Особенности обмена веществ у растений. Тема 3.2. Обмен веществ и превращение энергии – свойство живых организмов. - 10-11 класс, Пасечник (рабочая тетрадь).

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

16. Особенности обмена веществ у засухоустойчивых растений. Ксероморфная структура. Правило в.Р. Заленского. Особенности обмена веществ у растений


ОБМЕН ВЕЩЕСТВ У РАСТЕНИЙ

Обмен веществ с окружающей средой — главное условие жизни организма. Однако поглощение и выделение веществ — это только внешнее проявление обмена. Основу жизнедеятельности составляет внутриклеточное превращение веществ, называемое метаболизмом.

В основе обмена веществ лежат два тесно связанных и взаимообусловленных процесса: ассимиляция и диссимиляция. Ассимиляция— усвоение питательных веществ, синтез специфических (характерных для данного организма) белков, нуклеиновых кислот, липидов, углеводов и других соединений. Процессы ассимиляции связаны с потреблением энергии. Диссимиляция — расщепление веществ, как поступающих извне, так и входящих в состав клеток организма. Освобождающаяся при их окислении энергия используется на разнообразные процессы жизнедеятельности. Кроме того, диссимиляция поставляет всевозможные промежуточные продукты, необходимые для синтетических реакций.

Растения по типу питания — автотрофные организмы. Особенность их обмена веществ в том, что они способны синтезировать все необходимые для жизнедеятельности органические вещества из минеральных. Для синтеза органических соединений из углекислого газа и воды растения используют солнечную энергию (см. Фотосинтез). Другой уникальный процесс, который происходит только в растениях, — перевод азота из минеральной формы в органическую, образование аминокислот, которые используются для биосинтеза белка. Эти так называемые незаменимые аминокислоты (лизин, валин, лейцин, изо-лейцин, метионин и др.) обязательно должны входить в рацион человека и животных.

Фосфорный обмен у растений сводится к образованию связи между остатками фосфорной кислоты и молекулой того или иного органического вещества. Значение образующихся при этом фосфорорганических соединений огромно. Это и аденозинтрифосфорная кислота (АТФ) — переносчик энергии в клетке, и нуклеиновые кислоты (ДНК, РНК), осуществляющие хранение и передачу наследственной информации, и фосфолипиды — компоненты биологических мембран и другие соединения.

Большое значение в обмене веществ имеют калий, кальций, магний, железо и другие элементы минерального питания и витамины. Частично они включаются в органические соединения. Главная же их роль регуляторная.

Таким образом, обмен веществ — это многочисленные согласованные химические процессы. Важную роль в их регуляции играют ферменты — специфические биокатализаторы белковой природы, в состав которых входят витамины и ионы металлов. Количество ферментов и их набор контролируется генетическим аппаратом. Не менее важное значение имеют клеточные мембраны. Они контролируют скорость поступления и выхода веществ, образуют внутри клетки микроскопические отсеки, в которых находятся определенные ферментные системы и происходит метаболизм. Согласованность обмена веществ в целостном организме обеспечивается деятельностью гормонов (см. Фитогормоны).

Любое заболевание, неполноценное питание приводят к нарушениям обмена веществ в организме, которые выражаются в изменении характера превращений веществ, в накоплении промежуточных, а иногда и не свойственных нормальному обмену продуктов. Лечение этих нарушений должно быть направлено на устранение причин, их вызывающих.

enciklopediya-tehniki.ru

Тема 3.2. Обмен веществ и превращение энергии – свойство живых организмов.

1. Дайте определения понятий.Гомеостаз – постоянство внутренней среды биологических систем.Пластический обмен – совокупность реакций биосинтеза веществ и их последующая сборка в более крупные структуры.Энергетический обмен – совокупность реакций распада веществ, сопровождающихся выделением и запасанием энергии.Метаболизм – единый процесс обмена веществ и энергии в клетке, связывающий между собой процессы ассимиляции и диссимиляции.

2. Каково значение поддержания гомеостаза в организме?Постоянство внутренней среды необходимо клетке и многоклеточному организму. Если гомеостаз нарушается, это ведет к тому, что клетки и организм в целом повреждаются или даже могут погибнуть.

3. Какую роль играют ферменты в метаболических процессах?Ферменты – это вещества, ускоряющие протекание химических реакций в клетках организма. Без их участий процессы ассимиляции и диссимиляции или вообще бы не протекали, или протекали бы медленно.

4. Заполните таблицу.

 Ферменты и их функции

 

5. Какое значение имеет сбалансированность и скоординированность процессов ассимиляции и диссимиляции в организме?Ассимиляция и диссимиляция – составные части единого целого, процесса метаболизма. Нарушение баланса между ними всегда приводит к развитию какого-либо заболевания как отдельных клеток, так и целого организма или даже их гибели.

Особенности обмена веществ у растений, животных и бактерий

1. Дайте определения понятий.Автотрофы – организмы, синтезирующие органические вещества из неорганических путём фотосинтеза или хемосинтеза.Гетеротрофы – организмы, которые не способны синтезировать органические вещества из неорганических путём фотосинтеза или хемосинтеза и получающие их готовыми от автотрофов.Фотосинтез – процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов.Хемосинтез – способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений.

2. Заполните таблицу.

Сравнительная характеристика фаз фотосинтеза

 

3. Какие вещества необходимы хемотрофам для синтеза сложных органических соединений?Неорганические вещества, такие как двухвалентное железо, сероводород, аммиак.

4. Приведите примеры процессов, обеспечивающих хемотрофов первичной энергией для хемосинтеза.У нитрифицирующих бактерий – окисление аммиака до азотистой и азотной кислот. У железобактерий – окисление двухвалентного железа до трехвалентного. У серобактерий – окисление сероводорода до молекулярной серы или до солей серной кислоты.

5. Заполните таблицу.

 Сравнительная характеристика процессов фотосинтеза и хемосинтеза

biogdz.ru

16. Особенности обмена веществ у засухоустойчивых растений. Ксероморфная структура. Правило в.Р. Заленского.

Способность растений переносить недостаточное влагообеспечение определяется возможностью растений отсрочить опасное уменьшение оводненности протоплазмы (избегание высыхания) и способностью протоплазмы переносить обезвоживание без повреждения (выносливостью). Избегание высыхания достигается благодаря морфологической, анатомической приспособленности растений к сохранению оптимальной оводненности тканей при сухости воздуха и почвы. Здесь можно выделить три основных направления: регулирование потери воды за счет ксероморфного строения листьев; усиление поглощения воды из почвы благодаря увеличению мощности корневой системы и снижению водного потенциала корней; накопление воды и активизация ее транспорта. Листья как органы транспирации обладают значительной пластичностью, и в их строении наблюдаются большие различия, зависящие от условий водоснабжения и освещенности, при которых происходят формирование и развитие растений. Большое значение для понимания природы засухоустойчивости имеют исследования Заленского. В 1904 г. им было установлено, что существует строгая ярусная изменчивость анатомического строения листа. Оказалось, что чем выше расположен лист на стебле, тем сильнее у него выражены признаки ксероморфности, повышающие засухоустойчивость, а именно: больше длина проводящей системы на единицу поверхности; меньше размеры клеток как верхнего, так и нижнего эпидермиса; меньше размеры устьиц на верхней и нижней сторонах листа; большее число устьиц на единицу листовой поверхности; толще наружные стенки у клеток верхнего и нижнего эпидермиса; сильнее развит восковой налет; меньше размеры всех клеток мезофилла; более типично развита палисадная паренхима; менее типично выражена губчатая паренхима; слабее представлена система межклетников; несколько сильнее развиты механические ткани. С анатомическими особенностями связаны также и физиологические: верхние листья отличаются более высокой интенсивностью процессов фотосинтеза и транспирации. Концентрация клеточного сока в клетках верхних листьев выше, и в условиях водного дефицита они оттягивают воду от более оводненных нижних листьев, которые при длительном завядании растения отмирают раньше. Одним из главных факторов, обусловливающих ксероморфизм строения листа, являются условия его водоснабжения на ранних фазах развития. Удаленность от корневой системы и оттягивание воды растущей верхушкой способствуют тому, что листья верхних ярусов формируются в условиях затрудненного водоснабжения, что приводит к их мелкоклеточности. Такое же ксероморфное строение может быть вызвано и непосредственным воздействием внешних факторов на растение: повышением сухости воздуха, понижением влажности почвы, а также периодическим завяданием. Растения, развивающиеся в таких условиях, отличаются повышенной засухоустойчивостью.

17. Изменение засухоустойчивости растений в онтогенезе. Критические периоды (работы Сказкина).

Засухоустойчивость - способность растений переносить значительное обезвожживание клеток, тканей и органов, а также перегрев. На засухоустойчивость влияют удобрения: калийные и фосфорные повышают ее, азотные в больших дозах — снижают. Засухоустойчивость ряда сельскохозяйственных культур повышают микроэлементы (цинк, медь). Засуха в каждом географическом регионе имеет свои конкретные особенности: преимущественно почвенная или атмосферная, весенняя или летняя, продолжительность и глубина. Эти особенности также определяют выбор критериев для отбора растений. В онтогенезе растения неодинаково чувствительны к недостатку воды. Очень чувствительны растения к недостатку воды в периоды наибольшего роста конкретного органа или всего растения. Для каждого вида растений существуют критические периоды, т. е. периоды наибольшей чувствительности к снабжению водой. На I—IV этапах органогенеза злаки относительно устойчивы к засухе, хотя урожай снижается в данном случае за счет уменьшения числа заложившихся колосков в колосе. На V—VIII этапах устойчивость к засухе злаков снижается, урожай падает за счет уменьшения количества колосков и цветков в колосе (метелке). Засухоустойчивость, как и жаростойкость растений, резко снижается с образованием у них генеративных органов и до цветения (VII—IX этапы) включительно.

По Сказкину, злаки наиболее чувствительны к влаге в период фаз выход в трубку — колошение. Недостаток воды в это время отрицательно сказывается на величине урожая. Следовательно, в критический период формируются генеративные органы, происходят цветение и оплодотворение. В период генеративного развития растений на ранних этапах развития засуха приводит к стерильности цветков (к череззернице и пустоколосью), а на более поздних (молочная, восковая спелость) — к снижению качества и количества урожая плодов и семян, образованию щуплого зерна, недостаточно заполненного питательными запасными веществами, со слабым зародышем. Важно подчеркнуть, что именно в критические периоды растения наиболее интенсивно растут и формируют хозяйственно полезные органы (плоды, семена и др.).

studfiles.net

приведите пример растение и его обмен веществ

Обмен веществ с окружающей средой — главное условие жизни организма. Однако поглощение и выделение веществ — это только внешнее проявление обмена. Основу жизнедеятельности составляет внутриклеточное превращение веществ, называемое метаболизмом. В основе обмена веществ лежат два тесно связанных и взаимообусловленных процесса: ассимиляция и диссимиляция. Ассимиляция — усвоение питательных веществ, синтез специфических (характерных для данного организма) белков, нуклеиновых кислот, липидов, углеводов и других соединений. Процессы ассимиляции связаны с потреблением энергии. Диссимиляция — расщепление веществ, как поступающих извне, так и входящих в состав клеток организма. Освобождающаяся при их окислении энергия используется на разнообразные процессы жизнедеятельности. Кроме того, диссимиляция поставляет всевозможные промежуточне продукты, необходимые для синтетических реакций. Растения по типу питания — автотрофные организмы. Особенность их обмена веществ в том, что они способны синтезировать все необходимые для жизнедеятельности органические вещества из минеральных. Для синтеза органических соединений из углекислого газа и воды растения используют солнечную энергию (см. Фотосинтез) . Другой уникальный процесс, который происходит только в растениях, — перевод азота из минеральной формы в органическую, образование аминокислот, которые используются для биосинтеза белка. Эти так называемые незаменимые аминокислоты (лизин, валин, лейцин, изо-лейцин, метионин и др. ) обязательно должны входить в рацион человека и животных. Фосфорный обмен у растений сводится к образованию связи между остатками фосфорной кислоты и молекулой того или иного органического вещества. Значение образующихся при этом фосфорорганических соединений огромно. Это и аденозинтрифосфорная кислота (АТФ) — переносчик энергии в клетке, и нуклеиновые кислоты (ДНК, РНК) , осуществляющие хранение и передачу наследственной информации, и фосфолипиды — компоненты биологических мембран и другие соединения. Большое значение в обмене веществ имеют калий, кальций, магний, железо и другие элементы минерального питания и витамины. Частично они включаются в органические соединения. Главная же их роль регулятор-ная. Таким образом, обмен веществ — это многочисленные согласованные химические процессы. Важную роль в их регуляции играют ферменты — специфические биокатализаторы белковой природы, в состав которых входят витамины и ионы металлов. Количество ферментов и их набор контролируется генетическим аппаратом. Не менее важное значение имеют клеточные мембраны. Они контролируют скорость поступления и выхода веществ, образуют внутри клетки микроскопические отсеки, в которых находятся определенные ферментные системы и происходит метаболизм. Согласованность обмена веществ в целостном организме обеспечивается деятельностью гормонов (см. Фитогормоны) . Любое заболевание, неполноценное питание приводят к нарушениям обмена веществ в организме, которые выражаются в изменении характера превращений веществ, в накоплении промежуточных, а иногда и не свойственных нормальному обмену продуктов. Лечение этих нарушений должно быть направлено на устранение причин, их вызывающих.

touch.otvet.mail.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта