Механическая ткань растений. Ткани высших растений. Механические, проводящие, выделительные ткани.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

11.Строение и функции механической ткани. Механическая ткань растений


11.Строение и функции механической ткани

Механическими называют ткани, обладающие повышенной опорной функцией. Это обеспечивается наличием у слагающих их клеток утолщенной и часто одревесневшей (лигнифицированной) оболочки. Обычно клетки механической ткани плотно прилегают друг к другу. Местоположение этих тканей в органах таково, что при меньшем их объеме достигается наибольший механический эффект.Различают следующие группы механических тканей: колленхиму, склеренхиму и склереиды.Колленхима состоит из живых, обычно паренхимных клеток с неравномерно утолщенными целлюлозными стенками. Если утолщения расположены в углах, то такую колленхиму называют уголковой. Если утолщаются две противоположные стенки, а две другие остаются тонкими, то это пластинчатая колленхима. Стенки колленхимы способны растягиваться, так как имеют тонкие участки, поэтому она является опорой молодых растущих органов. Колленхиму можно обнаружить в периферической части растущих молодых стеблей, черешков, плодоножек, листовых жилок и др. Склеренхима состоит из прозенхимных клеток с равномерно утолщенной стенкой. Молодые клетки – живые. По мере старения содержимое их отмирает. Это очень широко распространенная механическая ткань вегетативных органов наземных растений. По химическому составу стенки клетки различают два вида склеренхимы: лубяные волокна – стенка целлюлозная или слегка одревесневшая; древесинные волокна (либриформ) – стенка всегда одревесневшая.Склереиды (каменистые клетки) – это мертвые паренхимные клетки с равномерно толстыми одревесневшими стенками. Их встречают в плодах, листьях и других органах.

12.Проводящие ткани и классификация проводящих пучков Обеспечивают передвижение веществ по растению: восходящего тока, несущего от корня к надземным частям воду и растворы мине­ральных веществ, и нисходящего тока, несущего от листьев ко всем остальным органам продукты фотосинтеза. Восходящий ток осуще­ствляется по трахеальным элементам ксилемы — сосудам и трахеидам, а нисходящий ток — по ситовидным элементам флоэмы (ситовидным клеткам и ситовидным трубкам с клетками-спутницами). Сосуды, или трахеи — наиболее функцио­нально эффективные элементы ксилемы. Образуются из вертикально расположенных меристематических клеток. Трахеиды — мертвые прозенхимные клетки с заостренными концами и одревесневшими клеточными оболочками. Ситовидные трубки образуются из ряда верти­кально расположенных клеток прокамбия или камбия. Они не отмирают, потому что рядом с ними находятся сопровождающие клетки, или клетки-спутницы, образующиеся при продольном делении члеников ситовидной трубки. Это живые клетки с ядром, густой цитоплазмой и тонкой целлюлозной оболочкой. Они вырабатывают ферменты, жизнедеятельность. Проводящие ткани в органах растения объединяются с другими, образуя сложные ткани — ксилему к флоэму. Ксилема и флоэма обычно сопровождают друг друга, формируя проводящие, или сосудисто-волокнистые, пучки Проводящие пучки, образованные прокамбием, не имеющие кам­бия, называются закрытыми, а пучки с камбием — открытыми, по­скольку могут длительно увеличиваться в размерах. В зависимости от расположения ксилемы и флоэмы различают пучки: Коллатеральные- характеризуются расположением флоэмы и ксилемы бок о бок, на одном радиусе. При этом в осевых органах флоэма занимает наружную часть пучка, ксилема — внутреннюю, а в листьях — наоборот. Коллатеральные пучки могут быть закрыты­ми (однодольные растения) и открытыми (двудольные).Биколлатеральные пучки всегда открытые, с двумя участками фло­эмы — внутренней и наружной, между которыми расположена ксиле­ма. Камбий находится между наружной флоэмой и ксилемой. Бикол­латеральные сосудисто-волокнистые пучки характерны представите­лям сем. тыквенные, пасленовые, кутровые и некоторые др. Концентрические пучки закрытые. Они бывают центрофлоэмными, если ксилема окружает флоэму, и центроксилемными. если флоэма окружает ксилему. Центрофлоэмные пучки формируются чаще у од­нодольных растений, центроксилемные — у папоротниковидных.

