощью педогенеза размножаются некоторые двукрылые и жуки. Партеногенез обеспечивает быстрое увеличение численности популяции.

половое размножение растений

Размножение растений

Растения, как и животные, могут размножаться бесполым и половым путем. Отличие состоит в том, что половое размножение растений покрытосеменных происходит с помощью двойного оплодотворения. Что же это такое? При двойном оплодотворении, открытом Навашиным С.Г., в оплодотворении яйцеклетки принимают участие два спермия. Один из них объединяется с яйцеклеткой. При этом образуется диплоидная зигота. Второй спермий соединяется с диплоидной центральной клеткой, образуя триплоидный эндосперм, содержащий запас питательных веществ.

Биологический смысл полового размножения

Половое размножение делает организмы устойчивыми к изменяющимся и неблагоприятным условиям окружающей среды, повышает их жизнеспособность. Этому способствует разнообразие потомства, рождающегося в результате объединения наследственности двух организмов.

www.syl.ru

Половое размножение у растений

ТОП 10:

Размножение - это воспроизведение особями себе подобных. Оно позволяет поддерживать преемственность между поколениями поддерживать численность популяции на/ определенном уровне. Способы размножения растении: Бесполое размножение осуществляется с помощью спор. Спора - это специализированная клетка, прорастающая без слияния с другой клеткой. Половое размножение связано со слиянием специа-лизированных половых клеток - гамет с образованием зиготы. Гаметы могут быть одинаковыми и разными в морфологическом отношении. Изогамия - слияние одинаковых гамет; гетерогамия - слияние разных по размеру гамет; оогамия - слияние подвижного сперматозоида с крупной неподвижной яйцеклеткой. Для некоторых групп растении характерно чередование поколений, при котором половое поколение продуцирует половые клетки (гаметофит), а не половое поколение производит споры (спорофит).гаметы образ. В половых органах гаметангиях 'антеридии (мужЛ, оогонии и архегонии (жен Л. Развитие половых клеток: деление первичных половых клеток с диплоидным набором хромосом путем митоза увеличение числа клеток, дальнейший их рост и созревание, мейоз- созревание половых клеток, особый вид деления, обеспечивающий формирование гамет с уменьшенным вдвое числом хромосом. Мейоз – . Фазы меиоза:,метафаза, анафаза, телофаза. первого деления Меиоза:конъюгация гомологичных хромосом,возможность обмена генами, расхождение гомологичных хромосом из двух хроматид и образование двух клеток с гаплоидным числом хромосом.Второе деление мейоза:расхождение хроматид к полюсам клетки, образование из каждой клетки двух с гаплоидным числом хромосом.при отделении хроматид друг от друга они становятся хмосомами). Сходство второго деления-меиоза с митозом,образование в процессе мейоза четырех полноценных мужских гамет из одной первичнои половой клетки и одной яйцеклетки из первичной половой клетки (три мелкие клетки при этом рассасываются). Сущность меиоза - образование из клеток с диплоидным набором хромосом половых клеток с гаплоидным набором хромосом. Оплодотворение происходит после опыления.Опыление - это процесс переноса пыльцы спыльника на рыльце пестика у цветковыхрастений и на микрополе семязачатка голосеменных. Опыление предшествует оплодотворению. Различают самоопыление и перекрестное опыление.Самоопыление осуществляется в распустившихся цветках,иногда в нераспустившихся. Перекрестное опыление свойственно большинству цветковых растении. Оно обеспечивает обмен генами, поддерживает высокий уровень гетерозиготности популяций, определяет целостность и единство вида. Перекрестное опыление заключается в переносе пыльцы с одного цветка на другой на одном и том же растении или на рыльце пестика другого растения.У некоторых растений оплодотворение происходит через несколько дней или недель, у сосны даже через год. Для осуществления оплодотворения необходимо чтобы пыльца была зрелой и жизнеспособной,а в семязачатке должен сформироваться зародышевый мешок. Так, у покрытосеменных пыльцевое зерно, попав на рыльце пестика, прорастает. В ткани рыльца пестика внедряется пыльцевая трубка. По мере роста пыльцевой трубки в нее перетекают ядро вегетативной клетки и оба спермия. Проникнув в зародышевый мешок, пыльцевая трубка разрывается под действием разницы осмотического давления из спермиев сливается с яйцеклеткой и образуется диплоидная зигота, дающая начало зародышу.Второй спермии сливается с центральной двуядернои клеткой, при этом образуется триплоидное ядро, дающее начало эндосперму (питательной ткани для зародыша).Весь этот процесс получил название двойного оплодотворения. Прочие клетки зародышевого мешка разрушаются. Зародыш (зачаточный побег) вместе с эндоспермом образуют семя, покрытое .кожурой.

60.Генетика пола.Типы хромосомного определеня пола.

Пол - совокупность признаков, по которым производится специфическоеразделение особей или клеток, основанное на морфологических ифизиологических особенностях, позволяющее осуществлять в процессе половогоразмножения комбинирование в потомках наследственных задатков родителей. Морфологические и физиологические признаки, по которым производитсяспецифическое разделение особей, называется половым. Признаки, связанные с формированием и функционированием половыхклеток, называется первичными половыми признаками.

У растений и животных хромосомный механизм определения пола является наиболее распространённым. Согласно хромосомной теории, пол организма определяется половыми хромосомами (гоносомами). В зависимости от того, какой пол является гетерогаметным, выделяют следующие типы хромосомной детерминации:

В ходе онтогенеза определение пола может происходить в момент оплодотворения (хромосомные механизмы), а также контролироваться внутренними (гормоны) и/или внешними факторами. У человека и высших животных большую роль в развитии полового поведения играет также воспитание и обучение.

Признаки, сцепленные с X-хромосомой. Если ген находится в половой хромосоме (его называют сцепленным с полом), то проявление его у потомков следует иным, чем для аутосомых генов, правилам. Рассмотрим гены, находящиеся в X-хромосоме. Дочь наследует две X-хромосомы: одну - от матери, а другую - от отца. Сын же имеет только одну X-хромосому - от матери; от отца же он получает Y-хромосому. Поэтому отец передает гены, имеющиеся в его X-хромосоме, только своей дочери, сын же их получить не может. Поскольку X-хромосома более "богата" генами по сравнению с Y-хромосомой, то в этом смысле дочь генетически более схожа с отцом, чем сын; сын же более схож с матерью, чем с отцом. Один из исторически наиболее известных сцепленных с полом признаков у человека - это гемофилия, приводящая к тяжелым кровотечениям при малейших порезах и обширным гематомам при ушибах. Она вызывается рецессивным дефектным аллелем 0, блокирующим синтез белка, необходимого для свертывания крови. Ген этого белка локализован в Х-хромосоме. Гетерозиготная женщина +0 (+ означает нормальный активный аллель, доминантный по отношению к аллелю гемофилии 0) не заболевает гемофилией, и ее дочери тоже, если у отца нет этой патологии. Однако ее сын может получить аллель 0, и тогда у него развивается гемофилия.

 



infopedia.su

Половое размножение и его биологический смысл.

Размножение – важнейшее свойство всего живого. Вид, размножающийся только бесполым путем, может процветать достаточно длительное время, если он обитает в относительно постоянных условиях. При возникновении в среде его обитания изменений, которые вызывают гибель отдельных особей, весьма вероятно, что погибнут все особи, потому что они очень сходны генетически.

Половое размножение – более прогрессивная форма размножения, очень широко распространено в природе, как среди растений, так и среди животных. Образующиеся в процессе полового размножения организмы отличаются друг от друга генетически, а также по характеру приспособленности к условиям обитания.

При половом размножении материнским и отцовским организмами вырабатываются специализированные половые клетки – гаметы. Женские неподвижные гаметы называются яйцеклетками, мужские неподвижные – спермиями, а подвижные – сперматозоидами. Эти половые клетки сливаются с образованием зиготы, т.е. происходит оплодотворение. Половые клетки, как правило, имеют половинный набор хромосом (гаплоидный), так что при их слиянии восстанавливается двойной (диплоидный) набор, из зиготы развивается новая особь. При половом размножении потомство образуется при слиянии гаплоидных ядер. Гаплоидные ядра образуются в результате мейотического деления.

Мейоз ведет к уменьшению генетического материала вдвое, благодаря чему количество генетического материала у особей данного вида в ряду поколений остается постоянным. Во время мейоза происходит несколько важных процессов: случайное расхождение хромосом (независимое расчленение), обмен генетическим материалом между гомологичными хромосомами (кроссинговер). В результате этих процессов возникают новые комбинации генов. Поскольку ядро зиготы после оплодотворения содержит генетический материал двух родительских особей, это повышает генетическое разнообразие внутри вида. Если суть и биологическое значение полового процесса едины для всех организмов, то его формы очень разнообразны и зависят от уровня эволюционного развития, среды обитания, образа жизни и некоторых других особенностей.

Половое размножение есть у всех групп растений. Мхи растут дернинами. Мужские и женские растения оказываются рядом. Дождевая вода помогает сперматозоидам попасть на верхушки женских растений, где они сливаются с яйцеклетками, образуется зигота, из которой развивается сидящая на длинной ножке коробочка со спорами. У папоротников половые клетки развиваются на заростке, образовавшемся в результате прорастания споры. На нижней стороне заростка женские органы – архегонии, мужские – антеридии. Во влажной среде половые клетки сливаются, зигота дает начало зародышу, из которого вырастает молодой папоротник. У цветковых растений самое сложное половое размножение – двойное оплодотворение. Пыльца (мужские половые клетки) попадает на рыльце пестика (женский половой орган) и прорастает. По пыльцевой трубке спермии движутся к семязачатку. Спермии проникают в зародышевый мешок. Один сливается с яйцеклеткой и дает начало зародышу, второй спермий сливается с центральной клеткой и дает начало эндосперму – запасу питательных веществ.

У животных половое размножение связано с образованием половых клеток, которое происходит в специализированных органах – половых железах, в результате особого процесса. Половые клетки отличаются от всех остальных клеток тела уменьшенным вдвое набором хромосом. Яйцеклетка неподвижна, содержит набор питательных веществ, сперматозоиды мелкие, подвижные. Половые клетки могут образоваться в разных организмах, а могут в одном. Такие организмы называют гермафродитами (плоские черви). В природе явление гермафродитизма распространено чрезвычайно широко. Он считается самой примитивной формой полового размножения и распространен преимущественно у примитивных организмов. Одним из основных преимуществ гермафродитизма заключается в возможности самооплодотворения, что очень важно для некоторых крупных внутренних паразитов, ведущих одиночный образ жизни. Еще одной модификацией полового размножения является партеногенез. При таком способе размножения женская гамета развивается в дочернюю особь без оплодотворения мужской гаметой. Ярким примером партеногенеза является размножение общественных насекомых, пчел, муравьев, термитов.

Половое размножение имеет очень большие эволюционные преимущества по сравнению с бесполым. Сущность полового размножения заключается в объединении в наследственном материале потомка генетической информации из двух разных источников – родителей. Оплодотворение у животных может быть наружным или внутренним. При слиянии образуется зигота с двойным набором хромосом.

В ядре зиготы все хромосомы становятся парными: в каждой паре одна из хромосом отцовская, другая – материнская. Дочерний организм, который разовьется из такой зиготы, в одинаковой мере снабжен наследственной информацией обоих родителей.

Биологический смысл полового размножения состоит в том, что возникающие организмы могут сочетать полезные признаки отца и матери. Такие организмы более жизнеспособны. Половое размножение играет важную роль в эволюции организмов.

ebiology.ru

Половое размножение

Половое размножение

Образование мужского н женского гаметофитов. Отличительная особенность полового размножения — наличие полового процесса, одним из важнейших этапов которого является оплодотворение с последующим образованием зиготы. Из последней в дальнейшем развивается зародыш — зачаток нового организма. У высших семенных растений отмечен только один тип полового процесса — оогамия. Кроме того, у них в результате сочетания бесполого размножения с половым образуются особые зачатки — семена, при помощи которых происходит расселение растений.

У покрытосеменных растений органом размножения является цветок. Для выяснения функционирования цветка необходимо проследить, какие процессы происходят в тычинках и пестиках. Как сказано выше, тычинка состоит из тычиночной нити и пыльника. Каждый пыльник образован двумя половинками, в которых развивается по две пыльцевые камеры (гнезда) — микроспорангии. В гнездах молодого пыльника имеются особые диплоидные клетки —микроспороциты, или материнские клетки микроспор. Каждый микроспороцит претерпевает мейоз и образует четыре микроспоры. Здесь же, внутри пыльцевого гнезда, микроспора увеличивается в размерах, ядро ее делится митотически, и образуется два ядра — вегетативное и генеративное. На поверхности бывшей микроспоры образуется прочная целлюлозная оболочка с несколькими округлыми порами, сквозь которые в конечном итоге прорастают пыльцевые трубки. В результате этих процессов каждая микроспора превращается в пыльцевое зерно (пыльцу) —-мужской гаметофит цветковых растений (рис. 8.18).

У однодольных растений в пыльцевом зерне, находящемся в пыльнике, генеративное ядро делится митотически с последующим образованием двух неподвижных мужских гамет — спер-миев. У двудольных образование спермиев происходит позже, когда пыльца попадает на рыльце пестика. Таким образом, зрелое пыльцевое зерно состоит из двух (вегетативной и генеративной) или из трех (вегетативной и двух спермиев) клеток.

Рис. 8.18. Тычинки: а — общий вид тычинок; б —развитие пыльцевых гнезд; в —- пыльца и ее прорастание; I — пыльник; 2 — тычиночная нить; 3 — пыльца; 4 — экзина; 5 — интина; б — генеративное ядро; 7 — вегетативное ядро; 8 — пыльцевая трубка.; 9 — два спермия; 10 — эпидермис; И — фиброзный слой; 12 — спорогенная ткань; 13 — гнездо пыльника.

Образование женского гаметофита происходит в семязачатке (семяпочке), находящемся внутри завязи пестика (рис. 8.19). Семязачаток — это видоизмененный мегаспорангий (нуцеллус), защищенный покровами. Покровы на верхушке не срастаются и образуют узкий канал — пыльцевход. В нуцеллусе, вблизи пыльцевхода, начинает развиваться диплоидная клетка — мегаспороцит (макроспороцит). Он делится мейотически, давая четыре гаплоидные макро- или мегаспоры, обычно расположенные линейно. Три мегаспоры вскоре разрушаются, а четвертая, наиболее удаленная от пыльцевхода, развивается в зародышевый мешок.

Рис. 8.19. Образование макроспор в семязачатке (а—в) и развитие зародышевого мешка (г—д): 1 —нуцеллус; 2 — пыльцевход; 3 — покровы семязачатка; 4—семяножка; 5—макроспороцит; 6 —макроспоры; 7 — одноядерный зародышевый мешок; 8,9 — двухъядерные мешки; И,12 - молодой и зрелый восьмиядерные мешки; 13—яйцеклетка; 14 — синергиды; 15 — полярные ядра; 16 — антиподы.

Последний растет, его ядро трижды делится митотически, в результате чего образуется восемь дочерних ядер. Они располагаются по четыре двумя группами— вблизи, пыльцевхода зародышевого мешка и на противоположном полюсе. Затем от каждого полюса отходит но одному ядру в центр зародышевого мешка. Это так называемые полярные ядра. В дальнейшем они могут сливаться, превращаясь в одно центральное, или вторичное диплоидное ядро (или их слияние происходит позднее, при оплодотворении). Остальные шесть ядер, по три на каждом полюсе, разделяются тонкими клеточными перегородками. При этом на полюсе у пыльцевхода образуется яйцевой аппарат, состоящий из яйцеклетки и двух клеток-синергид. На противоположном полюсе возникают так называемые клетки-антиподы, которые определенное время участвуют в доставке к клеткам зародышевого мешка питательных веществ, а затем исчезают'. Такая восьмиядерная семиклеточная структура — зародышевый мешок — является зрелым женским гаметофитом, готовым к оплодотворению. Образование пыльцы и зародышевого мешка у большинства растений завершается одновременно.

Опыление. У цветковых растений процессу оплодотворения предшествует опыление.

Опыление—это перенос пыльцы из пыльников тычинок на рыльце пестика. Различают два типа опыления: самоопыление и перекрестное опыление. При самоопылении пыльцевые зерна переносятся на рыльце пестика того же цветка (ячмень, горох, тюльпан). У перекрестноопыляющихся растений осуществляется перенос пыльцы из тычинок цветков одною растения на рыльце пестика другого.

Наиболее часто перекрестное опыление осуществляется насекомыми и значительно реже ветром (береза, ольха, пырей, осоки), птицами, водой (водные растения).

В процессе длительной эволюции приспособление цветка к опылению насекомыми привело к формированию ярких, хорошо заметных, часто с приятным запахом цветков с нектарниками, вырабатывающими сладкую сахаристую жидкость. Кроме того, у таких растений образуется много пыльцы, которая служит кормом для ряда насекомых. Привлеченные яркой окраской или запахом цветка, насекомые, извлекая нектар из глубины цветка, касаются липкой или шероховатой поверхности пыльцевых зерен, которая прилипает к их телу. Перелетев на другой цветок, насекомое переносит часть пыльцы на рыльце пестика.

У цветков ветроопыляемых растений околоцветник отсутствует или плохо развит и не препятствует движению ветра; тычинки длинные, свисающие; пыльца сухая и мелкая, образуется в большом количестве; рыльца пестиков длинные, часто перистые. Большинство ветроопыляемых растений цветут до появления листьев, что облегчает опыление.

При перекрестном опылении, в отличие от самоопыления, у растений повышается уровень гетерозиготности потомства, что позволяет ему легче адаптироваться к постоянному изменению условий среды. В то же время самоопыление имеет одно существенное преимущество по сравнению с перекрестным: оно не зависит от погодных условий и посредников, поэтому осуществляется при любых условиях.

Оплодотворение. Попав на рыльце пестика, пыльцевое зерно начинает прорастать (рис. 8.20). Из Beгетативной клетки развивается длинная пыльцевая трубка, дорастающая по тканям столби ка до завязи и далее —до семязачатка. Из генеративной клетки к этому моменту образуются два спермия, которые спускаются в пыльцевую трубку. Рост пыльцевой трубки стимулируют ауксины, вырабатываемые пестиками, а к завязи она направляется в результате хемотропизма.

Рис. 8.20. Схема двойного оплодотворения у цветковых растений: а — продольный разрез пестика; б — прорастание пыльцевого зерна; в — проникновение пыльцевой трубки в зародышевый мешок; г — излияние содержимого пыльцевой трубки (двух спермиев) в зародышевый мешок; д — зародышевый мешок после оплодотворения: 1 — прорастающее пыльцевое зерно; 2 — пыльцевая трубка; 3 — завязь; 4 — зрелый зародышевый мешок; 5 — спермии; 6 — вегетативное ядро; 7 — си-нергиды; 8 — яйцеклетка; 9 — полярные ядра; 10 — антиподы; 11 — зигота; 12 — триплоидное ядро эндосперма.

Пыльцевая трубка входит в семязачаток через пыльцевход, ее ядро разрушается, а кончик трубки при соприкосновении с оболочкой зародышевого мешка разрывается, освобождая мужские гаметы. Спермии проникают в зародышевый мешок в синергиду или в щель между яйцеклеткой и центральным ядром. Вскоре после вхождения пыльцевой трубки в зародышевый мешок синергиды и антиподы отмирают.

После этого один из спермиев оплодотворяет яйцеклетку. В результате образуется диплоидная зигота, из которой развивается зародыш нового растительного организма. Второй спермий сливается с двумя полярными ядрами (или с центральным диплоидным ядром), образуя тришюидную клетку, из которой впоследствии возникает питательная ткань —эндосперм. В его клетках содержится запас питательных веществ, необходимых для развития зародыша растения.

Слияние одного спермия с яйцеклеткой, а другого с полярными ядрами представляет собой уникальную особенность покрытосеменных — двойное оплодотворение. Такой способ оплодотворения был открыт в 1898 г. русским цитологом и эмбриологом С. Г. Навашиным.

Благодаря двойному оплодотворению происходит очень быстрое образование и развитие эндосперма. В сочетании с огромным числом поколений этим достигается существенная экономия энергетических ресурсов растений. Двойное оплодотворение ускоряет также весь процесс формирования семязачатка и семени.

После оплодотворения семязачаток развивается в семя, завязь пестика формирует плод.

У многих растений в образовании плода участвуют и другие части цветка: разросшееся цветоложе, основания чашелистиков, лепестков, тычинок (например, у яблони, груши).

sbio.info

Виды полового размножения многоклеточных организмов | Учеба-Легко.РФ

У животных чаще встречается раздельнополость, т. е. наличие мужских и женских особей (самцов) и (самок), которые нередко различаются по размерам и внешнему виду (половой диморфизм).

Половые клетки образуются в специальных органах — половых железах. Мелкие, снабженные жгутиком, подвижные сперматозоиды формируются в семенниках, а крупные неподвижные яйцеклетки (яйца) — в яичниках.

Процесс оплодотворения у многоклеточных организмов, как и у одноклеточных, заключается в слиянии мужских и женских гамет. Как правило, затем сразу же происходит и слияние их ядер с образованием диплоидной зиготы (оплодотворенной яйцеклетки) (рис.1).

 

Рис. 1. Схема, иллюстрирующая механизм сохраниения диплоидного набора хромосом при половом размножении

Сформировавшаяся зигота объединяет в своем ядре гаплоидные наборы хромосом родительских организмов. У развивающегося из зиготы дочернего организма происходит комбинирование наследственных признаков обоих родителей.

У многоклеточных организмов различают наружное оплодотворение (при слиянии гамет вне организма) ивнутреннее оплодотворение, происходящее внутри родительского организма. Наружное может осуществляться только в водной среде, поэтому оно наиболее широко встречается у водных организмов (водорослей, кишечнополостных, рыб). Наземным организмам чаще свойственно внутреннее оплодотворение (высшие семенные растения, насекомые, высшие позвоночные животные).

Различают также перекрестное оплодотворение (при слиянии гамет от разных особей) и самооплодотворение (при слиянии мужских и женских гамет, продуцируемых двуполым организмом — гермафродитом, например, у некоторых паразитических червей). Цветковым растениям присуще двойное оплодотворение, при котором один спермий сливается с яйцеклеткой, а второй — с диплоидной центральной клеткой зародышевого мешка. В результате образуются зигота и триплоидная клетка, дающая начало эндосперму — ткани, в клетках которой запасаются питательные вещества, необходимые для развития зародыша.

Нетипичное половое размножение

Речь пойдет о партеногенезе, гиногенезе, андрогенезе, полиэмбрионии, двойном оплодотворении у покрытосеменных растений.

Партеногенез (девственное размножение)

Открыт в середине XVIII в. швейцарским натуралистом Ш. Бонне. Партеногенез встречается у растений и животных. При нем развитие дочернего организма осуществляется из неоплодотворенной яйцеклетки. Причем образующиеся дочерние особи, как правило, либо мужского пола (трутни у пчел), либо женского (у кавказских скальных ящериц), кроме того, могут рождаться потомки обоих полов (тли, дафнии). Количество хромосом у партеногенетических организмов может быть гаплоидным (самцы пчел) или диплоидным (тли, дафнии).

Значение партеногенеза:

1)  размножение возможно при редких контактах разнополых особей;

2)  резко возрастает численность популяции, так как потомство, как правило, многочисленно;

3)  встречается в популяциях с высокой смертностью в течение одного сезона.

Виды партеногенеза:

1)  облигатный (обязательный) партеногенез. Встречается в популяциях, состоящих исключительно из особей женского пола (у кавказской скалистой ящерицы). При этом вероятность встречи разнополых особей минимальна (скалы разделены глубокими ущельями). Без партеногенеза вся популяция оказалась бы на грани вымирания;

2)  циклический (сезонный) партеногенез (у тлей, дафний, коловраток). Встречается в популяциях, которые исторически вымирали в больших количествах в определенное время года. У этих видов партеногенез сочетается с половым размножением. При этом в летнее время существуют только самки, которые откладывают два вида яиц — крупные и мелкие. Из крупных яиц партеногенетически появляются самки, а из мелких — самцы, которые оплодотворяют яйца, лежащие зимой на дне. Из них появляются исключительно самки; факультативный (необязательный) партеногенез. Встречается у общественных насекомых (ос, пчел, муравьев). В популяции пчел из оплодотворенных яиц выходят самки (рабочие пчелы и царицы), из неоплодотворенных — самцы (трутни).

У этих видов партеногенез существует для регулирования численного соотношения полов в популяции.

Выделяют также естественный (существует в естественных популяциях) и искусственный (используется человеком) партеногенез. Этот вид партеногенеза исследовал В. Н. Тихомиров. Он добился развития неоплодотворенных яиц тутового шелкопряда, раздражая их тонкой кисточкой или погружая на несколько секунд в серную кислоту (известно, что шелковую нить дают только самки).

Гиногенез (у костистых рыб и некоторых земноводных). Сперматозоид проникает в яйцеклетку и лишь стимулирует ее развитие. Ядро сперматозоида при этом с ядром яйцеклетки не сливается и погибает, а источником наследственного материала для развития потомка служит ДНК ядра яйцеклетки.

Андрогенез. В развитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.

Полиэмбриония. Зигота (эмбрион) делится на несколько частей бесполым способом, каждая из которых развивается в самостоятельный организм. Встречается у насекомых (наездников), броненосцев. У броненосцев клеточный материал первоначально одного зародыша на стадии бластулы равномерно разделяется между 4—8 зародышами, каждый из которых в дальнейшем дает полноценную особь.

К этой категории явлений можно отнести появление однояйцовых близнецов у человека.

Источник: Краснодембский Е. Г."Общая биология: Пособие для старшеклассников и поступающих в вузы"

Н. С. Курбатова, Е. А. Козлова "Конспект лекций по общей биологии"

uclg.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта