Искусственное освещение растений. Освещение искусственное растений
Выращиваем растения при искусственном освещении
Комнатные растения радуют глаз и преображают квартиру в лучшую сторону, но при этом требуют тщательного ухода. Неправильно считать, что их достаточно поливать и поставить на подоконник на солнце. Для того чтобы цветы росли, им требуется и специальная подкормка, и особый световой режим. Давайте разберёмся, какое освещение требуется для растений и как его добиться с учётом особенностей вида.
В этой статье:
Зачем нужно дополнительное освещение
Зачем растениям нужен свет, знает каждый из школьного курса ботаники. С помощью света происходит процесс фотосинтеза, в результате которого образуются вещества, необходимые для питания и роста. Фотосинтез происходит под воздействием солнца, разве недостаточно просто поставить горшок с цветком на подоконник? К сожалению, нет, потому что растения бывают разные и климатические условия, в которых они содержатся, могут им не подходить. Поэтому искусственное освещение для комнатных растений необходимо.
Узнайте как хорошо вы знакомы с освещением! Ответьте на 7 вопросов (тест)
Лимит времени: 0
Информация
Тест покажет вам: хорошо ли вы разбираетесь в освещении?
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Правильных ответов: 0 из 7
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат |
|
Ваш результат |
|
-
Поздравляем, вы прошли тест!
Таблица загружается | ||||
Нет данных | ||||
- С ответом
- С отметкой о просмотре
В зависимости от необходимости освещения комнатные растения делятся на:
- Тенелюбивые — 700-1000 люкс. Это пуансеттия, плющ, калатея, маранта.
- Теневыносливые — 1000-2500 люкс. К ним относятся антуриум, монстера, фикус, спатифиллум, фаленопсис, диффенбахия, драцена, фуксия.
- Светолюбивые — от 2500 люкс. Это пелларгония, разные виды роз, гибискус, кактусы.
Несмотря на то что нижняя граница для тенелюбивых растений 700 люкс, это не значит, что они будут при таком уровне освещённости хорошо себя чувствовать и цвести. Этого уровня хватает только на поддержание жизни. То же самое касается кактусов и цитрусов. Хоть для светолюбивых и установлена планка в 2500 люкс, для завязи плодов в цветения им необходимо не менее 8000.
Саженцам необходимо круглосуточное освещение для быстрого роста. Планомерно количество света уменьшают до 15 часов в день. В среднем взрослому цветку нужен световой день длительностью 12-13 часов. Круглосуточная освещённость взрослым растениям вредна.
Если сравнить экземпляры, например, два одуванчика, выросших в разных условиях — в тени и на солнце, то у первого будут длинные листья, тянущиеся вверх. Второй, выросший на солнце, будет более приземистый, с широкими, густыми листьями. Это говорит о том, что световой уровень оказывает влияние даже на внешний вид цветка.
Характеристики света
Ошибочно предполагать, что цветам нужен только яркий солнечный свет. В листве кроме хлорофилла содержатся каротиноиды, которые тоже участвуют в процессе фотосинтеза. Они поглощают лучи синего и фиолетового спектра, которые преобладают в пасмурные дни.
Синий и фиолетовый цвета нужны в первую очередь взрослым растениям. А вот молодым побегам нужен больше красный и оранжевый, он же требуется для выращивания молодых побегов семян. Красный свет помогает развитию корней и созреванию плодов. Таким образом, становится понятно, что для полноценной жизнедеятельности комнатных растений им требуется дополнительное освещение, которое будет обеспечивать все цвета спектра.
Важным параметром являются уже упомянутые выше люксы (Лк), которые характеризуют уровень освещённости. Световой поток лампы измеряется в люменах (Лм), чем выше этот показатель, тем ярче лампочка. Эти показатели соотносятся следующим образом: источник света с потоком в 1 Лм, освещающий поверхность площадью 1 кв.м, создаёт освещённость 1 Лк.
Виды ламп
В зависимости от вышеуказанных показателей нужно выбирать подходящую лампу. Выращивание растений при искусственном освещении осуществляется с помощью люминесцентных, светодиодных и ламп накаливания. Сравним преимущества и недостатки каждого типа.
Лампы накаливания
Всем известные лампочки кажутся самым простым и оптимальным способом подачи дополнительного света. Однако включать их в одиночку строго запрещено. В спектре обычных лампочек нет синего и фиолетового цветов. Они создают дополнительный нагрев и пересушивают побеги. Располагать их на высоте ниже 1 м нельзя — это приведёт к ожогу листьев. Подвешивание выше 1 м тоже нецелесообразно, так необходимый уровень освещения не будет достигнут.
Существуют следующие разновидности ламп накаливания:
- неодимовые — внутри содержится неодим, который поглощает жёлто-зелёную часть спектра.
Подобные усовершенствования не делают лампу накаливания более эффективной для дополнительного освещения растений. К тому же, их светоотдача слишком мала — 17-25 Лм/Вт.
Люминесцентные лампы
Один из самых распространённых типов светильников среди цветоводов. Он даёт необходимые цвета спектра — синий и красный. Несомненное преимущество — долговечность в использовании и дешевизна. Существует несколько видов люминесцентных ламп:
- общего назначения;
- специального назначения;
- компактные.
Лампы общего назначения используются как для света в помещениях, так и для подсветки декоративных цветов, их можно применять для подачи дополнительного света для аквариумных растений. Высокая светоотдача в 50-70 Лм/Вт, низкая нагреваемость и долговечность служит хорошей характеристикой для таких светильников.
Специальные лампочки отличаются от предыдущих тем, что на поверхность колбы нанесён особый вид люминофора, который делает свет максимально приближенным к нужному спектральному значению. Таким образом, для подсветки декоративных растений целесообразно применять именно лампы спецназначения.
Компактные лампочки подходят для подсветки отдельно взятого растения, использовать их в оранжереях нельзя. Они удобны в установке, при монтаже их достаточно просто вкрутить в плафон. Из недостатков — низкая мощность в 20 Вт, а значит, её можно использовать только для одного экземпляра, повесив на высоте около 30-40 см.
Существуют небольшие фитолампочки с усиленной мощностью, которые можно эксплуатировать вместе с рефлектором для освещения небольшой оранжереи. Их мощность — 36-55 Вт, спектр содержит красный и синий цвета. Среди недостатков — высокая цена.
Газоразрядные лампы
Отличное решение для освещения теплиц или оранжерей. Газоразрядные фитолампы высокого давления подключаются к электросети через специальный балласт. Они небольшие по размерам, но при этом дают много освещённости. Бывают трёх видов:
- ртутные;
- натриевые;
- металлогалоидные.
Ртутные лампы практически вышли из употребления среди цветоводов. Из-за специального покрытия внутри колбы они обладают неприятным синим свечением и низкой светоотдачей.
Натриевая лампа со встроенным отражателем обладает удивительной способностью освещать целую оранжерею или зимний сад. Светоотдача очень высока, а длительность непрерывной работа составляет 12-20 тыс. часов. Недостатком является преобладание красных спектральных цветов, поэтому для полноценного освещения лучше применять ещё один, компенсирующий недостачу синего цвета, светильник.
Самым оптимальным среди газоразрядных светильников считается металлогалоидный. У него подходящий для цветов спектр, высокая светоотдача и мощность. Единственный недостаток — дороговизна. К тому же для установки требуется специальный патрон.
Светодиодные лампы
Стоит сказать, что слово «лампочка» не совсем подходит к ЛЕД-светильникам. В первую очередь это твердотельный полупроводниковый прибор, абсолютно безопасный в эксплуатации, ведь в составе нет опасных газов или ртути.
Свет образуется при помощи электрического тока, который проходит сквозь установленный внутри кристалл. Вся энергия тратится на получение света, а значит, сам прибор не нагревается, что очень важно для цветов.
Светодиодное освещение комнатных растений считается оптимальным по своим характеристикам. Во-первых, длительность работы прибора может достигать нескольких лет при непрерывном включении. Во-вторых, в спектре отсутствует инфракрасное и ультрафиолетовое излучение, а значит, светильник безопасен для людей и других живых существ.
Цвет зависит от помещённого внутрь прибора кристалла. Бывают такие светильники, внутри которых содержится несколько кристаллов, они одновременно обеспечивают получение нескольких спектральных цветов. Регулировать яркость отдельного светодиода можно, изменяя силу тока. Светодиодные приборы легко установить своими руками, для этого не требуется специальных знаний и умений электрика.
Единственным недостатком светодиодного освещения считается дороговизна ламп. Но этот недостаток полностью нивелируется преимуществами LED-светильников.
Каждый цветовод решает сам, какой вид дополнительной подсветки ему стоит выбрать. Знание преимуществ и недостатков каждого типа ламп поможет сделать правильный выбор. Исходя из имеющейся на данный момент информации, наиболее оптимальными среди растениеводов считаются светодиодные приборы.
cdelct.ru
Искусственное освещение растений — WiKi
Для выращивания растений при искусственном освещении используются, в основном, электрические источники света, разработанные специально для стимуляции роста растений за счет излучения волн электромагнитного спектра, благоприятных для фотосинтеза. Источники фитоактивного освещения используются при полном отсутствии естественного света или при его недостатке. Например, зимой, когда продолжительности светового дня недостаточно для роста растений, искусственное освещение позволяет увеличить продолжительность их светового облучения.
Впервые применил в 1868 году керосиновые лампы для выращивания растений русский ботаник Андрей Фаминцын[1].
Искусственный свет должен обеспечивать тот спектр электромагнитного излучения, который растения в природе получают от солнца, или хотя бы такой спектр, который удовлетворял бы потребности выращиваемых растений. Уличные условия имитируются не только путём подбора цветовой температуры света и его спектральных характеристик, но и с помощью изменения интенсивности свечения ламп. В зависимости от вида выращиваемого растения, его стадии развития (прорастание, рост, цветение или созревание плодов), а также текущего фотопериода требуется особый спектр, световая отдача и цветовая температура источника света.
Применение
Источники искусственного света применяются в садоводстве, при озеленении помещений, при выращивании посевного материала, в производстве пищи (включая гидропонику и выращивание водорослей). Несмотря на то, что большинство источников фитоактивного света разработаны для применения в промышленных масштабах, возможно их применение и в бытовых условиях.
Согласно закону обратных квадратов, интенсивность светового излучения падает обратно пропорционально квадрату расстояния до источника света. Если, например, расстояние до лампы увеличить в два раза, то интенсивность света, достигающего объект, уменьшится в четыре раза. Этот закон служит серьезным препятствием для садоводов, поэтому много усилий направлено на улучшение утилизации света. Фермеры используют всевозможные рефлекторы, позволяющие сконцентрировать свет на небольшой площади, стараются высаживать саженцы как можно ближе друг к другу, делают все для того, чтобы свет попадал как можно больше на растения, а не рассеивался в пространстве.
В качестве источников света можно использовать лампы накаливания, люминесцентные лампы (ЛЛ), газоразрядные лампы (ГР), индукционные лампы, а также светодиоды. В настоящее время профессионалами, в основном, используются газоразрядные и люминесцентные лампы. В помещениях теплиц обычно устанавливают натриевые лампы высокого давления (НЛВД) или металлогалогенные (МГ) лампы, последние, правда, все чаще стали заменять на люминесцентные в виду их большей эффективности и экономичности.
Металлогалогенные лампы иногда используют в первой (вегетативной) фазе роста растений, поскольку такие лампы излучают достаточное количество синего света, а синий свет способствует росту зелёной массы на первых стадиях развития растений; в то же время МГ-лампы имеют пик излучения в районе жёлтого цвета.
Натриевые лампы высокого давления используются во второй (репродуктивной) фазе роста, поскольку их излучение имеет красноватый оттенок. Красный спектр способствует цветению и образованию плодов. Если натриевые лампы использовать в стадии вегетативного роста, растения развиваются и растут быстрее, но при этом расстояния между междоузлиями у них больше и, в целом, растения оказываются выше.
Иногда в обоих периодах применяются МГ-лампы с добавлением красного спектра или НЛВД-лампы с добавлением синего спектра.
Используемые части светового спектра
Естественный свет имеет высокую цветовую температуру (примерно 5000 K). Видимый нами свет изменяется в течение дня в зависимости от погоды и высоты подъёма солнца, поэтому процесс фотосинтеза может протекать в различных условиях освещенности. Расстояние до солнца не играет существенной роли в процессе сезонных изменений освещенности, поэтому не берется в расчет при планировании искусственного освещения для выращивания растений. Наклон земной оси изменяется в течение года при вращении Земли вокруг Солнца. Летом свет падает почти под прямым углом, а зимой под углом 23,44 градусов к плоскости экватора. Этот небольшой наклон земной оси изменяет эффективную толщину атмосферы, которую необходимо преодолеть лучу света, для того чтобы достичь одной и той же площадки на поверхности Земли. При этом свет испускаемый Солнцем не остается неизменным, изменяется и интенсивность (летом больше, зимой меньше) и спектральный состав света, который достигает нас. Индекс цветопередачи позволяет оценить близость цветового оттенка к естественному освещению.
Разные стадии развития растения требуют освещения лучами из разных частей спектра. На начальной вегетативной стадии должна преобладать синяя часть спектра, тогда как на поздней репродуктивной — красно-оранжевая.
Источники фитосвета
Цветовая температура различных источников света, используемых в растениеводствеПрименяются лампы разных типов, включая металлогалогенные, люминесцентные, накаливания, натриевые высокого давления и светодиодные.
Металлогалогенные лампы (МГ)
Металлогалогенные лампы излучают в синем спектре и хорошо заменяют условия весеннего и летнего естественного освещения.
Лампы накаливания
Обычные лампы накаливания излучают в красно-желтой части спектра и имеют низкую цветовую температуру (примерно 2700 K). Лампы такого типа не используются в качестве фитоосвещения, а только для подсветки растений в интерьере. Некоторые лампы накаливания имеют маркировку «grow lights» и покрыты светофильтром синего цвета, который уменьшает количество испускаемого ими красного света. Лампы со светофильтром не имеют особых преимуществ, поскольку фильтр лишь задерживает часть излучения в красной области спектра. Такие фитолампы имеют короткий срок службы около 750 часов и крайне не эффективны в плане расходования электроэнергии.
Люминесцентные лампы
Люминесцентная фитолампа с полным спектром. Длина около 40 смВ настоящее время цветовая температура люминесцентных ламп может варьироваться в широких пределах: от 2700 K до 7800 K. стандартные люминесцентные лампы можно применять для выращивания овощей, трав или рассады. Стандартные лампы производят в два раза больше световой энергии на единицу электрической мощности, чем лампы накаливания и имеют ресурс непрерывной работы порядка 20000 часов. Иногда в качестве фитоламп используют менее эффективные, но дешевые люминесцентные лампы холодной цветовой температуры.
Высокоэффективные люминесцентные лампы производят вдвое больше световой энергии, чем стандартные лампы. Специальная форма светильника с очень тонким профилем особенно выгодна при использовании в боксах с ограниченной высотой. Высокоэффективные люминесцентные лампы выдают порядка 5000 Люкс на 54 Вт мощности и выпускаются с теплым цветовым оттенком (2700 K) и холодным (6500 K). Ресурс работы таких ламп составляет около 10000 часов.
Компактные люминесцентные лампы — это уменьшенные копии люминесцентных ламп, которые используют как при выращивании рассады дома так и в больших теплицах. Компактные люминесцентные лампы используются со специальными рефлекторами, которые направляют свет на растения, точно так же как и ГР-лампы. Выпускаются в вариантах: теплый/красный (2700 K), дневной свет (5000 K) и холодный/синий (6500 K) цветовых оттенках. Ресурс работы компактных люминесцентных фитоламп составляет около 10000 часов.
Натриевые лампы высокого давления (НЛВД)
Натриевые лампы высокого давления имеют жёлтое свечение (2200 K) с очень низким индексом цветопередачи 22. Как правило, такие лампы используются на поздних (или репродуктивных) стадиях роста. Если использовать фитолампы такого типа на ранних стадиях вегетативного роста, растения растут немного быстрее, чем обычно. Оборотной стороной этого процесса является слишком высокое и раскидистое растение с длинными междоузлиями. Натриевые лампы высокого давления ускоряют процесс образования цветков и плодов у растений. Растения используют красно-оранжевую часть спектра НЛВД-ламп в репродуктивных целях, что позволяет получать более высокие урожаи трав, овощей, фруктов или цветов. Иногда растения визуально, из-за особенностей цветового оттенка ламп, выглядят бледными и нездоровыми.
Натриевые лампы высокого давления имеют продолжительный срок службы и в шесть раз большую светоотдачу на 1 Вт электроэнергии чем стандартная лампа накаливания. Ввиду высокой эффективности натриевых ламп их используют в качестве дополнительной подсветки в теплицах, где необходимую им часть синего спектра растения получают из естественного освещения. Но в высоких широтах, где период недостатка солнечного света очень продолжительный, НЛВД-лампы должны сочетаться с другими источниками света для правильного роста. НЛВД-освещение может привлекать насекомых или других вредителей, что может представлять угрозу для растущих растений. Натриевые лампы высокого давления излучают много тепла, что может вызвать вытягивание стеблей, хотя при должном контроле температуры воздуха эта проблема не так актуальна.
Комбинация металлогалогенных ламп (МГ) и натриевых (НЛВД)
В комбинированной НЛВД/МГ лампе в одном рефлекторе сочетается металлогалогенная колба с натриевой колбой высокого давления, при этом может использоваться общий балласт или два индивидуальных балластных устройства. Комбинация синей металлогалогенной и красной натриевой лампы высокого давления, как утверждают производители, является идеальной по спектральному составу и крайне эффективной для растениеводства, хотя на самом деле представляет собой компромисс между двумя ситуациями. Лампы такого типа стоят дороже, а служат меньше. Из-за небольшого размера ламп охватываемая световым пятном площадь оказывается значительно меньше той, что получается при использовании стандартных ГР-ламп.
Переключаемые, конвертируемые, универсальные светильники
Переключаемые, конвертируемые, универсальные светильники — это светильники в которые можно установить металлогалогенную колбу или эквивалентную ей по мощности натриевую лампу высокого давления. Растениеводы используют такие светильники при выращивании рассады и в вегетативный период с установленной металлогалогенной лампой, а затем, в период созревания плодов, меняют её на натриевую лампу высокого давления. Для переключения светильника нужно заменить колбу и настроить соответствующий режим работы. Более распространены металлогалогенные конвертационные лампы для использования в НЛВД-светильниках.
Светодиоды
Последние разработки в светодиодной отрасли позволили производить недорогие, яркие, с большим сроком службы источники фитосвета. Большим преимуществом светодиодных источников является возможность получения излучения исключительно в фитоактивной части спектра. Привлекательность светодиодов для выращивания растений в помещениях обусловлена многими факторами. Среди них: низкая электрическая мощность, отсутствие балласта, низкое тепловыделение, что позволяет устанавливать светодиоды вплотную к растениям без риска повредить их. Также необходимо отметить, что использование светодиодов снижает испарение, приводя к удлинению периодов между поливами[2].
Существует несколько активных участков спектра: для хлорофилла и каротиноидов. Поэтому в светодиодном светильнике могут сочетаться несколько цветов, перекрывающих эти фитоактивные участки. Хотя более перспективными следует считать белые светодиоды, спектр которых близок к естественному солнечному.
Рекомендации по оптимальному сочетанию светодиодов сильно разнятся. Например, в одном из источников, для максимизации роста и здоровья растений рекомендуется следующая пропорция «12 красных светодиодов с длиной волны 660 нм плюс 6 оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм»[3].
Пурпурный оттенок светодиодного фитоосвещенияТакже имеются публикации, в которых на период вегетативного роста рекомендуется отдавать приоритет светодиодам синего цвета (с длиной волны в районе середины спектра 400—500 нм). Для роста плодов и цветов рекомендуется увеличить долю светодиодов глубоко красного оттенка (с длиной волны от 630 до 670 нм). Следует отметить, что точность при выборе длины волны красных светодиодов более важна, нежели при выборе светодиодов синего спектра. Исследования показали полезность дополнительной подсветки растений светодиодами инфракрасного и ультрафиолетового спектра. При смешении красного и синего света получается свет пурпурного (розового) оттенка. Зелёный свет при искусственном освещении растений может применяться в эстетических целях для нейтрализации неприятного для глаз пурпурного свечения фитосветодиодов или для облегчения визуального контроля зеленых побегов и состояния почвы, поскольку глаз человека лучше всего различает детали именно в зелёной части спектра. Фотосинтетическая эффективность зелёного света крайне низка ввиду высокой степени отражения лучей данного спектра хлорофиллом.
Мощность светодиодов, получаемых по старой технологии, составляла сотые доли ватта, что не позволяло эффективно заменять ими ГР-лампы. Современные усовершенствованные светодиоды и светодиодные матрицы обладают мощностью, исчисляемой десятками и даже сотнями ватт, что делает их достойной альтернативой ГР-лампам.
Мощность и эффективность фитосветодиодов продолжает расти. Наиболее важными параметрами при выборе светодиодов являются энергетическая эффективность и спектральный состав излучения.
Световая эффективность
В следующей таблице приведена световая эффективность различных источников света
Требования к свету у растений
У каждого растения особые требования к освещению для правильного развития. Источники искусственного света должны имитировать условия освещения, к которым приспособлено растение. Чем больше растение, тем большее количество света ему требуется. При недостатке света растение перестает расти, независимо от прочих условий.
Например, овощные культуры растут лучше всего при естественном дневном свете, поэтому для выращивания при искусственном освещении им требуется постоянный интенсивный источник света, такой, как белый светодиод. Лиственные растения (например, филодендрон) растут в условиях постоянного затенения, для нормального роста им не требуется много света, поэтому будет достаточно обычных ламп накаливания.
Растениям необходимо чередование темных и светлых («фото»-) периодов. По этой причине освещение должно периодически включаться и выключаться. Оптимальное соотношение светлых и темных периодов зависит от вида и сорта растения. Так некоторые виды предпочитают длинные дни и короткие ночи, а другие наоборот.
Однако, освещённость является световой величиной, то есть характеризует свет в соответствии с его способностью вызывать зрительные ощущения у человека и соответствующим образом зависит от спектрального состава света. Поэтому освещённость плохо подходит для использования при определении эффективности систем освещения в садоводстве. Вместо этого используются другие величины, такие как облучённость (энергетическая освещённость), выражаемая в Вт/м2, или фотосинтетически активная радиация (ФАР). Альтернативная величина измерения выражается в микромоль- фотонах в секунду (μmol/s) на единицу площади.
Искусственное освещение растений из космоса
В 1970-х годах известный американский специалист по ракетной технике Краффт Эрике[en] предложил освещать посевы из космоса отражённым солнечным светом при помощи специального спутника с огромной отражающей поверхностью (200—2550 квадратных миль в зависимости от орбиты), названного автором Солеттой, с яркостью 0,2—0,5 солнечной. Планировали развернуть этот отражатель в 1995—2005 гг. с затратами порядка 30—60 млрд долларов. Предполагалось, что это увеличит мировое производство сельскохозяйственных растений на 3—5 процентов и окупится менее чем за 20 лет[21], однако проект не был осуществлён.
См. также
Ссылки
- ↑ Светокультура — статья из Большой советской энциклопедии.
- ↑ Гавриленко А. П. светодиодный свет для теплиц. ООО "ЭНОВА Лайт" (май 2016).
- ↑ Patent US6921182 - Efficient LED lamp for enhancing commercial and home plant growth – Google Patents. Google.com. Проверено 26 февраля 2013.
- ↑ Нормированный так, чтобы максимальное значение составляло 100 %.
- ↑ 1 кандела*4π стерадиан/40 Вт
- ↑ Waymouth, John F., "Optical light source device", US patent # 5079473, published September 8, 1989, issued January 7, 1992. col. 2, line 34.
- ↑ Keefe, T.J. The Nature of Light (2007). Проверено 5 ноября 2007. Архивировано 1 июня 2012 года.
- ↑ How Much Light Per Watt?
- ↑ Bulbs: Gluehbirne.ch: Philips Standard Lamps (German)
- ↑ Osram halogen (нем.) (PDF). www.osram.de (недоступная ссылка — история). Проверено 28 января 2008. Архивировано 7 ноября 2007 года.
- ↑ Osram Miniwatt-Halogen. www.ts-audio.biz (недоступная ссылка — история). Проверено 28 января 2008. Архивировано 17 февраля 2012 года.
- ↑ Klipstein, Donald L. The Great Internet Light Bulb Book, Part I (1996). Проверено 16 апреля 2006. Архивировано 1 июня 2012 года.
- ↑ China energy saving lamp. Проверено 16 апреля 2006. Архивировано 17 февраля 2012 года.
- ↑ 1 2 Federal Energy Management Program (December 2000). «How to buy an energy-efficient fluorescent tube lamp» (U.S. Department of Energy).
- ↑ Department of the Environment, Water, Heritage and the Arts, Australia. Energy Labelling—Lamps (недоступная ссылка — история). Проверено 14 августа 2008. Архивировано 24 января 2007 года.
- ↑ 1 2 Technical Information on Lamps (pdf). Optical Building Blocks (недоступная ссылка — история). Проверено 14 октября 2007. Архивировано 27 октября 2007 года. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
- ↑ OSRAM Sylvania Lamp and Ballast Catalog. — 2007.
- ↑ 1 2 LED or Neon? A scientific comparison. Архивировано 9 апреля 2008 года.
- ↑ Why is lightning coloured? (gas excitations). Архивировано 17 февраля 2012 года.
- ↑ The Metal Halide Advantage. Venture Lighting (2007). Проверено 10 августа 2008. Архивировано 17 февраля 2012 года.
- ↑ Walter Sullivan "Huge Space Mirrors Proposed to Light the Night.” The New York Times. February 6, 1977
ru-wiki.org
Искусственное освещение растений
В летний и зимний период освещенность значительно меняется и наступает время, когда растению не хватает света. Поэтому, чтобы обеспечить растение достаточным количеством света постоянно приходится во время жары притенять его, с приходом осени переставлять горшок в более освещенное место. Цветы, которые стояли на подоконнике обычно переставляют в место возле окна и наоборот. В самое жаркое время на южном окне могут расти только теплолюбивые растения, а с наступлением прохлады на это же место можно ставить все комнатные цветы. Зимой притенять растения практически не нужно, только в самые солнечные дни.
Признаки недостатка света у растений
Начинающие цветоводы очень часто могут спутать недостаток света с результатом пересыхания земляного покрова или чрезмерного полива. Чтобы правильно определить проблему, необходимо обращать внимание на сигналы растения. Главным признаком недостатка света является вытягивание побегов, молодые листочки значительно мельче, старых, их окраска становится менее насыщенной. Пестролистые виды растений меняют форму листочка и приобретают практически зеленый окрас. Постепенно происходит увядание, нижние листья осыпаются, почки перестают развиваться. У цветущих растений бутоны опадают, цветение уже не такое насыщенное, растение постепенно погибает. Стоит обратить внимание, что существуют такие виды растений, для которых в осенне-зимний период наступает время покоя. В это время большинство вышеперечисленных признаков совпадает.
Люминесцентное освещение для растений
В большинстве случаев люди для освещения комнат используют искусственные источники света (люстры, светильники и многие другие приборы для освещения). Хотя для многих растений такой источник света не оказывает никакого влияния, а то и вовсе может навредить, так как являются источником тепла. Поэтому, чтобы создать комфортные условия, необходимо использовать освещение, максимально приближенное к естественному. Таковыми являются люминесцентные лампы, они практически не выделяют тепла. Еще одним из положительных моментов является экономия в потреблении электроэнергии, почти в четыре раза, чем с лампой накаливания.
На сегодняшний день существует довольно большой выбор люминесцентных ламп, которые подойдут под любые светильники и прекрасно впишутся в интерьер помещения. Декоративно-лиственные растения рекомендовано размещать на расстоянии тридцати – шестидесяти сантиметров, а декоративно-цветущие – пятнадцати-тридцати сантиметрах. Хотя данные рекомендации можно считать условными. К примеру, если в комнате очень много осветительных приборов и освещение равнозначно со светом в погожий солнечный день, то не обязательно растения ставить так близко. В случае, когда ламп всего лишь одна или две, комнатное растение размещают поближе. Для того, чтобы растение не было однобоким и росло равномерно, его периодически нужно разворачивать разными сторонами к лампе. Если длительное время выпадают непогожие дни, то в нише подоконника можно организовать искусственное освещение, подвесив несколько ламп над цветами.
Для того, чтобы воссоздать достаточное количество света для декоративно-лиственных растений, таких как фикус бенджамина или циссус, достаточно применить люминесцентную лампу (20 Вт) на расстоянии тридцати сантиметров.
Для того чтобы определить необходимую продолжительность искусственного освещения, стоит полагаться на потребности каждого растения индивидуально. Зачастую достаточно пары часов утром и вечером. То есть не нужно, чтобы освещение было включено круглосуточно. В целом период освещения будет составлять шесть-восемь часов в сутки. В дождливые и пасмурные дни – 12 часов. В особо солнечные дни не стоит включать лампы больше, чем на три-четыре часа. Для цветущих растений в осенне-зимний период нужно беспрерывное освещение до четырнадцати часов в сутки.
Количество бутонов и качество цветения напрямую зависит от продолжительности светового дня. Но не стоит с этим переусердствовать, так как каждое растение требует покоя, а длительное цветение забирает у растения много микроэлементов, тем самым истощая его. Существует такое понятие как светокультура. Оно применяется к растениям, которые полностью или частично выращиваются с использованием искусственного света.
Для очень больших и габаритных растений, таких как монстера, нужно будет организовать равномерное освещение. Этого можно достигнуть, подвесив лампы с двух сторон, сам цветок лучше поставить на расстоянии около шестидесяти сантиметров от источника света.
Особенности выращивания комнатных цветов с помощью искусственного света
Как быть если окна в помещении отсутствуют? Для этого потребуется довольно серьезно подойти к планированию искусственного освещения, также не забывать о требованиях растений по уходу за ними (температурный режим, влажность воздуха, особенности полива и т.д.). Помимо этого, закрытое помещение нуждается в хорошей вентиляции.
При таких условиях разведения растений освещение в помещении должно быть по максимуму приближено к природному освещению. Его продолжительность должна составлять не менее четырнадцати часов в весенне-летний период, и семь-девять часов в осенне-зимний период. Освещаться должны не только сами растения, но и все помещение.
При искусственном освещении можно выращивать растения, которые не нуждаются в прямых лучах солнечного света. К таковым относят растения, которые прекрасно растут на окнах, расположенных на восточной, западной и северной сторонах. Для выращивания в условиях отсутствия естественного природного освещения подходят такие растения как: папоротник нефролепис, традесканция, драцена окаймленная, фикус эластика (каучуконосный), аспарагус Спренгери, сциндапсус, филодендрон, панданус, пеперомия, монстера и многие другие. . К таким условиям подходят довольно выносливые и непривередливые растения.
komnatnye-rasteniya.kladovayalesa.ru
Искусственное освещение растений
Разница в освещенности летом и зимой настолько велика, что растениям бывает недостаточно естественного освещения, если при этом не происходит понижения температуры и перехода в фазу отдыха. Если летом растения приходилось притенять от жаркого полуденного солнца тюлевой занавеской, то с наступлением осени приходится переставлять растения как можно ближе к свету, те растения, что стояли около окна переместить на подоконник, те, что стояли в центре комнаты разместить ближе к окну. При чем, если летом на подоконнике южного окна могли находиться только растения переносящие солнце, то зимой на подоконнике того же южного окна можно разместить практически все растения, так как осеннее и зимнее солнце своим появлением балует не часто. Притенение понадобится в только в особенно солнечные дни.
Как узнать, что растениям недостаточно света?
Некоторые путают признаки недостатка света и принимают их за те, когда растение страдает от пересушки земляного кома или излишнего полива, но приглядевшись внимательней здесь можно разобраться. В первую очередь при недостатке света начинают вытягиваться побеги, новые листья мельче старых и окраска их не такая яркая и насыщенная. У пестролистных форм растений окраска листьев от недостатка света становится более однотонной или совсем зеленой. Начинают засыхать и опадать нижние листья, верхушечные почки не развиваются. Если это цветущее растение, то цветки постепенно опадают, цветение прекращается или образуются мелкие, не красивые цветки. Самая распространенная картина - это когда растение вообще прекращает рост, новые побеги не образуются, а старые листья начинают понемногу отсыхать и отмирать. Конечно, есть растения, которые находятся зимой в состоянии периода покоя, при этом у них тоже не образуется новых побегов, но старые листья в большом количестве отмирать не должны. Перестановка растений ближе к свету не всегда возможна, да и не все растения поместятся на подоконнике.
Люминесцентные светильники для растений
Большинство людей обходится искусственным освещением помещений, т.е. освещением люстр, светильников, бра и т.д. Но не все растения принимают такой свет, кроме того лампы накаливания излучают тепло, которое вредит растениям, если они близко находятся. Поэтому если вашим растениям недостаточно света используйте, например, люминесцентные лампы. Освещение от них максимально приближено к естественному свету и они почти не излучают тепла. Кроме того, люминесцентные лампы расходуют энергии в 4 раза меньше, чем лампы накаливания.
Сейчас в продаже имеются самые различные люминесцентные лампы, так что от вас требуется только купить и повесить. Расстояние, которое указывается для размещения растений - 30-60 см для декоративно-лиственных и 15-30 для декоративно-цветущих - весьма условно. Это значит, что если имеется много ламп и во всем помещении от этого очень светло - так же, как в ясный день летом, то растения не нужно размещать так близко к лампам. Но если у вас одна - две лампы, на все помещение их явно не достаточно, и растения размещают как можно ближе к лампам, на указанном выше расстоянии. Если растение оказывается расположенным к лампе какой-то одной стороной, то периодически его надо поворачивать, чтобы крона оставалась равномерной. Если не достаточно освещения даже тем растениям, которые стоят на подоконнике, то можно подвесить лампы дневного света с обоих боков в нише окна.
Использование одной люминесцентной лампы на 20 Вт, на расстоянии 30 см от декоративно-лиственного растения, например, циссуса или фикуса бенджамина средних размеров, бывает вполне достаточно, чтобы восполнить недостаток естественного освещения осенью и зимой.
Продолжительность искусственного освещения напрямую зависит от естественного. Обычно это несколько часов утром или несколько часов вечером. Т.е. лампы дневного света будут включены у вас утром, до того как вам надо будет уходить на работу, а вечером до того времени, когда вы ложитесь спать. Но в общей сложности это время должно составлять около 6-8 часов. В особо пасмурные дни до 12 часов. Если день будет особенно солнечным, достаточно 3-4 часов искусственного освещения. Для того чтобы осенью и зимой растения цвели, например, сенполии, им нужно около 12-14 часов хорошего непрерывного освещения.
От длины светового дня будет зависеть качество цветения и количество цветков. Следует только учитывать, что большинство растений нуждаются в периоде покоя и длительное вынужденное цветение зимой истощает растения (за исключением зимне-цветущих растений). Есть такое понятие - светокультура - это растения, выращенные частично или полностью на искусственном освещении.
Если крупное растение, например, монстера стоит на полу в углу комнаты, освещения с одной стороны будет недостаточно или оно будет не равномерным, если же лампа будет подвешена к потолку, это может оказаться далеко от растения. В этом случае можно разместить по одной лампе на каждой из стен, а растение отставить от них на расстояние 40-60 см, тогда освещение будет более равномерным и достаточным.
Выращивание растений при искусственном освещении
Что делать, если окон нет в помещении вообще. Многие растения можно выращивать при искусственном освещении, но при этом нужно, во-первых, использовать только лампы дневного света и, во-вторых, правильно соблюдать другие режимы ухода - температурный и водный. Кроме того, такие помещения должны регулярно проветриваться. Отличие такого разведения растений в том, что искусственное освещение должно быть максимально приближено к естественному - непрерывно около 12-14 часов весной - летом, 7-9 часов зимой. Желательно чтобы освещалось не одно только растение(я), а полностью все помещение. Такие условия чаще всего случаются в офисах и рабочих помещениях, где под потолком подвешено много люминесцентных ламп и помещение хорошо освещено.
В основном для выращивания в условиях только искусственного освещения подходят растения, не требующие прямых солнечных лучей. Т.е. это растения подходящие для выращивания на восточных, западных и северных окнах. Для размещения в помещении, где нет естественного освещения, можно использовать папоротник нефролепис, традесканцию, драцену окаймленную, фикус эластика (каучуконосный), аспарагус Спренгери, сциндапсус, филодендрон, панданус, пеперомию, монстера и д.р. Из цветущих растений китайский розан, глоксинию, пеларгонию, узамбарскую фиалку. Это в основном выносливые и не прихотливые растения.
iplants.ru
Искусственное освещение растений
Для выращивания растений при искусственном освещении используются, в основном, электрические источники света, разработанные специально для стимуляции роста растений за счет излучения волн электромагнитного спектра, благоприятных для фотосинтеза. Источники фитоактивного освещения используются при полном отсутствии естественного света или при его недостатке. Например, зимой, когда продолжительности светового дня недостаточно для роста растений, искусственное освещение позволяет увеличить продолжительность их светового облучения.
Впервые применил в 1868 году керосиновые лампы для выращивания растений русский ботаник Андрей Сергеевич Фаминцын[1].
Искусственный свет должен обеспечивать тот спектр электромагнитного излучения, который растения в природе получают от солнца, или хотя бы такой спектр, который удовлетворял бы потребности выращиваемых растений. Уличные условия имитируются не только путём подбора цветовой температуры света и его спектральных характеристик, но и с помощью изменения интенсивности свечения ламп. В зависимости от вида выращиваемого растения, его стадии развития (прорастание,рост, цветение или созревание плодов), а также текущего фотопериода требуется особый спектр, световая отдача и цветовая температура источника света.
Источники искусственного света применяются в садоводстве, при озеленении помещений, при выращивании посевного материала, в производстве пищи (включая гидропонику и выращивание водорослей). Несмотря на то, что большинство источников фитоактивного света разработаны для применения в промышленных масштабах, возможно их применение и в бытовых условиях.
Согласно закону обратных квадратов, интенсивность светового излучения падает обратно пропорционально квадрату расстояния до источника света. Если, например, расстояние до лампы увеличить в два раза, то интенсивность света, достигающего объект, уменьшится в четыре раза. Этот закон служит серьезным препятствием для садоводов, поэтому много усилий направлено на улучшение утилизации света. Фермеры используют всевозможные рефлекторы, позволяющие сконцентрировать свет на небольшой площади, стараются высаживать саженцы как можно ближе друг к другу, делают все для того, чтобы свет попадал как можно больше на растения, а не рассеивался в пространстве.
В качестве источников света можно использовать лампы накаливания, люминесцентные лампы (ЛЛ), газоразрядные лампы (ГР),индукционные лампы, а также светодиоды. В настоящее время профессионалами, в основном, используются газоразрядные и люминесцентные лампы. В помещениях теплиц обычно устанавливают натриевые лампы высокого давления (НЛВД) илиметаллогалогенные (МГ) лампы, последние, правда, все чаще стали заменять на люминесцентные в виду их большей эффективности и экономичности.
Металлогалогенные лампы иногда используют в первой (вегетативной) фазе роста растений, поскольку такие лампы излучают достаточное количество синего света, а синий свет способствует росту зелёной массы на первых стадиях развития растений; в то же время МГ-лампы имеют пик излучения в районе жёлтого цвета.
Натриевые лампы высокого давления используются во второй (репродуктивной) фазе роста, поскольку их излучение имеет красноватый оттенок. Красный спектр способствует цветению и образованию плодов. Если натриевые лампы использовать в стадии вегетативного роста, растения развиваются и растут быстрее, но при этом расстояния между междоузлиями у них больше и, в целом, растения оказываются выше.
Иногда в обоих периодах применяются МГ-лампы с добавлением красного спектра или НЛВД-лампы с добавлением синего спектра.
В последнее время на рынке появились источники фитоактивного освещения на основе светодиодов. Широкое применение получают белые светодиоды. НАСА уже провело успешные эксперименты по выращиванию пищи в космосе с помощью светодиодных светильников[источник не указан 444 дня].
Используемые части светового спектра
Естественный свет имеет высокую цветовую температуру (примерно 5000 K). Видимый нами свет изменяется в течение дня в зависимости от погоды и высоты подъема солнца, поэтому процесс фотосинтеза может протекать в различных условиях освещенности. Расстояние до солнца не играет существенной роли в процессе сезонных изменений освещенности, поэтому не берется в расчет при планировании искусственного освещения для выращивания растений. Наклон земной оси изменяется в течение года при вращении Земли вокруг Солнца. Летом свет падает почти под прямым углом, а зимой под углом 23,44 градусов к плоскости экватора. Этот небольшой наклон земной оси изменяет эффективную толщину атмосферы, которую необходимо преодолеть лучу света, для того чтобы достичь одной и той же площадки на поверхности Земли. При этом свет испускаемый Солнцем не остается неизменным, изменяется и интенсивность (летом больше, зимой меньше) и спектральный состав света, который достигает нас. Индекс цветопередачи позволяет оценить близость цветового оттенка к естественному освещению.
Разные стадии развития растения требуют освещения лучами из разных частей спектра. На начальной вегетативной стадии должна преобладать синяя часть спектра, тогда как на поздней репродуктивной — красно-оранжевая.
Источники фитосвета
Цветовая температура различных источников света, используемых в растениеводстве
Применяются лампы разных типов, включая металлогалогенные, люминесцентные, накаливания, натриевые высокого давления и светодиодные.
Металлогалогенные лампы (МГ)
Металлогалогенные лампы излучают в синем спектре и хорошо заменяют условия весеннего и летнего естественного освещения.
Лампы накаливания
Обычные лампы накаливания излучают в красно-желтой части спектра и имеют низкую цветовую температуру (примерно 2700 K). Лампы такого типа не используются в качестве фитоосвещения, а только для подсветки растений в интерьере. Некоторые лампы накаливания имеют маркировку «grow lights» и покрыты светофильтром синего цвета, который уменьшает количество испускаемого ими красного света. Лампы со светофильтром не имеют особых преимуществ, поскольку фильтр лишь задерживает часть излучения в красной области спектра. Такие фитолампы имеют короткий срок службы около 750 часов и крайне не эффективны в плане расходования электроэнергии.
Люминесцентные лампы
Люминесцентная фитолампа с полным спектром. Длина около 40 см
В настоящее время цветовая температура люминесцентных лампы может варьироваться в широких пределах: от 2700 K до 7800 K. стандартные люминесцентные лампы можно применять для выращивания овощей, трав или рассады. Стандартные лампы производят в два раза больше световой энергии на единицу электрической мощности, чем лампы накаливания и имеют ресурс непрерывной работы порядка 20000 часов. Иногда в качестве фитоламп используют менее эффективные, но дешевые люминесцентные лампы холодной цветовой температуры.
Высокоэффективные люминесцентные лампы производят вдвое больше световой энергии, чем стандартные лампы. Специальная форма светильника с очень тонким профилем особенно выгодна при использовании в боксах с ограниченной высотой. Высокоэффективные люминесцентные лампы выдают порядка 5000 Люкс на 54 Вт мощности и выпускаются с теплым цветовым оттенком (2700 K) и холодным (6500 K). Ресурс работы таких ламп составляет около 10000 часов.
Компактные люминесцентные лампы — это уменьшенные копии люминесцентных ламп, которые используют как при выращивании рассады дома так и в больших теплицах. Компактные люминесцентные лампы используются со специальными рефлекторами, которые направляют свет на растения, точно так же как и ГР-лампы. Выпускаются в вариантах: теплый/красный (2700 K), дневной свет (5000 K) и холодный/синий (6500 K) цветовых оттенках. Ресурс работы компактных люминесцентных фитоламп составляет около 10000 часов.
Натриевые лампы высокого давления (НЛВД)
Натриевые лампы высокого давления имеют жёлтое свечение (2200 K) с очень низким индексом цветопередачи 22. Как правило, такие лампы используются на поздних (или репродуктивных) стадиях роста. Если использовать фитолампы такого типа на ранних стадиях вегетативного роста, растения растут немного быстрее, чем обычно. Оборотной стороной этого процесса является слишком высокое и раскидистое растение с длинными междоузлиями. Натриевые лампы высокого давления ускоряют процесс образования цветков и плодов у растений. Растения используют красно-оранжевую часть спектра НЛВД-ламп в репродуктивных целях, что позволяет получать более высокие урожаи трав, овощей, фруктов или цветов. Иногда растения визуально, из-за особенностей цветового оттенка ламп, выглядят бледными и нездоровыми.
Натриевые лампы высокого давления имеют продолжительный срок службы и в шесть раз большую светоотдачу на 1 Вт электроэнергии чем стандартная лампа накаливания. Ввиду высокой эффективности натриевых ламп их используют в качестве дополнительной подсветки в теплицах, где необходимую им часть синего спектра растения получают из естественного освещения. Но в высоких широтах, где период недостатка солнечного света очень продолжительный, НЛВД-лампы должны сочетаться с другими источниками света для правильного роста. НЛВД-освещение может привлекать насекомых или других вредителей, что может представлять угрозу для растущих растений. Натриевые лампы высокого давления излучают много тепла, что может вызвать вытягивание стеблей, хотя при должном контроле температуры воздуха эта проблема не так актуальна.
Комбинация металлогалогенных ламп (МГ) и натриевых (НЛВД)
В комбинированной НЛВД/МГ лампе в одном рефлекторе сочетается металлогалогенная колба с натриевой колбой высокого давления, при этом может использоваться общий балласт или два индивидуальных балластных устройства. Комбинация синей металлогалогенной и красной натриевой лампы высокого давления, как утверждают производители, является идеальной по спектральному составу и крайне эффективной для растениеводства, хотя на самом деле представляет собой компромисс между двумя ситуациями. Лампы такого типа стоят дороже, а служат меньше. Из-за небольшого размера ламп охватываемая световым пятном площадь оказывается значительно меньше той, что получается при использовании стандартных ГР-ламп.
Переключаемые, конвертируемые, универсальные светильники
Переключаемые, конвертируемые, универсальные светильники — это светильники в которые можно установить металлогалогенную колбу или эквивалентную ей по мощности натриевую лампу высокого давления. Растениеводы используют такие светильники при выращивании рассады и в вегетативный период с установленной металлогалогенной лампой, а затем, в период созревания плодов, меняют её на натриевую лампу высокого давления. Для переключения светильника нужно заменить колбу и настроить соответствующий режим работы. Более распространены металлогалогенные конвертационные лампы для использования в НЛВД-светильниках.
Светодиоды
Последние разработки в светодиодной отрасли позволили производить недорогие, яркие, с большим сроком службы источники фитосвета. Большим преимуществом светодиодных источников является возможность получения излучения исключительно в фитоактивной части спектра. Привлекательность светодиодов для выращивания растений в помещениях обусловлена многими факторами. Среди них: низкая электрическая мощность, отсутствие балласта, низкое тепловыделение, что позволяет устанавливать светодиоды вплотную к растениям без риска повредить их. Также необходимо отметить, что использование светодиодов снижает испарение, приводя к удлинению периодов между поливами[2].
Существует несколько активных участков спектра: для хлорофилла и каротиноидов. Поэтому в светодиодном светильнике могут сочетаться несколько цветов, перекрывающих эти фитоактивные участки. Хотя более перспективными следует считать белые светодиоды, спектр которых близок к естественному солнечному.
Рекомендации по оптимальному сочетанию светодиодов сильно разнятся. Например, в одном из источников, для максимизации роста и здоровья растений рекомендуется следующая пропорция «12 красных светодиодов с длиной волны 660 нм плюс 6 оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм»[3].
Пурпурный оттенок светодиодного фитоосвещения
Также имеются публикации, в которых на период вегетативного роста рекомендуется отдавать приоритет светодиодам синего цвета (с длиной волны в районе середины спектра 400-500 нм). Для роста плодов и цветов рекомендуется увеличить долю светодиодов глубоко красного оттенка (с длиной волны около 660 нм). Следует отметить, что точность при выборе длины волны красных светодиодов более важна, нежели при выборе светодиодов синего спектра. Стандартные красные светодиоды с длиной волны 630 нм неэффективны. Красные фитосветодиоды имеют багряное, бархатистое свечение. Исследования показали полезность дополнительной подсветки растений светодиодами инфракрасного и ультрафиолетового спектра. При смешении красного и синего света получается свет пурпурного (розового) оттенка. Зелёный свет при искусственном освещении растений может применяться в эстетических целях для нейтрализации неприятного для глаз пурпурного свечения фитосветодиодов или для облегчения визуального контроля зеленых побегов и состояния почвы, поскольку глаз человека лучше всего различает детали именно в зелёной части спектра. Фотосинтетическая эффективность зелёного света крайне низка ввиду высокой степени отражения лучей данного спектра хлорофиллом.
Мощность светодиодов, получаемых по старой технологии, составляла сотые доли ватта, что не позволяло эффективно заменять ими ГР-лампы. Современные усовершенствованные светодиоды и светодиодные матрицы обладают мощностью, исчисляемой десятками и даже сотнями ватт, что делает их достойной альтернативой ГР-лампам.
Мощность и эффективность фитосветодиодов продолжает расти. Наиболее важными параметрами при выборе светодиодов являются энергетическая эффективность и спектральный состав излучения.
Световая эффективность
В следующей таблице приведена световая эффективность различных источников света
Требования к свету у растений
У каждого растения особые требования к освещению для правильного развития. Источники искусственного света должны имитировать условия освещения, к которым приспособлено растение. Чем больше растение, тем большее количество света ему требуется. При недостатке света растение перестает расти, независимо от прочих условий.
Например, овощные культуры растут лучше всего при естественном дневном свете, поэтому для выращивания при искусственном освещении им требуется постоянный интенсивный источник света такой как белый светодиод. Лиственные растения (например, филодендрон) растут в условиях постоянного затенения, для нормального роста им не требуется много света, поэтому будет достаточно обычных ламп накаливания.
Растениям необходимо чередование темных и светлых («фото»-) периодов. По этой причине освещение должно периодически включаться и выключаться. Оптимальное соотношение светлых и темных периодов зависит от вида и сорта растения. Так некоторые виды предпочитают длинные дни и короткие ночи, а другие наоборот.
Освещённость, измеряемая в люксах, является важной характеристикой для выращивания растений внутри помещений. Освещённость характеризует количество света, падающего на поверхность. Один люкс равен одному люмену света, падающему на один квадратный метр площади (лм/м2). Для офисного помещения достаточно освещённости в 400[источник не указан 238 дней] лк.
Однако, освещённость является световой величиной, то есть характеризует свет в соответствии с его способностью вызывать зрительные ощущения у человека и соответствующим образом зависит от спектрального состава света. Поэтому освещённость плохо подходит для использования при определении эффективности систем освещения в садоводстве. Вместо этого используются другие величины, такие как облучённость (энергетическая освещённость), выражаемая в Вт/м2, илифотосинтетически активная радиация (ФАР). Альтернативная величина измерения выражается в микромоль- фотонах в секунду (μmol/s) на единицу площади.
См. также
Ссылки
- ↑ Светокультура — статья из Большой советской энциклопедии.
- ↑ Гавриленко А. П. светодиодный свет для теплиц. ООО «ЭНОВА Лайт» (май 2016).
- ↑ Patent US6921182 — Efficient LED lamp for enhancing commercial and home plant growth – Google Patents. Google.com. Проверено 26 февраля 2013.
- ↑ Нормированный так, чтобы максимальное значение составляло 100 %.
- ↑ 1 кандела*4π стерадиан/40 Вт
- ↑ Waymouth, John F., «Optical light source device», US patent # 5079473, published September 8, 1989, issued January 7, 1992. col. 2, line 34.
- ↑ Keefe, T.J. The Nature of Light (2007). Проверено 5 ноября 2007.Архивировано из первоисточника 1 июня 2012.
- ↑ How Much Light Per Watt?
- ↑ Bulbs: Gluehbirne.ch: Philips Standard Lamps (German)
- ↑ Osram halogen (нем.) (PDF). www.osram.de(недоступная ссылка — история). Проверено 28 января 2008. Архивировано из первоисточника 7 ноября 2007.
- ↑ Osram Miniwatt-Halogen. www.ts-audio.biz(недоступная ссылка —история). Проверено 28 января 2008. Архивировано из первоисточника 17 февраля 2012.
- ↑ Klipstein, Donald L. The Great Internet Light Bulb Book, Part I(1996). Проверено 16 апреля 2006. Архивировано из первоисточника 1 июня 2012.
- ↑ China energy saving lamp. Проверено 16 апреля 2006. Архивировано из первоисточника 17 февраля 2012.
- ↑ Перейти к:12 Federal Energy Management Program (December 2000). «How to buy an energy-efficient fluorescent tube lamp» (U.S. Department of Energy).
- ↑ Department of the Environment, Water, Heritage and the Arts, Australia. Energy Labelling—Lamps(недоступная ссылка —история). Проверено 14 августа 2008. Архивировано из первоисточника 24 января 2007.
- ↑ Перейти к:12 Technical Information on Lamps (pdf). Optical Building Blocks(недоступная ссылка — история). Проверено 14 октября 2007.Архивировано из первоисточника 27 октября 2007. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
- ↑ OSRAM Sylvania Lamp and Ballast Catalog. — 2007.
- ↑ Перейти к:12 LED or Neon? A scientific comparison.
- ↑ Why is lightning coloured? (gas excitations). Архивировано из первоисточника 17 февраля 2012.
- ↑ The Metal Halide Advantage. Venture Lighting (2007). Проверено 10 августа 2008. Архивировано из первоисточника 17 февраля 2012.
verticalsad.ru
Искусственное освещение растений Википедия
Для выращивания растений при искусственном освещении используются, в основном, электрические источники света, разработанные специально для стимуляции роста растений за счет излучения волн электромагнитного спектра, благоприятных для фотосинтеза. Источники фитоактивного освещения используются при полном отсутствии естественного света или при его недостатке. Например, зимой, когда продолжительности светового дня недостаточно для роста растений, искусственное освещение позволяет увеличить продолжительность их светового облучения.
Впервые применил в 1868 году керосиновые лампы для выращивания растений русский ботаник Андрей Фаминцын[1].
Искусственный свет должен обеспечивать тот спектр электромагнитного излучения, который растения в природе получают от солнца, или хотя бы такой спектр, который удовлетворял бы потребности выращиваемых растений. Уличные условия имитируются не только путём подбора цветовой температуры света и его спектральных характеристик, но и с помощью изменения интенсивности свечения ламп. В зависимости от вида выращиваемого растения, его стадии развития (прорастание, рост, цветение или созревание плодов), а также текущего фотопериода требуется особый спектр, световая отдача и цветовая температура источника света.
Применение
Источники искусственного света применяются в садоводстве, при озеленении помещений, при выращивании посевного материала, в производстве пищи (включая гидропонику и выращивание водорослей). Несмотря на то, что большинство источников фитоактивного света разработаны для применения в промышленных масштабах, возможно их применение и в бытовых условиях.
Согласно закону обратных квадратов, интенсивность светового излучения падает обратно пропорционально квадрату расстояния до источника света. Если, например, расстояние до лампы увеличить в два раза, то интенсивность света, достигающего объект, уменьшится в четыре раза. Этот закон служит серьезным препятствием для садоводов, поэтому много усилий направлено на улучшение утилизации света. Фермеры используют всевозможные рефлекторы, позволяющие сконцентрировать свет на небольшой площади, стараются высаживать саженцы как можно ближе друг к другу, делают все для того, чтобы свет попадал как можно больше на растения, а не рассеивался в пространстве.
В качестве источников света можно использовать лампы накаливания, люминесцентные лампы (ЛЛ), газоразрядные лампы (ГР), индукционные лампы, а также светодиоды. В настоящее время профессионалами, в основном, используются газоразрядные и люминесцентные лампы. В помещениях теплиц обычно устанавливают натриевые лампы высокого давления (НЛВД) или металлогалогенные (МГ) лампы, последние, правда, все чаще стали заменять на люминесцентные в виду их большей эффективности и экономичности.
Металлогалогенные лампы иногда используют в первой (вегетативной) фазе роста растений, поскольку такие лампы излучают достаточное количество синего света, а синий свет способствует росту зелёной массы на первых стадиях развития растений; в то же время МГ-лампы имеют пик излучения в районе жёлтого цвета.
Натриевые лампы высокого давления используются во второй (репродуктивной) фазе роста, поскольку их излучение имеет красноватый оттенок. Красный спектр способствует цветению и образованию плодов. Если натриевые лампы использовать в стадии вегетативного роста, растения развиваются и растут быстрее, но при этом расстояния между междоузлиями у них больше и, в целом, растения оказываются выше.
Иногда в обоих периодах применяются МГ-лампы с добавлением красного спектра или НЛВД-лампы с добавлением синего спектра.
Используемые части светового спектра
Естественный свет имеет высокую цветовую температуру (примерно 5000 K). Видимый нами свет изменяется в течение дня в зависимости от погоды и высоты подъёма солнца, поэтому процесс фотосинтеза может протекать в различных условиях освещенности. Расстояние до солнца не играет существенной роли в процессе сезонных изменений освещенности, поэтому не берется в расчет при планировании искусственного освещения для выращивания растений. Наклон земной оси изменяется в течение года при вращении Земли вокруг Солнца. Летом свет падает почти под прямым углом, а зимой под углом 23,44 градусов к плоскости экватора. Этот небольшой наклон земной оси изменяет эффективную толщину атмосферы, которую необходимо преодолеть лучу света, для того чтобы достичь одной и той же площадки на поверхности Земли. При этом свет испускаемый Солнцем не остается неизменным, изменяется и интенсивность (летом больше, зимой меньше) и спектральный состав света, который достигает нас. Индекс цветопередачи позволяет оценить близость цветового оттенка к естественному освещению.
Разные стадии развития растения требуют освещения лучами из разных частей спектра. На начальной вегетативной стадии должна преобладать синяя часть спектра, тогда как на поздней репродуктивной — красно-оранжевая.
Источники фитосвета
Цветовая температура различных источников света, используемых в растениеводствеПрименяются лампы разных типов, включая металлогалогенные, люминесцентные, накаливания, натриевые высокого давления и светодиодные.
Металлогалогенные лампы (МГ)
Металлогалогенные лампы излучают в синем спектре и хорошо заменяют условия весеннего и летнего естественного освещения.
Лампы накаливания
Обычные лампы накаливания излучают в красно-желтой части спектра и имеют низкую цветовую температуру (примерно 2700 K). Лампы такого типа не используются в качестве фитоосвещения, а только для подсветки растений в интерьере. Некоторые лампы накаливания имеют маркировку «grow lights» и покрыты светофильтром синего цвета, который уменьшает количество испускаемого ими красного света. Лампы со светофильтром не имеют особых преимуществ, поскольку фильтр лишь задерживает часть излучения в красной области спектра. Такие фитолампы имеют короткий срок службы около 750 часов и крайне не эффективны в плане расходования электроэнергии.
Люминесцентные лампы
Люминесцентная фитолампа с полным спектром. Длина около 40 смВ настоящее время цветовая температура люминесцентных ламп может варьироваться в широких пределах: от 2700 K до 7800 K. стандартные люминесцентные лампы можно применять для выращивания овощей, трав или рассады. Стандартные лампы производят в два раза больше световой энергии на единицу электрической мощности, чем лампы накаливания и имеют ресурс непрерывной работы порядка 20000 часов. Иногда в качестве фитоламп используют менее эффективные, но дешевые люминесцентные лампы холодной цветовой температуры.
Высокоэффективные люминесцентные лампы производят вдвое больше световой энергии, чем стандартные лампы. Специальная форма светильника с очень тонким профилем особенно выгодна при использовании в боксах с ограниченной высотой. Высокоэффективные люминесцентные лампы выдают порядка 5000 Люкс на 54 Вт мощности и выпускаются с теплым цветовым оттенком (2700 K) и холодным (6500 K). Ресурс работы таких ламп составляет около 10000 часов.
Компактные люминесцентные лампы — это уменьшенные копии люминесцентных ламп, которые используют как при выращивании рассады дома так и в больших теплицах. Компактные люминесцентные лампы используются со специальными рефлекторами, которые направляют свет на растения, точно так же как и ГР-лампы. Выпускаются в вариантах: теплый/красный (2700 K), дневной свет (5000 K) и холодный/синий (6500 K) цветовых оттенках. Ресурс работы компактных люминесцентных фитоламп составляет около 10000 часов.
Натриевые лампы высокого давления (НЛВД)
Натриевые лампы высокого давления имеют жёлтое свечение (2200 K) с очень низким индексом цветопередачи 22. Как правило, такие лампы используются на поздних (или репродуктивных) стадиях роста. Если использовать фитолампы такого типа на ранних стадиях вегетативного роста, растения растут немного быстрее, чем обычно. Оборотной стороной этого процесса является слишком высокое и раскидистое растение с длинными междоузлиями. Натриевые лампы высокого давления ускоряют процесс образования цветков и плодов у растений. Растения используют красно-оранжевую часть спектра НЛВД-ламп в репродуктивных целях, что позволяет получать более высокие урожаи трав, овощей, фруктов или цветов. Иногда растения визуально, из-за особенностей цветового оттенка ламп, выглядят бледными и нездоровыми.
Натриевые лампы высокого давления имеют продолжительный срок службы и в шесть раз большую светоотдачу на 1 Вт электроэнергии чем стандартная лампа накаливания. Ввиду высокой эффективности натриевых ламп их используют в качестве дополнительной подсветки в теплицах, где необходимую им часть синего спектра растения получают из естественного освещения. Но в высоких широтах, где период недостатка солнечного света очень продолжительный, НЛВД-лампы должны сочетаться с другими источниками света для правильного роста. НЛВД-освещение может привлекать насекомых или других вредителей, что может представлять угрозу для растущих растений. Натриевые лампы высокого давления излучают много тепла, что может вызвать вытягивание стеблей, хотя при должном контроле температуры воздуха эта проблема не так актуальна.
Комбинация металлогалогенных ламп (МГ) и натриевых (НЛВД)
В комбинированной НЛВД/МГ лампе в одном рефлекторе сочетается металлогалогенная колба с натриевой колбой высокого давления, при этом может использоваться общий балласт или два индивидуальных балластных устройства. Комбинация синей металлогалогенной и красной натриевой лампы высокого давления, как утверждают производители, является идеальной по спектральному составу и крайне эффективной для растениеводства, хотя на самом деле представляет собой компромисс между двумя ситуациями. Лампы такого типа стоят дороже, а служат меньше. Из-за небольшого размера ламп охватываемая световым пятном площадь оказывается значительно меньше той, что получается при использовании стандартных ГР-ламп.
Переключаемые, конвертируемые, универсальные светильники
Переключаемые, конвертируемые, универсальные светильники — это светильники в которые можно установить металлогалогенную колбу или эквивалентную ей по мощности натриевую лампу высокого давления. Растениеводы используют такие светильники при выращивании рассады и в вегетативный период с установленной металлогалогенной лампой, а затем, в период созревания плодов, меняют её на натриевую лампу высокого давления. Для переключения светильника нужно заменить колбу и настроить соответствующий режим работы. Более распространены металлогалогенные конвертационные лампы для использования в НЛВД-светильниках.
Светодиоды
Последние разработки в светодиодной отрасли позволили производить недорогие, яркие, с большим сроком службы источники фитосвета. Большим преимуществом светодиодных источников является возможность получения излучения исключительно в фитоактивной части спектра. Привлекательность светодиодов для выращивания растений в помещениях обусловлена многими факторами. Среди них: низкая электрическая мощность, отсутствие балласта, низкое тепловыделение, что позволяет устанавливать светодиоды вплотную к растениям без риска повредить их. Также необходимо отметить, что использование светодиодов снижает испарение, приводя к удлинению периодов между поливами[2].
Существует несколько активных участков спектра: для хлорофилла и каротиноидов. Поэтому в светодиодном светильнике могут сочетаться несколько цветов, перекрывающих эти фитоактивные участки. Хотя более перспективными следует считать белые светодиоды, спектр которых близок к естественному солнечному.
Рекомендации по оптимальному сочетанию светодиодов сильно разнятся. Например, в одном из источников, для максимизации роста и здоровья растений рекомендуется следующая пропорция «12 красных светодиодов с длиной волны 660 нм плюс 6 оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм»[3].
Пурпурный оттенок светодиодного фитоосвещенияТакже имеются публикации, в которых на период вегетативного роста рекомендуется отдавать приоритет светодиодам синего цвета (с длиной волны в районе середины спектра 400—500 нм). Для роста плодов и цветов рекомендуется увеличить долю светодиодов глубоко красного оттенка (с длиной волны от 630 до 670 нм). Следует отметить, что точность при выборе длины волны красных светодиодов более важна, нежели при выборе светодиодов синего спектра. Исследования показали полезность дополнительной подсветки растений светодиодами инфракрасного и ультрафиолетового спектра. При смешении красного и синего света получается свет пурпурного (розового) оттенка. Зелёный свет при искусственном освещении растений может применяться в эстетических целях для нейтрализации неприятного для глаз пурпурного свечения фитосветодиодов или для облегчения визуального контроля зеленых побегов и состояния почвы, поскольку глаз человека лучше всего различает детали именно в зелёной части спектра. Фотосинтетическая эффективность зелёного света крайне низка ввиду высокой степени отражения лучей данного спектра хлорофиллом.
Мощность светодиодов, получаемых по старой технологии, составляла сотые доли ватта, что не позволяло эффективно заменять ими ГР-лампы. Современные усовершенствованные светодиоды и светодиодные матрицы обладают мощностью, исчисляемой десятками и даже сотнями ватт, что делает их достойной альтернативой ГР-лампам.
Мощность и эффективность фитосветодиодов продолжает расти. Наиболее важными параметрами при выборе светодиодов являются энергетическая эффективность и спектральный состав излучения.
Световая эффективность
В следующей таблице приведена световая эффективность различных источников света
Требования к свету у растений
У каждого растения особые требования к освещению для правильного развития. Источники искусственного света должны имитировать условия освещения, к которым приспособлено растение. Чем больше растение, тем большее количество света ему требуется. При недостатке света растение перестает расти, независимо от прочих условий.
Например, овощные культуры растут лучше всего при естественном дневном свете, поэтому для выращивания при искусственном освещении им требуется постоянный интенсивный источник света, такой, как белый светодиод. Лиственные растения (например, филодендрон) растут в условиях постоянного затенения, для нормального роста им не требуется много света, поэтому будет достаточно обычных ламп накаливания.
Растениям необходимо чередование темных и светлых («фото»-) периодов. По этой причине освещение должно периодически включаться и выключаться. Оптимальное соотношение светлых и темных периодов зависит от вида и сорта растения. Так некоторые виды предпочитают длинные дни и короткие ночи, а другие наоборот.
Однако, освещённость является световой величиной, то есть характеризует свет в соответствии с его способностью вызывать зрительные ощущения у человека и соответствующим образом зависит от спектрального состава света. Поэтому освещённость плохо подходит для использования при определении эффективности систем освещения в садоводстве. Вместо этого используются другие величины, такие как облучённость (энергетическая освещённость), выражаемая в Вт/м2, или фотосинтетически активная радиация (ФАР). Альтернативная величина измерения выражается в микромоль- фотонах в секунду (μmol/s) на единицу площади.
Искусственное освещение растений из космоса
В 1970-х годах известный американский специалист по ракетной технике Краффт Эрике[en] предложил освещать посевы из космоса отражённым солнечным светом при помощи специального спутника с огромной отражающей поверхностью (200—2550 квадратных миль в зависимости от орбиты), названного автором Солеттой, с яркостью 0,2—0,5 солнечной. Планировали развернуть этот отражатель в 1995—2005 гг. с затратами порядка 30—60 млрд долларов. Предполагалось, что это увеличит мировое производство сельскохозяйственных растений на 3—5 процентов и окупится менее чем за 20 лет[21], однако проект не был осуществлён.
См. также
Ссылки
- ↑ Светокультура — статья из Большой советской энциклопедии.
- ↑ Гавриленко А. П. светодиодный свет для теплиц. ООО "ЭНОВА Лайт" (май 2016).
- ↑ Patent US6921182 - Efficient LED lamp for enhancing commercial and home plant growth – Google Patents. Google.com. Проверено 26 февраля 2013.
- ↑ Нормированный так, чтобы максимальное значение составляло 100 %.
- ↑ 1 кандела*4π стерадиан/40 Вт
- ↑ Waymouth, John F., "Optical light source device", US patent # 5079473, published September 8, 1989, issued January 7, 1992. col. 2, line 34.
- ↑ Keefe, T.J. The Nature of Light (2007). Проверено 5 ноября 2007. Архивировано 1 июня 2012 года.
- ↑ How Much Light Per Watt?
- ↑ Bulbs: Gluehbirne.ch: Philips Standard Lamps (German)
- ↑ Osram halogen (нем.) (PDF). www.osram.de (недоступная ссылка — история). Проверено 28 января 2008. Архивировано 7 ноября 2007 года.
- ↑ Osram Miniwatt-Halogen. www.ts-audio.biz (недоступная ссылка — история). Проверено 28 января 2008. Архивировано 17 февраля 2012 года.
- ↑ Klipstein, Donald L. The Great Internet Light Bulb Book, Part I (1996). Проверено 16 апреля 2006. Архивировано 1 июня 2012 года.
- ↑ China energy saving lamp. Проверено 16 апреля 2006. Архивировано 17 февраля 2012 года.
- ↑ 1 2 Federal Energy Management Program (December 2000). «How to buy an energy-efficient fluorescent tube lamp» (U.S. Department of Energy).
- ↑ Department of the Environment, Water, Heritage and the Arts, Australia. Energy Labelling—Lamps (недоступная ссылка — история). Проверено 14 августа 2008. Архивировано 24 января 2007 года.
- ↑ 1 2 Technical Information on Lamps (pdf). Optical Building Blocks (недоступная ссылка — история). Проверено 14 октября 2007. Архивировано 27 октября 2007 года. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
- ↑ OSRAM Sylvania Lamp and Ballast Catalog. — 2007.
- ↑ 1 2 LED or Neon? A scientific comparison. Архивировано 9 апреля 2008 года.
- ↑ Why is lightning coloured? (gas excitations). Архивировано 17 февраля 2012 года.
- ↑ The Metal Halide Advantage. Venture Lighting (2007). Проверено 10 августа 2008. Архивировано 17 февраля 2012 года.
- ↑ Walter Sullivan "Huge Space Mirrors Proposed to Light the Night.” The New York Times. February 6, 1977
wikiredia.ru
Озеленение офисов. Искусственное освещение растений
При правильном освещении а помещении офиса, можно добиться яркости света, для ваших растений. с щелчком переключателя. Вы можете перехитрить матерь-природу, если это будет необходимо на протяжении всего года.
Полив, питание и искусственный свет для растения можно сделать такой же, как в природных, естественных условиях.
Использование искусственного освещения
Искусственное освещение для ваших растений может быть организовано в любом месте офиса — от кабинета, который получает только утреннее солнце, до подвала, что не получает солнце вообще. Везде можно установить светильники и поддерживать освещенность, которая является достаточно хорошей для выращивания растений. На самом деле, садовники обновляли старые подвалы в теплицы с помощью искусственного освещения. Внутреннее освещение даже позволит вам выращивать тропические растения, обеспечивая оптимальную освещенность и температуру.
Искусственный свет является прекрасным для нежных растений, которые не совсем готовы к этому периоду жизни в саду на открытом воздухе. Внутреннее освещение позволит им процветать.
Нужно сократить количество часов в день света в зимний период для тех растений, которые идут в латентном состоянии. Эти растения привыкли к тому, что зимой меньше света.
Виды искусственного освещения
Как правило, вы в состоянии найти осветительное оборудование в любом магазине бытовой утвари, в садовом интернет — магазине, или специальных садовых центрах. Там помогут вам дать дополнительные советы по использованию искусственного освещения. Вам нужно приобрести либо холодные белые и теплые белые люминесцентные лампы. Теплый и холодный относится к цвету световых волн (красный или синий), а не к количеству произведенного тепла, Специальные люминесцентные лампы были разработаны специально для выращивания растений в закрытом помещении. Они представляют собой сочетание красного и синего света, который обеспечивает все вокруг, даже рост, который поощряет цветение.
При использовании искусственного света, это очень важно, чтобы ваши люминесцентные лампы были чистые и без пыли. Заменить нужно сразу, если сгорела лампа.Форма люминесцентных ламп равномерно проливает свет. Конечно, вы можете весь ваш подвал оформить в качестве растительного сада, для этого вам нужно приобрести освещение промышленного типа — флуоресцентного. Есть даже системы освещения со встроенным таймером, с помощью которого можно установить время освещенности для ваших растений. Это чрезвычайно выгодно, потому, что включая свет и выключая, в то же время каждый день имитирует нормальный цикл роста, который может стимулировать здоровый рост растений.
В местах, где флуоресцентный светильник может отличатся от стильного декора, таких как фойе или кабинет, их можно использовать над большими листьями растений.
Тем не менее, лампы накаливания, используемые в качестве единственного источника света для растений, как правило, работают не очень хорошо. Они являются более эффективными при использовании в сочетании или с дополнительным люминесцентным освещением.
Флуоресцентные лампы генерируют более чем в шесть раз лучший свет, что делает их более практичными для использования внутри помещений. Металлогалогенные и натриевые лампы прекрасно подходят для освещения растений на больших площадях. Также называемые «газоразрядные лампы высокого давления», которые дают белое свечение не может быть применимо для стандартных домов, но лучше всего для освещения открытых пространств, как залов и атриумов, а также теплицы.
Последнее время получаю популярность для искусственного освещения растений светодиодные источники света, светодиодные лампы и светодиодные ленты. Они более экономны, чем люминесцентные лампы, низкое тепловыделение, что дает возможность более ближе располагать их к растениям.
Если вы беспокоитесь, что не в состоянии достаточно обеспечить искусственный свет для светолюбивых растений, есть возможность использования отражающие поверхности, чтобы максимизировать свет для ваших растений. Белая краска или алюминиевая фольга являются эффективными и составляют основу этого метода. Некоторые люминесцентные лампы оснащены автономными отражателями. Фарфоровые покрытия отражателей ламп не требуют минимального обслуживания. Держите отражатели чистыми и свободными от ржавчины и пыли.
Расположение искусственного освещения
При правильном освещении, вы можете поместить свои насаждения практически в любом месте. В старой этажерке две 20-ваттные люминесцентные светильники можно разместить внутри полки в верхней части. Вы даже можете смонтировать две лампы люминесцентного светильника на нижней полке кухонного шкафа и поставьте растущие растений под ним. Есть много мест, вокруг где вы можете превратить в сад растений.
Как только вы найдете место для ваших растений в помещении и установите светильники, вы должны будете узнать, сколько света требуют растения для интенсивного роста. Вид растений будет определять расстояние от источника света и продолжительности времени нахождения под ним.
Установка искусственного освещения
В то время как начинающий садовод может столкнуться, в период проб и ошибок, при размещении своих растений под источниками света, существует несколько общих советов, которые могут оказаться полезными.
Длина ваших люминесцентных ламп должна соответствовать длине вашего сада. Хорошее эмпирическое правило заключается в предоставлении 20 ватт света на 30 квадратных сантиметров.
Человеческий глаз плохо разбирался в интенсивности света, что делает его невозможным измерить точное количество света, необходимое вашим растениям с первого взгляда. Некоторые признаки того, что вы не обеспечивая достаточно света, включают бледно-зеленую или желтую листву отсутствие роста и мелкие листья. Также очень полезны люксметры, которые можно купить в домашних и садовых центрах.
Флуоресцентные лампы ярче в центре, чем на концах трубки. Таким образом, лучшие и самые яркие места света, для высоких растений, находится непосредственно по центре трубки.
Большинство растений должны быть расположены от кончиков растений до источника света на 15 до 30 сантиметров. Интенсивность искусственного освещения быстро падает по мере удаления от источника света.
Первоначально, попробуйте выращивать растения, которые не будут превышать 30 сантиметров в высоту; высоким растениям может понадобиться дополнительное легкое крепление.
Если вы намерены выращивать более высокие растения внутри помещения, необходимо рассмотреть вопрос об использовании люминесцентных ламп в светильниках, которые будут направленных на нижние листья растений. Кроме того, люминесцентные лампы установлены вертикально создают большее боковое освещение.
Растения для искусственного освещения
Наконец, есть несколько видов известных растений, которые чрезвычайно хорошо растут в условиях флуоресцентного освещения. Начинающие могут попробовать некоторые из них, чтобы получить навыки ухода при искусственном освещении. Некоторые замечательные растений, чтобы попробовать: шведский плющ, куст базилика и колеус. Большие цветущие растения: африканские фиалки, восковые бегонии.
Более опытные садоводы будут иметь большие результаты выращивания орхидей, африканских фиалок в местах с искусственным освещением.
camcebemacter.ru