Радиальные пучки закрытые. В них флоэма и ксилема чередуются по радиусам. Радиальные пучки характерны для зоны всасывания кор­ней, а также зоны проведения корней однодольных растений.

studfiles.net

Ткани высших растений. Механические, проводящие, выделительные ткани.

Ткань – совокупность клеток и образуемого ими межклеточного вещ-ва, которые объединяются сходным происхождением, строением и выполняют общие функции.

Типы тканей: образовательные (меристемы), покровные, выделительные, основные (паренхимы), механические, проводящие.

Механические.Все растительные клетки обладают механическими св-ми (за счет жесткой оболочки клетки и тургосцентности), поэтому практически все ткани выполняют механическую фун-ю. Но для колленхимы и склеренхимы они являются основными. Они фун-ют, взаимодействуя с другими тканями, образуя внутри растения каркас. Колленхима образована только живыми клетками, вытянувшимися вдоль оси органа, формируется в период первичного роста. Оболочка клеток неравномерно утолщена и не одересневает. Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Высокая прочность. Вегетативных органы наземных растений. Различают два типа склеренхимных клеток: волокна и склереиды. Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (лубяные или древесинные волокна). Склереиды — это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки фруктов.

Проводящие.обеспечивают передвижение воды и растворенных в ней питательных веществ по растению. Различают два вида проводящей ткани — ксилему (древесину) и флоэму (луб). Ксилема — (восходящий ток). В состав входят трахеиды и трахеи (сосуды). Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры — углубления, затянутые мембраной. Жидкость по трахеидам протекает медленно, так как поровая мембрана препятствует движению воды. Трахеиды не очень эффективны. Трахеи (сосуды) —это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия — перфорации, или эти стенки полностью разрушаются, благодаря чему скорость тока растворов по сосудам многократно увеличивается. Утолщение в форме спирали, колец или цилиндра, это дает возможность растяжения в длину. Флоэма (нисходящий ток). состоит из ситовидных трубок с клетками-спутницами, паренхимы и механической ткани. Ситовидные трубки образованы живыми клетками, расположенными одна над другой. Их поперечные стенки пронизаны мелкими отверстиями, образующими как бы сито. Клетки ситовидных трубок лишены ядер, но содержат в центральной части цитоплазму, тяжи которой через сквозные отверстия в поперечных перегородках проходят в соседние клетки. Ситовидные трубки, как и сосуды, тянутся по всей длине растения. Клетки-спутницы соединены с члениками ситовидных трубок многочисленными плазмодесмами и выполняют часть функций, утраченных ситовидными трубками (синтез ферментов, образование АТФ).

Выделительные.У растений нет целостной выделительной системы. Есть только специализированные структуры, разбросанные по всему телу, - идиобласты. Клетки небольшие, имеют электронноплотную цитоплазму, с развитыми элементами эндоплазматической сети и комплекса Гольджи, центральная выкуоль не выражена. Клетки связаныплазмодесмами между собой и другими клетками. Наружные выделительные ткани: железистые волоски, гидатоды (выделение избытка воды в условиях пониженной транспирации и высокой влажности), нектарники, пищеварительные (у насекомоядных растений), солевые (растения, произрастающие на засоленных почвах). Внутренние выделительные ткани: схизогенные (обширные межклетники, заполненные выделяемыми вещ-ми, пример – смоляные ходы хвойных растений), лизигенные (образуются на месте живых клеток, которые погибают и разрушаются после накопления в них вещ-в, пример – в кожуре цитрусовых), млечники.

Похожие статьи:

poznayka.org

Механические ткани растений - это... Что такое Механические ткани растений?

 Механические ткани растений         арматура растений, стереометрическая система тканей, обеспечивающих прочность растений, т. е. их способность противостоять воздействию статических (например, сила тяжести) и динамических (например, порывы ветра) нагрузок. К М. т. р. относятся: Колленхима, Склеренхима, Каменистые клетки, во вторичной коре — Лубяные волокна, а в древесине — Либриформ. К М. т. р. иногда относят некоторые покровные ткани, толстостенные трахеиды, располагающиеся в поздних годичных слоях хвойных и выполняющие наряду со своей основной функцией также и механическую. Тонкостенные, нежные ткани также играют механическую роль, если находятся в состоянии Тургора; они заполняют пространство между М. т. р. и тем самым увеличивают прочность растения. Выполнение основных функций М. т. р. обеспечивается сильными утолщениями клеточных оболочек, прочной связью клеток друг с другом, большой упругостью оболочек, а также и характером распределения М. т. в растении. По упругости и прочности при растяжении М. т. р. (например, склеренхима) близки к стали, мало уступают по упругости каучуку, а по способности противостоять динамическим нагрузкам без деформаций значительно превосходят сталь. Начало систематическому изучению М. т. р. было положено нем. ботаником С. Шведенером (1874), а в России — В. Ф. Раздорским (с 1912), создавшим теорию осуществления строительно-механических принципов в строении растений. Раздорский рассматривает растение и его органы не как конструкции, статически сопротивляющиеся внешним механическим воздействиям (как полагал Шведенер), а как динамическую систему живого организма, меняющуюся в зависимости от внешних условий. Механические ткани травянистых растений образуют сетку («каркас»), часть их тяжей проходит наклонно; сплетение тканей, перегородки в узлах полых стеблей, кожица и сросшиеся с ней периферические части обеспечивают особую прочность стебля. Во вторичной коре древесных растений арматурная сетка состоит из тяжей и пластинок лубяных механических волокон и склереид. В древесине тяжи либриформа армируют основную массу сосудов и трахеид. На М. т. р. влияют условия среды, например у растений, живущих в воде, они развиты очень слабо. Мощность М. т. р. повышается с увеличением интенсивности освещения, влажности почвы, а также с понижением влажности воздуха.

        

         Лит.: Раздорский В. Ф., Анатомия растений, М., 1949; его же, Архитектоника растений, М., 1955.

         О. Н. Чистякова.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Механические связи
  • Механический состав почвы

Смотреть что такое "Механические ткани растений" в других словарях:

  • МЕХАНИЧЕСКИЕ ТКАНИ — опорные ткани растения, обеспечивающие его прочность. Обусловливают способность органов растения противостоять статическим (напр., сила тяжести) и динамическим (порывы ветра и т. п.) нагрузкам. В самых молодых участках растущих органов М. т. нет …   Биологический энциклопедический словарь

  • МЕХАНИЧЕСКИЕ ТКАНИ — обеспечивают прочность растений. Состоят из толстостенных клеток, часто с одревесневшими оболочками. Основные виды механических тканей: колленхима и склеренхима …   Большой Энциклопедический словарь

  • Ткани растений — группы клеток, расположенные в теле растения известным порядком, имеющие определенное строение и служащие для различных жизненных отправлений растительного организма. Клетки почти всех многоклеточных растений не однородны, а собраны в Т. У низших …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Ткани растений* — группы клеток, расположенные в теле растения известным порядком, имеющие определенное строение и служащие для различных жизненных отправлений растительного организма. Клетки почти всех многоклеточных растений не однородны, а собраны в Т. У низших …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ТКАНИ РАСТЕНИЙ — группы или комплексы клеток, связанные общностью строения, происхождения, функций и местоположения. В соответствии с этим выделяют образовательные, покровные, основные, механические, проводящие и выделительные Т. р. Образовательные ткани, или… …   Сельско-хозяйственный энциклопедический словарь

  • ткани растений — ткани растений, группы или комплексы клеток, связанные общностью строения, происхождения, функций и местоположения. В соответствии с этим выделяют образовательные, покровные, основные, механические, проводящие и выделительные Т. р.… …   Сельское хозяйство. Большой энциклопедический словарь

  • механические ткани — обеспечивают прочность растений. Состоят из толстостенных клеток, часто с одревесневшими оболочками. Основные виды механических тканей: колленхима и склеренхима. * * * МЕХАНИЧЕСКИЕ ТКАНИ МЕХАНИЧЕСКИЕ ТКАНИ, обеспечивают прочность растений.… …   Энциклопедический словарь

  • ткани — системы клеток, сходные по строению, происхождению и функциям, различаются по размерам, форме и расположению. В состав ткани входят тканевая жидкость (заполняет межклеточные пространства) и находящиеся между клетками вещества, напр. соли кальция… …   Биологический энциклопедический словарь

  • Анатомия растений —         раздел ботаники, изучающий внутреннее строение растений. А. р. представляет собой часть более общей ботанической дисциплины морфологии растений (См. Морфология растений), понимаемой в широком смысле, и изучает микроскопическое строение… …   Большая советская энциклопедия

  • Лист (орган высших растений) — Лист (folium), орган высших растений, выполняющий функции фотосинтеза и транспирации, а также обеспечивающий газообмен с воздушной средой и участвующий в др. важнейших процессах жизнедеятельности растения. Морфология, анатомия листа и его… …   Большая советская энциклопедия

dic.academic.ru

Механические ткани растений - путеводитель

Механические ткани растений

Механические ткани – это опорные ткани, придающие прочность органам растений. Они обеспечивают сопротивление статическим и динамическим нагрузкам. В самых молодых участках растущих органов механических тканей нет, так как живые клетки в состоянии высокого тургора обусловливают их форму благодаря своим упругим стенкам. По мере увеличения размеров организма и развития органов в них появляются специализированные механические ткани. Сочетаясь с другими тканями, они образуют как бы арматуру органа, поэтому их называют арматурными. Иногда всю систему механических тканей называют стереомом, а составляющие ее клетки – стереидами.

Степень развития механических тканей во многом зависит от условий обитания. Она невелика у растений гидрофитов и значительна у растений засушливых местообитаний – склерофитов. Механические ткани наиболее развиты в осевой части побега – стебле. Здесь они чаще располагаются по его периферии: либо отдельными участками в гранях стебля, либо сплошными кольцами. Напротив, в корне, который выдерживает главным образом сопротивление на разрыв, механическая ткань сосредоточена обычно в центре. В листьях механические ткани располагаются в соответствии с принципом устройства двутавровой балки. Механические ткани могут формироваться как из первичных, так и из вторичных меристем. Наиболее заметная особенность клеток механических тканей – их значительно утолщенные оболочки, которые продолжают выполнять опорную функцию даже после отмирания их живого содержимого.

Различают три основных типа механических тканей:

Колленхима – это простая первичная опорная ткань, состоящая из более или менее вытянутых вдоль оси органа клеток с утолщенными слоистыми неодревесневшими первичными оболочками. В зависимости от характера утолщений стенок и соединения клеток между собой различают:

Уголковую колленхиму – на поперечном срезе утолщенные части оболочек соседних клеток зрительно сливаются между собой, образуя трех-, четырех - или пятиугольники.

Пластинчатую колленхиму – клеточная оболочка утолщена равномерно.

Рыхлую колленхиму – имеются видимые межклетники.

Колленхима формируется из основной меристемы и обычно располагается непосредственно под эпидермой либо на расстоянии одного или нескольких слоев клеток от нее. В молодых стеблях она часто образует сплошной цилиндр по периферии. Иногда колленхима встречается в форме продольных тяжей в выступающих ребрах стеблей травянистых и тех частей древесных растений, которые еще не вступили в стадию второго роста.

1 - уголковая; 2 - пластинчатая; 3 - продольное сечение уголковой колленхимы: э - эпидермис, п - полость клетки, я - ядро

Обычно колленхима в черешках и по обеим сторонам крупных жилок. Корни содержат колленхиму редко. Клетки колленхимы, будучи живыми с неодревесневшими стенками, способны к росту в длину и не препятствуют росту органов, в которых они расположены. Иногда колленхима содержит хлоропласты. Функции арматурной ткани колленхима может выполнять только в состоянии тургора. Эволюционно колленхима возникла из паренхимы основной ткани и близка к ней.

Склеренхима – механическая ткань, состоящая из прозенхимных клеток с одревесневшими, или реже неодревесневающими и равномерно утолщенными оболочками. Оболочки склеренхимных клеток обладают прочностью, близкой к прочности стали. Оболочки их толсты, а полость клетки мала и узка. Отложение лигнина повышает прочность склеренхимы. Поры в оболочках склеренхимы немногочисленные, простые.

По сравнению с колленхимой склеренхимные отличаются большей упругостью, равной 15-20 кг/мм 2. тогда как у колленхимы она составляет не более 10-12 кг/мм 2. Наличие склеренхимы дает возможность осевым органам растения противостоять нагрузкам на изгиб и удерживать кроны самих растений.

Первичную склеренхиму – возникает из клеток основной меристемы, прокамбия или перицикла.

Вторичную склеренхиму - возникает из клеток камбия.

Сами волокна – сильно вытянутые прозенхимные клетки с заостренными концами, в исключительных случаях достигают нескольких десятков сантиметров длины. Волокна, входящие в состав флоэмы (луба), носят название лубяных. Помимо луба, они встречаются также в листовых черешках и пластинках, в цветоножках, плодоножках, реже в плодах. Волокна ксилемы (древесины) называются древесинными, или волокнами либриформа. Они короче лубяных, и их стенки всегда одревесневают. Эволюционно волокна либриформа образовались из трахеид. У многих растений, обычно у однодольных, волокна составляют механическую обкладку проводящих пучков.

В стеблях двудольных волокна часто располагаются на месте перицикла и в первичной флоэме. В стеблях и листьях однодольных они образуют субэпидермальные тяжи, а в корнях сосредоточены главным образом в центральной части.

Склереиды – структурные элементы механической ткани, обычно возникают из клеток основной паренхимы в результате утолщения и лигнификации их оболочек. Склереиды могут встречаться в виде скоплений либо располагаются поодиночке. По происхождению они чаще первичные, т.е. произходят из различных первичных меристем. Клетки типа склереид находятся в стеблях (хинное дерево), плодах (груша), семенах (многие бобовые). Считается, что функция склереид – противостоять сдавливанию, но иногда они защищают части растений от поедания животными.

Развитие ветвистых и длинных склереид и волокон, которые обычно имеют большую длину, связано со значительными межклеточными перестройками, свидетельствующими об известной независимости этих клеток от их положения. В самом начале своего развития ветвистая склереида может по виду не отличаться от соседних паренхимных клеток. Однако позднее, вместо того чтобы равномерно увеличиваться в размерах, она образует выступы, которые удлиняются и превращаются в ветви. Удлиняющиеся ветви не только внедряются в межклетники, но и продвигаются между оболочками других клеток (рис. 3). Таким образом, склереида в процессе роста устанавливает новые контакты и достигает значительно большего размера, чем соседние клетки. Если ткань рыхлая, то ответвления склереиды свободно проникают в межклетники.

А — В. Дифференцирующиеся склереиды изображены в виде клеток с крупными ядрами и точками вдоль оболочек. Г. Зрелые склереиды (отмечены поперечной штриховкой вторичных оболочек). На всех рисунках клетки мезофилла и эпидермы указаны кружками или овалами. Узкие межклетники, характерные для палисадной паренхимы, не показаны. А. Будущая склереида отмечена с помощью условных обозначений, она пока еще не дифференцировалась от других палисадных клеток. Б. Молодая склереида вышла за пределы палисадного слоя. В. Две молодые склереиды достигли нижней эпидермы, пройдя через губчатый мезофилл. Г. Зрелые склереиды имеют несколько ответвлений, направленных параллельно эпидерме или вдающихся в межклетники. Поры во вторичных оболочках располагаются в тех частях склереид, которые во время роста не потеряли связи со смежными клетками. 1 — слой палисадной паренхимы; 2 — трихом; 3 — эпидерма; 4 — межклетники; 5 — палисадный мезофилл; 6 — губчатый мезофилл;7 — жилка; 8 — устьице

Рост клеток путем их внедрения между оболочками других клеток носит название интрузивного, или интерпозиционного, роста, в противоположность согласованному росту, во время которого не происходит разъединения оболочек. Согласованный рост группы сходных клеток в однородной паренхимной ткани происходит,Вероятно, тогда, когда пары смежных первичных оболочек растягиваются с одинаковой скоростью, без нарушения контактов между соседними клетками по срединной пластинке. Согласованный рост не исключает того, что одни клетки могут стать длиннее других. Если данная клетка прекращает делиться, в то время как деление соседних клеток еще продолжается, неделящаяся клетка становится длиннее, чем соседние с ней клетки, без нарушения связи между их оболочками. В процессе роста склереиды согласованный рост основного тела клетки сочетается с интрузивным ростом удлиняющихся частей ответвлений. На рис. 3, Г показано, что поры расположены в тех частях склереид, которые благодаря согласованному росту сохранили свой первоначальный контакт со смежными клетками. Участки, лишенные пор, росли интрузивно.

У волокон также наблюдается сочетание согласованного и интрузивного роста. На самых ранних стадиях развития волокно удлиняется без изменения клеточных контактов, в то время как смежные паренхимные клетки еще продолжают активно делиться. Несколько позднее начинается дополнительное удлинение волокна путем интрузивного роста, происходящего по обоим его концам. Во время удлинения волокно может стать многоядерным в результате многократных ядерных делений без последующего образования новых клеточных стенок. Пока волокно остается живой клеткой, в его цитоплазме обнаруживается вращательное движение. Опыты с применением красителей показали, что это явление связано с межклеточным транспортом веществ.

Промышленное значение имеют главным образом лубяные волокна стеблей двудольных и листовые волокна крупных однодольных. Лубяные волокна некоторых двудольных в технике называются мягкими и используются преимущественно для изготовления различных тканей (волокна льна, рами, кенафа), реже веревочно-канатных изделий (пенька, получаемая из конопли), а твердые волокна однодольных – почти исключительно для изготовления веревок и канатов (новозеландский лен, волокна сизаля и др.).

Рекомендуем ознакомится: http://biofile.ru

worldunique.ru

Занятие № 13. Механические ткани.

sekretitkanei ♦ Декабрь 7, 2011 ♦ Оставьте комментарий

Основное содержание.

  1.     Классификация механических тканей.
  2.     Характеристика колленхимы.
  3.     Характеристика склеренхимы.

Вы наверняка знаете, что у растений отсутствует скелет, который бы помогал ему противостоять действию тяжести собственных органов (ветвей, листьев, цветков, плодов и пр.), а также действию ветра, дождя, снега и т.п. Кроме того, из-за отсутствия нервной системы оно не может быстро мобилизовать (как это делают животные) мускульное сопротивление порывам бури и разным другим давлениям и нагрузкам. Однако растение успешно противостоит этим нагрузкам. Необходимую ему прочность даёт комплекс всех тканей. Растение в целом можно рассматривать как природное сооружение, существующее благодаря целесообразным принципам его строения.

sekretitkanei.wordpress.com

Механические ткани

Значение и свойства механических тканей

Механические ткани возникли в связи с выходом растений на сушу в условиях более сильного воздействия сил гравитации. В сочетании с другими тканями они обеспечивают поддержание размеров и формы тела растений при отсутствии внутреннего скелета. В.Ф. Раздорский сравнивал роль механических тканей с ролью стальной арматуры в железобетонных конструкциях.

Механические ткани

Механические ткани. 1- сердцевина, 2 -протоксилема, 3 -ксилема II, 4 - флоэма I, 5 - волокна склеренхимы, 6 - корка, 7 - эпидерма.

Механические ткани обеспечивают устойчивость растений к статическим и динамическим нагрузкам благодаря упругости и жесткости.

Упругость – это способность структуры возвращаться в исходное положение после снятия деформирующей нагрузки. В механике упругость выражается в значениях модуля Юнга, физический смысл которого состоит в том, что он показывает, какую силу следует приложить к стержню единичного сечения, чтобы его длина увеличилась в два раза. Величина модуля прямо пропорциональна деформирующей силе и длине деформируемого участка и обратно пропорциональна площади поперечного сечения испытуемого материала. Упругость может быть также оценена ультразвуковым методом и методом голографической интерферометрии. Упругость механических тканей достаточно высока. У подсолнечника предел упругости достигает 27,4 кг/мм2, у девясила – 37,4 кг/мм2, у строительной стали – 20 кг/мм2. Упругость растительного материала зависит от генотипа и условий выращивания растений, возраста и места отбора проб. Например, у пшеницы в период цветения и налива зерна упругость средней части подколосового междоузлия в 2 – 4 раза выше, чем непосредственно под колосом, что приводит у некоторых сортов к пониканию колоса.

Жесткость – это способность противостоять деформирующим нагрузкам. Она обратно пропорциональна упругости. Жесткость механических тканей увеличивается с возрастом растений по мере утолщения клеточных оболочек. Изучению показателей прочности органов растений уделяется большое внимание как в селекции устойчивых к полеганию сортов, так и в практическом растениеводстве. Применение синтетических регуляторов роста широко используется в агрономии для повышения прочности стебля и снижения полегаемости посевов.

Механические ткани образуются во всех органах растений: в корнях, стеблях, листьях, плодах и семенах. Они располагаются как правило ближе к поверхности органов, где возникают более высокие деформационные нагрузки на сжатие и растяжение. По происхождению механические ткани бывают первичными и вторичными. Первичные образуются первичными меристемами – прокамбием и перициклом, а вторичные – вторичной меристемой, т.е. камбием.

Меристема Меристема

Среди механических тканей выделяют колленхиму, склеренхиму и склереиды.

Колленхима

Колленхима – это первичная механическая ткань, которая может располагаться под эпидермисом в составе первичной коры стебля (подсолнечник), в черешках листьев (тыква), в листовых подушках (злаки), реже в корнях (капуста). Субэпидермальное развитие колленхимы способствует формированию ребристости стебля, как у тыквенных, яснотковых, мареновых. Упругие свойства колленхимы проявляются при тургорном состоянии клеток.

Колленхима Колленхима

Колленхима образуется живыми, многогранными прозенхимными клетками длиной до 2 мм, с тупыми или скошенными концами, с неравномерно утолщенными клеточными оболочками, которые содержат много целлюлозы, гемицеллюлозы, пектина и воды. Эта неравномерность обеспечивает хорошую упругость клетки и не препятствует её росту. В зависимости от характера утолщения колленхима бывает уголковой, пластинчатой и рыхлой.

В клетках уголковой колленхимы вторичные утолщения, как в черешках листа свеклы, располагаются в уголках клетки и проходят вдоль неё в виде продольных тяжей. У пластинчатой колленхимы, характерной для стеблей и черешков листьев астровых, целлюлоза равномерно откладывается на всей поверхности противоположных клеточных оболочек, расположенных тангентально к поверхности органа. Другие оболочки остаются относительно тонкими. Рыхлая колленхима отличается хорошим развитием межклетников, к которым обращены утолщенные оболочки клеток. Эта ткань встречается в стебле ваточника, черешке листа лопуха.

Склеренхима

Склеренхима является наиболее распространенной механической тканью и встречается во всех органах растений. Её прочность выше, чем у колленхимы, и близка к прочности инструментальной стали. По происхождению склеренхима бывает первичной, если образуется из перицикла или прокамбия, и вторичной, если образуется из камбия. Клетки сформировавшейся склеренхимы мертвые, длинные, узкие, имеют толстую вторичную оболочку и плотное сложение и называются волокнами.

В зависимости от клеточного строения и местонахождения склеренхима подразделяется на лубяные и древесинные волокна.

Лубяные волокна могут иметь перициклическое или камбиальное происхождение. Лубяные волокна перициклического происхождения располагаются в стебле либо сплошным кольцом непосредственно под эпидермисом (кукуруза и другие злаки), либо под первичной корой (купена), либо отдельными тяжами в коре (лен), либо в виде блоков над проводящими пучками (бобовые и другие травянистые двудольные). Лубяные волокна камбиального происхождения входят в состав вторичной коры и хорошо развиты у древесных растений (яблоня, липа и др.).

Клетки лубяных волокон тонкие, с утолщенными целлюлозными оболочками. Их длина достигает у конопли – 40 мм, крапивы – 55, льна – 60 и у рами – 350 мм. При этом коэффициент прозенхимности (отношение длины к ширине клетки) составляет у конопли – 750, у льна – 1000, у рами – более 2000. Клетки лубяных волокон собраны в тяжи цилиндрической формы, именуемые техническими волокнами. Они характеризуются высокой прочностью, гигроскопичностью и низкой теплопроводностью. Используются для изготовления тканей (лен), канатов (новозеландский лен), веревок (манильская пенька), рогож, мочал.

Технические качества лубяных волокон зависят от сорта, уровня применяемых технологий выращивания растений и переработки сырья.

Древесинные волокна входят в состав древесины и, как правило, образуются камбием. Их мертвые клетки короче и толще лубяных, имеют плотное сложение. Целлюлозные оболочки клеток толстые, пропитаны лигнином, отличаются большой прочностью и твердостью. В частности твердой древесиной выделяются граб, дуб, железное дерево, ясень. Благодаря высокой прочности древесинных волокон стебли многих растений имеют многостороннее техническое использование.

Склереиды

В отличие от волокон клетки склереид имеют паренхимную форму и первичное происхождение. Для склереид характерно мощное развитие клеточных оболочек, пропитанных лигнином, наличие в них простых пор. По мере развития оболочек клетки отмирают. Среди склереид выделяют каменистые клетки, или брахисклереиды, и ветвистые клетки, или астеросклереиды.

Каменистые клетки округлые, имеют плотное сложение. Они могут располагаться группами в мякоти плодов груши, айвы, в корнях хрена. Кроме того, каменистые клетки могут образовывать сплошной слой как в косточке (эндокарпе) у сливы и других косточковых пород.

Ветвистые клетки имеют разветвленную, звездчатую форму. Они располагаются поодиночке в листьях чая, маслины, камелии, в воздухоносной паренхиме стеблей водных растений, где выполняют опорную функцию.

Развитие механических тканей зависит от многих эндогенных и экзогенных факторов. Под влиянием разных наборов генов формируется число и размеры клеток, фитогормоны участвуют в регулировании инкрустации оболочек лигнином. Погодные и почвенные условия, а также условия питания растений имеют большое значение в развитии механических тканей, что должно учитываться в агрономической практике.



biofile.ru

Механическая ткань - это... Что такое Механическая ткань?

4:Луб. 5:Склеренхима (Лыко)

Механическая ткань — вид ткани в растительном организме, волокна из живых и мёртвых клеток с сильно утолщённой клеточной стенкой, придающие механическую прочность организму. Возникает из верхушечной меристемы, а также в результате деятельности прокамбия и камбия.

Степень развития механических тканей во многом зависит от условий обитания: они почти отсутствуют у растений влажных лесов, у многих прибрежных растений, но зато хорошо развиты у большинства растений засушливых местообитаний.

Механические ткани присутствуют во всех органах растения, но наиболее они развиты по периферии стебля и в центральной части корня.

Выделяют следующие типы механических тканей:

  • колленхима — эластичная опорная ткань первичной коры молодых стеблей двудольных растений, а также листьев. Состоит из живых клеток с неравномерно утолщёнными не одревесневшими первичными оболочками, вытянутые вдоль оси органа;
  • склеренхима — (лубяные волокна) прочная ткань из быстро отмирающих клеток с одревесневшими и равномерно утолщенными оболочками, обеспечивает прочность органов и всего тела растений.Различают два типа склеренхимных клеток: волокна и склереиды. Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна).Склереиды — это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни, сливы, абрикоса; они придают мякоти груш характерный крупчатый характер. Встречаются группами в корке хвойных и некоторых лиственных пород, в твердых оболочках семян и плодов. Их клетки круглой формы с толстыми стенками и маленьким ядром.

Использование

Промышленное применение имеют лубяные волокна, идущие на изготовление тканей (лён, рами, кенаф), верёвок и канатов (пенька из волокон конопли).

Ссылки

dic.academic.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта