Особенности клеток растений. Сравнение растительной и животной клетки: основные черты сходства и отличия

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Клетка растения. Особенности клеток растений. Особенности клеток растений


Особенности клеток растений — Науколандия

Хотя все живые организмы (за исключением вирусов) имеют клеточное строение, клетки разных царств организмов несколько отличаются между собой. Так между клетками растений и животных есть ряд принципиальных отличий. Ниже перечисляются именно отличительные особенности клеток растений по сравнению с клетками животных. Общий план строения растительной клетки описан здесь.

Клетки растений как и клетки животных имеют клеточную мембрану. Однако с внешней стороны от мембраны у клеток растений есть клеточная стенка. Она придает клетке форму, то есть служит опорой или, другими словами, выполняет функцию наружного скелета, а также защищает содержимое клетки. Клеточная стенка растений состоит из целлюлозы. Несмотря на свою жесткость, клеточная стенка проницаема для воды и растворенных в ней веществ. Проницаемость достигается за счет наличия в клеточной стенке пор. Кроме того, клеточная стенка прозрачна для солнечных лучей, которые необходимы для протекания процесса фотосинтеза.

Только в клетках растений есть особые органеллы — пластиды. Существуют три основных вида пластид: хлоропласты, лейкопласты, хромопласты. Наиболее важное значение имеют хлоропласты, так как в них протекает фотосинтез. В процессе фотосинтеза образуются органические вещества из неорганических, а также выделяется кислород. Почти все остальные организмы (не растения) так или иначе используют эту органику в качестве пищи, а кислород используют для дыхания.

Хлоропласты имеют зеленый цвет и определяют цвет растений. В бесцветных лейкопластах обычно откладываются запасы питательных веществ. В хромопластах синтезируются и хранятся различные пигменты. Из-за этого хромопласты бывают разных цветов (желтые, оранжевые, красные) и определяют окраску частей растений (плодов, корнеплодов, листьев осенью).

Обычно отдельно взятая клетка содержит пластиды только одного вида. Разные пластиды могут превращаться друг в друга. Так хлоропласты превращаются в лейкопласты и хромопласты. Лейкопласты — в хлоропласты.

Еще одной особенностью клеток растений является наличие в них крупной вакуоли. Она содержит так называемый клеточный сок, представляющий собой водный раствор различных веществ (как органических, так и неорганических). Эти вещества накапливаются в клетке про запас или как ненужные и продукты жизнедеятельности. Вакуоль контролирует выделение ненужных веществ из клетки. Также в ней расщепляются ненужные белки и даже органеллы. Стенками вакуолей являются мембраны. У молодой клетки есть некое количество мелких вакуолей. С течением времени они наполняются клеточным соком и сливаются в одну большую центральную вакуоль. Она может занимать большой объем клетки, определять ее размер, поддерживать клеточное давление.

Итак, основными отличительными особенностями растительной клетки являются клеточная стенка, пластиды и крупная центральная вакуоль.

Клетки растений в качестве одного из запасных веществ накапливают крахмал. У животных вместо крахмала накапливается гликоген. Крахмал накапливается в лейкопластах.

Клетки растений соединяются между собой с помощью так называемых цитоплазматических мостиков (плазмодесм) через поры.

У клеток растений нет таких органелл как центриоли, которые есть у клеток животных.

scienceland.info

Особенности растительной клетки — Науколандия

Все живые организмы состоят из клеток (некоторые только из одной). Поэтому клетку называют основной структурно-функциональной единицей организма. Клетки имеют сложное строение, они состоят из различных частей-компонентов.

Растительная клетка снаружи покрыта клеточной стенкой, которая является достаточно прочной, представляет собой каркас, придающий клетке форму и защищающий ее. В клеточной стенке есть тонкие отверстия — поры. Под клеточной стенкой находится плазматическая мембрана, она представляет собой тонкое образование, отделяющее внутреннее содержимое клетки. Мембрана проницаема, она пропускает внутрь клетки вещества и выводит из клетки ненужные вещества.

Внутри клетка заполнена жидкой, но густой цитоплазмой. Именно в ней находятся все органеллы (части) клетки, протекают процессы жизнедеятельности клетки. Цитоплазма постоянно находится в движении.

Строение растительной клетки

Большинство клеток имеют одно ядро, в котором содержатся ядрышки. У ядра есть своя оболочка, которая называется ядерной. В ядре находятся хромосомы, в которых хранится наследственная информация. При делении клетки она передается в дочерние клетки.

У растительных клеток есть вакуоли — полости, заполненные клеточным соком. В клеточном соке накапливаются запасные питательные вещества и продукты жизнедеятельности, которые клетке ненужны. В клеточном соке растворены различные органические и минеральные вещества. Вакуоли на протяжении жизни клетки постепенно наполняются клеточным соком. В результате они достигают таких размеров, что сливаются в одну большую вакуоль. Ее называют центральной. Чем больше размер вакуоли, тем больше и размер клетки.

Самой главной особенностью растительных клеток является наличие в их цитоплазме множества пластид, к которым среди прочих относятся хлоропласты, именно в них протекает синтез органических веществ из неорганических под действием света (процесс фотосинтеза). Хлоропласты имеют зеленый цвет. Однако другие пластиды могут быть бесцветными (лейкопласты) или окрашенными в красно-оранжевые цвета (хромопласты). От того, какого цвета пластиды, зависит цвет органа растения. Так обычно листья имеют зеленый цвет из-за хлоропласт, а в цветках содержатся другие пластиды.

Хлоропласты имеют зеленый цвет из-за особого вещества — хлорофилла. Благодаря хлорофиллу протекает фотосинтез.

В лейкопластах откладываются запасные питательные вещества (например, крахмал).

Растительные клетки отличаются друг от друга, но сильнее они отличаются от животных клеток. Только у растительных клеток есть хлоропласты (и другие пластиды), вакуоли и клеточные стенки.

Клетки с одинаковыми свойствами и выполняющие одинаковые функции, расположенные чаще всего вместе, образуют ткани. Так одни группы клеток обеспечивают питание растения, другие проводят воду по растению, третьи — отвечают за рост и т. д.

scienceland.info

Клетка растения. Особенности клеток растений

Образование 21 декабря 2014

Тела живых организмов могут представлять собой одну-единственную клетку, их группу или огромное скопление, насчитывающее миллиарды таких элементарных структур. К последним относится большинство высших растений. Изучением клетки — основного элемента строения и функций живых организмов - занимается цитология. Этот раздел биологии начал бурно развиваться после открытия электронного микроскопа, совершенствования хроматографии и других методов биохимии. Рассмотрим главные признаки, а также особенности, по которым клетка растения отличается от мельчайших структурных единиц строения бактерий, грибов и животных.

Открытие клетки Р. Гуком

Теория о крошечных элементах строения всего живого прошла путь развития, измеряемый сотнями лет. Строение оболочки клетки растений впервые увидел в свой микроскоп британский ученый Р. Гук. Общие положения клеточной гипотезы сформулировали Шлейден и Шванн, до этого похожие выводы делали и другие исследователи.

Англичанин Р. Гук рассмотрел в микроскоп срез пробки дуба и представил результаты на заседании Королевского общества в Лондоне 13 апреля 1663 года (по другим данным, событие произошло в 1665 году). Оказалось, что кора дерева состоит из крохотных ячеек, названных Гуком «клетками». Стенки этих камер, образующих узор в виде пчелиных сот, ученый считал живым веществом, а полость признал безжизненной, вспомогательной структурой. В дальнейшем было доказано, что внутри клетки растений и животных содержат субстанцию, без которой невозможно их существование, да и деятельность всего организма.

клетка растения

Клеточная теория

Важное открытие Р. Гука получило развитие в работах других ученых, изучавших строение клеток животных и растений. Схожие элементы строения наблюдали ученые на микроскопических срезах многоклеточных грибов. Было установлено, что структурные единицы живых организмов обладают способностью к делению. На основании исследований представители биологической науки Германии М. Шлейден и Т. Шванн сформулировали гипотезу, ставшую впоследствии клеточной теорией.

Сравнение клеток растений и животных с бактериями, водорослями и грибами позволило немецким исследователям прийти к следующему выводу: обнаруженные Р. Гуком «камеры» — это элементарные структурные единицы, а идущие в них процессы лежат в основе жизнедеятельности большинства организмов на Земле. Важное дополнение внес Р. Вирхов в 1855 году, отметив, что деление клеток — единственный путь их размножения. Теория Шлейдена-Шванна с уточнениями стала общепризнанной в биологии.

Видео по теме

Клетка — мельчайший элемент строения и жизнедеятельности растений

Согласно теоретическим положениям Шлейдена и Шванна, органический мир един, что доказывает схожее микроскопическое строение животных и растений. Кроме этих двух царств, клеточное существование характерно для грибов, бактерий, а у вирусов отсутствует. Рост и развитие живых организмов обеспечивается благодаря возникновению новых клеток в процессе деления уже существующих.

Многоклеточный организм — не просто скопление структурных элементов. Маленькие единицы строения взаимодействуют между собой, образуя ткани и органы. Одноклеточные организмы живут изолированно, что не мешает им создавать колонии. Главные признаки клетки:

  • способность к самостоятельному существованию;
  • собственный обмен веществ;
  • самовоспроизведение;
  • развитие.

В эволюции жизни одним из важнейших этапов стало отделение ядра от цитоплазмы при помощи защитной мембраны. Связь сохранилась, ведь отдельно эти структуры не могут существовать. В настоящее время выделяют два надцарства — безъядерных и ядерных организмов. Вторую группу образуют растения, грибы и животные, изучением которых занимаются соответствующие разделы науки и в целом биология. Клетка растения обладает ядром, цитоплазмой и органоидами, речь о которых пойдет ниже.

клетки растений и животных

Разнообразие клеток растений

На изломе спелого арбуза, яблока или картофеля можно заметить невооруженным глазом структурные «ячейки», заполненные жидкостью. Это клетки паренхимы плодов, имеющие диаметр до 1 мм. Лубяные волокна — вытянутые структуры, длина которых значительно превышает ширину. Например, клетка растения, которое называется хлопчатник, достигает в длину 65 мм. Волокна луба льна и конопли имеют линейные размеры, составляющие 40–60 мм. Типичные клетки намного меньше —20–50 мкм. Рассмотреть такие крохотные структурные элементы можно только под микроскопом. Особенности мельчайших единиц строения растительного организма проявляются не только в различиях по форме и размерам, но и в выполняемых функциях в составе тканей.

Клетка растения: основные черты строения

Ядро и цитоплазма тесно взаимосвязаны и взаимодействуют между собой, что подтверждают исследования ученых. Это главные части эукариотической клетки, от них зависят все остальные элементы строения. Ядро служит для накопления и передачи генетической информации, необходимой для синтеза белка.

Британский ученый Р. Броун в 1831 году впервые заметил в клетке растения семейства орхидных особое тельце (нуклеус). Это было ядро, окруженное полужидкой цитоплазмой. Название этой субстанции означает в дословном переводе с греческого «первичная масса клетки». Она может быть более жидкой или вязкой, но обязательно покрыта мембраной. Наружная оболочка клетки состоит в основном из целлюлозы, лигнина, воска. Один из признаков, отличающих клетки растений и животных, — наличие этой прочной целлюлозной стенки.

сравнение клеток растений и животных

Строение цитоплазмы

Внутренняя часть растительной клетки заполнена гиалоплазмой с взвешенными в ней мельчайшими гранулами. Ближе к оболочке так называемая эндоплазма переходит в более вязкую экзоплазму. Именно эти субстанции, которыми заполнена клетка растения, служат местом протекания биохимических реакций и транспорта соединений, размещения органоидов и включений.

Примерно 70–85 % цитоплазмы составляет вода, 10–20 % приходится на белки, другие химические компоненты — углеводы, липиды, минеральные соединения. Клетки растений имеют цитоплазму, в которой среди конечных продуктов синтеза присутствуют биорегуляторы функций и запасные вещества (витамины, ферменты, масла, крахмал).

Ядро

Сравнение клеток растений и животных показывает, что они имеют сходное строение ядра, находящегося в цитоплазме и занимающего до 20 % ее объема. Англичанин Р. Броун, впервые рассмотревший под микроскопом этот важнейший и постоянный компонент всех эукариотов, дал ему название от латинского слова nucleus. Внешний вид ядер обычно коррелирует с формой и размерами клеток, но иногда отличается от них. Обязательные элементы строения — мембрана, кариолимфа, ядрышко и хроматин.

строение клеток животных и растений

В мембране, отделяющей ядро от цитоплазмы, имеются поры. Через них вещества поступают из ядра в цитоплазму и обратно. Кариолимфа представляет собой жидкое или вязкое ядерное содержимое с участками хроматина. Ядрышко содержит рибонуклеиновую кислоту (РНК), проникающую в рибосомы цитоплазмы для участия в синтезе белка. Другая нуклеиновая кислота — дезоксирибонуклеиновая (ДНК) — также присутствует в больших количествах. ДНК и РНК впервые были обнаружены в животных клетках в 1869 году, впоследствии найдены в растениях. Ядро — это «центр управления» внутриклеточными процессами, место хранения информации о наследственных признаках всего организма.

Эндоплазматическая сеть (ЭПС)

Строение клеток животных и растений имеет значительное сходство. Обязательно присутствуют в цитоплазме внутренние канальцы, заполненные разными по происхождению и составу веществами. Гранулярная разновидность ЭПС отличается от агранулярного типа наличием рибосом на поверхности мембран. Первая участвует в синтезе белков, вторая играет роль в образовании углеводов и липидов. Как установили исследователи, каналы не только пронизывают цитоплазму, они связаны с каждым органоидом живой клетки. Поэтому значение ЭПС оценивают очень высоко как участника метаболизма, системы связи с окружающей средой.

Рибосомы

Строение клетки растений или животных трудно представить без этих мелких частиц. Рибосомы очень малы, увидеть их можно только в электронный микроскоп. В составе телец преобладают белки и молекулы рибонуклеиновых кислот, есть незначительное количество ионов кальция и магния. Практически все количество РНК клетки сосредоточено в рибосомах, они обеспечивают белковый синтез, «собирая» протеины из аминокислот. Затем белки поступают в каналы ЭПС и разносятся сетью по всей клетке, проникают в ядро.

Митохондрии

Эти органоиды клетки считают ее энергетическими станциями, они видны при увеличении в обычный световой микроскоп. Количество митохондрий варьируется в очень широких пределах, их может насчитываться единицы или тысячи. Строение органоида не отличается большой сложностью, есть две мембраны и матрикс внутри. Митохондрии состоят из белка липидов, ДНК и РНК, отвечают за биосинтез АТФ — аденозинтрифосфорной кислоты. Для этого вещества клетки растений или животного характерно присутствие трех фосфатов. Отщепление каждого из них дает энергию, необходимую для всех процессов жизнедеятельности в самой клетке и во всем организме. Наоборот, присоединение остатков фосфорной кислоты дает возможность запасать энергию и переносить в таком виде по всей клетке.

Рассмотрите на представленном ниже рисунке органоиды клетки и назовите те, что вам уже известны. Обратите внимание на крупный пузырек (вакуоль) и зеленые пластиды (хлоропласты). Речь о них пойдет дельше.

строение клетки растений

Комплекс Гольджи

Сложный клеточный органоид состоит из гранул, мембран и вакуолей. Комплекс был открыт в 1898 году и получил название в честь итальянского биолога. Особенности клеток растений заключаются в равномерном распространении частиц Гольджи по всей цитоплазме. Ученые считают, что комплекс необходим для регулирования содержания воды и продуктов жизнедеятельности, удаления избытков веществ.

Пластиды

Только клетки тканей растений содержат органоиды зеленого цвета. Кроме того, есть бесцветные, желтые и оранжевые пластиды. На их строении и функциях отражается вид питания растения, причем они способны менять цвет за счет химических реакций. Основные типы пластид:

  • оранжевые и желтые хромопласты, образованные каротином и ксантофиллом;
  • хлоропласты, содержащие зерна хлорофилла, — пигмента зеленого цвета;
  • лейкопласты — бесцветные пластиды.

Строение клетки растений связано с идущими в ней химическими реакциями синтеза органического вещества из углекислого газа и воды с использованием световой энергии. Название этого удивительного и очень сложного процесса — фотосинтез. Осуществляются реакции благодаря хлорофиллу, именно это вещество способно улавливать энергию луча света. Наличием зеленого пигмента объясняется характерный цвет листьев, травянистых стеблей, незрелых плодов. Хлорофилл по строению похож на гемоглобин крови животных и человека.

клетки растений имеют

Красная, желтая и оранжевая окраска различных органов растений обусловлена присутствием в клетках хромопластов. Их основой является большая группа каротиноидов, выполняющих важную роль в метаболизме. Лейкопласты отвечают за синтез и накопление крахмала. Пластиды растут и размножаются в цитоплазме, вместе с ней передвигаются вдоль внутренней оболочки клетки растения. Они богаты ферментами, ионами, другими биологически активными соединениями.

Отличия в микроскопическом строении основных групп живых организмов

Большинство клеток напоминают крошечный мешочек, наполненный слизью, тельцами, гранулами и пузырьками. Часто присутствуют разные включения в виде твердых кристаллов минеральных веществ, капель масел, крахмальных зерен. Клетки тесно соприкасаются в составе тканей растений, жизнь в целом зависит от деятельности этих мельчайших единиц строения, образующих целое.

При многоклеточном строении существует специализация, которая выражается в разных физиологических задачах и функциях микроскопических структурных элементов. Они определяются в основном местоположением тканей в листьях, корне, стебле или генеративных органах растения.

клетки тканей растений

Выделим основные элементы проведенного сравнения клетки растения с элементарными единицами строения других живых организмов:

  1. Плотная оболочка, характерная только для растений, образована клетчаткой (целлюлозой). У грибов мембрана состоит из прочного хитина (особого белка).
  2. Клетки растений и грибов отличаются по цвету благодаря наличию или отсутствию пластид. Такие тельца, как хлоропласты, хромопласты и лейкопласты, присутствуют только в растительной цитоплазме.
  3. Есть органоид, который отличает животных, — это центриоль (клеточный центр).
  4. Только в составе клетки растения присутствует крупная центральная вакуоль, заполненная жидким содержимым. Обычно этот клеточный сок окрашен пигментами в разные цвета.
  5. Главное запасное соединение растительного организма — крахмал. Грибы и животные накапливают в своих клетках гликоген.

Среди водорослей известно много одиночных, свободно живущих клеток. К примеру, таким самостоятельным организмом является хламидомонада. Хотя растения отличаются от животных присутствием целлюлозной клеточной стенки, но половые клетки лишены такой плотной оболочки — это еще одно доказательство единства органического мира.

Источник: fb.ru

Комментарии

Идёт загрузка...

Похожие материалы

Вакуоль: строение и функции органеллы в клетках растений и животныхОбразование Вакуоль: строение и функции органеллы в клетках растений и животных

Одной из постоянных структур клеток растений и животных являются вакуоли. Однако различие в их строении и функциях у этих групп живых организмов довольно существенно. Что такое вакуоль, строение и функции этой структу...

Что такое покровная ткань? Покровная ткань: функции, клетки и особенности строенияОбразование Что такое покровная ткань? Покровная ткань: функции, клетки и особенности строения

Ткань – это совокупность клеток, объединенных подобным строением и функциями, и межклеточного вещества. Из тканей образуются органы, которые, в свою очередь, формируют системы органов. Большинство многоклеточных...

Как устроены стрекательные клетки? Функция стрекательных клетокОбразование Как устроены стрекательные клетки? Функция стрекательных клеток

Интересные особенности характерны для группы многоклеточных животных, которые относятся к типу Стрекающие, или Cnidaria. Книдарии имеют простое строение, но обладают настоящими тканями, кишечной полостью. Одно из неоф...

Особенности строения столбчатой клетки ткани. Палисадная (столбчатая) ткань пластинки листа растенийОбразование Особенности строения столбчатой клетки ткани. Палисадная (столбчатая) ткань пластинки листа растений

Дифференциация клеток и тканей играет большую роль в развитии организма. Разделение обязанностей для каждой клетки можно сравнить с разделением труда на фабрике: если каждая единица выполняет только присущую ей функци...

Культурны овощные растения: виды и особенностиДомашний уют Культурны овощные растения: виды и особенности

Овощные растения — достаточно емкое понятие, которое имеет весьма размытые границы. Они настолько прочно вошли в нашу жизнь, что мы даже не задумываемся над тем, что именно к ним можно отнести и откуда они произ...

Цитрусовые комнатные растения: виды, особенности выращивания и уходаДомашний уют Цитрусовые комнатные растения: виды, особенности выращивания и ухода

Выращивать цитрусовые комнатные растения в домашних условиях – занятие хоть и интересное, но далеко не простое. Поэтому сильно заблуждаются те, кто считает, что достаточно будет посадить в землю косточку, и все ...

Комнатное растение ардизия: уход в домашних условиях, особенности выращивания и рекомендацииДомашний уют Комнатное растение ардизия: уход в домашних условиях, особенности выращивания и рекомендации

Тропическое комнатное растение ардизия привлекает к себе внимание цветоводов прежде всего благодаря ярко-красным плодам. Небольшие горошины, собранные в кисть, появляются на ней круглогодично и по внешнему виду более ...

Декоративно-лиственные комнатные растения: названия, особенности выращиванияДомашний уют Декоративно-лиственные комнатные растения: названия, особенности выращивания

Как вы думаете, можно ли создать уют в доме без комнатных растений? Можно, но, увы, это достаточно сложно. А вот как только появляется горшочек с зеленым другом, так сразу комната наполняется уютом и теплом. Именно по...

Растение эрика: описание, способы размножения, выращивания и особенности уходаДомашний уют Растение эрика: описание, способы размножения, выращивания и особенности ухода

С самого начала весны и до поздней осени радует своим буйным длительным цветением, разнообразием палитры красок удивительное растение эрика, относящееся к семейству вересковых. Родом из Южной Африки, оно основательно ...

Обрезка туи весной - особенности ухода за растениемДомашний уют Обрезка туи весной - особенности ухода за растением

Одним из самых неприхотливых и эффектных растений для ландшафтного дизайна считается туя. Описание основных характеристик, а также правил ухода за растением, приведенным в статье, позволит садоводам радоваться этому к...

monateka.com

Отличительная особенность клеток растений — присутствие в них пластид.

Количество просмотров публикации Отличительная особенность клеток растений — присутствие в них пластид. - 524

Билет № 3

3.

Поджелудочная желœеза — это желœеза смешанной секреции. Она состоит из клеток двух видов. Одни клетки выделяют пищеварительный сок, другие — гормон.

Особые скопления клеток поджелудочной желœезы выделяют в кровь инсулин, который регулирует углеводный обмен. Поступая в кровь, инсулин снижает в ней уровень сахара, задерживает гликоген в печени и увеличивает использование сахара мышечными и другими клетками.

Обмен углеводов. Углеводы входят в состав клеток и являются ОСНОВНЫМ источником энергии в организме. В растительной пище углеводы представлены главным образом в виде крахмала и тростникового сахара. Под влиянием ферментов пищеварительных соков углеводы расщепляются до глюкозы, которая в ворсинках кишечника всасывается в кровь, поступает с ней в печень и превращается в животный крахмал — гликоген. В печени откладываются основные запасы углеводов в организме.

Подобные превращения глюкозы в гликоген происходят и в мышцах.

Во время длительного голодания при снижении уровня глюкозы в крови происходит расщепление гликогена и образовавшаяся глюкоза выбрасывается в кровяное русло. Напротив, при избытке глюкозы в крови она быстро превращается в печени в гликоген. Таким путем, благодаря саморегуляции, поддерживается постоянный уровень глюкозы в крови.

В результате нарушения обмена веществ, избытка сахара в пище, нарушается саморегуляция. Недостаток инсулина приводит к сахарному диабету: повышенный уровень глюкозы в крови, жажда, обезвоживание тканей ведут к потере сознания и смерти. При избытке инсулина резкое снижение уровня глюкозы в крови сопровождается головокружением, слабостью, чувством голода, потерей сознания и судорогами.

Лечение чисто симптоматическое и очень важную роль играет диета͵ причем задача ее сводится к устранению из пищи всœего, что содержит или из чего может образоваться сахар.

1. Клеточное строение организмов как доказательство их родства, единства живой природы. Сравнение клеток растений и грибов.

2. Приспособления организмов к различным экологическим факторам. (~Б №20.1) Приведите примеры паразитических отношений в природе и раскройте их значение. Среди гербарных экземпляров коллекций и важных препаратов найдите растения и животных, для которых характерен паразитический образ жизни.

3. Используя знания о нормах питания и расходовании энергии человеком (сочетание продуктов растительного и животного происхождения нормы и режим питания и др.), объясните, почему люди, употребляющие с пищей много углеводов, быстро прибавляют в весе.

Ответ:

1.Все живые организмы состоят из клеток. Исключение – вирусы.

В случае если рассмотреть клетки под микроскопом, то можно увидеть, что они имеют сложное строение.

Основные части клетки: 1) снаружи - оболочка, 2)внутри - бесцветное густое, тягучее образование — цитоплазма(у растительной клетки в цитоплазме есть полости, их называют вакуоли, и очень мелкие тельца — пластиды), 3) плотное тельце — ядро с ядрышком. Основные части клетки и многие органоиды (митохондрии, рибосомы, эндоплазматическая сеть, комплекс Гольджи, лизосомы) – общие для растений и грибов.

Пластиды бывают бесцветными, но чаще они окрашены в зелœеный или красно-оранжевый цвет (в плодах). От окраски пластид зависит окраска клетки и органов растения. Зелœеный цвет растений обусловлен присутствием в их клетках зелœеных телœец пластид. Их называют хлоропластами (греч. хлорос — зелœеный, пластос образующий, вылепленный).

Зелœеный цвет хлоропласт получает благодаря зелœеному веществу — хлорофиллу (греч. хлорос — зелœеный, филлон — лист). С помощью хлорофилла клетки растений улавливают энергию солнечных лучей и образуют органические вещества (в виде сахаров).

Бесцветные пластиды называют лейкопластами (греч. лейкос — белый). В лейкопластах откладываются запасные питательные вещества: крахмал, масла и белок.

Клеточная оболочка растения очень прочная, она придает клетке определœенную форму и защищает ее содержимое. Она бесцветна, прозрачна, легко пропускает свет внутрь клетки.

В клеточной оболочке могут накапливаться минœеральные соли (особенно соли кальция) и кремнезем (у хвощей, злаков, осок). Это придает твердость и хрупкость оболочке клеток. В клеточной оболочке могут содержаться вещества, которые вызывают опробковение и одревеснение.

Цитоплазма имеет особый химический состав. В ней протекают различные биохимические процессы, обеспечивающие жизнедеятельность клетки. В живой клетке тягучая, полужидкая цитоплазма постоянно движется, перемещается по всœему объёму клетки.

referatwork.ru

Клетка растения. Особенности клеток растений

Тела живых организмов могут представлять собой одну-единственную клетку, их группу или огромное скопление, насчитывающее миллиарды таких элементарных структур. К последним относится большинство высших растений. Изучением клетки — основного элемента строения и функций живых организмов - занимается цитология. Этот раздел биологии начал бурно развиваться после открытия электронного микроскопа, совершенствования хроматографии и других методов биохимии. Рассмотрим главные признаки, а также особенности, по которым клетка растения отличается от мельчайших структурных единиц строения бактерий, грибов и животных.

Открытие клетки Р. Гуком

Теория о крошечных элементах строения всего живого прошла путь развития, измеряемый сотнями лет. Строение оболочки клетки растений впервые увидел в свой микроскоп британский ученый Р. Гук. Общие положения клеточной гипотезы сформулировали Шлейден и Шванн, до этого похожие выводы делали и другие исследователи.

Англичанин Р. Гук рассмотрел в микроскоп срез пробки дуба и представил результаты на заседании Королевского общества в Лондоне 13 апреля 1663 года (по другим данным, событие произошло в 1665 году). Оказалось, что кора дерева состоит из крохотных ячеек, названных Гуком «клетками». Стенки этих камер, образующих узор в виде пчелиных сот, ученый считал живым веществом, а полость признал безжизненной, вспомогательной структурой. В дальнейшем было доказано, что внутри клетки растений и животных содержат субстанцию, без которой невозможно их существование, да и деятельность всего организма.

клетка растения

Клеточная теория

Важное открытие Р. Гука получило развитие в работах других ученых, изучавших строение клеток животных и растений. Схожие элементы строения наблюдали ученые на микроскопических срезах многоклеточных грибов. Было установлено, что структурные единицы живых организмов обладают способностью к делению. На основании исследований представители биологической науки Германии М. Шлейден и Т. Шванн сформулировали гипотезу, ставшую впоследствии клеточной теорией.

Сравнение клеток растений и животных с бактериями, водорослями и грибами позволило немецким исследователям прийти к следующему выводу: обнаруженные Р. Гуком «камеры» — это элементарные структурные единицы, а идущие в них процессы лежат в основе жизнедеятельности большинства организмов на Земле. Важное дополнение внес Р. Вирхов в 1855 году, отметив, что деление клеток — единственный путь их размножения. Теория Шлейдена-Шванна с уточнениями стала общепризнанной в биологии.

Клетка — мельчайший элемент строения и жизнедеятельности растений

Согласно теоретическим положениям Шлейдена и Шванна, органический мир един, что доказывает схожее микроскопическое строение животных и растений. Кроме этих двух царств, клеточное существование характерно для грибов, бактерий, а у вирусов отсутствует. Рост и развитие живых организмов обеспечивается благодаря возникновению новых клеток в процессе деления уже существующих.

Многоклеточный организм — не просто скопление структурных элементов. Маленькие единицы строения взаимодействуют между собой, образуя ткани и органы. Одноклеточные организмы живут изолированно, что не мешает им создавать колонии. Главные признаки клетки:

  • способность к самостоятельному существованию;
  • собственный обмен веществ;
  • самовоспроизведение;
  • развитие.

В эволюции жизни одним из важнейших этапов стало отделение ядра от цитоплазмы при помощи защитной мембраны. Связь сохранилась, ведь отдельно эти структуры не могут существовать. В настоящее время выделяют два надцарства — безъядерных и ядерных организмов. Вторую группу образуют растения, грибы и животные, изучением которых занимаются соответствующие разделы науки и в целом биология. Клетка растения обладает ядром, цитоплазмой и органоидами, речь о которых пойдет ниже.

клетки растений и животных

Разнообразие клеток растений

На изломе спелого арбуза, яблока или картофеля можно заметить невооруженным глазом структурные «ячейки», заполненные жидкостью. Это клетки паренхимы плодов, имеющие диаметр до 1 мм. Лубяные волокна — вытянутые структуры, длина которых значительно превышает ширину. Например, клетка растения, которое называется хлопчатник, достигает в длину 65 мм. Волокна луба льна и конопли имеют линейные размеры, составляющие 40–60 мм. Типичные клетки намного меньше —20–50 мкм. Рассмотреть такие крохотные структурные элементы можно только под микроскопом. Особенности мельчайших единиц строения растительного организма проявляются не только в различиях по форме и размерам, но и в выполняемых функциях в составе тканей.

Клетка растения: основные черты строения

Ядро и цитоплазма тесно взаимосвязаны и взаимодействуют между собой, что подтверждают исследования ученых. Это главные части эукариотической клетки, от них зависят все остальные элементы строения. Ядро служит для накопления и передачи генетической информации, необходимой для синтеза белка.

Британский ученый Р. Броун в 1831 году впервые заметил в клетке растения семейства орхидных особое тельце (нуклеус). Это было ядро, окруженное полужидкой цитоплазмой. Название этой субстанции означает в дословном переводе с греческого «первичная масса клетки». Она может быть более жидкой или вязкой, но обязательно покрыта мембраной. Наружная оболочка клетки состоит в основном из целлюлозы, лигнина, воска. Один из признаков, отличающих клетки растений и животных, — наличие этой прочной целлюлозной стенки.

сравнение клеток растений и животных

Строение цитоплазмы

Внутренняя часть растительной клетки заполнена гиалоплазмой с взвешенными в ней мельчайшими гранулами. Ближе к оболочке так называемая эндоплазма переходит в более вязкую экзоплазму. Именно эти субстанции, которыми заполнена клетка растения, служат местом протекания биохимических реакций и транспорта соединений, размещения органоидов и включений.

Примерно 70–85 % цитоплазмы составляет вода, 10–20 % приходится на белки, другие химические компоненты — углеводы, липиды, минеральные соединения. Клетки растений имеют цитоплазму, в которой среди конечных продуктов синтеза присутствуют биорегуляторы функций и запасные вещества (витамины, ферменты, масла, крахмал).

Ядро

Сравнение клеток растений и животных показывает, что они имеют сходное строение ядра, находящегося в цитоплазме и занимающего до 20 % ее объема. Англичанин Р. Броун, впервые рассмотревший под микроскопом этот важнейший и постоянный компонент всех эукариотов, дал ему название от латинского слова nucleus. Внешний вид ядер обычно коррелирует с формой и размерами клеток, но иногда отличается от них. Обязательные элементы строения — мембрана, кариолимфа, ядрышко и хроматин.

строение клеток животных и растений

В мембране, отделяющей ядро от цитоплазмы, имеются поры. Через них вещества поступают из ядра в цитоплазму и обратно. Кариолимфа представляет собой жидкое или вязкое ядерное содержимое с участками хроматина. Ядрышко содержит рибонуклеиновую кислоту (РНК), проникающую в рибосомы цитоплазмы для участия в синтезе белка. Другая нуклеиновая кислота — дезоксирибонуклеиновая (ДНК) — также присутствует в больших количествах. ДНК и РНК впервые были обнаружены в животных клетках в 1869 году, впоследствии найдены в растениях. Ядро — это «центр управления» внутриклеточными процессами, место хранения информации о наследственных признаках всего организма.

Эндоплазматическая сеть (ЭПС)

Строение клеток животных и растений имеет значительное сходство. Обязательно присутствуют в цитоплазме внутренние канальцы, заполненные разными по происхождению и составу веществами. Гранулярная разновидность ЭПС отличается от агранулярного типа наличием рибосом на поверхности мембран. Первая участвует в синтезе белков, вторая играет роль в образовании углеводов и липидов. Как установили исследователи, каналы не только пронизывают цитоплазму, они связаны с каждым органоидом живой клетки. Поэтому значение ЭПС оценивают очень высоко как участника метаболизма, системы связи с окружающей средой.

Рибосомы

Строение клетки растений или животных трудно представить без этих мелких частиц. Рибосомы очень малы, увидеть их можно только в электронный микроскоп. В составе телец преобладают белки и молекулы рибонуклеиновых кислот, есть незначительное количество ионов кальция и магния. Практически все количество РНК клетки сосредоточено в рибосомах, они обеспечивают белковый синтез, «собирая» протеины из аминокислот. Затем белки поступают в каналы ЭПС и разносятся сетью по всей клетке, проникают в ядро.

Митохондрии

Эти органоиды клетки считают ее энергетическими станциями, они видны при увеличении в обычный световой микроскоп. Количество митохондрий варьируется в очень широких пределах, их может насчитываться единицы или тысячи. Строение органоида не отличается большой сложностью, есть две мембраны и матрикс внутри. Митохондрии состоят из белка липидов, ДНК и РНК, отвечают за биосинтез АТФ — аденозинтрифосфорной кислоты. Для этого вещества клетки растений или животного характерно присутствие трех фосфатов. Отщепление каждого из них дает энергию, необходимую для всех процессов жизнедеятельности в самой клетке и во всем организме. Наоборот, присоединение остатков фосфорной кислоты дает возможность запасать энергию и переносить в таком виде по всей клетке.

Рассмотрите на представленном ниже рисунке органоиды клетки и назовите те, что вам уже известны. Обратите внимание на крупный пузырек (вакуоль) и зеленые пластиды (хлоропласты). Речь о них пойдет дельше.

строение клетки растений

Комплекс Гольджи

Сложный клеточный органоид состоит из гранул, мембран и вакуолей. Комплекс был открыт в 1898 году и получил название в честь итальянского биолога. Особенности клеток растений заключаются в равномерном распространении частиц Гольджи по всей цитоплазме. Ученые считают, что комплекс необходим для регулирования содержания воды и продуктов жизнедеятельности, удаления избытков веществ.

Пластиды

Только клетки тканей растений содержат органоиды зеленого цвета. Кроме того, есть бесцветные, желтые и оранжевые пластиды. На их строении и функциях отражается вид питания растения, причем они способны менять цвет за счет химических реакций. Основные типы пластид:

  • оранжевые и желтые хромопласты, образованные каротином и ксантофиллом;
  • хлоропласты, содержащие зерна хлорофилла, — пигмента зеленого цвета;
  • лейкопласты — бесцветные пластиды.

Строение клетки растений связано с идущими в ней химическими реакциями синтеза органического вещества из углекислого газа и воды с использованием световой энергии. Название этого удивительного и очень сложного процесса — фотосинтез. Осуществляются реакции благодаря хлорофиллу, именно это вещество способно улавливать энергию луча света. Наличием зеленого пигмента объясняется характерный цвет листьев, травянистых стеблей, незрелых плодов. Хлорофилл по строению похож на гемоглобин крови животных и человека.

клетки растений имеют

Красная, желтая и оранжевая окраска различных органов растений обусловлена присутствием в клетках хромопластов. Их основой является большая группа каротиноидов, выполняющих важную роль в метаболизме. Лейкопласты отвечают за синтез и накопление крахмала. Пластиды растут и размножаются в цитоплазме, вместе с ней передвигаются вдоль внутренней оболочки клетки растения. Они богаты ферментами, ионами, другими биологически активными соединениями.

Отличия в микроскопическом строении основных групп живых организмов

Большинство клеток напоминают крошечный мешочек, наполненный слизью, тельцами, гранулами и пузырьками. Часто присутствуют разные включения в виде твердых кристаллов минеральных веществ, капель масел, крахмальных зерен. Клетки тесно соприкасаются в составе тканей растений, жизнь в целом зависит от деятельности этих мельчайших единиц строения, образующих целое.

При многоклеточном строении существует специализация, которая выражается в разных физиологических задачах и функциях микроскопических структурных элементов. Они определяются в основном местоположением тканей в листьях, корне, стебле или генеративных органах растения.

клетки тканей растений

Выделим основные элементы проведенного сравнения клетки растения с элементарными единицами строения других живых организмов:

  1. Плотная оболочка, характерная только для растений, образована клетчаткой (целлюлозой). У грибов мембрана состоит из прочного хитина (особого белка).
  2. Клетки растений и грибов отличаются по цвету благодаря наличию или отсутствию пластид. Такие тельца, как хлоропласты, хромопласты и лейкопласты, присутствуют только в растительной цитоплазме.
  3. Есть органоид, который отличает животных, — это центриоль (клеточный центр).
  4. Только в составе клетки растения присутствует крупная центральная вакуоль, заполненная жидким содержимым. Обычно этот клеточный сок окрашен пигментами в разные цвета.
  5. Главное запасное соединение растительного организма — крахмал. Грибы и животные накапливают в своих клетках гликоген.

Среди водорослей известно много одиночных, свободно живущих клеток. К примеру, таким самостоятельным организмом является хламидомонада. Хотя растения отличаются от животных присутствием целлюлозной клеточной стенки, но половые клетки лишены такой плотной оболочки — это еще одно доказательство единства органического мира.

загрузка...

allwomanday.ru

основные черты сходства и отличия

В статье будет проведено сравнение растительной и животной клетки. Эти структуры, несмотря на единство происхождения, имеют значительные отличия.

Общий план строения клеток

Рассматривая сравнение растительных и животных клеток, необходимо прежде всего вспомнить об основных закономерностях их развития и структуры. Они имеют общие черты строения, и состоят из поверхностных структур, цитоплазмы и постоянных структур - органелл. В результате жизнедеятельности в них про запас откладываются органические вещества, которые называются включениями. Новые клетки возникают в результате деления материнских. В ходе этого процесса из одной исходной может образоваться две и более молодых структур, которые являются точной генетической копией исходных. Клетки, единые по особенностям строения и выполняемым функциям, объединяются в ткани. Именно из этих структур происходит формирование органов и их систем.

сравнение растительной и животной клетки

Сравнение растительной и животной клетки: таблица

На таблице легко можно увидеть все сходства и различия в клетках обеих категорий.

Признаки для сравненияРастительная клеткаЖивотная клетка
Особенности клеточной стенкиСостоит из полисахарида целлюлозы.Представляет собой гликокаликс-тонкий слой, состоящий из соединений белков с углеводами и липидами.
Наличие клеточного центраНаходится только в клетках нижних растений-водорослей.Находится во всех клетках.
Наличие и расположение ядраЯдро находится в пристеночной зоне.Ядро располагается в центре клетки.
Наличие пластидНаличие пластид трех видов: хлоро-, хромо- и лейкопластов.Отсутствуют.
Способность к фотосинтезуПроисходит на внутренней поверхности хлоропластов.Не способны.
Способ питанияАвтотрофный.Гетеротрофный.
ВакуолиПредставляют собой большие полости, заполненные клеточным соком.Пищеварительные и сократительные вакуоли.
Запасной углеводКрахмал.Гликоген.

сравнение растительных и животных клеток

Основные отличия

Сравнение растительной и животной клетки свидетельствует о целом ряде отличий в особенностях их строения, а значит и процессов жизнедеятельности. Так, несмотря на единство общего плана, их поверхностный аппарат отличается химическим составом. Целлюлоза, входящая в состав клеточной стенки растений, придает им постоянную форму. Гликокаликс животных, наоборот, представляет собой тонкий эластичный слой. Однако самое главное принципиальное отличие этих клеток и организмов, которые они образуют, заключается в способе питания. Растения имеют в цитоплазме зеленые пластиды хлоропласты. На их внутренней поверхности происходит сложная химическая реакция превращения воды и углекислого газа в моносахариды. Этот процесс возможен только при наличии солнечного света и называется фотосинтезом. Побочным продуктом реакции является кислород.

сравнение растительной и животной клетки таблица

Выводы

Итак, мы провели сравнение растительной и животной клетки, их сходство и отличия. Общими являются план строения, химических процессов и состава, деления и генетического кода. В то же время клетки растений и животных принципиально отличаются способом питания организмов, которые они образуют.

fb.ru

Клетка растения. Особенности клеток растений

Тела живых организмов могут представлять собой одну-единственную клетку, их группу или огромное скопление, насчитывающее миллиарды таких элементарных структур. К последним относится большинство высших растений. Изучением клетки — основного элемента строения и функций живых организмов - занимается цитология. Этот раздел биологии начал бурно развиваться после открытия электронного микроскопа, совершенствования хроматографии и других методов биохимии. Рассмотрим главные признаки, а также особенности, по которым клетка растения отличается от мельчайших структурных единиц строения бактерий, грибов и животных.

Открытие клетки Р. Гуком

Теория о крошечных элементах строения всего живого прошла путь развития, измеряемый сотнями лет. Строение оболочки клетки растений впервые увидел в свой микроскоп британский ученый Р. Гук. Общие положения клеточной гипотезы сформулировали Шлейден и Шванн, до этого похожие выводы делали и другие исследователи.

Англичанин Р. Гук рассмотрел в микроскоп срез пробки дуба и представил результаты на заседании Королевского общества в Лондоне 13 апреля 1663 года (по другим данным, событие произошло в 1665 году). Оказалось, что кора дерева состоит из крохотных ячеек, названных Гуком «клетками». Стенки этих камер, образующих узор в виде пчелиных сот, ученый считал живым веществом, а полость признал безжизненной, вспомогательной структурой. В дальнейшем было доказано, что внутри клетки растений и животных содержат субстанцию, без которой невозможно их существование, да и деятельность всего организма.

клетка растения

Клеточная теория

Важное открытие Р. Гука получило развитие в работах других ученых, изучавших строение клеток животных и растений. Схожие элементы строения наблюдали ученые на микроскопических срезах многоклеточных грибов. Было установлено, что структурные единицы живых организмов обладают способностью к делению. На основании исследований представители биологической науки Германии М. Шлейден и Т. Шванн сформулировали гипотезу, ставшую впоследствии клеточной теорией.

Сравнение клеток растений и животных с бактериями, водорослями и грибами позволило немецким исследователям прийти к следующему выводу: обнаруженные Р. Гуком «камеры» — это элементарные структурные единицы, а идущие в них процессы лежат в основе жизнедеятельности большинства организмов на Земле. Важное дополнение внес Р. Вирхов в 1855 году, отметив, что деление клеток — единственный путь их размножения. Теория Шлейдена-Шванна с уточнениями стала общепризнанной в биологии.

Клетка — мельчайший элемент строения и жизнедеятельности растений

Согласно теоретическим положениям Шлейдена и Шванна, органический мир един, что доказывает схожее микроскопическое строение животных и растений. Кроме этих двух царств, клеточное существование характерно для грибов, бактерий, а у вирусов отсутствует. Рост и развитие живых организмов обеспечивается благодаря возникновению новых клеток в процессе деления уже существующих.

Многоклеточный организм — не просто скопление структурных элементов. Маленькие единицы строения взаимодействуют между собой, образуя ткани и органы. Одноклеточные организмы живут изолированно, что не мешает им создавать колонии. Главные признаки клетки:

  • способность к самостоятельному существованию;
  • собственный обмен веществ;
  • самовоспроизведение;
  • развитие.

В эволюции жизни одним из важнейших этапов стало отделение ядра от цитоплазмы при помощи защитной мембраны. Связь сохранилась, ведь отдельно эти структуры не могут существовать. В настоящее время выделяют два надцарства — безъядерных и ядерных организмов. Вторую группу образуют растения, грибы и животные, изучением которых занимаются соответствующие разделы науки и в целом биология. Клетка растения обладает ядром, цитоплазмой и органоидами, речь о которых пойдет ниже.

клетки растений и животных

Разнообразие клеток растений

На изломе спелого арбуза, яблока или картофеля можно заметить невооруженным глазом структурные «ячейки», заполненные жидкостью. Это клетки паренхимы плодов, имеющие диаметр до 1 мм. Лубяные волокна — вытянутые структуры, длина которых значительно превышает ширину. Например, клетка растения, которое называется хлопчатник, достигает в длину 65 мм. Волокна луба льна и конопли имеют линейные размеры, составляющие 40–60 мм. Типичные клетки намного меньше —20–50 мкм. Рассмотреть такие крохотные структурные элементы можно только под микроскопом. Особенности мельчайших единиц строения растительного организма проявляются не только в различиях по форме и размерам, но и в выполняемых функциях в составе тканей.

Клетка растения: основные черты строения

Ядро и цитоплазма тесно взаимосвязаны и взаимодействуют между собой, что подтверждают исследования ученых. Это главные части эукариотической клетки, от них зависят все остальные элементы строения. Ядро служит для накопления и передачи генетической информации, необходимой для синтеза белка.

Британский ученый Р. Броун в 1831 году впервые заметил в клетке растения семейства орхидных особое тельце (нуклеус). Это было ядро, окруженное полужидкой цитоплазмой. Название этой субстанции означает в дословном переводе с греческого «первичная масса клетки». Она может быть более жидкой или вязкой, но обязательно покрыта мембраной. Наружная оболочка клетки состоит в основном из целлюлозы, лигнина, воска. Один из признаков, отличающих клетки растений и животных, — наличие этой прочной целлюлозной стенки.

сравнение клеток растений и животных

Строение цитоплазмы

Внутренняя часть растительной клетки заполнена гиалоплазмой с взвешенными в ней мельчайшими гранулами. Ближе к оболочке так называемая эндоплазма переходит в более вязкую экзоплазму. Именно эти субстанции, которыми заполнена клетка растения, служат местом протекания биохимических реакций и транспорта соединений, размещения органоидов и включений.

Примерно 70–85 % цитоплазмы составляет вода, 10–20 % приходится на белки, другие химические компоненты — углеводы, липиды, минеральные соединения. Клетки растений имеют цитоплазму, в которой среди конечных продуктов синтеза присутствуют биорегуляторы функций и запасные вещества (витамины, ферменты, масла, крахмал).

Ядро

Сравнение клеток растений и животных показывает, что они имеют сходное строение ядра, находящегося в цитоплазме и занимающего до 20 % ее объема. Англичанин Р. Броун, впервые рассмотревший под микроскопом этот важнейший и постоянный компонент всех эукариотов, дал ему название от латинского слова nucleus. Внешний вид ядер обычно коррелирует с формой и размерами клеток, но иногда отличается от них. Обязательные элементы строения — мембрана, кариолимфа, ядрышко и хроматин.

строение клеток животных и растений

В мембране, отделяющей ядро от цитоплазмы, имеются поры. Через них вещества поступают из ядра в цитоплазму и обратно. Кариолимфа представляет собой жидкое или вязкое ядерное содержимое с участками хроматина. Ядрышко содержит рибонуклеиновую кислоту (РНК), проникающую в рибосомы цитоплазмы для участия в синтезе белка. Другая нуклеиновая кислота — дезоксирибонуклеиновая (ДНК) — также присутствует в больших количествах. ДНК и РНК впервые были обнаружены в животных клетках в 1869 году, впоследствии найдены в растениях. Ядро — это «центр управления» внутриклеточными процессами, место хранения информации о наследственных признаках всего организма.

Эндоплазматическая сеть (ЭПС)

Строение клеток животных и растений имеет значительное сходство. Обязательно присутствуют в цитоплазме внутренние канальцы, заполненные разными по происхождению и составу веществами. Гранулярная разновидность ЭПС отличается от агранулярного типа наличием рибосом на поверхности мембран. Первая участвует в синтезе белков, вторая играет роль в образовании углеводов и липидов. Как установили исследователи, каналы не только пронизывают цитоплазму, они связаны с каждым органоидом живой клетки. Поэтому значение ЭПС оценивают очень высоко как участника метаболизма, системы связи с окружающей средой.

Рибосомы

Строение клетки растений или животных трудно представить без этих мелких частиц. Рибосомы очень малы, увидеть их можно только в электронный микроскоп. В составе телец преобладают белки и молекулы рибонуклеиновых кислот, есть незначительное количество ионов кальция и магния. Практически все количество РНК клетки сосредоточено в рибосомах, они обеспечивают белковый синтез, «собирая» протеины из аминокислот. Затем белки поступают в каналы ЭПС и разносятся сетью по всей клетке, проникают в ядро.

Митохондрии

Эти органоиды клетки считают ее энергетическими станциями, они видны при увеличении в обычный световой микроскоп. Количество митохондрий варьируется в очень широких пределах, их может насчитываться единицы или тысячи. Строение органоида не отличается большой сложностью, есть две мембраны и матрикс внутри. Митохондрии состоят из белка липидов, ДНК и РНК, отвечают за биосинтез АТФ — аденозинтрифосфорной кислоты. Для этого вещества клетки растений или животного характерно присутствие трех фосфатов. Отщепление каждого из них дает энергию, необходимую для всех процессов жизнедеятельности в самой клетке и во всем организме. Наоборот, присоединение остатков фосфорной кислоты дает возможность запасать энергию и переносить в таком виде по всей клетке.

Рассмотрите на представленном ниже рисунке органоиды клетки и назовите те, что вам уже известны. Обратите внимание на крупный пузырек (вакуоль) и зеленые пластиды (хлоропласты). Речь о них пойдет дельше.

строение клетки растений

Комплекс Гольджи

Сложный клеточный органоид состоит из гранул, мембран и вакуолей. Комплекс был открыт в 1898 году и получил название в честь итальянского биолога. Особенности клеток растений заключаются в равномерном распространении частиц Гольджи по всей цитоплазме. Ученые считают, что комплекс необходим для регулирования содержания воды и продуктов жизнедеятельности, удаления избытков веществ.

Пластиды

Только клетки тканей растений содержат органоиды зеленого цвета. Кроме того, есть бесцветные, желтые и оранжевые пластиды. На их строении и функциях отражается вид питания растения, причем они способны менять цвет за счет химических реакций. Основные типы пластид:

  • оранжевые и желтые хромопласты, образованные каротином и ксантофиллом;
  • хлоропласты, содержащие зерна хлорофилла, — пигмента зеленого цвета;
  • лейкопласты — бесцветные пластиды.

Строение клетки растений связано с идущими в ней химическими реакциями синтеза органического вещества из углекислого газа и воды с использованием световой энергии. Название этого удивительного и очень сложного процесса — фотосинтез. Осуществляются реакции благодаря хлорофиллу, именно это вещество способно улавливать энергию луча света. Наличием зеленого пигмента объясняется характерный цвет листьев, травянистых стеблей, незрелых плодов. Хлорофилл по строению похож на гемоглобин крови животных и человека.

клетки растений имеют

Красная, желтая и оранжевая окраска различных органов растений обусловлена присутствием в клетках хромопластов. Их основой является большая группа каротиноидов, выполняющих важную роль в метаболизме. Лейкопласты отвечают за синтез и накопление крахмала. Пластиды растут и размножаются в цитоплазме, вместе с ней передвигаются вдоль внутренней оболочки клетки растения. Они богаты ферментами, ионами, другими биологически активными соединениями.

Отличия в микроскопическом строении основных групп живых организмов

Большинство клеток напоминают крошечный мешочек, наполненный слизью, тельцами, гранулами и пузырьками. Часто присутствуют разные включения в виде твердых кристаллов минеральных веществ, капель масел, крахмальных зерен. Клетки тесно соприкасаются в составе тканей растений, жизнь в целом зависит от деятельности этих мельчайших единиц строения, образующих целое.

При многоклеточном строении существует специализация, которая выражается в разных физиологических задачах и функциях микроскопических структурных элементов. Они определяются в основном местоположением тканей в листьях, корне, стебле или генеративных органах растения.

клетки тканей растений

Выделим основные элементы проведенного сравнения клетки растения с элементарными единицами строения других живых организмов:

  1. Плотная оболочка, характерная только для растений, образована клетчаткой (целлюлозой). У грибов мембрана состоит из прочного хитина (особого белка).
  2. Клетки растений и грибов отличаются по цвету благодаря наличию или отсутствию пластид. Такие тельца, как хлоропласты, хромопласты и лейкопласты, присутствуют только в растительной цитоплазме.
  3. Есть органоид, который отличает животных, — это центриоль (клеточный центр).
  4. Только в составе клетки растения присутствует крупная центральная вакуоль, заполненная жидким содержимым. Обычно этот клеточный сок окрашен пигментами в разные цвета.
  5. Главное запасное соединение растительного организма — крахмал. Грибы и животные накапливают в своих клетках гликоген.

Среди водорослей известно много одиночных, свободно живущих клеток. К примеру, таким самостоятельным организмом является хламидомонада. Хотя растения отличаются от животных присутствием целлюлозной клеточной стенки, но половые клетки лишены такой плотной оболочки — это еще одно доказательство единства органического мира.

загрузка...

worldfb.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта