Образование гамет у растений. СПОРОВЫЙ МЕЙОЗ. ОСОБЕННОСТИ ОБРАЗОВАНИЯ ГАМЕТ У ВЫСШИХ РАСТЕНИЙ. МИКРОСПОРОГЕНЕЗ И МЕГАСПОРОГЕНЕЗ. РОЛЬ МИТОЗА И МЕЙОЗА В ОБРАЗОВАНИИ ГАМЕТ У РАСТЕНИЙ.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Тест на тему: " Образование гамет и оплодотворение у цветковых растений". Образование гамет у растений


Образование гамет и оплодотворение у растений

Цветок - это генеративный орган растения, то есть орган, который служит для полового размножения. По своему происхождению - это укороченный видоизмененный побег, листья которого превратились в отдельные части цветка и приспособились к опылению и оплодотворению.

Тычинки и пестики определяют пол цветка. Мужские гаметы образуются в пыльниках тычинок, а женские гаметы - в семязачатках пестиков. Поэтому цветки, которые содержат только тычинки, называют мужскими цветками, а цветки, содержащие только пестики, - женскими. Цветки, в которых есть и тычинки, и пестики, называются обоеполые. Бесполые цветки не содержат ни пестиков, ни тычинок и не принимают прямого участия в размножении, их назначение заключается только в привлечении насекомых-опылителей.

Растения, на которых развиваются однополые цветки обоих видов - и мужские, и женские, называются однодомными. К однодомным растениям относятся кукуруза, береза, орешник- лещина, дуб, каштан. Если мужские цветки развиваются на одних растениях, а женские – на других, то такие растения называют двудомными. Двудомные растения - это крапива, тополь, осина, ива, конопля, щавель.

Сразу после венчика в цветке находится круг тычинок. Количество тычинок в цветке может быть разным - от одной тычинки до нескольких сотен, но обычно их 3-10. Тычинка состоит из тычиночной нити и пыльника. В пыльнике, как правило, содержится 4 полости, в которых созревает пыльца (рис. 158). По сосудам и ситовидным трубкам проводящих пучков, которые проходят внутри тычиночных нитей, к зреющей пыльце подводится питание. Снаружи пыльник покрыт эпидермисом. Под эпидермисом располагается слой клеток механической ткани. Внутри каждой половинки пыльника находится две полости. Сначала они заполнены клетками образовательной ткани. Клетки образовательной ткани делятся мейозом, поэтому получающиеся из них клетки имеют гаплоидный (одинарный) набор хромосом. Каждая вновь возникающая гаплоидная клетка делится еще один раз, но уже митозом (рис. 159).

В результате этого деления образуются две дочерние гаплоидные клетки - одна побольше и другая поменьше. Они окружают себя толстой и прочной оболочкой и получается пыльца, или точнее пыльцевое зерно (рис. 160). Таким образом, каждое пыльцевое зерно состоит из двух гаплоидных клеток, заключенных в общую оболочку. Та клетка, которая поменьше, называется генеративной клеткой, а другая клетка содержит питательные вещества (поэтому она крупнее) и называется вегетатив- ной клеткой. Почему они так называются, вам станет ясно чуть позже, когда вы узнаете, что происходит с пыльцевым зерном дальше. Постепенно вся образовательная ткань внутр. пыльника заменяется созревшими пыльцевыми зернами. Когда пыльца созревает, слой механической ткани, располагающийся под эпидермисом, начинает подсыхать, и пыльник трескается. Созревшая пыльца готова высыпаться через образовавшуюся трещину. Количество пыльцевых зерен, созревающих в одном пыльнике, может быть у разных растений от нескольких десятков до нескольких тысяч. Например, у осины их около 1000.

Размеры пыльцевых зерен тоже бывают разными - от видимых глазом (0,2 мм, как у тыквы) до мельчайших в 0,008 мм (у фикуса). Форма их - шаровидная, овальная, кубическая или даже нитевидная. Оболочка пыльцы обычно окрашена в желтоватый, бурый, синеватый или белый цвет и имеет различные неровности на поверхности в виде бугорков, шипиков, сеточки (рис. 160). Форма, окраска и поверхность пыльцы постоянна для каждой разновидности растений. Это свойство пыльцы используется, когда исследуются образцы пород из толщи земли. Пыльцевые зерна прекрасно сохраняются в ископаемом состоянии и по составу пыльцы можно узнать, какая растительность произрастала в древние времена.

В самом центре цветка находится один или несколько пестиков. В пестике различают самую нижнюю вздутую часть - завязь, отходящий от верхушки завязи столбик и самую верхнюю часть - рыльце (рис. 161). Из завязи впоследствии формируется плод. Внутри завязи находится полость, в которой находятся один или несколько семязачатков. После оплодотворения из них развиваются семена. Поэтому от количества семязачатков в завязи зависит, сколько семян будет внутри плода. Роль рыльца заключается в восприятии пыльцы, а столбик поднимает рыльце вверх, чтобы пыльце было легче попасть на рыльце. В то время, когда в пыльниках тычинок созревает пыльца, в завязи пестиков формируются зародышевые мешки, которые содержат женские гаметы - яйцеклетки.

В полости завязи пестика располагаются один или несколько семязачатков (рис. 161). Семязачатки прикрепляются к внутренним стенкам завязи посредством семяножек. Внутри каждого семязачатка есть зародышевый мешок (рис. 162). Внутри семяножки проходит проводящий пучок. По сосудам и ситовидным трубкам проводящих пучков семяножек к созревающим зародышевым мешкам подводится питание. Снаружи зародышевый мешок покрыт покровами - несколькими слоями покровных тканей. Покровы семязачатка не сплошные, их края образуют узкий канал - пыльцевход. Сам зародышевый мешок состоит из 7 клеток. Самая крупная клетка зародышевого мешка расположена в его центре и поэтому так и называется центральная клетка. Рядом с пыльцевходом находится самая главная клетка зародышевого мешка - яйцеклетка. По обеим сторонам от нее располагаются две вспомогательные клетки, а на противоположной стороне мешка (то есть напротив яйцеклетки) находятся еще три клетки, которые из-за своего расположения называются антиподами (рис. 162).

Зародышевый мешок образуется из одной единственной клетки семязачатка в результате нескольких последовательных делений этой клетки (рис. 163). Сначала она делится мейозом и как всегда в ходе мейоза образуются 4 клетки, имеющие гаплоидный (одинарный) набор хромосом. Но из этих четырех гаплоидных клеток три отмирают и оста- ется только одна. Ядро оставшейся клетки делится митозом, но перегородка между получившимися дочерними ядрами не возникает. Эти ядра расходятся к полюсам сильно удлиняющейся клетки, а между ними образуется крупная вакуоль. Затем каждое из этих ядер делится митозом еще дважды, в результате чего возникают по 4 гаплоидных ядра у каждого полюса.

В получившейся 8-ядерной клетке от каждого полюса отходит по одному ядру в центр зародышевого мешка. Они сливаются, образуя центральное ядро. Между оставшимися у полюсов клетки ядер образуются клеточные перегородки, и ядра вместе с облегающей их цитоплазмой превращаются в клетки, плотно прилегающие друг к другу. На одном полюсе зародышевого мешка - яйцеклетка и две вспомогательные клетки, а на другом - три клетки-антиподы. Центральное ядро вместе с окружающей его цитоплазмой образует центральную клетку. Таким образом, получающийся зародышевый мешок состоит из семи клеток. Из них 6 имеют одинарный набор хромосом (яйцеклетка, две вспомогательные клетки и три клетки-антиподы). В отличие от них центральное ядро, образовавшееся при слиянии двух гаплоидных ядер, обладает двойным набором хромосом.

worldofscience.ru

определение, образование, типы и оплодотворение

Что такое гаметы?

Гаметы — это репродуктивные клетки (половые клетки), которые объединяются во время полового размножения, чтобы сформировать новую клетку, называемую зиготой. Мужские гаметы — сперма, а женские гаметы — яйцеклетки. У семенных растений, пыльца является мужской спермой, производящей гаметофит. Женские гаметы (яйцеклетки) содержатся внутри завязи растения. У животных гаметы производятся в мужских и женских гонадах. Сперматозоиды подвижны и имеют длинный хвостообразный вырост, называемый жгутиком. Однако яйцеклетки не подвижны и относительно велики по сравнению с мужской гаметой.

Образование гамет

Гаметы образуются посредством клеточного деления, называемого мейозом. Этот процесс двухэтапного деления производит четыре дочерние клетки, которые являются гаплоидными. Гаплоидные клетки содержат только один набор хромосом. Когда гаплоидные мужские и женские гаметы объединяются в процесс, называемом оплодотворением, они образуют зиготу. Зигота диплоидна и содержит два набора хромосом.

Типы гамет

Одни мужские и женские гаметы имеют одинаковый размер и форму, в то время как другие отличаются по размеру и форме. У некоторых видов водорослей и грибов мужские и женские половые клетки почти идентичны, и обычно одинаково подвижны. Объединение этих типов гамет известно как изогамия. В некоторых организмах гаметы имеют разные размеры и форму, и их слияние называют анизогамией или гетерогамией. Высшие растения, животные, а также некоторые виды водорослей и грибов проявляют особый тип анизогамии, называемой оогамия. При оогамии женская гамета не подвижна и намного больше, чем мужская гамета.

Гаметы и оплодотворения

Оплодотворение происходит, когда мужские и женские гаметы сливаются. У животных организмов объединение спермы и яйцеклетки происходит в фаллопиевых трубах женского репродуктивного тракта. Миллионы сперматозоидов высвобождаются во время полового акта, которые попадают из влагалища в фаллопиевы трубы.

Сперма специально приспособлена для оплодотворения яйцеклетки. Головная область имеет колпачковое покрытие, называемое акросом, которое содержит ферменты, помогающие клетке спермы проникать в половую железу (наружное покрытие мембраны яичных клеток). По достижении клеточной мембраны яйцеклетки сперматозоидная головка сливается с яйцеклеткой. Проникновение сквозь zona pellucida (оболочка вокруг мембраны яйцеклетки) вызывает выброс веществ, которые изменяют zona pellucida, и предотвращает оплодотворение яйцеклетки другими сперматозоидами. Этот процесс имеет решающее значение, поскольку оплодотворение несколькими клетками спермы или полиспермия вызывает зиготу с дополнительными хромосомами. Это явление смертельно для зиготы.

После оплодотворения два гаплоидных гамета становятся одной диплоидной клеткой или зиготой. У людей это означает, что зигота будет иметь 23 пары гомологичных хромосом в общей сложности 46 хромосом. Зигота продолжит деление посредством митоза и в конечном итоге созревать в полностью функционирующий организм. Пол будущего ребенка, определяется наследованием половых хромосом. Клетки спермы могут иметь один из двух типов половых хромосом — X или Y. Яйцеклетка имеет только один тип половых хромосом — Х. Если клетка спермы с Y-хромосомой оплодотворит яйцеклетку то, в результате индивидуум будет мужского пола (XY). Если клетка спермы с X-хромосомой оплодотворит яйцеклетку то, в результате индивидуум будет женского пола (XX).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

← Подписывайтесь на наши аккаунты в соц.сетях, чтобы не пропустить самую интересную информацию!

natworld.info

Образование гамет у растений. Двойное оплодотворение.

Гаметы у растений формируются в особых органах – гаметангиях. У низших растений гаметангии представлены одной клеткой, содержимое которой делится и дает гаметы. У высших растений гаметангии, как и спорангии, многоклеточны. Гаметы всегда голые (не имеют оболочки) и часто бывают снабжены жгутиками. Иногда все гаметы совершенно одинаковы по форме и размерам; попарное их слияние основано лишь на физиологических различиях, поэтому такие гаметы обозначаются как плюс- и минус-гаметы, а половой процесс такого типа называется изогамным (встречается у водорослей и немногих грибов). У многих низших и у всех высших растений половой процесс оогамный. При этом одна из гамет совершенно неподвижна, лишена жгутиков, имеет крупные размеры и большой запас питательных веществ; ее называют яйцеклеткой или женской гаметой. Вторая гамета, маленькая, подвижная, со жгутиком, состоит из крупного ядра и очень небольшого количества цитоплазмы- это мужская гамета или сперматозоид. Гаметангии, в которых образуются яйцеклетки, у низших растений называют оогониями, а у высших- архегониями. Мужские гаметангии у обоих групп растений называют антеридиями.

Двойное оплодотворение. Пылинка, попав на рыльце пестика, при отсутствии тормозящих факторов прорастает; при этом ее содержимое, одетое интиной , выпячивается через поры в экзине и образует пыльцевую трубку. Ядро клетки пыльцевой трубки и генеративное ядро находится на растущем конце пыльцевой трубки. Достигнув завязи, пыльцевая трубка направляется к семязачатку и проникает в него чаще всего через микропиле. Это явление носит название порогамии. Оболочка зародышевого мешка растворяется, соприкасаясь с кончиком пыльцевой трубки. В зародышевом мешке пыльцевая трубка растет по направлению к яйцеклетке. Оболочка на кончике пыльцевой трубки разрывается и оттуда выходят 2 спермия, из которых один сливается с яйцеклеткой, а другой- с вторичным ядром зародышевого мешка или с одним из центральных ядер. Происходит так называемое двойное оплодотворение- характерная особенность покрытосеменных, не встречающая у голосеменных. Двойное оплодотворение открыл в 1898 г. русский ботаник С.Г. Навашин на двух растениях семейства лилейных.

 

Дата добавления: 2015-07-19; просмотров: 130 | Нарушение авторских прав

Механизмы интеграции в ЦНС | Состав, свойства и функции крови. Константы крови и механизм их поддержания. | Регуляция дыхания | Основные принципы обмена газов в легких и тканях | Рецепторы. Рецепторный и генераторный потенциал. | Теория гена. Эволюция представлений о гене, современные представления о строении гена. | Типы мутаций и факторы их вызывающие | Модели (алло-, сим-, парапатрическая) и примеры видообразования | Распространение и роль микроорганизмов в природе. | Простейшие, основные закономерности их эволюции |mybiblioteka.su - 2015-2018 год. (0.005 сек.)

mybiblioteka.su

Гаметы образование

Образование специализированных локальных популяций наиболее характерно для организмов, остающихся в течение большей части жизненного цикла прикрепленными. Причина в том, что подвижные организмы в значительной мере контролируют условия своего существования: они могут избежать гибельных или неблагоприятных местообитаний или удалиться из них и приступить к активному поиску новых; неподвижные же организмы— высшие растения, многие морские водоросли, кораллы— подобной свободой не располагают; по завершении рассе-лительной стадии жизненного цикла им приходится либо жить в условиях, существующих там, где они осели, либо погибать. Как заметил Брэдшоу (Bradshaw, 1972), «...растение не в состоянии перебежать на новое место или спрятаться в укромном уголке». Все, что может высшее растение — это, разрастаясь и «перерастая» с места на место, выискивать ресурсы или выбираться за пределы неблагоприятного участка; выдрать себя с корнями и пересадить себя по собственному выбору в другое место оно ни ка,к не может. Его потомство (семена, пыльца или гаметы) подвержено всем превратностям пассивного распространения ветром, водой или животными (на поверхности или внутри тела). По этим причинам популяции неподвижных организмов подвергаются особенно сильному воздействию естественного отбора.[ ...]

Образованию спор из спорогенной ткани (археспория) спорангия предшествует мейоз. При этом, как мы уже знаем, число хромосом уменьшается вдвое, и спора имеет одинарный набор хромосом, она гаплоидна. Гаплоидными являются протонема, гаметофоры, органы полового размножения (архегонии и антеридии) и, конечно, гаметы. Все эти структуры относятся к половому поколению — га-метофазе.[ ...]

Образование зооспор и гамет у бурых водорослей происходит во вместилищах двух основных типов: одногнездных (рис. 121, 2) и много-гнездных (рис. 128, 1 а). Многогнездные вместилища могут функционировать как спорангии и как гаметангии. Внешне они при этом не отличаются так же, как зооспоры и гаметы. Одногнездные вместилища чаще бывают спорангиями. Мейоз у бурых водорослей происходит при образовании спор в одногнездных спорангиях, лишь у циклоспоровых он приходится на момент образования гамет.[ ...]

С образованием споры начинается гаплоидная фаза в жизненном цикле папоротника, которая заканчивается образованием гамет. Гаметы образуются па гаметофите (половом поколении, или заростке) папоротника, возникающем из прорастающей споры. Но из колоссального количества спор (обычно несколько десятков миллионов), производимого каждый раз спорофитом, лишь сравнительно небольшая часть попадает в достаточно благоприятные условия для прорастания, а из проросших спор далеко не все достигают стадии зрелого гаметофита.[ ...]

Мейоз при образовании пыльцы и зародышевого мешка у гаплоидов протекает с большими нарушениями, что способствует стерильности гамет. У таких растений хромосомы в метафазе первого деления мейоза при микроспорогенезе остаются унива-лентами, располагаются неправильно и неравномерно расходятся в анафазе первого деления, вследствие чего образуются ядра с разными числами хромосом. Отмечены случаи возникновения реституционных ядер в результате выпадения редукционного деления и образования диад с диплоидным числом хромосом.[ ...]

После слияния гамет и образования зиготы наступает длительный период покоя, который может продолжаться всю зиму и больше. В зиготе два из четырех или один из двух хло-ропластов разрушаются (в зависимости от того, сколько их в клетке). Ядра гамет лежат рядом во время периода покоя, а затем сливаются как раз перед прорастанием зиготы. Процесс прорастания зиготы удавалось наблюдать очень редко, и поэтому он еще слабо изучен.[ ...]

В первые минуты образования зиготы в ней появляются многочисленные сокращающиеся вакуоли. Маленькие вакуоли сливаются в более крупные. Каждая вакуоля пульсирует в течение 4—7 мин, затем сжимается, и ее содержимое выходит наружу. Действие пульсирующих вакуолей длится от 4 до 32 мин, до тех пор пока прозрачные места зиготы перестают быть видимыми. За этот период (от 1 до 3,5 ч) зигота значительно сокращается. Внутри ее хлоро-пласты и пиреноиды располагаются в периферическом слое. Затем начинают появляться первые признаки орнаментации зиготы — конусовидные бугорки, разбросанные по ее поверхности. Постепенно они вытягиваются и приобретают вид шипов. За время разрастания шипов, которое продолжается 2—3 ч, зигота опять увеличивается в размерах и становится такой же, как при слиянии гамет.[ ...]

В результате слияния гамет образуется шаровидная зигота, при этом жгутики отпадают и появляется оболочка. Зиготы некоторых водорослей какое-то время сохраняют жгутики, тогда получается планозигота, которая способна плавать от нескольких дней до трех недель. В зиготе происходит слияние двух ядер гамет, и она становится диплоидной. В дальнейшем зиготы разных водорослей ведут себя различно. Одни зиготы вырабатывают толстую оболочку (гиппозиготы) и впадают в период покоя, длящийся до нескольких месяцев. Другие зиготы прорастают без периода покоя. В одпих случаях из зигот непосредственно вырастают новые слоевища. В других зиготы делятся с мейозом и образованием зооспор; такие зиготы предварительно растут, и из них в зависимости от размеров выходят 4—32 зооспоры.[ ...]

Половое размножение — это образование нового организма при участии двух родительских особей. При половом размножении происходит слияние половых клеток — гамет мужского и женского организма. Новый организм несет наследственную информацию от обоих родителей. Половые клетки формируются в результате особого типа деления. В этом случае в отличие от клеток взрослого организма, которые несут диплоидный (двойной) набор хромосом, образующиеся гаметы имеют гаплоидный (одинарный) набор. В результате оплодотворения парный, диплоидный набор хромосом восстанавливается. Одна хромосома из пары является отцовской, а другая — материнской. Гаметы образуются в половых железах или в специализированных клетках в процессе мейоза.[ ...]

Оплодотворение начинается с образования и роста пыльцевой трубки, которая активно прокладывает себе путь через ткани мегаспорапгия (нуцеллуса) по направлению к архегонию. Приблизительно за неделю до самого акта оплодотворения ядро сперматогенной клетки делится, образуя две одинаковые или неравные по размерам (у араукариевых и сосновых) мужские гаметы. Кончик пыльцевой трубки прокладывает себе путь между шейковыми клетками архегония и достигает яйцеклетки. Здесь он разрывается, выпуская мужские гаметы в цитоплазму яйцеклетки. Вслед за этим одна из двух мужских гамет входит в яйцеклетку. Слияние двух ядер происходит очень медленно, но в конце концов они соединяются, образуя первое диплоидиое ядро спорофита.[ ...]

Оплодотворение — объединение гамет, сопровождающееся образованием зиготы.[ ...]

Гаметофит — стадия, связанная с образованием гамет в жизненном цикле растений.[ ...]

В животном царстве мейоз ведет к образованию половых клеток - гамет и обычно только эти клетки содержат гаилоидный набор хромосом. У растений мейоз может происходить на разных этапах жизненного цикла, причем в качестве гаплоидных продуктов у них образуются как половые клетки - гаметы, так и бесполовые споры. Продолжительность жизни гамет ограничена и составляет от нескольких минут до нескольких суток, после чего неоплодотворенные гаметы пропадают.[ ...]

У десмидиевых может происходить также образование двойных зигот. Они развиваются при копуляции четырех клеток, возникших путем последовательного деления одной особи (рис. 256, 7). У видов клостериума способ образования двойных зигот иной: в каждой клетке сначала развиваются две особые гаметы, которые, сливаясь, дают двойные зиготы. Очень редко в образовании зигот десмидиевых принимают участие три или четыре особи.[ ...]

Женские гаметы крупные, неподвижные; мужские — более мелкие, двужгутиковые. При переходе к половому размножению часть клеток в верхней половипе слоевища подвергается последовательному делению и дает начало многослойной половой ткани. В пределах этой ткани хорошо различаются темные и светлые участки, располагающиеся попарно и соответствующие скоплениям женских и мужских клеток. В каждой клетке образуется в конечном итоге по одной гамете. Зигота, как и апланоспоры, прорастает в пластинчатое слоевище. Гаметофит, вплоть до образования половых клеток, морфологически подобен спорофиту, поэтому цикл развития празиолы можно считать изоморфным. Своеобразие его заключается в необычном строении половой ткани.[ ...]

Поскольку при половом процессе в результате слияния гамет и их ядер происходит удвоение набора хромосом в ядре, то в последующем в какой-то момент цикла развития наступает редукционное деление ядра (мейоз), в результате которого дочерние ядра получают одинарный набор хромосом. Спорофиты многих водорослей диплоидные, и мейоз в цикле их развития совпадает с моментом образования спор, из которых развиваются гаплоидные гаметоспо-рофиты или гаметофиты. Такой мейоз называют спорической редукцией (рис. 2Ъ,1).[ ...]

Как правило, мутации количества хромосом происходят в гаметах одного из родителей. Поэтому, все клетки организма, в зачатии которого принимала участие одна из мутантных гамет, будут содержать аномальный хромосомный набор. Однако иногда количественные хромосомные мутации могут случаться в процессе первых делений зиготы, образованной нормальными гаметами. Из такой зиготы разовьется организм, часть клеток которого будет иметь нормальный диплоидный набор, другая же часть — аномальный. Это явление называют хромосомным мозаицизмом, а индивидов, обладающих мозаицизмом — хромосомными мозаиками. Мозаицизм более част по половым хромосомам. Такие мозаики имеют генотип Х/ХХ, Х/ХУ, ХХ/ХУ, ХХУ/ХХ.[ ...]

У высших животных в случае мужских особей мейоз сопровождается образованием четырех функционально активных гамет (рис. 80). Напротив, у женских особей каждый овоцит II порядка дает лишь одну яйцеклетку. Другие ядерные продукты женского мейоза представляют собой три редукционных тельца, которые не участвуют в размножении и дегенерируют.[ ...]

Изогаметы развиваются в особых сидячих «спорангиях». Это шаровидные образования, занимающие разное положение на нитях: они могут быть верхушечными, боковыми, интер-калярными. Развиваются они преимущественно на стелющихся нитях. Эти сидячие «спорангии» образуются в результате увеличепия размеров клеток и, в отличие от спорангиев на ножке, не отделяются от нити при созревании гамет. Не всегда развивающиеся в них двужгутиковые клетки размножения ведут себя как гаметы, нередко они прорастают без слияния или дают апланоспоры.[ ...]

Рассмотрим это на примере с геномными формулами. Растения РгСВО дают гаметы, имеющие геномную структуру АВБЕВ2 (от 0 до 7). При оплодотворении их гаметой мягкой пшеницы с геномами АВВ возникают растения Р3(В2), которые имеют следующую геномную структуру: АА +ВВ + ВВ + Е(от 0 до 7) и В2 (от О до 7). Хромосомы геномов Е и В2, как не имеющие партнеров, будут элиминироваться уже при образовании гамет Р3. И в следующем, четвертом поколении многие растения будут иметь геномную структуру АА + ВВ + ВВ, т. е. это будут растения типа мягкой пшеницы, у которых еще содержатся единичные хромосомы геномов В2 и Е и поэтому сохранятся некоторые черты пырея. Но в дальнейшем и эти пырейные хромосомы будут элиминироваться. Пырейный наследственных! материал у пшенично-пырейных гибридов типа мягкой пшеницы может сохраняться в форме отдельных пырейных сегментов в пшеничных хромосомах, илит как теперь отмечают некоторые исследователи, отдельные пырейные хромосомы могут быть в пшенично-пырейных гибридах как дополнительные пли заменяющие пшенпчные хромосомы. Но во всех этих случаях растення относятся к типу однолетних мягких пшениц, а пырейные признаки у них проявляются в слабой форме.[ ...]

Особенность конъюгации у мужоции заключается в том, что эигота еще до образования оболочки отделяется от образовавших ее клеток двумя, тремя или четырьмя перегородками.[ ...]

Для выхода гамет служит отверстие с неровными краями во внешней стенке клетки (рис. 219,7). Зигота развивается в одноклеточный спорофит. При этом она силь-по увеличивается в размерах и покрывается толстой оболочкой (рис. 219, 5). Через более или менее длительное время содержимое этого одноклеточного растения делится с образованием зооспор. Таким образом, здесь смена форм развития гетероморфная.[ ...]

У многоклеточных организмов (растений и животных) половое размножение связано с образованием зародошевых или половых клеток (гамет), оплодотворением и образованием зигот.[ ...]

В мегаспорангии эфедры из мегаспоры в результате свободного ядерного деления и последующего образования клеточных перегородок развивается массивный женский гамето-фит. В каждом из них закладываются обычно два архегония. Архегоний имеет длинную шейку, состоящую из 32 или более клеток. При делении ядра центральной клетки архегония между брюшным канальцевым ядром и ядром яйцеклетки не образуется клеточной перегородки.[ ...]

В половом размножении принимают участие две родительские особи, каждая из которых участвует в образовании нового организма, внося лишь одну половую клетку — гамету (яйцеклетку или сперматозоид). Каждая гамета несет половинный набор хромосом. В результате слияния двух гамет образуется зигота, из которой развивается новый организм. Зигота в результате получает наследственные признаки обоих родителей.[ ...]

У современных представителей порядка известно только половое размножение. Половой процесс — изогамия. Гаметы образуются в специальных гаметангиях. У большинства дазикладовых гаметангии возникают как шаровидные выросты на вершине или сбоку ветвей первого порядка и соответствуют видоизмененным ветвям второго порядка (рис. 232, 3, 4). У аце-табулярии гаметангии образуются на коротких сегментах первого порядка как специальные выросты (рис. 232, 9). Внутри гаметангия образуются толстостенные многоядерные цисты со специальной крышечкой (рис. 232, 10). Зрелые цисты содержат множество гамет. При разрушении стенок гаметангия цисты выходят во внешнюю среду и уже здесь из них высвобождаются гаметы. Цисты, а не зиготы могут служить покоящимися стадиями. Существует мнение, что образование цист связано с обызвествлением слоевища. У некоторых лишенных извести родов их нет и гаметы образуются непосредственно в гаметангиях.[ ...]

В последующем получила развитие анизогамия (от греч. anisos — неравный, games — брак), характеризующаяся дифференцировкой гамет, различающихся между собой лишь по величине. Примером анизогамии является образование гамет также у ряда видов простейших.[ ...]

В результате мейоза из материнских клеток микроспор образуются тетрады микроспор, развивающиеся в дальнейшем в мужские гаметы. Существуют три типа образования тетрад микроспор (рис. 94): сукцессивный (последовательный), промежуточный и симультанный (одновременный).[ ...]

По существу мейоз представляет собой два деления, в которых клетки делятся дважды, а хромосомы только один раз. Это приводит к образованию четырех клеток, каждая из которых имеет гаплоидное число хромосом, т. е. половинный набор хромосом соматических клеток. Каждая из этих четырех клеток потенциально является гаметой. Оплодотворение (слияние двух гамет) восстанавливает диплоидное число хромосом.[ ...]

Род характеризуется изоморфной сменой форм развития и отличить половые растения от бесполых по внешнему виду невозможно. Зрелые гаметы и зооспоры выходят в окружающую среду через одно округлое отверстие — пору, образующуюся на вершине сосочкообразного изгиба во внешней стенке клетки (рис. 218, 2). При прорастании зооспор и зигот энтероморфа, как и все водоросли семейства ульвовых, проходит стадию однорядной нити (рис. 218, 3—7). Клетка, от которой начинается развитие, делится на две — апикальную и базальную. В результате поперечных делений первой образуется вертикальная нить, вторая превращается в первичный ризоид. Позднее нить преобразуется в трубчатое слоевище. При изменении условий среды первые деления могут вести к образованию стелющихся нитей, расположенных в форме диска, из клеток которого уже позднее вырастает одна или несколько вертикальных однорядных нитей.[ ...]

Продолжительность гаплофазы и диплофазы в разных систематических группах растений бывает различной, в то время как процессы, непосредственно связанные с образованием гамет (мейотическое деление), исключительно сходны между собой.[ ...]

Семенные растения. В наши дни голосеменные представлены примерно 700 видами кустарников и деревьев. У этих растений имеются семена и осуществляется редукция гамето-фита. Образование половых клеток, оплодотворение и созревание семян происходят на взрослом растении — спорофите. Наличие семян резко усиливает возможности растений к освоению новых пространств. Собственно говоря, наличие семян в какой-то степени заменяет невозможность растений к передвижению, как бы компенсируя их неподвижность относительно животных. Семя также способствует большей устойчивости растений к воздействию неблагоприятных факторов среды. Голосеменные подразделяют на хвойные—около 560 современных видов; саговники — известные с каменноугольного периода, и гинкго—также реликтовые. Последние два класса имеют весьма ограниченное распространение.[ ...]

Мейоз представляет логически необходимую часть жизненного цикла, размножающегося половым путем, Мейоз обеспечивает расщепление генов - отдельных участков ДНК по отдельным гаметам, в результате чего происходит разнообразное сочетание генов в гаметах. В отношении поддержания постоянства хромосом в клетке оплодотворение составляет антитезу (противоположное) мейозу, о процессе оплодотворения происходит слияние гаплоидных ядер двух разнополых гамет с образованием одной клетки - зиготы с диплоидным ядром.[ ...]

Наиболее широко распространена диктиота дихотомическая. Ее слоевища образуют большие дерновинки высотой до 20 см, ширина ветвей достигает 4—8 мм. Диктиота дихотомическая интересна четкими периодами в образовании и созревании гаметангиев. У берегов Англии гаметангии начинают развиваться в период квадратурных приливов, а окончательное созревание и выход гамет происходит в течение нескольких приливов, следующих после самого высокого сизигийного прилива. При этом гаметы созревают каждые две недели. Такая периодичность в размножении и связь его с лунным ритмом сохранялась при выдерживании слоевищ в лаборатории в течение нескольких месяцев. У Атлантического побережья Северной Америки созревание гамет происходит с интервалом в один месяц. Развитие гамет начинается за день до сизигийного прилива в полнолуние или на следующий день, гаметы созревают 6 или 8 дней спустя. В заливе Петра Великого (Японское море) обычно чаще встречаются растения с тетраспорангиями, которые иногда все превращаются в проростки па материнских растениях, и ветви последних становятся лохматыми, так как проростки, прежде чем отделиться, вырастают высотой в несколько миллиметров. Диктиота дихотомическая растет в верхней сублиторали в местах с движением воды.[ ...]

Механизмы полиплоидии заключаются в том, что они являются результатом извращений одного или более митотических делений клеток зародыша или результатом нерасхождения в период мейоза всего набора хромосом, ведущего к образованию диплоидных гамет. Нерасхождение хромосом у женщин имеет место в 80% случаев, а у мужчин оно наблюдается в 20% случаев, причем оно отмечается как в первом, так и во втором мейотических делениях.[ ...]

В отличие от других многоклеточных водорослей у бурых водорослей, наряду с обычными одногнездными спорангиями (рис. 121, 2), имеются многогнездные спорангии и гаметангии, неправильно называемые многоклеточными (рис. 128, 1 а). Перед образованием зооспор или гамет содержимое многогнездных вместилищ делится тонкими перегородками на камеры, в которых оказываются заключенными по одному ядру с участком цитоплазмы. В каждой камере развивается по одной, реже по две зооспоры или гаметы. На поверхности слоевища многих бурых водорослей развиваются особые многоклеточные волоски, имеющие вид нити из одного ряда клеток с зоной роста при основании; клетки зоны роста делятся чаще других и поэтому имеют мелкие размеры (рис. 121, 1 б).[ ...]

Стерины с 28 и 29 атомами углерода могут быть биогенетическими предшественниками различьых фитоэкдизонов (см. выше). У водорослей Achlya bisexual is и A. ambisexual is обнаружен С29-стероид, обладающий гормональной активностью — антеридиол.[ ...]

Формирование пыльцы. В пыльнике пыльцевые материнские клетки проходят мейоз и образуют микроспоры — гаплоидные мужские споры, которые по окончании развития известны как пыльца. Пыльцевое зерно можно считать как бы отдельным растением, мужским гаметофи-том (рис. 117). Такое гаплоидное «растение», образующее мужские гаметы, является пережитком гаметофитного поколения, которое может быть хорошо развито у более примитивных растений, например у папоротников и мхов. У семенных растений эта стадия сильно редуцирована. Гаплоидное ядро микроспоры делится митотически, образуя генеративное ядро и ядро в пыльцевой трубке. Нередко генеративное ядро оказывается связанным с цитоплазмой, что выглядит как бы клетка в клетке. Генеративное ядро 1 для образования двух ядер (мужских гамет) делится митотически либо в пыльцевом зерне, либо в пыльцевой трубке.[ ...]

У большинства водорослей в клетке присутствует всего одно ядро, но известны случаи, когда их бывает два-три и больше. Клетки с несколькими десятками, как у кладофоры, или сотнями, как у водяной сеточки (гидродиктион), ядер называют ценоцитными, Примечательно, что эти водоросли возвращаются к одноядерному состоянию при образовании специализированных клеток бесполого (апланоспоры, зооспоры) и полового (гаметы) размножения.[ ...]

Бесполое размножение у каулерповых отсутствует, по-видимому, оно было утрачено у современных форм в процессе эволюции. Половое размножение — анизогамия — характеризуется рядом особенностей, отличающих каулерповых от других семейств порядка. Во-первых, у каулерпы нет специальных органов размножения — гаметангиев. Гаметы образуются непосредственно в ассимиляционных нитях в любой их части. На отдельных участках цитоплазма сгущается, приобретает темно-зеленую окраску, затем сетчатое строение и наконец делится с образованием одноядерных гамет. Какие-либо перегородки, отделяющие место образования гамет, отсутствуют. Такое размножение называют г о л о к а р п и е й. Для выхода гамет на поверхность слоевища образуются довольно длинные выросты — папиллы; гаметы освобождаются в результате разрыва оболочки на вершинах папилл.[ ...]

При гибридизации животных сталкиваются с большими трудностями. Главные из них следующие: 1) иескрещиваемость видов между собой; 2) частичная или полная бесплодность гибридов. Основными причинами нескрещиваемости отдаленных видов и бесплодия гибридов являются генетические факторы: различные набор и структура хромосом в гаметах, неспособность их образовывать жизнеспособную зиготу, сперма из-за своих морфологических и биохимических особенностей не в состоянии лизировать оболочку чужеродной яйцеклетки, проникнуть в нее. Если гибридная зигота и образовалась то в силу эмбриональной патологии происходит или рассасывание плода на ранних стадиях формирования, или его гибель. Объясняется это тем, что иммунные защитные тела организма борются с проникающим чужеродным белком, уничтожая его. В связи с генетическими различиями родителей у гибридов процесс образования мужских и женских половых клеток нарушается и они становятся бе плодными. Стерильность гибридов вызвана аномалиями в развитии гонад и митоза.[ ...]

Клетки голые, в большинстве свободноплавающие, иногда прикрепленные при помощи волочащегося жгутика. Один плавательный и один волочащийся жгутики; оба с базальным зерном, соединенным тонким ризопластом с кинетопластом. Сократительных вакуолей чаще 1—3, реже отсутствуют. Размножение путем деления. Наблюдается копуляция гамет и автогамия. Известны покоящиеся цисты. Питание анималыюе: путем всасывания пищи острием переднего конца, прямым заглатыванием и образованием пищевых вакуолей (Lemm., 1914).[ ...]

Весь ;>тот процесс, как известно, принято намывать двойным оплодотворением. Ведь согласно общепринятому в литературе определению, оплодотворение (еипгамин) — это процесс слияния, мужской п женской половых клеток (гамет) с образованием зиготы, из которой и дальнейшем разнимается новый организм. Такое определение оплодотворения можно найти в любом учебнике биологии и в любом :нщнклопедичоском словаре (в том число в советских шщпклопедиях, в Большой и Малой). И даже в известном «Словаре русского языка» С. И. Ожегова (1973) мы читаем: «Оплодотворить. 1. Создать зародыш в ком-чем-н. слиянием мужской и женской половых клеток. 2. Послужить источником развития, совершенствования». Слияние одного из сиормпев с яйцеклеткой является, несомненно, оплодотворением, но тройное слияние по является, строго говоря, оплодотворением, так как 1) центральная клетка — не гамета и 2) в результате ¡»того слияния но образуется зигота, из которой и дальнейшем развивался бы новый организм. Очевидно, тройное слияние является оплодотворением лишь в указанном Ожеговым, втором, переносном смысле. Другими словами, в выражении «двойное оплодотворение» термин «оплодотворение» применяется в двух разных, смыслах — прямом и переносном. Тем не менее выражение «двойное онлодотиороние» настолько широко вошло в литературу, что было бы нецелесообразно его заменить (а попытки такого рода делались, в том числе известным, немецким ботаником. Достаточно, если мы будем помнить, что речь идет здесь о двух разных биологических процессах, условно объединяемых общим .названием.[ ...]

Биологическая роль полового размножения исключительно велика. Несомненно, что она имеет значительные преимущества по сравнении с вегетативным размножением и размножением спорообразованием. Еще К. А. Тимирязев (1843-1920) неоднократно обращал внимание на половое размножение как на выдающийся источник изменчивости организмов, поскольку в ходе мейоза имеет место рекомбинация генов, а при объединении гамет — образование новых сочетаний генов. Можно сказать, что в природе половое размножение является доминирующим по сравнению с другими формами размножения. У животных, размножающихся половым путем, репродуктивная способность сохраняется относительно долго. Так в случае человека способность к репродукции у женщин сохраняется в основном до 40-45 лет, а у мужчин — практически всю жизнь.[ ...]

Голосеменные отличаются от папоротников также развитием мужского гаметофита, строением и способом прорастания микроспор. У папоротников, где развитие гаметофита происходит обычно лишь после высеивания спор, прорастание спор происходит через так называемый тетрадный рубец, расположенный на проксимальном полюсе споры. У голосеменных, где мужской гаметофит сильно упрощается и его развитие ускоряется, первые деления ядра микроспоры происходят уже внутри микроспорангия. В связи с ранним развитием мужского гаметофита и образованием гамет еще внутри оболочки споры возникает необходимость в приспособлении, посредством которого микроспора может изменять свой объем. Таким приспособлением оказывается борозда на дистальном полюсе микроспоры, впервые возникающая у некоторых семенных папоротников и характерная для огромного большинства голосеменных. Борозда служит не только для регулирования объема пыльцевого зерна. Она становится местом выхода из микроспоры гаустории (у низших групп) или пыльцевой трубки (у гнетовых и хвойных), также являющихся новообразованиями. Таким образом, у голосеменных, в отличие от папоротников, отверстие для выхода содержимого микроспоры образуется на дистальном полюсе. Гаустория (присоска) типа саговниковых растет горизонтально и служит лишь для прикрепления и питания мужского гаметофита; настоящая пыльцевая трубка хвойных и гнетовых растет вертикально и служит главным образом для проведения спермиев к яйцеклеткам, т. е. является проводником (вектором), а не только присоской. Хотя обычно оба эти образования называют пыльцевыми трубками, но морфологически и функционально они очень различны.[ ...]

Помимо скрещиваний, результаты которых приведены выше, для доказательства генной гипотезы Г. Мендель обратился также к обратным скрещиваниям, получившим позднее в литературе название анализирующих (тест-скрещиваний). Смысл этих скрещиваний заключается в том, что гетерозиготные гибриды Е которые давали, например, круглые семена и происходили из скрещиваний между исходными растениями, дающими круглые (1Ш) и шероховатые (гг) семена, вновь скрещивали с исходными (родительскими) гомозиготными рецессивными растениями, продуцирующими шероховатые семена. Поскольку гаметы, проецируемые гетерозиготным (Иг) гибридом Е1, всегда являются чистыми и могут нести только или аллель И, или аллель г, причем половина гамет должна быть гаметами К, половина — гаметами г, а все гаметы, продуцируемые исходным гомозиготным рецессивным (гг) растением, должны быть только гаметами г, в случае справедливости генной гипотезы следовало ожидать, что обратное скрещивание таких растений должно привести к образованию зигот наполовину Иг и наполовину гг. Другими словами, образующееся в результате таких обратных скрещиваний потомство должно состоять наполовину из гетерозиготных организмов, проецирующих круглые семена (Иг), и наполовину из гомозиготных рецессивных организмов, продуцирующих семена шероховатой формы (гг). Осуществив обратные скрещивания и проанализировав свойства появлявшихся в этих скрещиваниях растений, Г. Мендель обнаружил, что они действительно являются наполовину гетерозиготными организмами и наполовину гомозиготными, т. е. отношение между ними составляло 1:1.[ ...]

Проведение гибридизации связано с рядом трудностей, вытекающих из видовых особенностей гибридизируемых животных. К главнейшим из них относятся: 1) разница в строений половых органов, затрудняющая акт спаривания, 2) отсутствие полового рефлекса у самца на самку другого вида, 3) несовпадение сезонов спаривания у животных разных видов (особенно у диких), 4) слабая жизнеспособность или гибель сперматозоидов животных одного вида в половых путях самок другого вида, 5) отсутствие реакции сперматозоидов на яйцеклетку самки другого вида и невозможность оплодотворения, 6) гибель зиготы (в случае ее образования) в самом начале развития, 7) бесплодие многих гибридов, полное или частичное (бесплодными у гибридов млекопитающих оказываются самцы). Полное бесплодие связано с отсутствием конъюгации хромосом при редукционном делении (из-за большого их несходства — негомологичности) и с образованием нежизнеспособных гамет; частичное (бесплодие гибридных самцов), — вероятно, с нарушением гормональной регуляции сперматогенеза. Часть этих трудностей может быть преодолена вмешательством человека, но есть и такие, которые пока непреодолимы.[ ...]

Большинство переносимых с помощью семятх вирусов, по-видимому, передается также и через пыльцу зараженных растений, однако не все они были адекватно изучены. Говоря иными словами, по-видимому, не существует ни одного примера какого-либо вируса, переносимого с помощью нылъцы, который по передавался бы также через семена.tИсследования, касающиеся относительной эффективности переноса вирусов через зараженную яйцеклетку и через пыльцу, немногочисленны. Что касается вируса мозаики фасоли, находящегося в растениях фасоли, то Нелсон и Даун [12(30] нашли, что процент инфицированных семян, образовавшихся в результате опыления цветков здоровых растений пыльцой зараженных, был примерно том же, что и в случае образования таких семян из цветков зараженных растений, опыленных пыльцой здоровых. Однако Крэспин Медина и Грога it [415] показали, что передача этого вируса с помощью пыльцы несколько более аффективна. Напротив, передача вируса мозаики салата-латука осуществляется через семяпочки этого растения; в результате переноса через пыльцу образуется менее 0,5% зараженных семян [1465]. Самоопыление зараженных растений может привести, по-видимому, к образованию большего количества инфицированных семян, чем в том случае, когда в этом участвует лишь одна из гамет инфицированного растения.[ ...]

ru-ecology.info

Что такое гамета и зигота: особенности строения

Из нашей статьи вы узнаете, что такое гамета. Это особая клетка, функции которой строго специализированы. В чем же они заключаются? Давайте разбираться вместе.

Что такое гамета: определение

В переводе с греческого языка данный термин обозначает "жена" или "муж". Это как нельзя более точно определяет его значение. Гамета - это половая клетка. В природе существуют две ее разновидности - мужские и женские.

В любом случае гаметы образуются в результате деления первичных половых клеток. При этом их диплоидный набор хромосом сохраняется. Это обусловливает увеличение их количества. Процесс формирования мужских и женских гамет имеет свои существенные отличия. Так, из одного первичного сперматозоида образуются четыре полноценные клетки, способные к оплодотворению. У женских гамет такую способность приобретает лишь одна яйцеклетка.

что такое гамета

Строение яйцеклетки

Что такое гамета женского организма? Это всегда неподвижная клетка, содержащая достаточный запас питательных веществ, необходимых для развития будущего организма. Она имеет округлую, или шаровидную форму. Яйцеклетка надежно защищена несколькими оболочками: желточной, прозрачной и наружной. Ее цитоплазма - настоящая кладовая желточных включений.

гаметы образуются в результате

Особенности мужских половых клеток

Теперь давайте разберемся, что такое гамета мужского типа. Сперматозоиды всегда имеют гораздо меньшие размеры по сравнению с яйцеклетками. Это связано с тем, что мужские гаметы содержат только генетическую информацию. Почему они лишены питательных веществ? Дело в том, что основой будущего организма является именно яйцеклетка, которая имеет их в достаточном количестве.

что такое гамета определение

Гаметы растений и животных: сходства и отличия

Мужские гаметы животных подвижны. Сперматозоиды состоят из трех частей: головки, шейки и хвоста. Первая из них содержит ядро. Его хромосомный набор является гаплоидным, или одинарным. Данная черта строения является типичной для всех половых клеток. Головка сперматозоида также содержит акросому, или апикальное тельце. Эта органелла вырабатывает специальный фермент, который способен растворять защитные оболочки яйцеклетки. В шейке находятся центриоли и митохондрии. Они вырабатывают энергию, необходимую для того, чтобы привести в движение хвост.

Мужские гаметы растений называют спермиями. У высших семенных представителей данного царства они находятся в пыльниках тычинок. Передвигаются они при помощи ветра, насекомых или человека. Процесс их переноса на рыльце пестика называют опылением.

Что такое гамета растений и где она расположена? Если речь идет о яйцеклетке, то это, также как и у растений, неподвижная клетка овальной формы. Она находится в нижней расширенной части пестика цветков. Чтобы произошло слияние гамет, два спермия передвигаются к женской гамете по мере роста зародышевой трубки. В результате их оплодотворения образуется семя.

У высших споровых растений половые клетки созревают в специализированных органах - гаметангиях. У этих организмов в жизненном цикле наблюдается четкое чередование поколений.

Рассмотрим этот процесс на примере мхов. Его половое поколение представлено зеленым "ковриком". Он состоит из отдельных листостебельных растений. На них и формируются гаметофиты, в которых созревают половые клетки. В результате процесса оплодотворения, для осуществления которого необходима вода, вырастает бесполое поколение - спорофит. Оно имеет вид коробочки на сухой ножке. В ней созревают клетки бесполого размножения, которые называются спорами. Они попадают в почву и снова дают начало гаметофиту. Так фазы жизненного цикла сменяют друг друга.

что такое гамета и зигота

Результат оплодотворения

Оплодотворенная яйцеклетка называется зиготой. Ее хромосомный набор уже является диплоидным, или двойным. У животных оплодотворение бывает внешним и внутренним. В первом случае оно происходит вне организма самки. Такой способ характерен для рыб и земноводных. При внутреннем оплодотворении самец при помощи копулятивных органов вводит сперматозоиды в организм самки. Там же происходит и развитие плода, поэтому такой способ является более прогрессивным.

У растений самый сложный процесс слияния гамет наблюдается у цветковых. Оно называется двойным, потому что со спермиями соединяется женская гамета и центральная зародышевая клетка. В результате формируется зародыш, запасное питательное вещество, которое называется эндоспермом, и кожура. А все вместе - семя.

Зигота начинает дробиться. При этом формируется зародыш. Сначала он состоит из одного слоя. Он называется бластулой. Далее в нем начинается закладка тканей и будущих органов. В этот период он называется гаструлой. Продолжается формирование зародыша закладкой трех зародышевых листков, из которых развиваются определенные органы и их системы.

Итак, в нашей статье мы рассмотрели, что такое гамета и зигота. Эти структуры являются носителями наследственной информации и дают начало новому организму.

fb.ru

СПОРОВЫЙ МЕЙОЗ. ОСОБЕННОСТИ ОБРАЗОВАНИЯ ГАМЕТ У ВЫСШИХ РАСТЕНИЙ. МИКРОСПОРОГЕНЕЗ И МЕГАСПОРОГЕНЕЗ. РОЛЬ МИТОЗА И МЕЙОЗА В ОБРАЗОВАНИИ ГАМЕТ У РАСТЕНИЙ.

Любые студенческие работы ДОРОГО, КАЧЕСТВЕННО

100 руб. бонус за первый заказ. Всего 3 вопроса:

Узнать стоимость работы

Споровый тип мейоза характерен для высших споровых растений, многоклеточных водорослей и многих грибов, для которых характерно чередование поколений – гаплоидного, размножающегося бесполым путем, и диплоидного, размножающегося половым путем. Процесс образования гамет у растений носит название микроспорогенеза( образование мужских гамет) и мегаспорогенеза( образование женских гамет) . Микроспорогенез протекает в мужской репродуктивной сфере – андроцее. Элементом андроцея яв-ся тычинка, состоящая из тычиночной нити и пыльника. Внутри пыльника имеются пыльцевые гнезда, содержащие многоклеточную археспориальная ткань (2n). Из каждой клетки археспориальной ткани (материнской клетки микроспор) в результате мейоза образуется 4 микроспоры(n), каждая из которых, в свою очередь дает пыльцевое зерно(мужской гаметофит). Микроспора делится путем митоза , в результате чего образуется большая вегетативная клетка, внутри которой плавает маленькая генеративная клетка, которая затем, делится митозом еще раз, давая начало двум спермиям. Зрелое пыльцевое зерно покрыто двойной оболочкой: экзиной (внешней) и интиной (внутренней). Мегаспорогенез протекает в женской репродуктивной сфере- в гинецее. Морфологически гинецей представлен пестиком(или пестиками). В состав пестика входят: рыльце, столбик и завязь. Внутри завязи есть семязачатки(один или несколько). Внутреннее содержимое семязачатка представляет собой нуцеллус. Покровы семязачатка образованы двойным или одиночным интегументом. В нуцеллусе семязачатка имеется одна археспориальная клетка (2n), способная делиться путем мейоза ( у ивы и некоторых других растений археспорий многоклеточный). В результате мейоза из археспор.клетки(материнской клетки мегаспор) образуется 4 гаплоидные мегаспоры (n). Вскоре три из них отмирают, а одна из них увеличивается в размерах и трижды делится путем митозов. В результате образуется восьмиядерный зародышевый мешок ( женский гаметофит). Два из них словаются, образуя диплоидное ядро. Большая клетка с диплоидным ядром располагается в центре и называется центральной. Семь ядер разделяются на семь клеток. Три маленьких гаплоидных клетки помещаются возле одного конца мешка( клетки антиподы), еще три маленьких гаплоидных – возле другого (клетки синергиды). Одна из трех маленьких гаплоидных клеток у одного из полюсов ( возле микропиле) яв-ся яйцеклеткой. Мейоз лежит в основе образования половых клеток (гамет) у животных и спор у растений. Обеспечивает возможность полового размножения и комбинативную изменчивость потомства

students-library.com

" Образование гамет и оплодотворение у цветковых растений" страница 2

  1. жгутик

  2. наружная плазматическая мембрана

  3. центриоль

  4. акросома

  1. Назовите вид деление клеток , в результате которого из микроспоры образуются вегетативная и генеративная клетки пальцевого зерна.

  1. митоз

  2. мейоз

  3. амитоз

  1. Назовите у цветковых растений структуру, которая образуется в результате трех митотических делений микроспоры и содержит клетки , непосредственно участвующие в оплодотворении.

  1. семяпочка

  2. семязачаток

  3. зародышевый мешок

  4. эндосперм

  5. зародыш

  1. Какой набор хромосом имеет та оплодотворенная клетка зародышевого мешка цветковых растений, из которого впоследствии разовьется эндосперм семени?

  1. гаплоидный

  2. диплоидный

  3. триплоидный

  4. тетраплоидный

«Образование гамет и оплодотворение у цветковых растений»

Вариант №2

  1. Что у цветковых растений развивается из оплодотворенная клетка зародышевого мешка цветковых растений , из которого впоследствии разовьется эндосперм семени?

  1. Зародышевый мешок

  2. Эндосперм

  3. Зародыш

  4. Семязачаток

2.У цветковых растений клетки зародышевого мешка образуется из микроспоры в результате нескольких митотических делений. Назовите число таких митозов.

1)1

2)2

3)3

4)4

5)5

3. Назовите ученого, открывшего двойное оплодотворение у цветковых растений.

1)Р.Броун

2)Т.Шванн

3)С.Г. Навашин

4) Р.Кук

5)Д.И.Ивановский

6)И.Шлейден

4.Назовите у цветковых растений вид деления клетки,в результате которого из генеративной клетки пыльцевого зерна образуются два спермия.

1)митоз

2)мейоз

3)амитоз

5.Зародышевой мешок образуется в семяпочке в результате трез митотических делений гаплоидной микроспоры и включает в себя восемь гаплоидных ядер.Шесть из них дают начало гаплоидным клеткам. Сколько среди них яйцеклеток?

1)1

2)2

3)3

4)4

5)6

6)8

6.Какой набор хромосом содержится в клетках эндосперма цветковыз растений –части семени, которая у многих растений содержит запас питательных веществ для развивающегося зародыша?

1)гаплоидный

2)диплоидный

3)триплоидный

4)тетраплоидный

7.Назовите процесс, в результате которого у цветковых растений формируется диплоидная центральна клетка зародышевого мешка

1)оплодотворение спермием одной гаплоидной клетки

2)митоз клетки-предшественницы

3)слияние двух гаплоидных клеток зародышевого мешка

4)мейоз клетки-предшественницы

8.У цветковых растений зародышевый мешок образуется в семяпочке в результате трех митотических делений гаплоидной микроспоры и первоначально включает в себя восемь гаплоидных ядер. сколько среди них ядер, из которых впоследствии образуется эндосперм?

1)1

2)2

3)3

4)4

5)6

6)8

9. Какой набор хромосом содержится в клетках зародыша цветковых растений?

  1. гаплоидный

  2. диплоидный

  3. триплоидный

  4. тетраплоидный.

10. Как у цветковых растений два спермия одного пыльцевого зерна попадают с рыльца пестика в зародышевый мешок?

  1. каждый из них самостоятельно перемещается в ткани пестика в сторону зародышевого мешка

  2. они перемещаются с цитоплазмой одной пыльцевой трубки, растущей в сторону зародышевого мешка.

  3. Каждый из них перемещаются своей пыльцевой трубки, растущей в сторону зародышевого мешка.

11. Укажите явление , характерное для двойного оплодотворения у цветковых растения .

infourok.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта