Межлинейная гибридизация в селекции растений способствует. Дисциплина «Селекция растений»

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Лекция. Селекция растений. Межлинейная гибридизация в селекции растений способствует


Лекция. Селекция растений

План

1 Отбор.

2 Межлинейная гибридизация. Явление гетерозиса.

3 Полиплоидия и отдаленная гибридизация.

4 Достижения селекции растений.

Селекция растений направлена на выведение хозяйственно цен­ных сортов культурных растений. В селекции растений широко при­меняют методы отбора и гибридизации.

1. Отбор.В селекции растений в зависимости от особенностей их размножения применяют массовый и индивидуальный отбор. Массо­вый отбор применим к перекрестноопыляющимся растениям. Се­лекционеры работают с большой группой особей растений, обла­дающими желательными для человека свойствами. При этом мас­совый отбор не ведет к выделению однородного в генотипическом отношении материала, поскольку в популяциях перекрестноопы­ляющихся растений велик процент гетерозиготных особей. Мно­гие современные сорта ржи, получившие широкое распростране­ние, выведены методом массового отбора, например сорт Вятка. Сорт, выведенный данным методом, не является генетически од­нородным, и массовый отбор приходится периодически прово­дить заново, т.е. осуществлять так называемый многократный мас­совый отбор.

Индивидуальный отбор в отличие от метода массового отбора применим в селекционной работе с самоопыляющимися рас­тениями. Этот метод используется в селекционной работе с таки­ми злаками, как пшеница, ячмень, овес. Сущность индивидуаль­ного отбора заключается в выделении отдельных особей с необхо­димыми признаками и получение от них потомства. Потомство од­ной самоопыляющейся особи носит название чистой линии. Все особи чистой линии гомозиготны. Полученный в результате инди­видуального отбора сорт состоит из одной или нескольких гомози­готных чистых линий.

Самоопыление повышает гомозиготность особей, способствует закреплению наследственных свойств. Но в целом это приводит к снижению жизнеспособности, к постепенному вырождению. Про­блема заключается в том, что большинство мутаций рецессивны и вызывают неблагоприятные изменения на генном уровне. Однако со временем в чистых линиях в результате некоторых мутаций об­разуются гетерозиготные особи, у которых рецессивные мутации не проявляются.

Вегетативным путем возможно сохранение и размножение ге­терозиготных форм. При половом размножении свойства сортов, состоящих из гетерозиготных особей, не сохраняются — в потом­стве наблюдается расщепление признаков.

2. Межлинейная гибридизация. Явление гетерозиса.Селекционе­ры давно замечали, что при скрещивании друг с другом генети­чески отдаленных форм, нередко появляются особи, отличаю­щиеся повышенной жизнестойкостью и высокими показателями урожайности — в 1,5 — 2 раза выше урожайности сорта. Такое яв­ление получило название гетерозиса. Эффект гетерозиса, или гиб­ридной силы, также проявляется при проведении перекрестного опыления между самоопыляющимися чистыми линиями. Этот ме­тод получил название межлинейной гибридизации. По-видимому, в основе явления гетерозиса лежит высокая гетерозиготность гиб­ридов. Во втором и последующих поколениях эффект гетерозиса снижается.

В селекционной работе обычно сочетают скрещивание и искус­ственный отбор. У самоопыляющихся форм отбор эффективен лишь до момента получения чистых линий. Сам по себе отбор в чистых линиях малорезультативен, поскольку генетическое разнообразие исходного материала невелико. В таких ситуациях наследственные изменения возможны лишь благодаря мутациям. Для изменения свойств чистой линии проводят гибридизацию, приводящую к ком-бинативной изменчивости. После этого отбор снова действует эф­фективно.

3. Полиплоидия и отдаленная гибридизация.Как вы уже знаете, многие культурные растения являются полиплоидами, т.е. содер­жат более двух гаплоидных наборов хромосом. Такие растения от­личаются более крупными размерами, повышенной плодовитос­тью и высокой устойчивостью к заболеваниям и действию различ­ных факторов окружающей среды.

Полиплоидами являются такие продовольственные культуры, как картофель, пшеница, овес. Для получения новых высокопро­дуктивных сортов культурных растений используют метод отда­ленной гибридизации. Это скрещивание растений разных видов и даже родов. В результате отдаленной гибридизации могут быть по­лучены совершенно новые формы культурных растений: известны гибриды ржи и пшеницы, пшеницы и злака эгилопс. У отдаленных гибридов обычно нарушен нормальный процесс созревания поло­вых клеток.

Заметное морфологическое несходство родительских хромосом практически делает невозможным процесс их конъюгации, что приводит к нарушению хода мейоза. Еще большие нарушения на­блюдаются, если родительские растения имеют различные дипло­идные наборы хромосом. Все сказанное приводит к бесплодию от­даленных гибридов.

Проблему восстановления плодовитости отдаленных гибридов решил отечественный генетик Г.Д.Карпеченко, который в 1924 г. на основе полиплоидии получил капустно-редечный гибрид (рис. 2.17).

И капуста, и редька в диплоидном на­боре имеют по 18 хромосом и по 9 в га­плоидном наборе. Но поскольку хромосо­мы капусты и редьки не могут конъюгировать друг с другом и процесс образо­вания гамет нарушается, гибрид абсолют­но бесплоден. Тогда Г. Д. Карпеченко до­бился удвоения числа хромосом гибрида (2« = 36). В полученном гибриде оказалось два полных диплоидных набора хромосом капусты и редьки. В подобной ситуации стал возможен мейоз, поскольку теперь у каждой хромосомы есть своя парная. Ины­ми словами, «капустные» хромосомы конъюгировали между собой, а «редеч­ные» — между собой. В гаметах было по одному гаплоидному набору капусты и редьки (9 + 9 = 18). При слиянии гамет образовалась зигота с 36 хромосомами (2п = 36). Полученный капустно-редечный гибрид оказался плодовитым. Он не расщепляется на родительские формы, по­скольку хромосомы редьки и капусты все­гда оказываются вместе. Стручки капустно-редечного гибрида являются чем-то средним между стручками капусты и редь­ки. Таким образом, было получено совер­шенно новое, неизвестное в природе рас­тение.

4. Достижения селекции растений

Селекционная работа, проводимая на основе достижений гене­тики, направлена на создание новых и улучшение существующих сортов растений. В селекции используются методы гибридизации и отбора.

Работы И.В.Мичурина.Выдающийся русский селекционер И.В.Мичурин (1855—1935) на основе методов межсортовой и от­даленной гибридизации, искусственного отбора и воздействия фак­торами среды (температура, влажность) достиг крупных практи­ческих результатов в создании новых сортов плодово-ягодных куль­тур. Ученый показал возможность управления доминированием. Если гибриды выращивать на хорошо удобренных почвах, то у них фор- мируются свойства более культурного вы­сокопродуктивного сорта. Благодаря рабо­там И.В.Мичурина многие южные сорта плодовых растений стали выращивать в средней полосе России. Например, ябло­ня Славянка была выведена в результате гибридизации Антоновки с южным сор­том Ранет ананасный.

Много внимания И. В. Мичурин уделял скрещиванию географически удаленных форм и их внедрению в новые регионы. Так был создан сорт яблони Бельфлер-ки­тайка (исходные формы: китайская ябло­ня из Сибири и Бельфлер желтый из Аме­рики). От сибирской Китайки новый сорт унаследовал морозоустойчивость и стой­кость к болезням, а от американской — высокие вкусовые качества. А знаменитый

сорт груши Бере зимняя Мичурина получен в результате скрещи­вания уссурийской груши и сорта из Франции Бере-рояль. При создании сорта Бельфлер-китайка был использован метод ментора. Суть метода в том, что признаки развивающегося гибри­да изменяются под влиянием привоя или подвоя. Возможны два основных варианта. В первом варианте гибридный сеянец служит привоем и его прививают на взрослое плодоносящее растение (под? вой). Во втором случае гибридный сеянец сам выступает в качестве подвоя — к нему прививают черенок (ментор) от того сорта, при­знаки которого желательно получить у гибрида. В частности, для получения Бельфлер-китайки был использован второй вариант. В качестве ментора выступил сорт Бельфлер — он способствовал фенотипическому проявлению (доминированию) у гибрида генов от Бельфлера, не меняя при этом генотипа гибрида.

Методом отдаленной гибридизации И. В. Мичурин получил гиб­риды рябины и боярышника, сливы и терна, малины и ежевики. Созданные гибриды представляют собой сложные гетерозиготы, и для сохранения их свойств в потомстве гибриды размножают веге­тативным путем — прививками, отводками и др.

Достижения в селекции зерновых культур.Для России основной зерновой культурой является пшеница. Известный отечественный селекционер академик Н. В.Цицин, используя метод отдаленной гибридизации и полиплоидизации, получил ценные сорта зерно­вых культур. Н.В.Цицин осуществил гибридизацию пшеницы и пырея. Полученные растения выдерживают морозы до -35 °С. А в результате гибридизации пшеницы с рожью была получена новая высокоурожайная кормовая и зерновая культура, названная три­тикале (ТгШсит — пшеница и Secale — рожь). По урожайности,питательной ценности тритикале превос­ходит родительские формы.Целый ряд высокоурожайных сортов пшеницы был создан академиком П. П. Лу-кьяненко. Наиболее известен сорт пше­ницы Безостая-1 (урожай до 50 ц/га). Уро­жайность сортов Аврора и Кавказ дости­гает 100 ц/га. Высокими хлебопекарными качествами отличается сорт пшеницы Са­ратовская 29, выведенный селекционера­ми А. П. Шехурдиным и В. Н. Мамонтовой.

Методом искусственного мутагенеза был выведен сорт яровой пшеницы Но-восибирская-67. Сорт был получен в ре­зультате облучения рентгеновскими лу­чами сорта Новосибирская-7. Новосибир-ская-67 отличается устойчивостью против полегания, высокой урожайностью и вку­совыми качествами (рис. 2.18). Высокой урожайностью и хорошей зимостойкос­тью обладают сорта сибирской озимой пшеницы Лютесценс-4 и Багратионовка. Эти сорта были созданы в Институте ци­тологии и генетики (г. Новосибирск).

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Дисциплина «Селекция растений»

Поиск Лекций

Тестовые задания. 5курс, ф-т биологии

Выберите один верный ответ

1. Межлинейная гибридизация культурных растений приводит к:

1) сохранению прежней продуктивности;

2) выщеплению новых признаков;

3) повышению продуктивности;

4) закреплению признаков.

 

2. Аутбридинг — это:

1) скрещивание в пределах популяции;

2) скрещивание различных видов;

3) близкородственное скрещивание;

4) нет верного ответа.

 

3. Гибриды, возникающие при скрещивании различных видов:

1) отличаются бесплодностью;

2) отличаются повышенной плодовитостью;

3) дают плодовитое потомство при скрещивании с себе подобными;

4) всегда бывают женского пола.

 

4. Учение об исходном материале в селекции было разработано:

1) Ч. Дарвином; 2) Н.И. Вавиловым;

3) В.И. Вернадским; 4) К.А. Тимирязевым.

 

5. Центром происхождения культурных растений считаются районы, где:

1) обнаружено наибольшее число сортов данного вида;

2) обнаружена наибольшая плотность произрастания дикого вида;

3) данный вид впервые выращен человеком;

4) нет верного ответа.

 

6. Аутбридинг — это скрещивание между:

1) неродственными особями одного вида; 2) братьями и сестрами;

3) родителями и детьми; 4) нет верного ответа.

 

7. Близкородственное скрещивание применяют с целью:

1) поддержания полезных свойств организма;

2) усиления жизненной силы;

3) получения полиплоидных организмов;

4) закрепления ценных признаков.

 

8. Гетерозис наблюдается при:

1) близкородственном скрещивании;

2) скрещивании отдаленных линий;

3) вегетативном размножении;

4) искусственном оплодотворении.

 

9. К биологически отдаленной гибридизации относится скрещивание представителей:

1) контрастных природных зон; 3) разных родов;

2) географически отдаленных районов Земли; 4) верны все ответы.

 

 

10. В клеточной инженерии при гибридизации используют следующие клетки:

1) половые; 2) соматические;

3) недифференцированные эмбриональные; 4) все перечисленные;

 

11. Интродуцированный вид – это:

1) коренной вид данной территории;

2) вид, полученный в результате гибридизации;

3) вид, ранее широко распространенный на данной территории;

4) чужеродный вид, некоренной, несвойственный для данной территории, преднамеренно или случайно завезённый в результате человеческой деятельности;

 

12. Тритикале — гибрид пшеницы с рожью - результат:

1) внутривидовой гибридизации; 2) отдаленной гибридизации;

3) полиплоидизации; 4) инбридинга;

 

13. Центр происхождения таких растений, как виноград, олива, капуста, чечевица, находится в:

1) Восточной Азии; 2) Центральной Америке;

3) Южной Америке; 4) Средиземноморье;

 

14. Инбридинг - это:

1) скрещивание различных видов;

2) скрещивание близкородственных организмов;

3) скрещивание различных чистых линий;

4) увеличение числа хромосом у гибридной особи;

 

15. Центр происхождения кукурузы:

1) Абиссинский; 2) Центральноамериканский;

3) Южноазиатский; 4) Восточноазиатский;

 

16. Сорт огурцов представляет собой:

1) род; 2) вид;

3) природную популяцию; 4) искусственную популяцию;

 

17. Выдающийся отечественный ученый и селекционер, занимавшийся выведением новых сортов плодовых деревьев:

1) Н.И. Вавилов; 2) И.В. Мичурин;

3) Г.Д. Карпеченко; 4) B.C. Пустовойт;

 

18. Обработка картофеля колхицином ведет к:

1) полиплоидии; 3) гибридизации;

2) генным мутациям; 4) гетерозису;

 

19. Одним из эффектов, сопровождающих получение чистых линий в селекции, является:

1) гетерозис; 2) бесплодие потомства;

3) разнообразие потомства; 4) снижение жизнеспособности;

 

20. Разработать способы преодоления бесплодия межвидовых гибридов впервые удалось:

1) К.А. Тимирязеву; 2) И.В. Мичурину;

3) Г.Д. Карпеченко; 4) Н.И. Вавилову;

 

21. Однородную группу растений с хозяйственно-ценными признаками, созданную человеком, называют:

1) видом; 2) породой;

3) сортом; 4) штаммом;

 

22. «Эволюцией, направляемой волей человека», по выражению Н. Вавилова, можно назвать:

1) получение модификационных изменений;

2) выведение новых пород и сортов;

3) естественный отбор;

4) направленные изменения окружающей среды;

 

23. Центр происхождения картофеля:

1) Южно-американский; 2) Южно-азиатский тропический;

3) Средиземноморский; 4) Среднеамериканский;

 

24. Многообразие сортов семечковых культур является результатом:

1) естественного отбора; 2) искусственного отбора;

3) мутационного процесса; 4) модификационной изменчивости;

 

25. При получении чистых линий у растений снижается жизнеспособность особей, так как

1) рецессивные мутации переходят в гетерозиготное состояние;

2) увеличивается число доминантных мутаций;

3) рецессивные мутации становятся доминантными;

4) рецессивные мутации переходят в гомозиготное состояние;

 

26. Получением гибридов на основе соединения клеток разных организмов с применением специальных методов занимается

1) клеточная инженерия; 2) микробиология;

3) систематика; 4) физиология;

 

27. Отрасль хозяйства, которая производит различные вещества на основе использования микроорганизмов, клеток и тканей других организмов:

1) бионика; 2) биотехнология;

3) цитология; 4) микробиология;

 

28. Выделением из ДНК какого-либо организма определенного гена или группы генов, включением его в ДНК вируса, способного проникать в бактериальную клетку, с тем чтобы она синтезировала нужный фермент или другое вещество, занимается

1) клеточная инженерия; 2) генная инженерия;

3) селекция растений; 4) селекция животных;

 

29. Чистая линия – это:

1) порода;

2) группа генетически однородных организмов;

3) сорт;

4) особи, полученные под воздействием мутагенных факторов;

 

30. Межлинейная гибридизация в селекции растений приводит к:

1) проявлению у гибридов эффекта гетерозиса;

2) снижению жизнеспособности;

3) получению новых чистых линий для дальнейшего скрещивания;

4) появлению гомозиготных гибридов, используемых для массового отбора;

 

31. Теоретической основой селекции является:

1) биотехнология; 2) мутационная теория;

3) генетика; 4) эволюционное учение;

 

32. Кастрация при гибридизации подразумевает удаление:

1) бутонов; 2) пыльников;

3) лепестков; 4) пестика;

 

33. Установите порядок действий при гибридизации:

1) удаление пыльников;

2) установка изолятора;

3) подбор исходных форм;

4) опыление;

5) учет цветков;

 

34. Гены, обеспечивающие моногенную устойчивость к парше:

1) Vf, Vm; 2) Pc;

3) Gb; 4) Со;

 

35. Установите соответствия:

1) мягкая пшеница;

2) твердая пшеница;

А) разводят в областях с достаточно сухим климатом;

В) выращивают в регионах с гарантированным увлажнением;

С) сорта делят на краснозерные и белозерные;

D) представлена озимыми и яровыми сортами;

Е) представлена яровыми сортами;

F) характеризуется легким обмолотом;

 

36. Получение искусственных мутаций при использовании мутагенов называется

1) Гетерозис 2) Гибридизация

3) Мутагенез 4) Полиплоидия

 

37. Методы, не используемые в селекции

1) гибридизация 2) полиплоидизация

3) естественный отбор 4) индуцированный мутагенез

 

38. Гетерозис

1) Проявление положительных признаков у гибридов первого поколения

2) Скрещивание особей разных видов

3) Скрещивание особей с заранее неизвестным генотипом

4) Увеличение числа мутаций у гибридов первого поколения

 

39. Для гетерозисных организмов характерны

1) Их превосходство над родительскими формами

2) Ухудшение свойств по сравнению с родителями

3) Повышение продуктивности животных

4) Понижение урожайности растений

 

40. Отдаленная гибридизация может осуществляться между организмами

1) Разных классов 2) Разных видов

3) Одного вида 4) Разных царств

 

 

1-3

2-2

3-1

4-2

5-2

6-1

7-4

8-2

9-3

10-2

11-4

12-2

13-4

14-2

15-2

16-4

17-2

18-1

19-4

20-3

21-3

22-2

23-1

24-2

25-4

26-1

27-2

28-2

29-2

30-1

31-3

32-2

33-3 5 1 4 2

34-1

35-1В С D F

2А Е

36-3

37-3

38-1

39-1

40-2

 

poisk-ru.ru

Основы селекции

  • Главная
  • УЧЕБНЫЕ МАТЕРИАЛЫ
    • Биология как наука об общих закономерностях живого
    • Основы науки о клетке
      • Биология как наука об общих закономерностях живого
      • Клетка и ее химический состав
      • Нуклеиновые кислоты
      • Строение и функции клетки
      • Обмен веществ и превращение энергии в клетке
      • Воспроизведение клеток
    • Организм как биологическая система
      • Свойства и структурная организация живых организмов
      • Питание организмов. Пищеварение
      • Размножение организмов. Общая характеристика
    • Основы генетики
      • Генетика как наука
      • Закономерности наследования признаков
      • Взаимодействие генов
      • Генетика пола
      • Изменчивость
      • Основы селекции
    • Эволюционная теория
      • Развитие эволюционных представлений
      • Современная теория эволюции
      • Вид и видообразование
      • Макроэволюция
      • Основные этапы эволюции живого мира
      • Происхождение человека
    • Экология и биосфера
      • Экология как наука
      • Среда обитания и экологические факторы
      • Влияние абиотических факторов на живые организмы
      • Влияние биотических факторов на живые организмы
      • Экологическая характеристика популяции
      • Биоценоз, биогеоценоз, экосистема
      • Биосфера
      • Влияние человека на биосферу
    • Вирусы
      • Вирусы
    • Бактерии
      • Бактерии
    • Протисты
      • Протисты
    • Грибы
      • Грибы
    • Лишайники
      • Лишайники
    • Растения
      • Общая характеристика растений
      • Водоросли
      • Общая характеристика высших растений
      • Ткани высших растений
      • Органы высших растений
      • Транспорт веществ, газообмен, выделение
      • Размножение растений
      • Краткая характеристика некоторых отделов высших растений
    • Животные
      • Общая характеристика животных
      • Ткани животных и человека
      • Органы животных и человека
      • Индивидуальное развитие животных
      • Характеристика некоторых типов животных
    • Основные принципы систематики
      • Основные принципы систематики живых организмов
    • Биология человека
      • Общие положения
      • Регуляция физиологических функций
      • Эндокринная система
      • Нервная система человека
      • Опорно-двигательный аппарат

esculappro.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта