Нижний концевой двигатель растений. 36. Механизмы, влияющие на поступление и передвижение воды в растении. Гуттация и плач растений как явления, доказывающие наличие корневого давления

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Дальний транспорт воды в растениях. Нижний концевой двигатель растений


Дальний транспорт воды в растениях

Путь, который проходит вода от корневого волоска до испаряющей клетки листа, распадается на две части: различные по протяженности, строению и физиологическим признакам. Первая часть состоит из живых клеток и имеет малые размеры (миллиметры или доли миллиметра). Это два коротких участка – один – в корне, от его поверхности с корневыми волосками до сосудов, которые находятся в его центральном цилиндре; второй – в листе, от сосудов, входящих в состав проводящего пучка, и испаряющей воду в межклетники хлоренхимы. Вторая часть пути – это сосуды, трахеиды, которые представляют собой мертвые трубки. У травянистых растений их длина составляет несколько сантиметров, а у деревьев достигает нескольких метров и даже десятков метров.

Вода и минеральные элементы доставляются к каждой клетки надземной части растения благодаря восходящему току по ксилеме. Существует также нисходящий флоэмный ток растворов от листьев к корням. Направленный вниз флоэмный ток формируется в клетках мезофилла листьев, где часть воды, которая пришла с ксилемным током, с клеточных оболочек мезофилла переходит во флоэмные окончания.

Вода с клеток листа и непосредственно из сосудов ксилемы поступает во флоэму по осмотическому градиенту, возникающему из-за накопленных в клетках флоэмы сахаров и других органических соединений, образующихся в процессе фотосинтеза.

Нисходящий флоэмный ток доставляет органические вещества тканям корня, где они используются в метаболизме. В корнях окончания проводящих пучков элементов флоэмы, как и в листе, расположены вблизи элементов ксилемы, и вода вновь по осмотическому градиенту поступает в ксилему и движется вверх. Таким образом, происходит обмен воды в проводящей системе корней и листьев (как бы круговорот).

Ток воды по сосудам ксилемы приводит к тому, что при перерезании стебля какого-нибудь растения на небольшом расстоянии от почвы через некоторое время с конца сосудов начинает выделяться сок, который называют пасокой. Это явление получило название «плача растений».

Силу, которая подымает пасоку вверх по сосудам, назвали корневым давлением.  Корневое давление можно измерить если надетую на перерезанный стебель трубку соединить с манометром. Величина корневого давления непостоянна. В оптимальных условиях она составляет 2–3 бара. При определенных условиях достигается равновесие между количеством выделенной пасоки и количеством поступившей воды, поэтому корневое давление, или количество выделенной пасоки, может отражать поглотительную способность корней. Таким образом, активными двигателями начального восходящего водного тока (корневого давления) являются живые клетки, которые прилегают к нижнему концу проводящей системы растений – это клетки паренхимы корней – нижний концевой двигатель водного потока.

Механизм корневого давления, как считают, основывается на действии сократительных белков, функцию которых выполняют микрофибриллы Ф-белков.

В какой-то степени доказательством активного выхода воды может служить гуттация.

Однако если бы растение постоянно не теряло воду в результате транспирации, то клетки корневых волосков быстро бы насытились водой, и ее поступление прекратилось. Поэтому, одной из причин возникновения градиента водного потенциала – испарение воды надземными органами.

Чем интенсивней клетки листьев испаряют воду, тем быстрее она будет поступать в клетки корней и быстрей транспортироваться вверх по растению. Потеря молекул воды в верхней части водного столба в результате испарения заставляет воду течь по сосудам ксилемы вверх для ликвидации потери. Это вызванное транспирацией движение воды получило название транспирационного тока. Он, в свою очередь, обуславливает поступление воды из почвы в растение то же по градиенту водного потенциала. Из-за транспирации водный потенциал в верхней части растения ниже, чем у основания.

Активными двигателями водного тока, обусловленного транспирацией, являются живые клетки, которые прилегают к верхнему концу всей проводящей системы растения – клетки паренхимы листа. Они были названы верхним концевым двигателем водного тока.

Механизм работы верхнего концевого двигателя несложный и основан на следующем. Атмосфера обычно недонасыщена водяными парами, поэтому имеет отрицательный водный потенциал. При относительной влажности воздуха 90 % он составляет 140 бар. У большинства растений водный потенциал листьев колеблется от 1 до 30 бар.

По причине большой разности водных потенциалов происходит транспирация. Уменьшение количества воды в паренхимной клетке листа вызывает снижение активности воды в ней и уменьшение водного потенциала.

Водный дефицит постепенно от клетки к клетке достигает корней, и активность воды в них снижается. В этом случае вода и поступает из почвы в корень. Таким образом, можно сделать вывод, что перемещение воды по растению, как и поступление ее в корень, главным образом, связано с градиентом водного потенциала в системе почва-растение-воздух. Этот градиент будет тем больше, чем больше воды будут терять клетки листа, т. е. чем сильней транспирация.

Работают два двигателя неодинаково. В среднем верхний концевой двигатель развивает силу в 10–15 бар и даже больше, а нижний 2–3 бара. Отсюда видно, что главная роль в водном обмене принадлежит верхнему двигателю. Однако, при отсутствие листьев у деревьев зимой и ранней весной, или после сухого периода главную роль в передвижении воды выполняет нижний двигатель. Большую роль в поднятии воды по растению нижний концевой двигатель должен иметь в условиях большей влажности воздуха, когда транспирация минимальна.

Для верхнего концевого двигателя источник энергии – солнце, это означает, что поглощаемая листом лучистая энергия используется для испарения.

Для нижнего концевого двигателя – источник энергии дыхание. Энергия молекул АТФ, синтезируемая во время дыхания клеток корня, расходуется на транспорт ионов в клетке, т. е. на создание градиента водного потенциала. Регуляторная роль корневого давления в водообмене растений схематически представлена на рис. 4.12.

Место и регуляторная роль корневого давления в общем водообмене растений

Рис. 4.12. Место и регуляторная роль корневого давления в общем водообмене растений:

1 – корневое давление; 2 – активное нагнетание воды; 3 – транспирация; 4 – осмотическое поступление воды в клетки корня; 5 – перемещение воды под влиянием транспирации; 6 – ток ассимилятов; а – натяжение воды в сосудах ксилемы; б – содержание воды в листе; в – водоудерживающая способность листьев; г – состояние устьиц

Таким образом, верхний концевой двигатель представляет собой автоматически работающий механизм, который тем сильней присасывает воду, чем быстрей ее расходует.

Работой верхнего и нижнего концевых двигателей без труда можно объяснить поднятие воды на несколько десятков сантиметров, пусть метров. А как объяснить поднятие воды на десятки метров, а секвойя достигает высоты 140 метров? Сосуды, по которым двигается вода на большей части своего пути, представляют собой мертвые трубки. Они не могут развивать силы для поднятия воды. Ответить на этот вопрос помогает теория сцепления, которую предложил английский исследователь Г. Диксон в 1921 году. В соответствие с этой теорией в сосудах образуется непрерывные нити, проходящие от клеток паренхимы корня до клеток паренхимы листьев. Сила, которая заставляет молекулы воды идти друг за другом, была названа силой сцепления (когезия). Непрерывные водяные нити образуются за счет водородных связей. Однако, водяные нити сцеплены и со стенками сосудов (адгезия) с силой 300–350 бар.  Все это позволяет нижнему и верхнему концевым двигателям поднимать воду по стволу на высоту 140 м.

После появления этой теории анатомы не раз обращали внимание исследователей на образование пузырьков воздуха, которые должны нарушать сцепление между молекулами воды в сосудах. Однако в случае временного исключения какого-нибудь сосуда вода движется по запасным путям (другим сосудам) или апопласту, а воздушные пузырьки постепенно рассасываются при участии живых клеток.

Передвижение воды из корня в лист по мертвым сосудам, оказывающим минимальное сопротивление водному току, представляет собой одну из находок природы, которая заключается в следующем. Клетки сосудов и трахеид вытянуты в длину, в них отсутствует живое содержимое, внутри они пустые, т. е. они представляют собой простые трубки. Одревесневшие вторичные клеточные оболочки достаточно крепкие на разрыв, способные выдержать большую разность давлений, возникающих при подъеме воды к вершине больших деревьев. Торцевые, а иногда и боковые стенки члеников сосудов, перфорированы; сосуды, которые состоят из соединенных концами члеников, образуют длинные трубки, по которым вода с минеральными веществами легко проходит. В трахеидах нет перфораций, и вода, чтобы попасть из одной трахеиды в другую, должна пройти через их торцевые стенки; но трахеиды очень длинные клетки, а поэтому и это строение тоже очень хорошо приспособлено для проведения воды. 

Выход в процессе эволюции растений на сушу, крона которых располагается довольно далеко от земли, стал возможным благодаря образованию высокоспециализированной проводящей системы. Значение этого приспособления подчеркивается и названием самих растений – сосудистые.

Кроме разницы в механизмах действия существует полная согласованность в работе двух концевых двигателей. На действие любого фактора среды, способного подавить работу нижнего двигателя, лист отвечает активацией транспирации, и наоборот. Это биологически очень важное приспособление, хотя на первый взгляд, оно выглядит парадоксально: поступление воды ухудшается, а лист на этот неблагоприятный фактор отвечает не подавлением, а, наоборот, увеличением транспирации. Увеличение  транспирации в данном случае имеет своей целью стимулировать поступление воды в корень.

Сейчас существует взгляд, что в растении имеется особая регуляторная система – гидродинамическая. Под ее контролем находятся водный режим, поддержание водного гомеостаза, а также, некоторые другие функции, в частности, фотосинтез. Гидродинамическая регуляторная система очень чувствительна. Она приходит в действие при очень маленькой потере воды листом (0,06 % от исходного количества) и предотвращает более сильное обезвоживание в дальнейшем.

Передача сигнала к листу происходит через сплошной водный поток, а восприятие – устичным и фотосинтетическим аппаратом.  Рецептором сдвигов почвенных условий, тормозящих поступление воды, являются, скорее всего, мембраны эндодермальных клеток корня.

Гидродинамическая регуляторная система позволяет растению очень быстро реагировать на внешние изменения, потенциально неблагоприятные для водного гомеостаза.

Наземные растения стоят перед сложной дилеммой: с одной стороны, они должны обладать достаточно развитой поверхностью, чтобы эффективно поглощать солнечный свет и СО2, а с другой стороны, по мере увеличения поверхности увеличиваются потери воды. Эту проблему растения решают разными способами: во-первых, поступление воды увеличивается за счет роста корней и развития гипертрофированной поглотительной поверхности. Во-вторых, потеря воды становится медленнее из-за того, что мезофильные клетки отделены от окружающей среды кутикулой, содержащей воск. В-третьих, противоречие между необходимостью поглощать большее количество СО2  и одновременно уменьшать количество испаряемой воды растения решают с помощью осциляторного механизма.



biofile.ru

Биология для студентов - 36. Механизмы, влияющие на поступление и передвижение воды в растении. Гуттация и плач растений как явления, доказывающие наличие корневого давления

Поглощение воды корневой системой идет благодаря работе двух концевых двигателей водного тока: 

  • верхнего концевого двигателя(транспирации),
  • нижнего концевого двигателя, или корневого двигателя.

Основной силой, вызывающей поступление и передвижение воды в растении, является присасывающая сила транспирации, в результате которого возникает градиент водного потенциала. Водный потенциал – это мера энергии, используемой водой для передвижения. Водный потенциал и сосущая сила одинаковы по абсолютному значению, но противоположны по знаку. Чем меньше насыщенность водой данной системы, тем меньше (более отрицателен) ее водный потенциал. При потере воды растением в процессе транспирации создается ненасыщенность клеток листа водой, как следствие, возникает сосущая сила (водный потенциал падает). Поступление воды идет в сторону большей сосущей силы, или меньшего водного потенциала. Таким образом, верхний концевой двигатель водного тока в растении – это присасывающая сила транспирации листьев, и его работа мало связана с жизнедеятельностью корневой системы.

Кроме верхнего концевого двигателя водного тока, в растениях существует нижний концевой двигатель. Это хорошо доказывается на примере таких явлениях, как гуттация и плач.

Листья растений, клетки которых насыщены водой, в условиях высокой влажности воздуха, препятствующей испарению, выделяют капельножидкую воду с небольшим количеством растворенных веществ — гуттируют. Выделение жидкости идет через специальные водные устьица — гидатоды. Выделяющаяся жидкость — гутта. Таким образом, процесс гуттации является результатом одностороннего тока воды, происходящего в отсутствие транспирации, и, следовательно, вызывается какой-то иной причиной. К такому же выводу можно прийти и при рассмотрении явления плача растений. Если срезать побеги растения и к срезанному концу присоединить стеклянную трубку, то по ней будет подниматься жидкость. Анализ показывает, что это — вода с растворенными веществами, получившая название пасоки. В некоторых случаях, особенно в весенний период, плач наблюдается и при надрезе веток растений. Именно на этом основано вытекание сока при надрезе ствола березы весной. Определения показали, что объем выделяющейся жидкости (пасоки) во много раз превышает объем корневой системы. Таким образом, плач — это не просто вытекание жидкости в результате пореза. Это приводит к выводу, что плач, как и гуттация, связан с наличием одностороннего тока воды через корневые системы, не зависящего от транспирации.

vseobiology.ru

юрин физиология растений - Стр 26

Активными двигателями водного тока, обусловленного транспирацией, являются живые клетки, прилегающие к верхнему концу всей проводящей системы растения — клетки паренхимы листа — верхний концевой двигатель водного тока.

Механизм работы верхнего концевого двигателя несложный. Атмосфера обычно недонасыщена водяными парами, поэтому имеет отрицательный водный потенциал. При относительной влажности воздуха 90 % он составляет 140 бар. У большинства растений водный потенциал листьев колеблется от 1 до 30 бар.

Èç-çàбольшой разности водных потенциалов происходит транспирация. Уменьшение количества воды в паренхимной клетке листа вызывает снижение активности воды в ней и уменьшение водного потенциала.

Водный дефицит постепенно от клетки к клетке достигает корней, и активность воды в них снижается. В этом случае вода и поступает из почвы в корень. Таким образом, можно сделать вывод, что перемещение воды по растению, как и поступление ее в корень, связано с градиентом водного потенциала в системе «поч- ва — растение — воздух». Если этот градиент начнет увеличи- ваться, тем больше воды станут терять клетки листа, т. е. чем сильнее транспирация, тем больше воды теряется.

Работают два двигателя неодинаково. В среднем верхний концевой двигатель развивает силу в 10—15бар и даже больше, а нижний, как отмечалось,2—3бара. Отсюда видно, что главная роль в водном обмене принадлежит верхнему двигателю. Однако при отсутствии листьев у деревьев зимой и ранней весной или после сухого периода основную роль в передвижении воды выполняет нижний двигатель. В поднятии воды по растению нижний концевой двигатель также участвует в условиях большей влажности воздуха, когда транспирация минимальна.

Для верхнего концевого двигателя источник энергии — Солнце, это означает, что поглощаемая листом лучистая энергия используется для испарения.

Для нижнего концевого двигателя источник энергии — дыхание. Энергия молекул АТФ, синтезируемых во время дыхания клеток корня, расходуется на транспорт ионов в клетке, т. е. на создание градиента водного потенциала. Регуляторная роль корневого давления в водообмене растений схематически представлена на рис. 4.13.

Таким образом, верхний концевой двигатель представляет собой автоматически работающий механизм, который тем сильнее присасывает воду, чем быстрее расходует ее.

studfiles.net

14. Суточный ход транспирации

Суточный ход транспирации. Закрывание устьиц в полдень может быть вызвано увеличением уровня углекислого газа в листьях при повышении температуры воздуха (усиление дыхания и фотодыхания), а также возможным водным дефицитом, возникающим в тканях при высоких температурах и низкой влажности воздуха. Снижение температуры воздуха во второй половине дня способствует открыванию устьиц и усилению фотосинтеза.

Периодичность суточного хода транспирации наблюдается у многих растений, но у разных видов растений устьица функционируют неодинаково. У деревьев, теневыносливых растений, многих злаков и других гидростабильных видов с совершенной регуляцией устьичной транспирации испарение воды начинается на рассвете, достигает максимума в утренние часы. В полдень транспирация снижается и вновь увеличивается в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов растений, способных переносить резкие изменения содержания воды в клетках в течение дня, то есть у гидролабильных видов, наблюдается одновершинный суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна или полностью прекращается.

15. Передвижение воды по растению двигатели водного тока принцип их работы

Поглощение воды корневой системой идет благодаря работе двух концевых двигателей водного тока: верхнегоконцевого двигателя, или присасывающей силы испарения (транспирации), и нижнего концевого двигателя, или корневого двигателя. Основной силой, вызывающей поступление и передвижение воды в растении, является присасывающая сила транспирации, в результате которого возникает градиент водного потенциала. Водный потенциал и сосущая сила одинаковы по абсолютному значению, но противоположны по знаку. Чем меньше насыщенность водой данной системы, тем меньше (более отрицателен) ее водный потенциал. При потере воды растением в процессе транспирации создается ненасыщенность клеток листа водой, как следствие, возникает сосущая сила (водный потенциал падает). поступление воды идет в сторону большей сосущей силы, или меньшего водного потенциала.

Кроме верхнего концевого двигателя водного тока, в растениях существует нижний концевой двигатель. Это хорошо доказывается на примере таких явлениях, как гуттация.

существовании в корневой системе двух относительно независимых друг от друга объемов, по которым передвигается вода,— апопласта и симпласта. При транспорте по апопласту вода передвигается по клеточным стенкам, не проходя через мембраны. При симпластном транспорте вода проникает в клетку через полупроницаемую мембрану и далее перемещается по протопластам клеток, которые соединены между собой многочисленными плазмодесмами. При трансмембранном транспорте вода перетекает через клетки и при этом проходит, по крайней мере, две плазматические мембраны

studfiles.net

Корневое давление (нижний концевой двигатель)

Химия и химическая технология

Статьи Рисунки Таблицы О сайте Реклама     Передвижение воды по стеблю — ксилемный, или дальний, транспорт — большей частью представляют себе как пассивное движение по непрерывному акропетальному градиенту водного потенциала при участии двух концевых двигателей — нижнего (корневое давление) и верхнего (присасывающее действие транспирации), полагая, что никаких промежуточных двигателей в стебле нет. Правда, движению воды способствует непрерывность водной фазы в растении — от эпидермальных клеток корня до мезофилла листа — и колоссальное натяжение водных нитей в сосудах за счет свойственных воде огромных сил сцепления (см. главу I). Именно благодаря натяжению водных нитей в сосудах и непрерывности водной фазы всякое воздействие на лист, изменяющее скорость транспирации, или на корневую систему, изменяющее скорость поступления воды, влекут за собой мгновенную гидродинамическую реакцию, улавливаемую с помощью чувствительного датчика и аналогичную пульсовой волне в системе кровообращения. Скорость волны во много раз превышает скорость передвижения самой жидкости. Гидродинамические реакции возникают раньше биоэлектрических и, возможно, выполняют в растении даже какую-то информационную роль [337]. Но гидродинамические реакции к промежуточным двигателям непосредственного отношения не имеют. Теория промежуточных двигателей, как отмечает Н. А. Максимов [234], была опровергнута рядом опытов. Так, Е. Ф. Вотчал в своем обширном труде, опубликованном в 1897 г., установил, что вода движется по положенному горизонтально живому отрезку древесного ствола в несколько метров длиной с одинаковой скоростью как от нижнего конца к верхнему, так и наоборот, от верхнего к нижнему и что, следовательно, в древесине отсутствуют какие-либо клапаны, не пропускающие воду вниз а без таких клапанов не могли бы работать предполагаемые двигатели. Подобные же наблюдения были сделаны и другими учеными. Страс-бургеру (1893) и другим исследователям удалось показать, что введенные в перерезанные сосуды ядовитые растворы, например растворы пикриновой кислоты, беспрепятственно поднимаются по древесному стволу на много метров вверх, вплоть до самых листьев, хотя и отравляют на своем пути живые клетки. Точно так же удалось наблюдать беспрепятственное поднятие воды через участки травянистого стебля, убитые нагреванием, замораживанием или действием ядовитых веществ. Через некоторое время, однако, такие убитые участки стеблей пере- [c.147] Смотреть главы в:

Физиология растений -> Корневое давление (нижний концевой двигатель)

© 2018 chem21.info Реклама на сайте

chem21.info

Fiziologia_rasteny - Стр 26

Активными двигателями водного тока, обусловленного транспирацией, являются живые клетки, прилегающие к верхнему концу всей проводящей системы растения — клетки паренхимы листа — верхний концевой двигатель водного тока.

Механизм работы верхнего концевого двигателя несложный. Атмосфера обычно недонасыщена водяными парами, поэтому имеет отрицательный водный потенциал. При относительной влажности воздуха 90 % он составляет 140 бар. У большинства растений водный потенциал листьев колеблется от 1 до 30 бар.

Èç-çàбольшой разности водных потенциалов происходит транспирация. Уменьшение количества воды в паренхимной клетке листа вызывает снижение активности воды в ней и уменьшение водного потенциала.

Водный дефицит постепенно от клетки к клетке достигает корней, и активность воды в них снижается. В этом случае вода и поступает из почвы в корень. Таким образом, можно сделать вывод, что перемещение воды по растению, как и поступление ее в корень, связано с градиентом водного потенциала в системе «поч- ва — растение — воздух». Если этот градиент начнет увеличи- ваться, тем больше воды станут терять клетки листа, т. е. чем сильнее транспирация, тем больше воды теряется.

Работают два двигателя неодинаково. В среднем верхний концевой двигатель развивает силу в 10—15бар и даже больше, а нижний, как отмечалось,2—3бара. Отсюда видно, что главная роль в водном обмене принадлежит верхнему двигателю. Однако при отсутствии листьев у деревьев зимой и ранней весной или после сухого периода основную роль в передвижении воды выполняет нижний двигатель. В поднятии воды по растению нижний концевой двигатель также участвует в условиях большей влажности воздуха, когда транспирация минимальна.

Для верхнего концевого двигателя источник энергии — Солнце, это означает, что поглощаемая листом лучистая энергия используется для испарения.

Для нижнего концевого двигателя источник энергии — дыхание. Энергия молекул АТФ, синтезируемых во время дыхания клеток корня, расходуется на транспорт ионов в клетке, т. е. на создание градиента водного потенциала. Регуляторная роль корневого давления в водообмене растений схематически представлена на рис. 4.13.

Таким образом, верхний концевой двигатель представляет собой автоматически работающий механизм, который тем сильнее присасывает воду, чем быстрее расходует ее.

studfiles.net


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта