Основной продукт азотистого обмена у растений. Конечные продукты азотистого обмена. Биосинтез мочевины

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Open Library - открытая библиотека учебной информации. Основной продукт азотистого обмена у растений


Конечные продукты азотистого обмена. Биосинтез мочевины

I. Цель изучения: знать конечные продукты обмена белков в организме, основные источники образования аммиака, пути его обезвреживания из организма.

II. Уметь количественно определять содержание мочевины по цветной реакции с диацетилмонооксимом в сыворотке крови; познакомиться с физико-химическими свойствами мочевины.

III. Исходный уровень знаний: качественные реакции на аммиак (неорганическая химия).

IV. Ответить на вопросы контрольных итоговых билетов по теме: «Распад простых белков. Метаболизм аминокислот, конечные продукты азотистого обмена».

V. Содержание темы:

1. Конечными продуктами распада азотсодержащих веществ являются углекислый газ, вода и аммиак, в отличие от углеводов и липидов. Источником аммиака в организме являются аминокислоты, азотистые основания, амины. Аммиак образуется в результате прямого и непрямого дезаминирования аминокислот, (основной источник) гидролитического дезаминирования азотистых оснований, инактивации биогенных аминов.

2. Аммиак токсичен и его действие проявляется в нескольких функциональных системах: а) легко проникая через мембраны (нарушая трансмембранный перенос Na+ и К+) в митохондриях связывается с α-кетоглутаратом и другими кетокислотами (ЦТК), образуя аминокислоты; в этих процессах используются и восстановительные эквиваленты (NADH+H+).

б) при высоких концентрациях аммиака глутамат и аспартат образуют амиды, используя и АТФ нарушая все тот же ЦТК, являющийся главным энергетическим источником работы мозга. в) Накопление глутамата в мозге повышает осмотическое давление, что ведет к развитию отека. г) Повышение концентрации аммиака в крови (N – 0.4 – 0.7 мг/л) сдвигает рН в щелочную сторону, повышая сродство О2 к гемоглобину, что вызывает гипоксию нервной ткани. д) Уменьшение концентрации α-кетоглутарата вызывает угнетение обмена аминокислот (синтеза нейромедиаторов), ускорение синтеза оксалоацетата из пирувата, что связано с повышенным использованием СО2.

3. Гипераммониемия прежде всего отрицательно действует на мозг и сопровождается тошнотой, головокружением, потерей сознания, отставанием умственного развития (при хронической форме).

4. Основной реакцией связывания аммиака во всех клетках является синтез глутамина под действием глутаминсинтетазы в митохондриях, где используется для этой цели АТФ. Глутамин облегченной диффузией поступает в кровь и транспортируется в кишечник и почки. В кишечнике под действием глутаминазы образуется глутамат, который трансаминируется с пируватом, превращая его в аланин, поглощаемый печенью; 5% аммиака удаляется через кишечник, остальные 90% выводятся почками.

5. В почках также идет гидролиз глутамина с образованием аммиака под действием глутаминазы, которая активируется ацидозом. В просвете канальцев аммиак нейтрализует кислые продукты обмена образуя аммонийные соли для выведения, одновременно сокращая потери К+ и Na+. (N – 0,5г солей аммония в сутки).

6. Высокий уровень глутамина в крови обуславливает его использование во многих анаболических реакциях в качестве донора азота (синтез азотистых оснований и др.)

7. Наиболее значительные количества аммиака обезвреживаются в печени синтезом мочевины (86% азота в моче) в количестве ~25 г/сутки. Биосинтез мочевины – циклический процесс, где ключевым веществом является орнитин, присоединяющий карбомоил, образованный из Nh4 и CO2 при активации 2АТФ. Образованный цитруллин в митохондриях транспортируется в цитозоль для введения второго атома азота из аспартата с образованием аргинина. Аргинин гидролизуется аргиназой и превращается снова в орнитин, а вторым продуктом гидролиза является мочевина, которая по сути дела в этом цикле образовалась из двух атомов азота (источники –Nh4 и аспартат) и одного атома углерода (из СО2). Энергией обеспечивают 3АТФ (2-при образовании карбомолфосфата и 1 при образовании аргининосукцината).

8. Орнитиновый цикл тесно связан с ЦТК, т.к. аспартат образуется при трансаминировании ЩУК из ЦТК, а фумарат, оставшийся из аспартата после удаления Nh4, возвращается в ЦТК и, при превращении его в ЩУК, образуются 3 АТФ, обеспечивающие биосинтез молекулы мочевины.

9. Наследственные нарушения орнитинового цикла (цитруллинемия, аргининосукцинатурия, гипераргининемия) ведут к гиперамминиемии и в тяжелых случаях могут привести к печеночной коме.

10. Норма мочевины в крови 2,5-8,3 ммоль/л. Понижение наблюдается при болезнях печени, повышение – результат почечной недостаточности.

Лабораторная работа

studfiles.net

Азотный обмен в растениях - Справочник химика 21

    Эти ферменты очень часто встречаются в растениях и играют важную роль в азотном обмене. [c.68]

    АЗОТНЫЙ ОБМЕН РАСТЕНИЙ [c.174]

    Достаточное содержание фруктозы растениях предопределяет наличие в них необходимых количеств активных форм сахаров, поэтому синтез белка в таких растениях, так же как и связывание аммиака в азотистые органические соединения, легко протекает и при недостатке калия. Таким образом, значение калия в азотном обмене растений определяется ролью этого элемента в образовании активных форм углеводов, наличие которых необходимо для нормального хода превращений азотистых веществ в растении. [c.146]

    У больщинства высших растений избыточный аммиак обезвреживается при образовании амидов — аспарагина и глутамина. Важная роль амидов в азотном обмене растений была выяснена благодаря классическим исследованиям Д. Н. Прянишникова. Он показал, что накопление амидов может быть при прорастании семян бобовых растений, при питании растений аммиачным азотом и у этиолированных растений, когда распад белков преобладает над их биосинтезом. В этих случаях в [c.241]

    Полученные результаты дают представление о тех изменениях в азотном обмене растений, которые происходят в более поздних фазах их развития. [c.52]

    Некоторые исследователи отмечают, что в результате действия ССС происходят изменения в азотном" обмене растений например, в проростках кукурузы увеличивается содержание общего азота [162, ГбЗ]. [c.201]

    Амиды двухосновных аминокислот. В азотном обмене растений большое значение имеет неполный амид аспарагиновой кислоты, носящий название аспарагина  [c.210]

    Имеющиеся в литературе данные по влиянию инфекции на азотный обмен растений показывают, что и в этом случае характер изменений, наступающих в пораженном растении, может сильно варьировать. [c.123]

    Тиамин является составной частью некоторых ферментов (декарбоксилаз и дегидрогеназ), катализирующих реакции декарбоксилирования пиро-виноградной и некоторых других органических кислот, а также аминокислот, а биотин принимает участие в декарбоксилировании щавелевоуксусной кислоты и в реакциях дезаминирования и декарбоксилирования некоторых аминокислот. Таким образом, сера играет важную роль в углеводном и азотном обмене в растениях. [c.179]

    Еще один вопрос, который особенно последнее время привлекает внимание исследователей в связи с расшифровкой физиологической роли бора. Это — отношение бора к азотному обмену растений. Известно, что недостаток бора часто сопровождается скоплением в созревших частях ряда растений аммиака, а также растворимых форм органического азота, аминокислот и амидов соответственно падает содержание белка. Источники углерода, имеющиеся в достаточных количествах в лишенных бора растениях, будучи использованы для синтеза аминокислот, не используются для образования белка. [c.66]

    Все работы по изучению физиологической роли элемента отличались большой целеустремленностью, что до некоторой степени определило успех этих исследований. Основные усилия исследователей были направлены на изучение механизма участия молибдена в азотном обмене растений. [c.103]

    Во многих исследованиях подчеркивается, что появление нарушений в азотном обмене растений, не получивших молибден, почти во всех случаях зависит от условий азотного питания. Согласно наблюдениям Стейнберга, Мульдера визуальные признаки страдания в отсутствие молибдена также проявляются лишь при использовании нитратов в качестве источника азотного питания. Подобных изменений в составе азотистых фракций не наблюдалось, если действие молибдена испытывалось в присутствии аммиачных солей или любого другого источника" азота. [c.105]

    К категории процессов, в которых роль меди связана с деятельностью неспецифических белковых комплексов элемента, можно отнести азотный обмен растений. Установлено, что медь активирует реакцию восстановления нитритов, фиксацию молекулярного азота и, наконец, есть все основания связывать действие меди с функцией протеаз. Вполне возможно, что результатом блокирования протеолиза при дефиците меди является задержка распада белка. [c.182]

    Калий принадлежит к числу элементов, необходимых для жизнедеятельности растений, так как регулирует рост, развитие, водно-солевой обмен, азотный обмен и дыхание. Отсутствие или снижение содержания калия в почве приводит к гибели растения. [c.244]

    Марганец участвует в окислительно-восстановительных процессах живой клетки и в азотном обмене, способствует интенсивности дыхания. Недостаток марганца в доступной для растений форме характерен для нейтральных и слабощелочных почв. [c.311]

    Молибден известен как микроэлемент, влияющий на фиксацию атмосферного азота бобовыми растениями, он участвует также в окислительно-восстановительных реакциях, в углеводном, азотном и фосфорном обмене растений. [c.312]

    В растения ТХА проникает через корни и перемещается в стебли, листья и точки роста с транспирационным током. В чувствительных к ТХА растениях наблюдаются после обработки скручивание листьев и стеблей, нарушение роста отдельных органов, прекращается образование воска на листьях. В растениях изменяются процессы дыхания и фотосинтеза, поступление питательных веществ, увеличивается содержание аминокислот и нарушается азотный обмен. [c.369]

    Исследования показали, что обработка семян кукурузы фосфорорганическими соединениями вызывает изменения в процессах роста, развития и обмена веществ растений (фосфорный, азотный обмен, водный режим). [c.586]

    Ионы калия влияют и на азотный обмен веществ. При недостатке калия в клетках накапливается избыток аммиака. Это может привести к отравлению и гибели растения. [c.291]

    ВЛИЯНИЕ ХИМИЧЕСКИХ МУТАГЕНОВ НА АЗОТНЫЙ ОБМЕН В РАСТЕНИЯХ ПШЕНИЦЫ [c.82]

    Э. ф. Ионов, П. А. Орешкина, Р. М. Абдуллина. Влияние химических мутагенов на азотный обмен в растениях пшеницы....... 82 [c.338]

    Влияние химических мутагенов на азотный обмен в растениях пшеницы. Э. Ф. И о- [c.343]

    В настоящей работе ставилась задача изучить влияние гиббереллина на нуклеиновый обмен растений кукурузы при различных уровнях азотного питания. [c.47]

    Вместе с тем в литературе ощущается недостаток конкретных данных по характеристике этих процессов в растениях, обработанных дефолиантами. В связи со сказанным, в настоящей работе по изучению действия дефолиантов на азотный обмен листовых пластинок хлопчатника особое внимание было уделено изменениям в содержании отдельных свободных аминокислот, а также процессам синтеза и гидролиза соединений азота. Кроме того, были изучены изменения в соотношении отдельных форм азота, имевшие место в листовой пластинке после применения дефолиантов. [c.137]

    Калий не входит в состав белков, нуклеиновых кислот, ферментов и других сложных органических соединений он содержится в растениях почти целиком в виде ионов К+, преимущественно в клеточном соке. Роль этих ионов сводится к регулированию важнейших биохимических процессов. Так, они способствуют фотосинтезу, усиливая отток углеводов из листьев, что непосредственно сказывается на повышении в плодах и овощах содержания крахмала и сахара. Ионы калия влияют на азотный обмен в растениях, способствуя лучшему усвоению азота. Они активизируют синтез многих ферментов и витаминов. Коллоиды растительных клеток при достаточном калийном питании лучше удерживают воду. [c.165]

    Молибден улучшает азотный обмен в растениях, участвует в образовании белка, усиливает фотосинтез, а также жизнедеятельность клубеньковых бактерий. При недостатке его клубеньки развиваются слабо. [c.591]

    Калий влияет на целый ряд физиологических функций, управляющих процессами обмена веществ в растениях (образование, разложение и передвижение крахмала азотный обмен и синтез белка водный режим растения— благодаря калию поддерживается внутреннее давление в тканях растения). При недостатке калия замедляется рост растения, листья желтеют и отмирают, стебель становится тонким и рыхлым, семена теряют всхожесть. Растения, недостаточно обеспеченные калием, легко заражаются грибковыми заболеваниями, плохо переносят засуху, отличаются слабой морозостойкостью. [c.8]

    Предполагалось, что в растении п роисходит частое обновление хлорофилла и что его азотистый компонент вовлекается в общий азотный обмен растений. [c.158]

    Широко обсуждается роль трех названных элементов (Ре, Си, Мп) в азотном обмене растений. В этом случае микроэлементы, как правило, являются неспецифическими активатооами ферментных систем, катализирующих отдельные звенья цепи реакций в превращении минеральной формы азота нитратов до аминокислот и белка. [c.5]

    Марганец необходим всем растениям. Среднее его содержание составляет 0,001 %, или 1 мг на 1 кг сухой массы тканей. В клетки он поступает в форме Мп " . Марганец накапливается в листьях. Установлено участие ионов этого металла в выделении кислорода (фоторазложение воды) и восстановлении СОз при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. Две дегидрогеназы дыхательного цикла Кребса — малат- и изоцит-ратдегидрогеназы — активируются ионами марганца. Азотный обмен растений также не обходится без марганца, который необходим для функционирования комплекса нитратредуктазы при восстановлении нитратов. [c.254]

    Амины ихрают значительную роль в азотном обмене растений и животных. Содержание биогенных аминов в тканях высших растений и водорослях может колебаться от 30-700 нмоль- г сырой массы в норме и до 3000 нмоль- г сырой массы и выше в стрессовых условиях. [c.12]

    МОЛИБДЁНОВЫЕ УДОБРЁНИЯ, один из видов микроудобрений, содержащий в качестве микроэлемента Мо. Последний участвует в азотном обмене (усвоении азота воздуха), стимулирует биосинтез нуклеиновых к-т и белков, повышает содержание хлорофилла и витаминов в растит, организмах и необходим им в течение всей жизни. При недостатке Мо растения заболевают особым видом пятнистости, не плодоносят и погибают. [c.129]

    Юхимчук Ф. Ф. Азотный обмен и возрастные изменения бобовых растений. Киев, 1961. [c.400]

    Аспарагин и глютамин имеют также большое значение как резерв дикарбоновых кислот для осуществления реакции ферментативного пере-аминировапия. В процессе переаминирования участвуют не только свободные аспарагиновая и глютаминовая кислоты, но также аспарагин и глютамин, которые к тому же способны к взаимопревращению. Наконец, но данным В. А. Кретовича, амидная группа предохраняет аспарагиновую-и глютаминовую кислоты от окислительного распада. Дикарбоновые аминокислоты в значительных количествах входят в состав растительных белков, поэтому превращения этих аминокислот и их амидов играют существенную роль в азотном обмене у растений. [c.185]

    Введение в практику инсектицидного препарата требует изучения влияния его на вредителей и растения. Если в отношении действия фосфорорганических инсектицидов на насекомых, оказывающих вредное влияние на полевые культуры, имеется довольно большое количество работ, то действие препаратов на растения, на обмен веществ в растениях изучено еще недостаточно. До сих пор мало уделяется внимания вопросам изучения действия препаратов в различных экологических условиях. В этой связи в лаборатории физиологии растений Биологического института Казанского филиала АН СССР начаты исследования влияния препаратов на всхожесть семян, рост и развитие растений с учетом действия на некоторые физиологические показатели (водный режим, фосфорный, азотный обмен и другие). Действие препаратов изучалось при пониженных температурах на фоне различных почвенных условий (оптимальное и недостаточное увлажнение). Объектом исследований была кукуруза. Воздействие инсектицидов осуществлялось путем 6-часового предпосевного намачивания семян в растворах и эмульсиях. В сравнительном аспекте изучалось влияние октаметила, тетраэтилдитиопирофосфата (дитиофос I), диметилдиэтилдитиопирофосфата (дитиофос II) иметилового эфира а-ацетокси-р,р,р-три-хлорэтилфосфиновой кислоты (препарат 307) в различных концентрациях. [c.583]

    Кальций способствует росту корней. Потребность растений в нем проявляется с момента прорастания семени. Если при недостатке азота, фосфора и калия в первую очередь ослабляется развитие надземной части, то нри недостатке кальция — рост корневой системы. При отсутствии кальция во внешней питательной среде корни ослизняются и заболевают, на листьях появляются желтые пятна, нарушается углеводный и азотный обмен, затрудняется восстановление в растениях нитратов до аммиака. Кальций способствует усвоению растениями аммиачного азота, оказывает влияние на физико-химические свойства протоплазмы — ее вязкость и проницаемость, нейтрализует образующиеся в растениях органические кислоты, в частности щавелевую, устраняет или ослабляет вредное действие на растения одностороннего избытка других катионов. На кислых почвах растения часто страдают от избытка ионов водорода, алюминия, железа и марганца внесение кальция на этих почвах сни/кает их вредное действие на растения. Молодые, растущие части растения содержат мало кальция. Меньше всего кальция в семенах, больше — в листьях и стеблях, особенно стареющих. [c.29]

chem21.info

Азотистый обмен - Обмен веществ

Азотистый обмен — совокупность химических превращений, реакций синтеза и распада азотистых соединений в организме; составная часть обмена веществ и энергии. Понятие «азотистый обмен» включает в себя белковый обмен (совокупность химических превращений в организме белков и продуктов их метаболизма), а также обмен пептидов, аминокислот, нуклеиновых кислот, нуклеотидов, азотистых оснований, аминосахаров (см. Углеводы), азотсодержащих липидов, витаминов, гормонов и других соединений, содержащих азот.

    Организм животных и человека усвояемый азот получает с пищей, в которой основным источником азотистых соединений являются белки животного и растительного происхождения. Главным фактором поддержания азотистого равновесия — состояния А. о., при котором количество вводимого и выводимого азота одинаково, — служит адекватное поступление белка с пищей. В СССР суточная норма белка в питании взрослого человека принята равной 100 г, или 16 г азота белка, при расходе энергии 2500 ккал. Азотистый баланс (разность между количеством азота, который попадает в организм с пищей, и количеством азота, выводимого из организма с мочой, калом, потом) является показателем интенсивности А. о. в организме. Голодание или недостаточное по азоту питание приводят к отрицательному азотистому балансу, или азотистому дефициту, при котором количество азота, выводимого из организма, превышает количество азота, поступающего в организм с пищей. Положительный азотистый баланс, при котором вводимое с пищей количество азота превышает количество азота, выводимое из организма, наблюдается в период роста организма, при процессах регенерации тканей и т.д. Состояние А. о. в значительной степени зависит от качества пищевого белка, которое, в свою очередь, определяется его аминокислотным составом и прежде всего наличием незаменимых аминокислот.

    Принято считать, что у человека и позвоночных животных А. о. начинается с переваривания азотистых соединений пищи в желудочно-кишечном тракте. В желудке происходит расщепление белков при участии пищеварительных протеолитических ферментов трипсина и гастриксина (см. Протеолиз) с образованием полипептидов, олигопептидов и отдельных аминокислот. Из желудка пищевая масса поступает в двенадцатиперстную кишку и нижележащие отделы тонкой кишки, где пептиды подвергаются дальнейшему расщеплению, катализируемому ферментами сока поджелудочной железы трипсином, химотрипсином и карбоксипептидазой и ферментами кишечного сока аминопептидазами и дипептидазами (см. Ферменты). Наряду с пептидами. в тонкой кишке расщепляются сложные белки (например, нуклеопротеины) и нуклеиновые кислоты. Существенный вклад в расщепление азотсодержащих биополимеров вносит и микрофлора кишечника. Олигопептиды, аминокислоты, нуклеотиды, нуклеозиды и др. всасываются в тонкой кишке, поступают в кровь и с ней разносятся по всему организму. Белки тканей организма в процессе постоянного обновления также подвергаются протеолизу под действием тканевых протсаз (пептидаз и катепсинов), а продукты распада тканевых белков попадают в кровь. Аминокислоты могут быть использованы для нового синтеза белков и других соединений (пуриновых и пиримидиновых оснований, нуклеотидов, порфиринов и т.д.), для получения энергии (например, посредством включения в цикл трикарбоновых кислот) или могут быть подвергнуты дальнейшей деградации с образованием конечных продуктов А. о., подлежащих выведению из организма.

    Аминокислоты, поступающие в составе белков пищи, используются для синтеза белков органов и тканей организма. Они участвуют также в образовании многих других важных биологических соединений: пуриновых нуклеотидов (глутамин, глицин, аспарагиновая кислота) и пиримидиновых нуклеотидов (глутамин, аспарагиновая кислота), серотонина (триптофан), меланина (фенилалпнин, тирозин), гистамина (гистидин), адреналина, норадреналина, тирамина (тирозин), полиаминов (аргинин, метионин), холина (метионин), порфиринов (глицин), креатина (глицин, аргинин, метионин), коферментов, сахаров и полисахаридов, липидов и т.д. Важнейшей для организма химической реакцией, в которой участвуют практически все аминокислоты, является трансаминирование, заключающееся в обратимом ферментативном переносе a-аминогруппы аминокислот на a-углеродный атом кетокислот или альдегидов. Трансаминирование является принципиальной реакцией биосинтеза заменимых аминокислот в организме. Активность ферментов, катализирующих реакции трансаминирования, — аминотрансфераз — имеет большое клинико-диагностическое значение.

    Деградация аминокислот может протекать по нескольким различным путям. Большинство аминокислот способно подвергаться декарбоксилированию при участии ферментов декарбоксилаз с образованием первичных аминов, которые затем могут окисляться в реакциях, катализируемых моноаминоксидазой или диаминоксидазой. При окислении биогенных аминов (гистамина, серотонина, тирамина, g-аминомасляной кислоты) оксидазами образуются альдегиды, подвергающиеся дальнейшим превращениям, и аммиак, основным путем дальнейшего метаболизма которого является образование мочевины.

    Другим принципиальным путем деградации аминокислот является окислительное дезаминирование с образованием аммиака и кетокислот. Прямое дезаминирование L-аминокислот в организме животных и человека протекает крайне медленно, за исключением глутаминовой кислоты, которая интенсивно дезаминируется при участии специфического фермента глутаматдегидрогеназы. Предварительное трансаминирование почти всех a-аминокислот и дальнейшее дезаминирование образовавшейся глутаминовой кислоты на a-кетоглутаровую кислоту и аммиак является основным механизмом дезаминирования природных аминокислот.

    Продуктом разных путей деградации аминокислот является аммиак, который может образовываться и в результате метаболизма других азотсодержащих соединений (например, при дезаминировании аденина, входящего в состав никотинамидадениндинуклеотида — НАД). Основным путем связывания и нейтрализации токсичного аммиака у уреотелических животных (животные, у которых конечным продуктом А. о, является мочевина) служит так называемый цикл мочевины (синоним: орнитиновый цикл, цикл Кребса — Гензелейта), протекающий в печени. Он представляет собой циклическую последовательность ферментативных реакций, в результате которой из молекулы аммиака или амидного азота глутамина, аминогруппы аспарагановой кислоты и диоксида углерода осуществляется синтез мочевины. При ежедневном потреблении 100 г белка суточное выведение мочевины из организма составляет около 30 г. У человека и высших животных существует еще один путь нейтрализации аммиака — синтез амидов дикарбоновых кислот аспарагана и глутамина из соответствующих аминокислот. У урикотелических животных (рептилии, птицы) конечным продуктом А. о. является мочевая кислота.

    В результате расщепления нуклеиновых кислот и нуклеопротеинов в желудочно-кишечном тракте образуются нуклеотиды и нуклеозиды. Олиго- и моно-нуклеотиды при участии различных ферментов (эстераз, нуклеотидаз, нуклеозидаз, фосфорилаз) превращаются затем в свободные пуриновые и пиримидиновые основания.

    Дальнейший путь деградации пуриновых оснований аденина и гуанина состоит в их гидролитическом дезаминировании под влиянием ферментов аденазы и гуаназы с образованием соответственно гипоксантина (6-оксипурина) и ксантина (2,6-диоксипурина), которые затем превращаются в мочевую кислоту в реакциях, катализируемых ксантиноксидазой. Мочевая кислота — один из конечных продуктов А. о. и конечный продукт обмена пуринов у человека — выводится из организма с мочой. У большинства млекопитающих имеется фермент уриказа, который катализирует превращение мочевой кислоты в экскретируемый аллантоин.

    Деградация пиримидиновых оснований (урацила, тимина) состоит в их восстановлении с образованием дигидропроизводных и последующем гидролизе, в результате которого из урацила образуется b-уреидопропионовая кислота, а из нее — аммиак, диоксид углерода и b-аланин, а из тимина — b-аминоизомасляная кислота, диоксид углерода и аммиак. Диоксид углерода и аммиак могут далее включаться в мочевину через цикл мочевины, а b-аланин участвует в синтезе важнейших биологически активных соединений — гистидинсодержащих дипептидов карнозина (b-аланил-L-гистидина) и анзерина (b-аланил-N-метил-L-гистидина), обнаруживаемых в составе экстрактивных веществ скелетных мышц, а также в синтезе пантотеновой кислоты и кофермента А.

    Т.о., разнообразные превращения важнейших азотистых соединений организма связаны между собой в единый обмен. Сложный процесс А. о. регулируется на молекулярном, клеточном и тканевом уровнях. Регуляция А. о. в целом организме направлена на приспособление интенсивности А. о. к изменяющимся условиям окружающей и внутренней среды и осуществляется нервной системой как непосредственно, так и путем воздействия на железы внутренней секреции.

    У здоровых взрослых людей содержание азотистых соединений в органах, тканях, биологических жидкостях находится на относительно постоянном уровне. Избыток азота, поступившего с пищей, выводится с мочой и калом, а при недостатке азота в пище нужды организма в нем могут покрываться за счет использования азотистых соединений тканей тела. При этом состав мочи изменяется в зависимости от особенностей А. о. и состояния азотистого баланса. В норме при неизменном режиме питания и относительно стабильных условиях окружающей среды из организма выделяется постоянное количество конечных продуктов А. о., а развитие патологических состояний приводит к его резкому изменению. Значительные изменения экскреции азотистых соединений с мочой, в первую очередь экскреции мочевины, могут наблюдаться и при отсутствии патологии в случае существенного изменения режима питания (например, при изменении количества потребляемого белка), причем концентрация остаточного азота (см. Азот остаточный) в крови меняется незначительно.

    При исследовании А. о. необходимо учитывать количественный и качественный состав принимаемой пищи, количественный и качественный состав азотистых соединений, выделяемых с мочой и калом и содержащихся в крови. Для исследования А. о. применяют азотистые вещества, меченные радионуклидами азота, фосфора, углерода, серы, водорода, кислорода, и наблюдают за миграцией метки и включением ее в состав конечных продуктов А. о. Широко используют меченые аминокислоты, например 15N-глицин, которые вводят в организм с пищей или непосредственно в кровь. Значительная часть меченого азота глицина пищи выводится в составе мочевины с мочой, а другая часть метки попадает в тканевые белки и выводится из организма крайне медленно. Проведение исследования А. о. необходимо для диагностики многих патологических состояний и контроля за эффективностью лечения, а также при разработке рациональных схем питания, в т.ч. лечебного (см. Питание лечебное).

    Патологию А. о. (вплоть до очень значительной) вызывает белковая недостаточность. Ее причиной может стать общее недоедание, продолжительный дефицит белка или незаменимых аминокислот в рационе, недостаток углеводов и жиров, обеспечивающих энергией процессы биосинтеза белка в организме. Белковая недостаточность может быть обусловлена преобладанием процессов распада белков над их синтезом не только в результате алиментарного дефицита белка и других важнейших пищевых веществ, но и при тяжелой мышечной работе, травмах, воспалительных и дистрофических процессах, ишемии, инфекции, обширных ожогах, дефекте трофической функции нервной системы, недостаточности гормонов анаболического действия (гормона роста, половых гормонов, инсулина), избыточном синтезе или избыточном поступлении извне стероидных гормонов и т.п. Нарушение усвоения белка при патологии желудочно-кишечного тракта (ускоренная эвакуация пищи из желудка, гипо- и анацидные состояния, закупорка выводного протока поджелудочной железы, ослабление секреторной функции и усиление моторики тонкой кишки при энтеритах и энтероколитах, нарушение процесса всасывания в тонкой кишке и др.) также может приводить к белковой недостаточности. Белковая недостаточность ведет к дискоординации А. о. и характеризуется резко выраженным отрицательным азотистым балансом.

    Известны случаи нарушения синтеза определенных белков (см. Иммунопатология, Ферментопатии), а также генетически обусловленного синтеза аномальных белков, например при гемоглобинопатиях, миеломной болезни (см. Парапротеинемические гемобластозы) и др.

    Патология А. о., заключающаяся в нарушении обмена аминокислот, часто связана с аномалиями процесса трансаминирования: уменьшением активности аминотрансфераз при гипо- или авитаминозах В6, нарушением синтеза этих ферментов, недостатком кетокислот для трансаминирования в связи с угнетением цикла трикарбоновых кислот при гипоксии и сахарном диабете и т.д. Снижение интенсивности трансаминирования приводит к угнетению дезаминирования глутаминовой кислоты, а оно, в свою очередь, — к повышению доли азота аминокислот в составе остаточного азота крови (гипераминоацидемии), общей гиперазотемии и аминоацидурии. Гипераминоацидемия, аминоацидурия и общая азотемия характерны для многих видов патологии А. о. При обширных поражениях печени и других состояниях, связанных с массивным распадом белка в организме, нарушаются процессы дезаминирования аминокислот и образования мочевины таким образом, что возрастают концентрация остаточного азота и содержание в нем азота аминокислот на фоне снижения относительного содержания в остаточном азоте азота мочевины (так называемая продукционная азотемия).

Продукционная азотемия, как правило, сопровождается выведением избытка аминокислот с мочой, поскольку даже в случае нормального функционирования почек фильтрация аминокислот в почечных клубочках происходит интенсивнее, чем их реабсорбция в канальцах. Заболевания почек, обтурация мочевых путей, нарушение почечного кровообращения приводят к развитию ретенционной азотемии, сопровождающейся нарастанием концентрации остаточного азота в крови за счет повышения содержания в крови мочевины (см. Почечная недостаточность). Обширные раны, тяжелые ожоги, инфекции, повреждения трубчатых костей, спинного и головного мозга, гипотиреоз, болезнь Иценко — Кушинга и многие другие тяжелые заболевания сопровождаются аминоацидурией. Она характерна и для патологических состояний, протекающих с нарушением процессов реабсорбции в почечных канальцах: болезни Вильсона — Коновалова (см. Гепатоцеребральная дистрофия), нефронофтизе Фанкони (см. Рахитоподобные болезни) и др. Эти болезни относятся к многочисленным генетически обусловленным нарушениям А. о. Избирательное нарушение реабсорбции цистина и цистинурия с генерализованным нарушением обмена цистина на фоне общей аминоацидурии сопровождает так называемый цистиноз. При этом заболевании кристаллы цистина откладываются в клетках ретикулоэндотелиальной системы. Наследственное заболевание фенилкетонурия характеризуется нарушением превращения фенилаланина в тирозин в результате генетически обусловленной недостаточности фермента фенилаланин — 4-гидроксилазы, что вызывает накопление в крови и моче непревращенного фенилаланина и продуктов его обмена — фенилпировиноградной и фенилуксусной кислот. Нарушение превращений этих соединений характерно и для вирусного гепатита.

    Тирозинемию, тирозинурию и тирозиноз отмечают при лейкозах, диффузных заболеваниях соединительной ткани (коллагенозах) и других патологических состояниях. Они развиваются вследствие нарушения трансаминирования тирозина. Врожденная аномалия окислительных превращений тирозина лежит в основе алкаптонурии, при которой в моче накапливается непревращенный метаболит этой аминокислоты — гомогентизиновая кислота. Нарушения пигментного обмена при гипокортицизме (см. Надпочечники) связаны с угнетением превращения тирозина в меланин вследствие ингибирования фермента тирозиназы (полное выпадение синтеза этого пигмента характерно для врожденной аномалии пигментации — альбинизма).

    При хроническом гепатите, сахарном диабете, остром лейкозе, хроническом миело- и лимфолейкозе, лимфогранулематозе, ревматизме и склеродермии нарушается обмен триптофана и его метаболиты 3-оксикинуренин, ксантуреновая и 3-оксиантраниловая кислоты, обладающие токсическими свойствами, накапливаются в крови. К патологии А. о. относятся и состояния, связанные с нарушением выделения почками креатинина и накоплением его в крови. Усиление экскреции креатинина сопровождает гиперфункцию щитовидной железы, а снижение экскреции креатинина при повышенном выведении креатина — гипотиреоз.

    При массивном распаде клеточных структур (голодание, тяжелая мышечная работа, инфекции и др.) отмечают патологическое нарастание концентрации остаточного азота за счет увеличения относительного содержания в ней азота мочевой кислоты (в норме концентрация мочевой кислоты в крови не превышает — 0,4 ммоль/л).

    В пожилом возрасте снижаются интенсивность и объем синтеза белка за счет непосредственного угнетения биосинтетической функции организма и ослабления его способности усваивать аминокислоты пищи; развивается отрицательный азотистый баланс. Нарушения обмена пуринов у людей пожилого возраста приводят к накоплению и отложению в мышцах, суставах и хрящах солей мочевой кислоты — уратов. Коррекция нарушений А. о. в пожилом возрасте может быть осуществлена за счет специальных диет, содержащих полноценные животные белки, витамины и микроэлементы, с ограниченным содержанием пуринов.

    Азотистый обмен у детей отличается рядом особенностей, в частности положительным азотистым балансом как необходимым условием роста. Интенсивность процессов А. о. на протяжении роста ребенка подвергается изменениям, особенно ярко выраженным у новорожденных и детей раннего возраста. В течение первых 3-х дней жизни азотистый баланс отрицателен, что объясняется недостаточным поступлением белка с пищей. В этот период обнаруживается транзиторное повышение концентрации остаточного азота в крови (так называемая физиологическая азотемия), иногда достигающее 70 ммоль/л; к концу 2-й нед.

жизни концентрация остаточного азота снижается до уровня, отмечаемого у взрослых. Количество выделяемого почками азота нарастает в течение первых 3-х дней жизни, после чего снижается и вновь начинает увеличиваться со 2-й нед. жизни параллельно возрастающему количеству пищи.

    Наиболее высокая усвояемость азота в организме ребенка наблюдается у детей первых месяцев жизни. Азотистый баланс заметно приближается к равновесию в первые 3—6 мес. жизни, хотя и остается положительным. Интенсивность белкового обмена у детей достаточно высока — у детей 1-го года жизни обновляется около 0,9 г белка на 1 кг массы тела в сутки, в 1—3 года — 0,8 г/кг/сут., у детей дошкольного и школьного возраста — 0,7 г/кг/сут.

    Средние величины потребности в незаменимых аминокислотах, по данным ФАО ВОЗ (1985), у детей в 6 раз больше, чем у взрослых (незаменимой аминокислотой для детей в возрасте до 3 мес. является цистин, а до 5 лет — и гистидин). Более активно, чем у взрослых, протекают у детей процессы трансаминирования аминокислот. Однако в первые дни жизни у новорожденных из-за относительно низкой активности некоторых ферментов отмечаются гипераминоацидемия и физиологическая аминоацидурия в результате функциональной незрелости почек. У недоношенных, кроме того, имеет место аминоацидурия перегрузочного типа, т.к. содержание свободных аминокислот в плазме их крови выше, чем у доношенных детей. На первой неделе жизни азот аминокислот составляет 3—4% общего азота мочи (по некоторым данным, до 10%), и лишь к концу 1-го года жизни его относительное содержание снижается до 1%. У детей 1-го года жизни выведение аминокислот в расчете на 1 кг массы тела достигает величин выведения их у взрослого человека, экскреция азота аминокислот, достигающая у новорожденных 10 мг/кг массы тела, на 2-м году жизни редко превышает 2 мг/кг массы тела. В моче новорожденных повышено (по сравнению с мочой взрослого человека) содержание таурина, треонина, серина, глицина, аланина, цистина, лейцина, тирозина, фенилаланина и лизина. В первые месяцы жизни в моче ребенка обнаруживаются также этаноламин и гомоцитруллин. В моче детей 1-го года жизни преобладают аминокислоты пролин и [гидр]оксипролин.

    Исследования важнейших азотистых компонентов мочи у детей показали, что соотношение мочевой кислоты, мочевины и аммиака в процессе роста существенно изменяется. Так, первые 3 мес. жизни характеризуются наименьшим содержанием в моче мочевины (в 2—3 раза меньше, чем у взрослых) и наибольшей экскрецией мочевой кислоты. Дети в первые три месяца жизни выделяют 28,3 мг/кг массы тела мочевой кислоты, а взрослые — 8,7 мг/кг. Относительно высокая экскреция у детей первых месяцев жизни мочевой кислоты способствует иногда развитию мочекислого инфаркта почек. Количество мочевины в моче нарастает у детей в возрасте от 3 до 6 месяцев, а содержание мочевой кислоты в это время снижается. Содержание аммиака в моче детей в первые дни жизни невелико, но затем резко возрастает и держится на высоком уровне на протяжении всего 1-го года жизни.

    Характерной особенностью А. о. у детей является физиологическая креатинурия. Креатин обнаруживается еще в амниотической жидкости; в моче он определяется в количествах, превышающих содержание креатина в моче взрослых, начиная с периода новорожденности и до периода полового созревания. Суточная экскреция креатинина (дегидроксилированного креатина) с возрастом увеличивается, в то же время по мере нарастания массы тела ребенка относительное содержание азота креатинина мочи снижается. Количество креатинина, выводимого с мочой за сутки, у доношенных новорожденных составляет 10—13 мг/кг, у недоношенных 3 мг/кг, у взрослых не превышает 30 мг/кг.

    При выявлении в семье врожденного нарушения А. о. необходимо проведение медико-генетического консультирования.

 

    Библиогр.: Березов Т.Т. и Коровкин Б.Ф. Биологическая химия, с. 431, М., 1982; Вельтищев Ю.Е. и др. Обмен веществ у детей, с. 53, М., 1983; Дудел Дж. и др. Физиология человека, пер. с англ., т. 1—4, М., 1985; Зилва Дж.Ф. и Пэннелл П.Р. Клиническая химия в диагностике и лечении, пер. с англ., с. 298, 398, М., 1988; Кон Р.М. и Рой К.С. Ранняя диагностика болезней обмена веществ, пер. с англ., с. 211, М., 1986; Лабораторные методы исследования в клинике, под ред. В.В. Меньшикова, с. 222, М., 1987; Ленинджер А. Основы биохимии, пер. с англ., т. 2, М., 1985; Мазурин А.В. и Воронцов И.М. Пропедевтика детских болезней, с. 322, М., 1985; Руководство по педиатрии, под. ред. У.Е. Бермана и В.К. Вогана, пер. с англ., кн. 2, с. 337, VI., 1987; Страйер Л. Биохимия, пер. с англ., т. 2, с. 233, М., 1985.

 

 

 

www.nedug.ru

Превращение азотистых веществ в растениях

Азот входит в состав белков и нуклеиновых кислот. Белки в растении находятся в виде важных структурных компонентов цитоплазмы и ферментов. Нуклеиновые кислоты содержатся в ядре растительной клетки, цитоплазме и определяют наследственность организма. Важная роль азота связана и с тем, что он входит в состав хлорофилла, витаминов, липоидов, фосфатидов, алкалоидов, гликозидов и других органических соединений. В обмене веществ азот постоянно обновляется в составе конституционных и запасных веществ. Азот регулирует толщину клеточных стенок, продолжительность фаз формирования клеток, характер дифференциации и другие процессы.

Содержание азота в растениях в среднем 3—5, а в белках 16 — 18 % сухой массы. В онтогенезе количество азота увеличивается до цветения, а после цветения уменьшается за счет потребления созревающими плодами. Максимум азота содержится в зерне, меньше — в листьях и минимум — в стеблях. Из небелковых органических соединений азота в растениях исключительное место принадлежит аминокислотам, занимающим центральное положение во всем азотном обмене растений. Небелковые органические соединения встречаются преимущественно в вегетативных органах растений, содержание их относительно выше в ранних фазах развития растения. Общее содержание небелкового органического азота в вегетативных органах растений обычно составляет не более 20— 25% общего количества азота в растении. При неблагоприятных условиях питания и недостатке калия, а также при недостаточном освещении содержание небелковых азотистых соединений значительно возрастает.

Кроме органических форм азота, в растении имеются неорганические соединения его в виде нитратов, нитритов и аммиака. Особенно большие количества нитратов накапливаются в некоторых диких растениях (марь, крапива и др.). Из культурных растений наиболее богаты нитратами листья свеклы, стебли картофеля, табака, гречихи. Содержание нитратов для одних и тех же видов растений сильно изменяется в зависимости от уровня азотного питания и обеспеченности другими элементами питания; недостаток последних тормозит процесс переработки нитратов в органическую форму, и ведет к повышенному накоплению их в растении. Аммиак накапливается при резких нарушениях обмена веществ в растении в результате патологических процессов, а также при внесении аммиачных удобрений на фоне недостаточного калийного питания. Аммиак оказывает токсическое действие на растительную клетку. Нитриты, могут быть обнаружены в незначительных количествах только у растений, находящихся в условиях частичного анаэробиоза.

Недостаток азота вызывает задержку роста и очень слабое развитие растений, особенно листьев и генеративных органов. Усиление азотного питания при достаточной обеспеченности растений другими элементами резко улучшает рост и развитие растений. Однако избыток азота при относительно слабом фосфатном и калийном питании растении часто приводит к отрицательным последствиям: задержке и неравномерности созревания, склонности к полеганию у злаков, большой поражаемости растений грибными и бактериальными заболеваниями, пониженной сопротивляемости растений неблагоприятным климатическим условиям.

Различают несколько видов соединений азота, а именно: органические соединения – азот органический, соли аммиака – азот аммиачный и соли азотной и азотистой кислот – азот нитратный. Различные формы азота, содержащиеся в почве, - основной источник этого элемента для питания растений.

Основная масса азота в почве – это органический азот; содержание аммиачного и нитратного азота невелико и на протяжении весеннего, летнего и осеннего сезонов значительно колеблется. В почве содержатся такие также органических остатки растений (корни, стебли), которые разлагаются до аммиачных и азотнокислотных солей, определенная часть азота в ней сосредотачивается в виде органических соединений. Известно, что органические вещества в почве подвергаются разложению микроорганизмами, образующие различные продукты жизнедеятельности, которые усваиваются корневой системой растений. Поэтому вопрос, усваиваются ли органические формы азота высшими зелеными растениями, можно решить лишь с помощью метода стерильных культур.

Из всех соединений, содержащихся в почве, лучшими источниками азота являются аммиачные соли и соли азотной кислоты. Азот и углерод, содержащийся в навозе, органических остатках, могут использовать растением после того, как под действием бактерий они превратятся в неорганические соединения. Таким образом, существует тесная связь между питанием зеленых растений и деятельностью почвенных микроорганизмов.

Процесс разложения белков, аминокислот, мочевины и других органических азотистых веществ в почве называется аммонификацией., а почвенные организмы осуществляющие этот процесс – амонификаторами. Они обладают активными ферментами, способствующему быстрому разложению белков до аминокислот, которые дезоминируются с образованием Nh4. Минерализация органического азота, начатую аммонификацией, завершает процесс нитрификации, осуществляемый хемосинтезирующими нитрифицирующими бактериями – аэробами. Нитрифицирующие бактерии за счет энергии окисления могут усваивать СО2 атмосферы или карбонатов и использовать для синтеза органических веществ клетки. Интенсивность нитрификации является плодородием почвы. Корневая система растений способна непосредственно поглощать аммонийные и нитратные соли.

Процесс нитрификации

Продукты гниения белков и разложения мочевины — аммиак и аммиачные соли — могут быть непосредственно усвоены растениями, но они обычно превращаются в нитраты — соли азотной кислоты. Биологическая сущность процесса нитрификации была доказана работами Т. Шлезинга и Л. Мюнца в 1879 г. Позднее (1888 — 1890) известный русский микробиолог С. Н. Виноградский, применив элективную среду, выделил чистые культуры тарификаторов. Ученый установил, что органическое вещество в среде тормозит развитие нитрифицирующих бактерий, в то время как в чисто минеральных питательных растворах они хорошо растут.

В первой фазе аммиак окисляется до азотистой кислоты по схеме:

Nh4 → Nh5OH → Nh3OH → HNO → HNO +274,9 кДж.

Считается, что процесс нитрификации проходит в несколько стадий, при этом образуется ряд промежуточных продуктов: гидроксиламин, нитроксил и др. Во второй фазе азотистая кислота окисляется до азотной:

HNO2 → HNO3 +87,6 кДж.

Первая и вторая фазы единого процесса нитрификации вызываются разными возбудителями. С. Н. Виноградский объединил их в три рода; Nitrosomonas, Nitrococystis, Nitrosospira. Бактерии рода Nitrosomonas имеют форму палочек, грамотрицательные, подвижные, снабжены одним жгутиком, спор не образуют. Разные виды Nitrosomonas широко распространены в почве и отличаются друг от друга формой и размерами. Род Nilrococystis способен образовывать зооглеи (кокковые формы микробов окружены общей капсулой). Род Nitrosospira С. Н. Виноградский разделил на два вида: Nitrosospira bria и Nitrosospira arctica. Бактерии обоих видов имеют правильную спиральную форму. Наряду со спирально закрученными нитями у старых культур встречаются короткие палочки и кокки. В последнее время выделено еще два рода микробов, вызывающих первую фазу нитрификации: Nitrosolobus и Nitrosovibrio.

Окисление азотистой кислоты в азотную осуществляется мелкой полиморфной, грамотрицательной, неподвижной бактерией, которую С. Н. Виноградский назвал Nitrobacter, Микробы группы Nitrobacter лучше развиваются на чисто минеральных средах и могут синтезировать органическое вещество своего тела, используя углерода диоксид. Во второй фазе нитрификации применяют участие также микробы родов Nitrospina и Nitrococcus. Нитрифицирующие микробы отрицательно относятся к органическим веществам. Добавление к минеральному раствору 0,2% пептона или глюкозы приостанавливает рост микробов. Сильная чувствительность нитрифицирующих микробов к органическим веществам отмечается в растворах, в почве этого не наблюдается, так как в ней водорастворимых веществ в значительных количествах никогда не бывает.

Кроме нитрифицирующих бактерий, в почве находятся и другие микроорганизмы, которые используют органическое вещество и тем самым создают благоприятные условия для развития нитрификаторов. Это лишний раз свидетельствует о том, что физиологические свойства микроорганизмов надо изучать не на изолированных искусственных средах, а в естественной среде их обитания. На процессы окисления аммиака влияют не только микробы, но и их ферменты. Кроме органического вещества, на нитрификацию оказывает влияние концентрация аммиака. Его действие на культуру резко проявляется в условиях жидких сред. В почве же аммиак, находится в адсорбированном состоянии и не может оказывать угнетающего действия. Поэтому нитробактер сразу же окисляет азотистую кислоту в азотную.

На процесс нитрификации положительно сказывается присутствие кислорода. В обрабатываемых почвах процесс нитрификации протекает более интенсивно. Примерно также нитрификация проходит на черноземных почвах, особенно когда в них достаточное количество аммонифицирующих микробов, готовящих пищу (среду) для нитрификаторов. У солонцов меньшая нитрифицирующая способность. В почвах азотистая кислота не накапливается, поскольку Nitrosomonas и Nitrobacter встречаются в одной среде, находятся в своеобразном симбиозе. Нитрификаторы способны осуществлять хемосинтез, то есть создавать органическое вещество из углерода диоксида и воды за счет химической энергии окисления аммиака до азотистой кислоты и азотистой до азотной кислоты. Нитрификаторы чувствительны к кислой среде, они лучше развиваются при рН 8,3—9,3. В результате жизнедеятельности нитрифицирующих бактерий на 1 га почвы может накапливаться за год до 300 кг азотной кислоты.

Д.Н. Прянишников установил, что одним из важнейших условий использования аммонийных и нитратных солей является реакция среды: в слабокислой среде при рН 5 лучше усваиваются нитраты, и, наоборот, в нейтральной среде при рН5лучше поглощаются аммонийные соли. Для использования аммонийных солей необходимо достаточное количество углеводов в растениях, без которых задерживается превращение их в амиды, накапливается аммиак, действующий токсический на растение. При питании растений физиологический нейтральной солью (NН4NO3) и реакции среды, близкой к нейтральной, лучше усваивается катион NН4+, чем анион NО3-, в этом случае соль будет физиологический кислой. Таким образом, реакция среды имеет большое значение для усвоения растениями соединений, содержащих азот. Экспериментально доказано, что преимущественное поглощение аммонийных солей свойственно растениям, склонным к усиленному образованию органических кислот.



biofile.ru

Азотистый обмен, конечные продукты - Справочник химика 21

    ОБМЕН БЕЛКОВ И КОНЕЧНЫЕ ПРОДУКТЫ АЗОТИСТОГО ОБМЕНА [c.191]

    В состав различных клеточных мембран мышечной ткани входит ряд азотсодержащих фосфолипидов фосфатидилхолин (лецитин), фосфатидил-этаноламин (кефалин), фосфатидилсерин и др. Фосфолипиды участвуют в обменных процессах, являясь поставщиками холина и жирных кислот — субстратов тканевого дыхания. Другие азотсодержащие вещества — мочевина, мочевая кислота, пуриновые основания (аденин, гуанин) — являются промежуточными или конечными продуктами азотистого обмена и встречаются в мышцах в небольших количествах. [c.299]

    Необходимо подчеркнуть, что тяжелые формы кетонемии при диабете,, сопровождающиеся развитием ацидоза и возникновением комы, конечно, нельзя рассматривать как компенсаторное приспособление. В этом случае мы, несомненно, имеем дело с патологическим нарушением обменных процессов. Механизм их возникновения можно (хотя бы отчасти) объяснить следующим образом при недостаточном окислении углеводов и усиленном распаде жиров и белков в организме появляется избыток промежуточных и конечных продуктов жирового и азотистого обмена, в частности аммонийных солей. Но аммиак прерывает лимоннокислый цикл Кребса, устраняя кетоглютаровую кислоту путем аминирования ее в глютаминовую кислоту. Вследствие этого в ткаиях нарушается в той или иной степени способность к окислению пировиноградной и уксусной кислот (точнее ацетилкоэнзима А), обмен которых переключается на образование ацетоуксусной кислоты (см. стр. 292). 1%)оме того, вероятное нарушение карбоксилирования пировиноградной кислоты ограничивает синтез щавелевоуксусной кислоты и делает малоэффективным цикл трикарбоновых кислот. Это также может быть одной из причин развития тяжелого ацидоза при диабете. [c.300]

    В результате работ И. П. Бородина выяснилось, что синтез аспарагина протекает в растениях с большой скоростью в условиях недостатка углеводов, когда происходит интенсивный окислительный распад белков. Д. Н. Прянишников выполнил очень важные исследования по обмену амидов (аспарагина и глютамина) в растениях. В исследованиях Д. Н. Прянишникова было показано, что синтез аспарагина и глютамина в растениях является процессом, аналогичным синтезу мочевины в животном мире. В обоих случаях достигается обезвреживание аммиака, но при этом все же имеется существенная разница. Мочевина является неактивным веществом в отношении дальнейшего участия в процессах обмена она выводится из организма без изменений, являясь типичным примером конечного продукта обмена. Аспарагин же и глютамин способны к дальнейшим превращениям и могут вовлекаться в процессы синтеза белка и других азотистых соединений (стр. 378). В. Л. Кретович показал, что в обмене аспарагина и глютамина в растениях имеется существенное различие. [c.375]

    Карбамид (мочевина) играет большую роль при обмене веществ в животных организмах является конечным продуктом азотистого обмена, при котором азотистые вещества (например, белки), претерпев в организме ряд сложных превращений, выделяются с мочой в виде мочевины (откуда и произошло ее название). [c.156]

    Реакциям трансаминирования принадлежит решающая роль в азотистом обмене организма, так как при этом образуются новые кислоты. Эти реакции поставляют в печень почти половину аммиака, который обезвреживается в процессе синтеза мочевины и выводится из организма как конечный продукт азотистого обмена, [c.257]

    У растений экскреция не связана с таким множеством проблем, как у животных. Это объясняется фундаментальными различиями в физиологии и образе жизни растений и животных. Растения являются первичными продуцентами и синтезируют в нужном количестве все необходимые им органические соединения. Например, в растениях образуется лишь столько белка, сколько его необходимо в данный момент. Они никогда не синтезируют белок в избытке и поэтому вьщеляют очень мало азотистых отходов, образующихся при расщеплении белков. Если же белки расщепляются до аминокислот, то последние могут быть использованы для синтеза новых белков. Три конечных продукта, образующихся в ходе определенньк обменных процессов — О2, СО2 и вода, — используются растениями как исходные вещества для других реакций это в особенности относится к СО2 и воде. Вода является также растворителем. Единственный газообразный продукт, вьщеляемый растениями в большом количестве — это молекулярный кислород. На свету в растении образуется намного больше О2, чем ему нужно для дыхания, и этот избыток кислорода переходит в окружаюшую среду путем диффузии. [c.7]

    Уже давно известно также, что резкие различия в обмене веществ между организмами различных видов опре- деляются генетически. У птиц, например, основным ко-нечным продуктом азотистого обмена служит мочевая кислота, а у млекопитающих — мочевина. У большей ча-сти пород собак конечным продуктом обмена пуринов-является аллантоин, тогда как у человека ту же роль играет в основном мочевая кислота. Определяющим фак- тором оказывается здесь наследственность. Так же обстоит дело и с синтезом аскорбиновой кислоты у крыс, морских свинок и человека. Крысы наследуют способность синтезировать аскорбиновую кислоту ни морская свинка, ни человек не имеют соответствующих механизмов, и потому они могут существовать только в том случае, если этот витамин доставляется им вместе с пищей. [c.18]

    Регенерат характеризуется иным обменом веществ, чем старые ткани. Показателями его служат повышение содержания воды в регенерирующей ткани, усиленное выделение конечных продуктов распада — азотистых веществ, накопление нуклеиновых кислот, интенсивное деление клеток. [c.211]

    Среди свободных аминокислот в мышцах наиболее высока концентрация глутаминовой кислоты (до 1,2 г/кг) и ее амида глутамина (0,8—1,0 г/кг). В состав различных клеточных мембран мышечной ткани входит ряд фосфоглицеридов фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин и др. Кроме того, фосфоглицериды принимают участие в обменных процессах, в частности, в качестве субстратов тканевого дыхания. Другие азотсодержащие вещества мочевина, мочевая кислота, аденин, гуанин, ксантин и гипоксантин —встречаются в мышечной ткани в небольшом количестве и, как правило, являются либо промежуточными, либо конечными продуктами азотистого обмена. [c.652]

    Дыхательный коэффициент для белков хотя и больше, чем для жиров, но все же меньше единицы. Это и понятно, так как по процентному содержанию кислорода белки занимают промежуточное место между углев о, д ами и жирами. Ввиду того что молекулярная формула для большинства белков не известна, дыхательный коэффициент в этом случае вычисляется более сложным и косвенным путем RQ, для белков оказался равным 0,8. Энергетическая ценность, т. е. теплота сгорания белков, жиров и углеводов, также не одинакова. При окислении в организме до конечных продуктов 1 г жира освобождается 9,3 ккал, 1 г белков или гликогена —4,1 ккал. Следует отметить, что жиры и углеводы дают при сгорании в организме такое же количество калорий, как и при сжигании ихвкалориметрической бомбе. Это понятно, так как и в том, и в другом случае образуются одинаковые конечные продукты (СОа и НаО). Иначе обстоит дело с белками. При сжигании в калориметрической бомбе I г белка освобождается 5,6 ккал, а в организме при окислении такого же количества белка освобождается только 4,1 ккал. Это объясняется тем, что при сжигании в бомбе разрушение азотистой части белков происходит целиком и доходит до NHg, а в организме имеет место лишь частичное окисление, заканчивающееся образованием мочевины, содержащей еще некоторый запас энергии (см. главу Обмен белков ). Данные о потреблении кислорода и освобождении энергии при сгорании белков, жиров и углеводов представлены в табл. 16. [c.223]

    Синтез и распад мочевой кислоты. До сих пор мы имели в виду главным образом азотистый обмен млекопитающих. Изучение конечных продуктов азотистого обмена у животных различных типов и классов представляет сбщебиологический интерес. [c.263]

    Необходимо подчеркнуть, что тяжелые формы кетонемии при диабете, сопровождающиеся развитием ацидоза и возникновением комы, конечно, нельзя рассматривать как обьмное компенсаторное приспособление. В этом случае мы, несомненно, имеем дело с патологическим нарушением обменных процессов, в частности нарушением механизма их нейро-гуморальной регуляции. В нарушении обменных процессов при диабете известное значение имеют также следующие моменты при недостаточном окислении углеводов и усиленном распаде жиров и белков в организме появляется избыток промежуточных и конечных продуктов жирового и азотистого обмена, в частности аммонийных солей. Но аммиак прерывает лимоннокислый цикл 318 [c.318]

    До работ Шёнхаймера Фолин [81] предложил теорию экзогенного и эндогенного обмена. В этой теории принималось существование двух типов обмена азотистых веществ. В одном из них (экзогенном), зависимом от состава диеты, главным конечным продуктом являлась мочевина. В эндогенном обмене, [c.177]

    Карбамид (мочевина, диамид угольной кислоты) имеет очень большое значение в обмене веществ в животном организме, так как является одним из конечных продуктов азотистого обмена и всегда содержится в моче млекопитающих. В моче человека мочевины около 2%. Мочевина была открыта в моче в 1773 г., а в 1828 г. Вёлер получил ее синтетически (см. стр. 8). Карбамид производится в промышленных масштабах при взаимодействии СОг и 1ЧНз нагреванием в автоклавах при 150° С. [c.448]

    Белки и аминокислоты — это самые главные азотсодержащие соединения животных организмов — на их долю приходится более 95 % биогенного азота. С обменом белков и аминокислот неразрывно связано понятие азотистого баланса (АБ), под которым понимают разность между количеством азота, введенного в организм с пищей (Нввед), и количеством азота, выведенного из организма (Нвывед) в виде конечных продуктов азотистого обмена, преимущественно мочевины  [c.361]

chem21.info

Азотистый обмен

Азотистый обмен — это совокупность происходящих в организме превращений азотсодержащих соединений, главным образом белков. У животных и человека азотистый обмен  слагается из трех основных этапов: 1) гидролитического распада азотсодержащих веществ в желудочно-кишечном тракте и всасывания образовавшихся продуктов; 2) превращения этих продуктов в тканях, приводящего к образованию белков (см.) и других азотсодержащих соединений; 3) выделения конечных продуктов азотистого обмена из организма. (Превращения в организме собственно белков и их производных называют белковым обменом.)

Во взрослом организме в норме количество    синтезируемого белка (в сутки) равно суммарному количеству распадающихся тканевых и пищевых белков, т. е. азотистый баланс близок к нулю. Такое состояние называют белковым равновесием. В состоянии белкового равновесия за сутки с мочой и калом у человека выводится около 3,7 г азота, что соответствует 23 г белка (сухого) или около 110 г мяса. Белковое равновесие является динамическим, так как в организме практически не создается запаса белков, и может устанавливаться при различных количествах потребляемого белка (в определенных пределах). В период роста или восстановления сил после болезни (белкового голодания) в организме наблюдается интенсивная задержка азота, азотистый баланс становится положительным. Основные процессы, связанные с белковым обменом,— дезаминирование аминокислот (см. Аминокислоты), переаминирование (взаимопревращение аминокислот, протекающее с переносом аминогрупп), аминирование кетокнслот, распад белка на аминокислоты, наконец, новообразование белков органов и тканей, в том числе белков-ферментов. При положительном азотистом балансе интенсивно протекают процессы, приводящие к синтезу белка. Наоборот, недостаточное содержание белков в рационе приводит к отрицательному азотистому балансу, когда количество выделяющегося азота больше, чем количество азота, потребляемого с пищей. Частично восстановить азотистый баланс в этот период можно, увеличив в рационе долю высококалорийных жиров и углеводов. При нарушении азотистого обмена в результате некоторых заболеваний возникает азотемия, белок (альбумины) появляется в моче.

См. также Обмен веществ и энергии.

www.medical-enc.ru

Азотный обмен в растениях

Биология Азотный обмен в растениях

просмотров - 149

Аминокислоты

Связывание аммиака двухбазовых кислотами

Переаминирование

Амиды аминодикарбоновых кислот

Аминирование непредельных кислот (прямое аминирование)

Аминирование кетокислот

Азотный обмен в растениях

Растение лучше растет и развивается, когда обе неорганические формы азота (Nh5+, NO3+) присутствуют в почве. Использование какой-либо одной формы – аммония или нитрата неблагоприятно влияет на соотношение катионов и анионов в клетке, а также на клеточный рН.

Сложная система транспорта͵ присоединœения и распределœения контролирует потребление азота.

Поступление ионов в растение –перенос через белковые каналы в ЦПМ.

Система, отвечающая за потребление нитратов растением, состоит из 2-х подсистем – системы с низким сродством к аниону (так называемый анионный канал) и проводящей системы с высоким сродством к аниону. Последняя регулируется клеточной АТФ и зависит от электрохимического градиента протона водорода.

Превращение нитрат-иона в растении –

Фотосинтез ® Сахариды

¯

Дыхание

АТФ Кето- и непредельные к-ты

¯ ¯

NO3 ® NO2 ® Nh4 ® Аминокислоты

COOH-CO-Ch3-COOH (+Nh4, -h30) ® COOH-C=NH-Ch3-COOH (+Н2) ® COOH-CHNh3-Ch3-COOH

Щавелœевоуксусная к-та Иминощавелœевоуксусная к-та Аспарагиновая к-та

COOH-CH=CH-COOH (+Nh4, аспартаза) ®COOH-Ch3-CHNh3-COOH

Фумаровая к-та Аспарагиновая к-та

COOH-Ch3-CHNh3-COOH (+ Nh4, –h3O) ®COOH-Ch3-CHNh3-CONh3

Аспарагиновая к-та Аспарагин

COOH-Ch3-CHNh3-COOH + Ch4-CO-COOH (+аминотрансфераза) ®

Аспарагиновая к-та Пировиноградная к-та

Ch4-CHNh3-COOH + CООH-Ch3-CO-COOH

Аланин Щавелœевоуксусная к-та

2Ch4-CO-COOH + СО(Nh3)2® Ch4-CHNh3-COOH

Пировиноградная Мочевина Аланин

COOH + Nh4® COO-Nh5

| |

СООН СООН

Сегодня известно около 90 аминокислот, 70 из них находятся в растениях в свободном состоянии и не входят в состав белков, а 20 аминокислот принимают участие в образовании белковой молекулы.

В растениях происходит не только синтез белков, но и их распад через аминокислоты до аммиака.

В молодых растениях, а также в молодых органах преобладает синтез белков, а распад их незначителœен. По мере старения растений и их органов, распад белков преобладает над синтезом. В этом случае, наблюдается образование аммиака, однако в растениях он, как правило, не накапливается, а, по мере появления, присоединяется к аспарагиновой и глютаминовой кислотам, образуя соответственно аспарагин или глютамин.

В случае если же органических кислот нет, к примеру при отсутствии фотосинтеза, то тормозится и образование аминокислот, и связывание ими аммиака. В этих случаях аммиак может накапливаться в количествах, вызывающих отравление растений.

Эти сложнейшие превращения азотистых веществ в растениях одним из первых экспериментально определил Д.Н. Прянишников: ...«аммиак есть альфа и омега азотистого обмена веществ в растениях», ᴛ.ᴇ. с аммиака начинается и им заканчивается обмен азотистых веществ в любых растениях. Это положение имеет важное теоретическое и практическое значение.

Методом меченых атомов было показано, что процесс синтеза аминокислот за счет аммиачного азота происходит довольно быстро: в течение 15–20 мин после введения (Nh5)2SO4, меченного 15N, в корнях растений находят аминокислоты с 15N.

Нитраты могут накапливаться в растениях. Переход нитратов в аммиак совершается по мере использования его на синтез аминокислот. Нет синтеза – нет и образования аммиака из нитратов. Нитраты – лучшая форма питания растений в молодом возрасте, когда фотосинтетическая активность невелика и не образуются в достаточном количестве углеводы и органические кислоты.

Для культур, в которых содержится достаточное количество углеводов (к примеру, клубни картофеля), аммиачные и нитратные формы азота в начале роста растений практически равноценны. Для культур, в семенах которых углеводов содержится мало (к примеру, сахарная свекла, лен, злаковые травы и хлебные злаки), нитратные формы азота имеют преимущество перед аммиачными. Источники азота по-разному влияют на направленность физиолого-биохимических процессов в растениях. При аммиачном питании увеличивается восстановительная способность растительной клетки, что приводит к образованию восстановленных органических соединœений (масла, жиры). При нитратном источнике азота преобладает окислительная способность клеточного сока, ведущая к усилению процессов образования органических кислот. Стоит сказать, что для нитратного питания важно обеспечить растение фосфором и молибденом. Недостаток молибдена задерживает восстановление нитратного азота до аммиака, что приводит к накоплению нитратов в растениях в свободном состоянии.

oplib.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта