Марганец в растениях. 38. Физиологическая роль меди, марганца и цинка в растениях. Марганцевые, медные, цинковые удобрения, их применение и эффективность.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Роль марганца в питании растений. Марганец в растениях


Микроэлементы. Марганец

25.01.2017 Просмотры: 2176

Физиологическая роль микроэлемента. Марганец (Мn) – элемент, жизненно необходимый всем живым организмам. В среднем количество его в растениях составляет 0,001%. Он необходим для нормального протекания фотосинтеза, способствуя увеличению количества хлорофилла в листьях, синтезу сахаров и аскорбиновой кислоты (витамин С). Марганец участвует в окислительно-восстановительных реакциях, активизируя более 35 ферментов, регулирует водный режим, повышает устойчивость к неблагоприятным факторам, а также влияет на плодоношение растений и способствует их активному развитию. Он способен быстро поглощаться и перемещаться в растениях. Кроме этого марганец регулирует поступление других микроэлементов, оказывает влияние на перемещение фосфора из более старых частей растения к молодым.

Симптомы дефицита. При недостатке марганца в растениях нарушается соотношение элементов минерального питания, что приводит к точечному хлорозу. На листьях культур появляются мелкие желтые пятна, которые со временем образуют отмершие зоны. Злаки, испытывающие дефицит марганца, поражаются серой пятнистостью. Овощные культуры (шпинат, свекла) страдают от пятнистой желтухи, а у бобовых (горох) на семенах образуются черные и коричневые пятна, – т.н. болотная пятнистость. У многих культур острая нехватка этого микроэлемента может привести к полному отсутствию плодоношения. 

Наиболее чувствительны к недостатку марганца такие растения как овес, ячмень, свекла, фасоль, горох, томат, яблоня, персик, роза и зеленые культуры. Марганцевая недостаточность обостряется при низких температурах и высокой влажности. В связи с этим ранней весной озимые больше всего страдают от дефицита этого элемента. Критический уровень марганцевой недостаточности для большинства растений составляет 10 – 25 мг/кг сухой массы. А оптимальное количество марганца в сельскохозяйственных культурах находится в пределах 40 – 70 мг/кг сухой массы. 

Некроз и засыхание листьев у огурцов

Симптомы избыточного содержания. В то же время уровень токсичных концентраций этого микроэлемента более изменчив. Особенно избыток марганца ощутим на кислых почвах. Для большинства растений критичным показателем является содержание микроэлемента, близкое к 500 мг/кг сухой массы. Токсичное воздействие избыточного количества марганца приводит к «выгоранию посевов» у зерновых культур. Также передозировка этого элемента способствует уменьшению количества хлорофилла, что проявляется в возникновении хлороза на старых листьях, появлении бурых некротичных пятен, в результате чего они скручиваются и опадают. Помогает предотвратить последствия избытка марганца обеспеченность растений кремнием. а молибден способен устранить его токсичное воздействие. 

Содержание марганца в различных типах почв. Одно из основных мероприятий, позволяющих предотвратить возникновение дефицита марганца в растениях – правильное определение рН почвы и профилактические меры по обеспечению оптимального кислотно-щелочного баланса. Так, на луговых и песчаных пахотных землях рекомендуется провести легкое известкование. На кальцийсодержащих или сильно известкованных грунтах увеличить подвижность марганца и доступность его для растений можно путем применения физиологически кислых минеральных удобрений. В хорошо дренируемых почвах растворимость марганца возрастает с увеличением их кислотности. Но поскольку марганец легко входит в органические соединения, это увеличивает его растворимость и в щелочной среде. Наиболее высокое содержание этого микроэлемента характерно для почв, богатых железом, органическими веществами, а также для аридных почв. 

Марганец накапливается в верхних слоях почв как составляющая органических веществ. Наибольшее количество элемента содержится в кислых затапливаемых грунтах. Недостаток его наблюдается чаще всего на нейтральных почвах с высоким содержанием гумуса, богатых кальцием и активными микроорганизмами. Большинство почв содержит достаточное количество марганца в доступной растениям форме, и регулярное внесение марганцевых удобрений не требуется. 

Хлороз и некроз

Применение марганцевых удобрений. Потребность растений в марганцевых удобрениях обычно наблюдается при рН 5,8 и более. В менее щелочной среде этот микроэлемент содержится в достаточных для растений количествах. Перспективно применение марганцевых удобрений при содержании его 20 – 25 мг/кг (для неплодородных почв), 40 – 60 мг/кг (для черноземов), 10 – 50 мг/кг (для сероземов). В первую очередь марганцевые удобрения следует вносить под пшеницу, кормовые корнеплоды, картофель, подсолнечник, плодово-ягодные и овощные культуры. 

В качестве марганцевых удобрений чаще всего используют водорастворимые соли марганца: сернокислый марганец (норма внесения в грунт 5 – 6 г/м2) и марганцовокислый калий (норма внесения в грунт 2 – 3 г/м2). Известны также марганцевый шлам (0,5 – 2,0 ц/га), марганизированный суперфосфат (1,5 – 2 ц/га) и различные отходы промышленности. 

Один из способов использования марганца – предпосевная обработка семян (опудривание). С этой целью используют смесь сернокислого марганца (50 – 100 г) с тальком (300 – 400 г), которой обрабатывают 100 кг семян. Более современный метод – замачивание семян зерновых культур (пшеницы) в растворе сульфата марганца (до 0,2 %) на 12 часов. Эта операция позволяет улучшить рост и развитие растений, а в результате повысить урожайность и содержание марганца в зерне. 

Другой метод применения марганцевых удобрений – внесение их в почву. Доза внесения марганца составляет 2,5 кг/га, а доза сульфата марганца – 5 – 15 кг/га. При внесении в почву хелаты марганца теряют свою эффективность в результате быстрого замещения марганца в них железом, что может привести к возникновению дефицита марганца. Жидкие хелаты этого микроэлемента успешно применяются в гидропонике. 

Сернокислый марганец используют во внекормовых подкормках (норма расхода для сельскохозяйственных растений 200 г/га, а для плодовых культур 600 – 1000 г/га). Для повышения его доступности готовят водный раствор (0,01 – 0,5 %), которым затем поливают или опрыскивают растения.   

agrostory.com

Марганец для растений | AgroCounsel

Марганец для растений

Марганец в растениях преимущественно активирует действие различных ферментов (или входит в их состав), имеющих большое значение в окислительно - восстановительных процессах, фотосинтезе, дыхании и т.д.. Наряду с кальцием он обеспечивает выборочное усвоение ионов из окружающей среды, снижает транспирацию, повышает способность растительных тканей удерживать воду, ускоряет общее развитие растений, положительно влияет на их плодоношения. Под действием марганца усиливается синтез витамина С, каротина, глутамина, повышается содержание сахара в корнеплодах свеклы сахарной и в помидоре, а также содержание крахмала в клубнях картофеля и т.п.. Марганец участвует в окислении аммиака, восстановлении нитратов. Итак, чем выше уровень азотного питания, то важнее роль марганца для развития растений. Различные сельскохозяйственные культуры с урожаем выносят от 100 (ячмень) до 600 г/га ( свекла сахарная ) марганца. Основное его количество локализуется в листьях, в частности в хлоропластах. В растениях марганец, как и железо, малоподвижный, поэтому признаки его недостатка прежде оказываются на молодых листьях и подобные хлороза - листья покрываются желто - зелеными пятнами с бурыми и белыми участками, тормозится их рост. В отличие от железного хлороза у однодольных в нижней части пластинки листьев появляются серо -зеленые или бурые пятна, которые часто имеют темное обрамление. Признаки марганцевого голодания у двудольных такие же, как и при недостатке железа, только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме того, очень быстро появляются бурые некротические пятна. Листья отмирают даже быстрее, чем при недостатке железа. В тканях растений при этом повышается концентрация
основных элементов, нарушается оптимальное соотношение между ними. Недостаток марганца в почве особенно остро ощущают зерновые колосовые, в частности овес, а также кукуруза, зернобобовые, свекла, картофель, яблоня, черешня, малина.

У плодовых культур наряду с хлорозным заболеванием листьев отмечается слабая облиственность деревьев, раньше обычного опадание листьев, а при сильном  голодании марганца - засыхание и отмирание верхушек веток. В то же время при чрезмерном питании марганца молодые листья приобретают желто - белый окрас, старые - становятся пятнистыми и быстро отмирают. Корневая система растений развивается плохо вследствие торможения роста клеток. Кроме того, марганцевая недостаточность обостряется при низкой температуре и высокой влажности, поэтому озимые зерновые чувствительные к его недостатку весной.

Несмотря на значительное содержание марганца в почвах (от 100 до 4000 мг/кг), большая его часть находится в виде труднорастворимых соединений. Растения усваивают из почвы только двухвалентный марганец. Поэтому степень обеспеченности и уровень усвоения марганца растениями тесно связаны с реакцией почвенного раствора. В нейтральных и слабощелочных почвах он находится в малодоступных для растений трех-и четырехвалентного соединениях. Признаки дефицита марганца у растений наблюдаются прежде всего на карбонатных, сильноизвестковых, на некоторых торфяных и других почвах с рН> 6,5. Это объясняют тем, что с повышением показателя рН почвы на 1,0 содержание марганца растворимых соединений снижается в 10 раз.

Кислые почвы богаче содержанием подвижного двухвалентного марганца, на сильно - кислых - возможна даже его токсическое действие. Так, у яблони это может проявляться в виде некроза коры, в картофеле - в хрупкости стеблей.

Марганцевые удобрения эффективные на черноземах обыкновенных, карбонатных и выщелоченных и солонцеватых и каштановых почвах, на кислых почвах после известкования при использование их под овес, пшеницу, кукурузу, подсолнечник, картофель, корнеплоды, люцерну, плодоягодные и овощные культуры. Особенно эффективно применение марганцевых удобрений тогда, когда содержание подвижных соединений марганца в почве меньше 50-60 мг/кг. Как марганцевые удобрения используют преимущественно отходы промышленности, сульфат марганца и марганизований минеральные удобрения.

Марганцевые шламы - это рассыпчатые порошки темного цвета, содержащие не менее 9% марганца. Шламы - это отходы обогатительных фабрик марганцевой промышленности, где марганец находится в труднорастворимых соединениях и после внесения в почву постепенно превращается в усваиваемые для растений формы. Марганцевые шламы вносят во время основной или предпосевной обработки почвы.

Сульфат марганца МnSO4 - мелкокристаллическая сухая соль белого или светло- серого цвета, хорошо растворимая в воде, негигроскопичная, содержит 32,5% марганца. Добывают из природных оксидов марганца или из бедных марганцевых руд. Используют в овощеводстве защищенного грунта, для предпосевной обработки семян и для внекорневой подкормки.

Марганец весьма интенсивно поглощается коллоидами почвы, поэтому норма его внесения не должна превышать 2,5 кг/га. Хорошие результаты дает обработка семян свеклы, кукурузы, пшеницы раствором сульфата марганца из расчета 0,5-1 кг на 1 т зерна. При дефиците марганца эффективно проводить многократное опрыскивание полевых культур 0,05-0,10 % раствором МnSO4 из расчета 300-500 л/га.

www.agrocounsel.ru

Марганец | справочник Пестициды.ru

Содержание:

  • Физические и химические свойства
  • Содержание в природе
  • В минералах
  • Распределение марганца
  • В почвах
  • Содержание в различных типах почв
  • Лугово-лесные и бурые горно-лесные почвы
  • Торфяные почвы
  • Дерново-подзолистые почвы, желтоземы, красноземы
  • Карбонатный чернозем, серозем
  • Роль в растении
  • Биохимические функции
  • Недостаток (дефицит) марганца в растениях
  • Избыток марганца
  • Фитотоксичность
  • Общие симптомы избытка марганца
  • Огурец
  • Томат
  • Картофель
  • Свекла
  • Содержание марганца в различных соединениях
  • Способы применения марганцевых удобрений
  • Марганизированный суперфосфат
  • Сернокислый марганец (сульфат марганца)
  • Хлористый марганец
  • Марганцевые шлаки и шламы
  • Марганизированная нитрофоска
  • Эффект от применения марганцевых удобрений
  • Корнеплоды сахарной свеклы
  • Люцерна, клевер, тимофеевка и другие травы
  • Картофель, капуста, огурцы, томаты, синие баклажаны
  • Виноград
  • Плодово-ягодные растения
  • Зерновые культуры, силосная кукуруза, хлопчатник

Долгое время черную магнезию (МnO2) считали минералом железа, и только в 1774 году химик Карл Шееле установил, что в ее состав входит не железо, а новый элемент, названный марганцем. Вначале его назвали Magnesium, однако, когда Дэви открыл магний (которому тоже было присвоено аналогичное название), марганцу пришлось «сменить имя», и он стал известен как Manganum.

Марганец – металл; в представлении большинства людей, это значит, что вещество имеет серый, желтый или белый цвет и характерно блестит на свету. Однако марганец – настоящий химический хамелеон: пусть сам он и соответствует внешнему описанию металла, однако его соединения столь многоцветны, что образуют настоящую радугу, зависящую от степени окисления элемента в веществе. Соли марганца (II) бледно-розовые, Mn (III) – вишневые, Mn (IV) – черные. Имея в соединении валентность V, металл дает синий цвет, при степени окисления VI вещества с его содержанием оказываются зелеными, а Мn (VII) ярко-малиновый. Соединения марганца очень интересны не только по цвету, но и по свойствам: перманганат калия оказывает антисептическое действие, оксид Mn2O7 является взрывчатым веществом... Помимо этого, марганец, хоть потребность в нем крайне мала, является одним из незаменимых микроэлементов, необходимых живым клеткам.[8]

Марганец - Марганцевая руда Марганцевая руда

Марганцевая руда

Марганец - Марганцевая руда

Использовано изображение:[16]

Физические и химические свойства

Марганец – химический элемент VII группы периодической системы Менделеева. Атомный номер 25, атомная масса 54,9381. Состоит из одного устойчивого изотопа Mn 55.

В природе в чистом виде элемент не встречается. Содержание марганца в земной коре составляет 0,09 %.

Компактный марганец – металл серебристого белого цвета, хрупкий, подвержен окислению и на воздухе быстро покрывается тонкой пленкой окислов. Эта пленка предохраняет его даже в условиях нагревания. В мелкораздробленном состоянии Mn окисляется достаточно легко. С кислородом способен образовывать ряд окислов (основных, амфотерных и кислотных).

Известны четыре кристаллических модификации, существующие при высоких температурных показателях – более 700 °C. Модификация марганца при комнатной температуре обладает температурой плавления 1244°C, температура кипения 2095°C.

В химических соединениях элемент проявляет положительную валентность от 2 до 7, при этом производные 2- и 7-валентного Mn отличаются прочностью. По мере увеличения валентности усиливаются кислотные свойства элемента, а основные ослабевают.[5]

Содержание в природе

Марганец – один из наиболее распространенных в литосфере элементов. Среднее содержание элемента в земной коре – 1000 мг/кг, в горных породах – 350–2000 мг/кг. Преобладает в почвообразующих породах.[2]

. Марганец входит в состав большого числа минералов, в основном окисного типа. Наиболее распространены пиролюзит (MnO2) и псиломелан (коллоидная форма MnO2). Это окисные минералы с преобладанием четырехвалентного марганца. Кроме того, часто встречаются браунит, манганит, черная охра.

Большинство марганцевых руд обнаруживается в виде вторичных отложений, реже встречаются первичные месторождения.

Крупнейшие месторождения марганцевых руд – Чиатурское и Никопольское (СНГ), также месторождения есть в Индии, Гане, Южно-Африканском Союзе и других местах.[5]

Содержание общего и подвижного марганца (в мг/кг) в почвах стран СНГ, согласно данным:[4]

Почва

Общеий марганец (пределы колебаний)

Подвижный марганец (пределы колебаний)

Подзолистые песчаные

170

(40-330)

590

(60-1700)

Подзолистые глинистые

1270

(230-7200)

590

(60-1700)

Болотные

330

(50-1000)

320

(190-640)

Серые лесные

1000

(149-3980)

460

(115-1360)

Черноземы

840

(200-5600)

430

(54-2100)

Каштановые

960

(600-1270)

410

(210-640)

Засоленные

730

(400-1640)

420

(130-840)

Сероземы

790

(310-3800)

-

Красноземы

1440

(200-4000)

 

Горные

1170

(100-650)

670

(60-1220)

в толще почвы неоднородное. Концентрируется он не только в виде конкреций, но и в виде отдельных примазок, обогащенных другими элементами. Характерно, что отмеченная неоднородность не зависит от типа почв. Наиболее высокое содержание наблюдается в почвах, развитых на основных породах, богатых железом, а также органическим веществом. Кроме того, большое количество данного элемента содержат почвы в аридных и семиаридных районах. Марганец накапливается в различных горизонтах, особенно в тех, которые обогащены оксидом и гидроксидом железа. Но обычно он аккумулируется в верхнем слое почвы из-за его фиксации органическими веществами. марганец встречается в виде солей, оксидов, гидроксидов и комплексных ионов. Оксиды представлены аморфными соединениями, однако в некоторых видах почв обнаружены кристаллические разновидности. Наиболее устойчивы пиролюзит, манганит, гаусманит. Кроме того, марганец образует целый ряд различных минералов, в которых обычно находится в степени окисленности II, III и IV.

В породообразующих силикатных минералах более распространено состояние Mn(II).

В аэробных условиях марганец характеризуется низкой растворимостью. В щелочной среде растворимость снижается, что обусловлено образованием гидроксидов.

В кислом и нейтральном почвенном растворе меньшей, чем гидроксиды, растворимостью обладает гидрофосфат марганца. Его образование контролирует подвижность данного металла в указанных условиях.

Направленность окислительно-восстановительных реакций с участием Mn зависит от деятельности микроорганизмов, участвующих в аккумуляции и окислении данного элемента.[2]

Марганец образует соединения с гуминовыми веществами почв. Соединения марганца с фульвокислотами отличаются повышенной миграционной способностью и доступностью для растений.

Основными барьерами на пути перемещения марганца в почве являются щелочная среда, карбонаты, а также повышенное содержание гумуса.[3]

Содержание в различных типах почв

Содержание марганца в почвах равнинной части России и стран СНГ колеблется от 0,1 до 4 г/кг почвы. В среднем этот параметр составляет около 1 г/кг.

Однако различные виды почв значительно различаются по содержанию общего и обменного марганца. Содержание общего марганца может колебаться от 43 до 1800 мг/кг.

Закатальского района Азербайджана – самое высокое содержание марганца. – самое низкое содержание марганца, особенно в верховом торфе (43 мг/кг). – содержат самое большое количество обменного марганца. При этом в почвах с кислой реакцией содержание обменного марганца прямо зависит от кислотности почвы. Чем выше кислотность, тем больше марганца переходит в обменную форму.

Потребность с/х культур в марганце и симптомы его недостатка, согласно данным:[9][7]

Культура

П

Симптомы недостатка

Общие симптомы

 

Серая пятнистость,

Появление хлоротичных пятен различных тонов, которые расположены между зелеными жилками.

Рост задерживается, но верхняя почка не отмирает.

Зерновые

Озимая пшеница

В

 

Озимая рожь

С

 

Яровая пшеница

В

 

Яровая рожь

С

 

Ячмень

С

 

Овес

В

 

Зернобобовые

Горох

В

 

Бобы

Н

 

Люпин

Н

 

Масличные

Озимый рапс

В

 

Яровой рапс

В

 

Горчица

Н

 

Лен

Н

 

Овощные

Капуста цветная

С

 

Огурец

В

Молодые листья светло-зеленые с желтоватой каемкой.

На пластинке некрозные пятна в виде небольших точек.

Позднее хлорозом охватывается вся поверхность: жилки зеленые, четко выражен мраморный налет

Морковь

С

 

Редис

В

 

Редька

В

 

Томат

С

Желтеют листья среднего яруса и пластинки наиболее удаленных от главной жилки  участков листа.

Обесцвеченные участки буреют и отмирают.

Задержка роста растения.

Капуста белокочанная

С

 

Лук

В

 

Пропашные

Картофель

С

Листья на верхушке стебля между жилками желтовато-зеленые, с большим количеством пятнышек коричневого цвета. Поверхность листа неровная: хлорозные пятна выпячиваются вверх.

Свекла сахарная, кормовая, столовая

В

Листья темно-красные,

Рост растения задерживается 

Кормовые

Клевер луговой

С

 

Люцерна

С

 

Люпин

Н

 

Кукуруза на силос и зеленую массу

С

 

– обменный марганец не обнаружен.

Количество данного элемента в обменном состоянии зависит и от механического состава почв. Более тяжелые почвы содержат больше обменного марганца, чем супесчаные и легкие суглинки. В карбонатном черноземе и сероземе обменный марганец обнаружить не удалось.[4]

Роль в растении

Биохимические функции

Марганец поглощается растениями и распределяется по их органам в результате метаболических процессов. Имеет место и пассивная адсорбция, особенно при высоких и токсичных уровнях его содержания в растворе. Марганец отличается высокой степенью активности поглощения и быстрым переносом в растениях.

В растительных жидкостях и экстрактах он присутствует в виде свободных катионных форм и транспортируется в растениях в виде Mn2+, но во флоэмных экссудатах обнаруживаются комплексные соединения марганца с органическими молекулами. Более низкая концентрация марганца во флоэмном экссудате по сравнению с листовой тканью и слабое перемещение элемента во флоэмных сосудах становится причиной низкого содержания марганца в семенах, фруктах и корнеплодах.

Марганец переносится в основном в меристематических тканях, и его значительные концентрации обнаруживаются в молодых органах растений.[3]

Марганец нужен всем растениям без исключения. Одна из наиболее важных его функций – участие в окислительно-восстановительных реакциях. Mn2+ является компонентом двух ферментов: фосфотрансферазы и аргиназы. Кроме того, он может замещать в других ферментах магний и повышает активность некоторых оксидаз. Последнее происходит, вероятно, вследствие изменения валентности марганца.

Марганец активно участвует в процессе фотосинтеза, а именно, в его кислородообразующей системе, и играет основную роль в переносе электронов. Слабо связанная в хлоропластах форма марганца участвует непосредственно в выделении кислорода, а прочно связанная форма – в переносе электронов.

Роль марганца в восстановлении NO2 не вполне прояснена. Однако существует косвенная связь между активностью описываемого элемента и ассимиляцией азота растениями.[3]

Число истинных марганецсодержащих ферментов ограничено. На сегодняшний день известно более 35 ферментов, активируемых марганцем. Большинство из них являются катализаторами реакций окисления – восстановления, декарбоксилирования, гидролиза.

Марганец активирует некоторые ферменты, катализирующие превращение шикимовой кислоты, биосинтез ароматических аминокислот (тирозин) и прочих вторичных продуктов (лигнина, флавоноидов).

Марганцевозависимые ферменты принимают участие в биосинтезе каротиноидов и стеролов. Ионы марганца активно влияют на структуру и функции хроматина. Марганец оказывает влияние на увеличение содержания негистоновых белков и РНК в диффузной фракции хроматина. Марганец остро необходим для репликации и функционирования ДНК- и РНК-полимераз.[2]

Недостаток (дефицит) марганца в растениях

Симптомы недостатка марганца чаще всего наблюдаются на карбонатных и кислых известкованных почвах. Критическая минимальная концентрация данного элемента в зрелых листьях варьирует от 10 до 25 мг/кг сухой массы.

В условиях недостатка марганца в первую очередь снижается продуцирование фотосинтетического кислорода. Между тем, содержание хлорофилла и сухой массы листа меняется незначительно, но изменяется структура мембран тилакоидов.

При жестком дефиците марганца значительно снижается содержание хлорофилла в листьях, содержание липидов в хлоропластах тоже уменьшается.

Нарушение системы фотосинтеза приводит к резкому уменьшению содержания углеводов в растении, особенно в корневой части. Это является ключевым фактором замедления роста корневой системы в условиях дефицита марганца.

При недостатке марганца содержание белка в растениях почти не изменяется, одновременно увеличивается содержание растворимых форм азота.

Визуально симптомы недостатка марганца у различных видов растений несколько отличаются. Так, у двудольных это межжилковый хлороз, у трав – зеленовато-серые пятна на базальных листочках (серая пятнистость), у свеклы – темно-красный цвет листовой пластинки с пораженными бурыми участками.[2]

При остром недостатке марганца может наблюдаться полное отсутствие плодоношения у капусты, редиса, гороха, томата и других культур. Марганец способствует ускорению общего развития растений.[9]

Данные в таблице представлены согласно:[9][7]

Избыток марганца

. Переизбыток марганца приводит к угнетению и даже гибели растений. Ядовитость данного элемента ярче всего проявляется на кислых дерново-подзолистых почвах, особенно при повышенной влажности, образовании корки и внесении физиологически кислых удобрений без их нейтрализации. Подвижные формы алюминия и железа усиливают вредоносность марганца.[7]:
  • Угнетение роста
  • Гибель растений
  • Молодые жилки листа желтеют, с обратной стороны на жилках – темные точки фиолетового оттенка;
  • Такими же точками покрываются черешки листа и побеги;
  • При усилении избытка элемента лист желтеет, жилки – темно-фиолетовые;
  • На плодах темно-фиолетовые пятна;
  • Рост приостанавливается;
  • Молодые листья мельчают;
  • На листьях раннего возраста – хлороз. На старых – некротические пятна и коричневые жилки.
  • Рост нарушается;
  • Ткани растений отмирают;
  • На стеблях растений появляются продолговатые полосы коричневого цвета;
  • На нижних листьях – хлороз, позднее ткани отмирают, приобретают коричневый цвет, а пятна распространяются между жилками листовой пластинки;
  • Пораженные листья опадают, а пятнистость продвигается вверх;
  • Черешки и стебли водянистые и ломкие;
  • Преждевременное засыхание ботвы;
  • Снижение урожайности.
Марганец - Избыток марганца Избыток марганца

Избыток марганца

Марганец - Избыток марганца

1 – некротические пятна на плодах яблони;

2 – хлороз листьев табака; 3 – некротические пятна на листьях дыни; 4 – усыхание растения (табак)

Использовано изображение:[13][15][14][12]

  • Листья темно-зеленые;
  • Рост угнетенный;
  • Мраморность листьев;
  • Желтоватые округлые пятна

Содержание марганца в различных соединениях

Основной источник марганца для производства удобрений – оксидные марганцевые руды осадочного происхождения. Их подразделяют, в зависимости от содержания железа и основного вещества, на три класса:

  1. марганцевые – 40 % марганца и менее 10 % железа;
  2. железомарганцевые – 5–40 % марганца и 10–35 % железа;
  3. марганцовистые железные – менее 5 % марганца.

В оксидных рудах соединения марганца плохо растворяются в кислотах. Поэтому наиболее эффективным считается использовать для производства удобрений карбонатные марганцевые руды и промышленные отходы.[2]

Последние должны проходить стадию восстановительного обжига и содержать марганец в форме MnO.[2] Обычно это отходы предприятий марганцево-рудной промышленности, содержащие 10–18 % марганца.[2]

Для создания различных форм удобрений используют, как правило, сульфат и оксид марганца. Эти же формы можно применять и самостоятельно.[2]

Содержание марганца в удобрениях, согласно данным:[2][5]

Удобрение

Содержание, %

Марганизированный суперфосфат

1,0-2,0

Марганизированная нитрофоска

0,9

Марганцевые шламы и шлаки

10 -17

Сернокислый марганец (сульфат марганца)

20

Хлористый марганец

17

Способы применения марганцевых удобрений

применяется для внесения в почву. используется для некорневой подкормки, обработки семян, для внесения в почву. используется так же, как и сернокислый марганец, для некорневой подкормки, обработки семян, для внесения в почву. обычно используют для внесения в почву.[2]используется для внесения в почву.[6]

Данные в таблице представлены согласно:[2][6]

Марганец - Симптомы недостатка марганца:</p> хлоротичные пятна между жилками Симптомы недостатка марганца: хлоротичные пятна между жилками

Симптомы недостатка марганца: хлоротичные пятна между жилками

Марганец - Симптомы недостатка марганца:</p> хлоротичные пятна между жилками

1 – листья пшеницы; 2 – листья табака

Использовано изображение:[10][11]

Эффект от применения марганцевых удобрений

. Под влиянием марганцевых удобрений повышается урожайность и сахаристость корнеплодов. . Усиливается рост и развитие, повышается урожайность. . Значительно повышается урожайность. . На карбонатных почвах со щелочной реакцией и очень малым количеством усвояемых форм марганца применение различных марганцевых удобрений повышает урожайность и улучшает качество ягод. . Внесение марганца оказывает положительное воздействие на состояние и развитие плодово-ягодных растений. Повышается урожайность и сахаристость ягод, увеличивается содержание витамина С.[1]. Применение марганцевых удобрений способствует повышению урожайности.

www.pesticidy.ru

Роль марганца в питании растений

Растущее и развивающееся растение следует рассматривать с биохимической точки зрения как систему, открытую, и изменяющуюся по емкости. Растение получает энергию и частично расходует ее в процессе дыхания. При этом общие запасы энергии в ходе роста растения возрастают. Запас энергии можно приближенно считать равным теплоте сгорания сухой массы растения, так как при сгорании вещества растительной ткани, синтезированной из углекислоты и воды, возвращаются к исходному состоянию.

Растение получает воду и в значительной степени расходует ее на транспирацию. В этом отношении оно является открытой системой с относительно небольшим удержанием проходящего вещества (воды).

И, наконец, растение накапливает минеральные вещества, но не выделяет их. Некоторая потеря минеральных веществ все же имеет место. Тукей и Морган установили, что при промывании надземных частей растения водой имеет место потеря кальция, магния, марганца, калия и натрия. Однако, в естественных условиях эти потери невелики. Авторы оценивают унос калия из листьев яблони с дождевой водой в 15-30 кг/гектар в год - менее, чем один процент калия, находящегося в листьях.

С этой небольшой поправкой мы можем принять, что минеральные вещества только накапливаются и перераспределяются в тканях растения и уходят из системны живого растения только в составе отделяющихся тканей и органов (семена, лиственный опад, пробковый слой коры и др.).

В отношении накопления минеральных веществ растение функционирует как практически замкнутая система возрастающей, емкости, то есть как система, стремящаяся к насыщению. Поглощение минеральных веществ растением - результат ряда процессов физико-химических, биохимических и физиологических.

Общеизвестно, что усвоение того или другого иона корнями растения представляет собою резко избирательный физиологический процесс. Поглощение ионов не зависит от их размера, подвижности, степени гидратации, даже заряда (однозарядный нитрат ион и трехзарядный фосфат ион поглощаются корнями в больших количествах, чем двухзарядный сульфат ион). Основные факторы, определяющие поступление иона в растение, —. это концентрация иона в внешней среде и, главное, потребность организма в соответствующем элементе.

Питательные элементы делятся на макроэлементы: азот фосфор, калий, натрий, магний, кальций, среднее содержание которых в растении 0,2-0,5%, и микроэлементы. В прошлом был предпринят ряд попыток классифицировать элементы по их роли в биосфере. Такие классификации предлагали Тэчер, Баудиш, М.Я. Школьник.

Однако, в последние годы новые схемы классификации элементов по их роли в питании растений не появляются. Это не случайно". По-видимому, при попытке дать такую классификацию возникают значительные принципиальные трудности, вызванные полифункциональностью и взаимозаменяемостью питательных элементов.

Под полифункциональностью мы понимаем то, что один и тот же элемент используется в различных биохимических системах. Так, например, магний в неионной форме входит в состав хлорофилла, а магний ион является активатором многих ферментных систем.

Взаимозаменяемость приводит к тому, что одна и та же биохимическая функция обеспечивается разными элементами. Марганец не может заменить магний в синтезе хлорофилла, но не менее двенадцати ферментных систем, активируемых магнием, активируются и двухвалентным марганцем. Развиваемое М. Я - Школьником учение о - неспецифической и специфической функции микроэлементов позволяет в достаточной степени объяснить этот вопрос.

К абсолютно необходимым для любого растения элементам, кроме микроэлементов, относятся железо, марганец, бор, цинк, медь, молибден, кобальт. Среднее содержание этих элементов в растении колеблется от 200 мг/кг (средняя величина для железа), до 0,1 мг/кг для молибдена. Все они - металлы переменной валентности, за исключением бора, специфическая роль которого выяснена М.Я. Школьником, и цинка. Последний хотя и имеет постоянную валентность, но, по-видимому, дает растворимые комплектные перекиси.

Необходимость этих элементов для растений доказана тем, что при их исключении из питательной среды растения гибнут. Другие металлы переменной валентности никель, хром, кадмий, - могут быть полезными, но не необходимыми. Их действие освещено в многочисленных работах О.К. Добролюбского. Наконец, некоторые элементы нужны, по-видимому только определенной группе растений, как например, селен астрагалам.

Марганец по его содержанию в растениях стоит непосредственно после железа. Он участвует во многих ферментных системах как окислительно-восстановительных, так и гидролитических. Согласно нашему предположению, марганец осуществляет в определенной группе растений (дубильных растениях) - специфическую функцию - уравновешивание отрицательного потенциала, возникшего в результате накопления больших количеств сильных восстановителей (в данном случае танидов). Для осуществления этой функции требуется гораздо больше марганца, чем для всех остальных путей его использования. Содержание марганца в зеленых частях растений - танидоносов 100-1000 мг на килограмм сухого веса и выше, а в обычных растениях-20-80 мг/кг и очень редко 100 мг/кг. Поэтому, хотя марганец в растении танидоносе по существу так же полифункционален, как и в обычном растении, но его поглощение можно рассматривать как поглощение монофункционального элемента, так как основное количество, марганца используется на уравновешивание восстанавливающего действия танидов и других радуктонов, а прочие функции выполняются относительно небольшой частью элемента.

Поглощение марганца растением танидоносом поэтому особенно удобно для рассмотрения. Количество поглощенного растением марганца зависит от его количества и концентрации в питательном растворе.

При достаточном количестве раствора низкая концентрация ионов марганца не является препятствием для жизнедеятельности растений манганофилов. По нашим данным, концентрация марганца в воде реки Миасс меньше, чем 0,005 мг/л, а произрастающие в ней не связанные с грунтом гидрофиты содержат марганец в количествах даже больших, чем в наземных растениях (водокрас лягушечный - 520-720 мг/кг, телорез сабуровидный - 580 мг/кг), то есть при синтезе одного килограмма сухой массы извлекается, весь марганец из нескольких десятков кубометров воды.

В условиях лабораторных водных культур вследствие ограниченности объема и отсутствия движения воды низкие концентрации марганца уже не в состоянии обеспечивать жизнедеятельность растения манганофила. Практически манганофилы погибают при концентрации марганца порядка 1 мг/л.

Обобщенная схема влияния уровня снабжения марганцем на рост, и развитие растений представлена на графике. Ее можно распространить и на другие микроэлементы, но конкретные факты, которые мы приводим в подтверждение нашей схеме,/относятся преимущественно к марганцу.

1) При весьма низком уровне снабжения необходимым микроэлементом (участок АВ) растение гибнет. Обычно этот весьма' низкий уровень рассматривают как полное исключение микроэлемента, но растение манганофила гибнет при аналитически определяемом содержании марганца в питательной среде (менее одного мг/л, в то время как обычные питательные смеси содержат 0,2-0,5 мг/л марганца).

2) При малом поступлении марганда растение страдает от болезней, вызванных недостатком марганца. Болезни "марганцевой недостаточности" описаны для овса, томатов, сахарной свеклы и многих других культурных растений. Относительно таких же болезней у дикорастущих нам известна только работа Ингелынтадт, описывающая хлороз, возникающий вследствие недостатка марганца у березы бородавчатой, то есть у типичного манганофила.

Влияние усвояемого Мп на урожай и содержание в растениях, (масштаб произвольный)

3) При умеренном недостатке марганца растение не проявляет внешних признаков заболеваний, но его развитие замедлено и урожай снижен. Имеет место то, что Финк назвал "скрытым недостатком" ("latente Mangel"). Применение марганца как микроудобрения вызывает усиление биосинтеза, то есть повышение урожая.

Марганец поступает в оптимальных количествах. Растение дает максимальный урожай. По-видимому, этот оптимум лежит в довольно широких пределах. Биохимические системы могут иммобилизовать избыточный поглощенный марганец, а физиологические механизмы корневой системы - перестроиться в направлении уменьшения его поглощения.

По мере возрастания содержания доступного марганца во внешней среде наступает момент, когда система регуляции поглощения уже не может справиться с своей задачей. Эффективность биосинтеза уменьшается - урожай снижается, но видимых признаков отравления еще нет. К сожалению, в нашей литературе работы, о возможности снижения урожая при применении микроэлементов публикуются весьма редко, но те, которые есть, исходят из наиболее серьезных агрохимических школ - латвийской и украинской.

Токсическое действие избытка марганца приводит к видимому заболеванию, большей частью в виде некротических пятен на листьях.

При достаточно-большом количестве поглощенного марганца растение гибнет. Токсическая доза марганца в первую очередь поражает корни, и они не могут обеспечить поступления марганца и других питательных элементов в остальные части растения,

Можем ли мы, как это пытались сделать Гудаль и Грегори установить оптимальное содержание марганца в листьях какого-либо конкретного вида растений? Задача эта весьма трудна. Во-первых, мы определяем общее содержание марганца в ткани, а не содержание активного марганца.

Во-вторых, потребность в марганце меняется в зависимости от фазы развития, а также внешних условий: температуры, обеспечения водой и т.д. В монографии П.А. Власюка показано, что неблагоприятные погодные условия (засуха) привели к снижению урожая при применении марганца. С.А. Абаева считает, что хлопчатник испытывает наибольшую потребность в марганце в первые фазы развития, когда идет интенсивный процесс листообразования. С этим утверждением мы вполне согласны.

Наконец, нельзя забывать, что действие марганца может быть усилено или ослаблено влиянием других катионов. Теория Шайва утверждает, что для растения существенно важно не абсолютное количество марганца и железа, а их соотношение. При высоком Mn/Fe железо переходит в трехвалентное и возникает хлороз от недостатка железа, При низком Mn/Fe возникает хлороз от избытка железа. Ряд авторов критикуют теорию Шайва, другие с ней соглашаются. По нашему мнению, если содержание любого из этих элементов ниже определенного минимума, никакое повышение содержания другого не спасет растение. В области достаточного снабжения обоими элементами, соотношение, подмеченное Шайвом по-видимому, действительно играет роль, особенно для растений, не накапливающих редуктоны.

В условиях лабораторных водных культур и достаточно точных полевых опытов, все внешние факторы выравниваются и появляется возможность установить связь поглощения марганца с его концентрацией во внешней среде и в тканях растения.

В первую очередь мы констатируем, что выращенные в водных культурах растения содержат больше питательных веществ, чем растения, развивавшиеся в открытом грунте. Так, например, в полевых опытах с горцем забайкальским.

Л.С. Хромова получила максимальное содержание марганца в листьях - 169 мг/кг, а в водных культурах содержание марганца достигло 1250 мг/кг. В водных культурах ивы мы имели концентрацию марганца в листьях, до 1200 мг/кг а в 13 анализах листьев дикорастущих ив содержание марганца ни разу не превысило 250 мг/кг. Ясно, что здесь мы имеем дело не с правилом, а скорее с тенденцией, но все же можно сказать, что лабораторные образцы, из водных культур содержат больше марганца, чем дикорастущие растения, и содержат Фоль 1116 микроэлементов, чем растения, выросшие в. открытом грунте.

Очевидно, при худшем снабжении микроэлементами, он используется более интенсивно. В этой работе мы приводим результаты пятнадцати серии экспериментов с водными культурами растений, танидоносов при выращивании их на различных питательных средах с переменным содержанием марганца. Всего поставлено и - проанализировано 82 опыта. К сожалению, не во всех Дуадях удалось провести точный учет биомассы.

При этом из рассмотрения исключен один опыт. В нем ветви ивы дали маленькие листья с очень высоким содержанием марганца и, не получая марганец из внешней среды, погибли. Поскольку парадоксальный результат (растение не получило марганца извне, а в листьях его много) вполне объясним поступлением марганца из коры, мы вправе не учитывать этот опыт.

Содержание марганца на один килограмм сухого веса меняется для данной концентрации марганца в питательном растворе в весьма широких пределах. При этом решающим фактором является вид растения. Изменения состава питательного раствора имеют меньшее значение, хотя цинк, по-видимому, способствует мобилизации марганца из коры, но специфичность действия марганца да танидоносы, неоднократно доказанная раньше. Данные, собранные в таблице, подтверждают предложенную нами в этой статье схему. На их основании можно сделать следующие выводы.

Содержание марганца в листьях, растения, возрастает медленнее, чем его концентрация в растворе. При малых концентрациях марганца в растворе общее накопление биомассы может обогнать накопление марганца, и растение, выращенное на питательном растворе с большей концентрацией марганца, будет содержать в листьях меньшие количества этого элемента. При высоких концентрациях марганца в растворе содержание марганца в тканях увеличивается не пропорционально, а в гораздо меньшей степени.



biofile.ru

38. Физиологическая роль меди, марганца и цинка в растениях. Марганцевые, медные, цинковые удобрения, их применение и эффективность.

Основная часть марганца Mn сосредоточена в листьях и хлоропластах. Он активизирует реакции превращения ди- и трикарбоновых кислот, входит в состав около 30 металлоферментных комплексов. Принимает участие в окисл-восстан процессах, явл составной частью многих ферментов, увелич содержание сахаров, их отток из листьев в корни, усиливает дыхание. При использовании растениями N в форме нитратов он действует как восстан-ль и, наоборот, при N аммония – как окисл-ль. Он активир действие индомилуксусной кис-ы на рост клеток растений.

Сульфат марганца (MnSO4×4Н2О) – кристаллич порошок свет-серого цвета с содержанием Mn 21-21%, хор растворим в воде, можно применять для смачивания и намачивания семян, внекорневых подкормок в конц 0,01-0,5 % раствор удобрения.

Марганизированный суперфосфат (Са(Н2РО4)2×Н2О +СаSO4×2Н2О + Мn) – обычный простой гранулир суперфосфат с добавлением марганцевого концентрата, содержит 20% Р2О5 и 1-2% Мn. Лучше применять при посеве в рядки или посадке в гнездо.

Порошок, содержащий марганец – механическая смесь тонко измельченного сухого MnSO4 с тальком, мягкая на ощупь. Содержит 18-22 % Мn, рекомендуется для опудривания семян.

Цинк явл необходимым элементом в жизни растений. Он входит в состав ферментов и принимает участие в жизненно важных реакциях, протекающих в клетках растений. Входит в состав фермента карбогидразы, который расщепляет угольную кислоту на углекислый газ и воду. Цинк усиливает активность каталазы, пероксидазы, липазы, протеазы, инвертазы. Благодаря этим ферментам происходит белковый, липоидный, углеводный, фосфорный и др обмен. Цинк способствует образ-ю витаминов.

В качестве цинковых удобрений используют сернокислый цинк, порошок, содержащий цинк и различные отходы промышленности.

Сернокислый цинк. Выпускается двух видов: безводный (ZnSO4) с содержанием элемента 45,5% и водный (ZnSO4×7Н2О) с содержанием около 24-25%. По внешнему виду белая кристаллическая соль, хор р-рима в воде. Использ для некорн подкормки и смачивания семян.

Порошок, содержащий цинк – смесь тонкоизмельчѐнного сернокислого цинка с техническим тальком, содержит 5-6% Zn. Рекомендуется применять для опудривания семян.

Цинкосодержащие молотые шлаки медеплавильных заводов содержат 2-7 % цинка и небольшие кол-ва др микроэлементов. Применяется при внесении в почву в дозах 0,5-1,5 ц/га. При тонком размоле могут быть использованы для предпосевного опудривания семян в дозах 200-400 г на 1ц семян.

Цинковые полимикроудобрения (ПМУ) – отходы хим заводов цинко-белильного производства. ПМУ выпускается различных видов. В состав удобрения входит 19,6-25,0 % ZnО, 13,0 % CuО, 0,4% МnО, 0,01% В, следы молибдена и др микроэлем.

Медь участвует в процессах дыхания. Она входит в состав ферментов полифенолоксидаз, участвующих в окислит и восстановит-х процессах. Медь принимает участие в азотном обмене, входя в состав нитритредуктазы, который способствует связыванию бобовыми молекулярного N атмосферы, усвоению всеми культурами азота почвы и удобрений. Медь стабилизирует действие хлорофилла, задерживает процесс старения листа.

При недостатке меди повышается интенсивность дыхания, что ведѐт к разрушению хлорофилла, снижению образования углеводов. Это приводит к хлорозу листьев, к побелению их кончиков.

В качестве медных удобрений применяют пиритные огарки, сернокислую медь, порошок, содержащий медь, меднокалийные удобрения.

Сернокислая медь (медный купорос) CuSO4×5Н2О. содержит 25,4% меди. По внешнему виду кристаллическая голубовато-синего цвета соль, хор растворима в воде.

Пиритные огарки CuSO4× Cu(OН)2× CuS2 – это отход химической промышленности, рассыпчатый аморфный порошок вишнѐвого, тѐмного цвета. В своѐм составе содержит медь в усвояемой для растений форме от 0,3 до 0,7 %, небольшое количество примесей цинка, кобальта и молибдена. Применяют в первую очередь на осушенных болотах. Вносят в почву под зяблевую вспашку в дозах 5-6 ц/га один раз в 5-6 лет.

Порошок, содержащий медь – это механ смесь тонкоизмельчѐнной сернокислой меди с техническим тальком, содержание меди в порошке 5-6%. Рекомендуется применять для опудривания семян.

Меднокалийные удобрения – обогащѐнный хлористый калий серно-кислой медью (56,8% К2О и 1,0% Сu), мелкокристалл порошок, для внесения в почву под культивацию под зерновые, кормовые и овощные культуры на дерново-глееватых и торфоболотных почвах.

Для внесения в почву лучше использовать пиритные огарки в дозе 1,0-1,5 кг д.в./га / меднокалийные в дозе К2О 60-90 кг/га. Сернокислую медь лучше всего использовать для предпосевной обработке семян методом смачивания / намачивания с экспозицией 6-12 часов 0,01-0,02 % р-ре, это 50-100 г CuSO4×5Н2О на 1 литр воды, для некорневых подкормок – 0,02-0,05 % р-р 200-400 л/га. Порошок, содержащий медь используют для обработки семян из расчѐта: зерновые и зернобобовые 150 г порошка на 1 ц семян, огурец – 200 г/кг, томат – 300 г, капуста – 100 г, клевер и люцерна – 200 г/кг.

studfiles.net

Марганец

Марганец находится в почвах в среднем в количестве 0,085%. Однако в отдельных случаях при высоком общем содержании марганца в почвах количество усвояемых его форм, переходящих в солянокислую или солевую форму, может быть явно недостаточно. В среднем растворимая часть Мn в почве составляет 1 —10% от общего его содержания.

Кислая реакция почвы (при рН ниже 6,0) благоприятствует усвоению растениями Мn2+ ; слабощелочная реакция (рН выше 7,5) стимулирует образование гидрата Мn(ОН)2, трудно усваиваемого растениями.

Подвижность марганца в пахотном слое также определяется буферностью почв по отношению к кислотам, что зависит от суммы обменных оснований (преимущественно Са и Mg) в них. При высокой буферности почв подвижность Мn2+ уменьшается. При низкой буферной емкости почв подвижность марганца выше. Марганец мобилизует фосфорную кислоту почвы. Целый ряд почвенных микроорганизмов, участвующих в усвоении растениями атмосферного азота, усиливают свою активность под влиянием марганца.

Среднее содержание марганца в растениях равно 0,001 %. Марганец служит катализатором процессов дыхания растений, принимает участие в процессе фотосинтеза. Исходя из высокого окислительно-восстановителыюго потенциала марганца можно думать, что марганец играет такую же роль для растительных клеток, как железо — для животных.

Марганец входит в состав либо является активатором ряда ферментативных систем; регулирует отношение Fe2+↔Fe3+, тем самым влияя на окислительно-восстановительные процессы, совершающиеся с помощью железа.

Марганец усиливает гидролитические процессы, в результате чего нарастает количество аминокислот, способствует продвижению ассимилятов, образующихся в процессе фотосинтеза от листьев к корням и другим органам. По данным П. А. Власюка, марганец при нитратном питании растений ведет себя как восстановитель, тогда как при аммиачном — как окислитель. Благодаря этому с помощью марганца можно воздействовать на процессы сахарообразования и синтеза белков.

Благотворное влияние марганца на рост и развитие растений очевидно; так, И. В. Мичурин подметил, что у гибридных сеянцев миндаля под влиянием марганца срок первого плодоношения ускоряется на 6 лет. Этот факт явился первым описанным в литературе случаем замечательного ускорения роста и созревания растений под влиянием микроэлементов.

При недостатке марганца в почвах (низком содержании либо неблагоприятных условиях для усвоения его растениями) возникают заболевания растений, характеризующиеся в общем появлением на листьях растений хлоротичных пятен, которые в дальнейшем переходят в очаги некроза (отмирания). Обычно при этом заболевании происходит задержка роста растений и их гибель. У различных видов растений заболевание марганцевой недостаточностью имеет свои специфические проявления и получило соответственные названия.

- cерая пятнистость злаков наблюдается у овса, ячменя, пшеницы, ржи, кукурузы. Характеризуется появлением на листьях узкой поперечной линии увядания. Листья загибаются по линии увядания и свешиваются вниз. У кукурузы на листьях появляются отдельные хлоротичные пятна, в дальнейшем отмирающие, что ведет к образованию отверстий на листьях. Болезнь распространена обычно на щелочных почвах при высоким содержании гумуса.

- болезнь сахарного тростника – на молодых листьях появляются длинные беловатые полосы хлоротичных участков, в дальнейшем краснеющие; на этих местах наступает разрыв листьев. Содержание марганца в листьях резко падает; наблюдаются лишь следы (вместо 0,003% в норме). Заболевание растений развивается на щелочных и нейтральных почвах. Внесение в почву серы, суперфосфатов (веществ, подкисляющих почву и повышающих содержание доступного марганца) излечивает или предупреждает названное заболевание.

- пятнистая желтуха сахарной свеклы, а также кормовой, столовой свеклы и шпината. В пространствах между жилками листьев появляются желтые хлоротичные участки; края листьев заворачиваются кверху. Содержание марганца в тканях больных растений резко уменьшается: в здоровом листе сахарной свеклы обычно 181 мг марганца на 1 кг сухого вещества, а в больном — лишь 13 мг на 1 кг.

- болотная пятнистость семян гороха. Поражаются как листья (легкий хлороз), так и, главным

образом, семена гороха. На семенах появляются коричневые или черные пятна; на внутренней поверхности семядолей образуются полости. Рядом с больными могут находиться и здоровые семена.

- болезни плодовых растений проявляются в хлорозе листьев (у главной жилки), преимущественно старых (недостаточность железа проявляется главным образом на молодых листьях). Отмирают ветви, светлеют плоды. Сильнее всего поражается груша; вишня и яблоня — меньше.

- пятнистость листьев тунга. Заболевание встречается преимущественно в США. При низком содержании обменного марганца в почвах, на листьях между жилками появляются хлоротичные участки, разрастающиеся в пятна.

Встречается также серая пятнистость клубники и другие заболевания.

Явление недостаточности марганца у растений в виде приведенных выше специфических заболеваний наблюдается при значительном дефиците марганца в почвах, однако и при относительном недостатке подвижного марганца могут наблюдаться «стертые» формы недостаточности, проявляющиеся в задержке роста, уменьшении урожайности и т. п.

Обогащение растений марганцем ведет к улучшению роста, плодоношения деревьев и урожайности многих культур, что нашло практическое использование. В качестве удобрений применяют отходы марганцеворудной промышленности, отходы производства серной кислоты и др.

Марганцевые отходы имеют преимущество перед чистыми марганцевыми солями: они используются растениями постепенно и действуют более эффективно. Доза удобрений зависит от источника получения отходов и от вида растений.

Внесение марганцевых отходов в почву в качестве удобрений положительно сказывается на урожайности сахарной свеклы, озимой пшеницы, кукурузы, картофеля, овощных культур и других культур, уменьшает полегаемость растений. Помимо обычного внесения марганцевых удобрений в почву, применяют и другие методы использования марганца, при которых исключаются неблагоприятные условия усвояемости марганца из почв.

Избыток марганца, так же как и его недостаток, неблагоприятно сказывается на растениях.

Л. П. Виноградов отмстил значительные морфологические изменения у растений, произрастающих на богатых марганцем почвах (например в Чиатури).

 По данным Л. Я. Леванидова, существуют растения, способные в значительной степени накапливать марганец; такие растения называют манганофилами. Способность концентрировать марганец не обязательно свойственна всем видам данного рода и не связана с систематическим положением растения. Концентраторами марганца являются лютик золотистый, полынь лекарственная, некоторые папоротники, сосна, береза, пасленовые.

Растения-манганофилы активно извлекают марганец из почв. Если растения-манганофилы произрастают на почвах с малым содержанием легко усвояемого марганца, то они особенно страдают от его недостатка. Так, на черноземе, бедном доступным марганцем, могут произрастать только такие растения-манганофилы, как береза, мобилизующая марганец своими кислыми корневыми выделениями.

Медь

Общее содержание меди в почвах составляет около 0,002%, причем на долю растворимой части приходится около 1% этого количества.

В почвах встречаются несколько форм меди, в различной степени усваиваемой растениями:

а)водоорастворимая медь, б)обменная медь, поглощенная органическими и минеральными коллоидами, в)труднорастворимые медные соли, г)медьсодержащие минералы, д)комплексные металлоорганические соединения меди.

Подвижность меди и поступление ее в растения уменьшаются при известковании почв, связывании меди в виде органических соединений и закреплении почвенным гумусом. Часть меди почв прочно связана с почвенными перегнойными кислотами — гуминовой, креновой, апокреновой; в этой форме она становится неподвижной и неусвояемой для растений.

Медь образует также комплексные соединения с рядом органических кислот — щавелевой, лимонной, малеиновой, янтарной. Важную роль в фиксации меди играют микроорганизмы почвы.

Количество воднорастворимой доступной меди определяет в основном условия жизни растений в данной местности. Растения богатых медью почв обогащаются названным элементом, причем некоторые виды приобретают устойчивость даже к очень высоким концентрациям этого металла.

Медь необходима для жизнедеятельности растительных организмов. Почти вся медь листьев сосредоточена в хлоропластах и тесно связана с процессами фотосинтеза; она участвует в синтезе таких сложных органических соединений, как антоциан, железопорфирины и хлорофилл; медь стабилизирует хлорофилл, предохраняет его от разрушения.

Медь входит в качестве структурного компонента в состав соединения с белком (медьпротеида, содержащего 0,3% меди), образуя окислительный фермент полифенолоксидазу. Этот фермент впервые был обнаружен в клубнях картофеля, шампиньонах, а в дальнейшем в составе большинства распространенных растений.

Хотя этот фермент может окислять лишь определенные фенольные соединения, однако присутствие в растительных тканях наряду с оксидазой пирокатехина или ортохинона позволяет полифенолоксидазе участвовать в окислении большого количества органических соединений.

Медь способствует синтезу в растениях железосодержащих ферментов, в частности пероксидазы.

Установлено положительное влияние меди на синтез белков в растениях и благодаря этому — на водоудерживающую способность растительных тканей. Напротив, при недостатке меди гидрофильность коллоидов тканей уменьшается.

Очевидно, вследствие этого медь в виде удобрений имеет значение для придания растениям засухо- и морозоустойчивости, а также, возможно, устойчивости к бактерийным заболеваниям.

Болезни недостаточности меди у растений:

- экзантема, или суховершинность плодовых деревьев. Поражает цитрусовые (рис. 2), а также яблони, груши, сливы и маслины. У цитрусовых листья достигают больших размеров, молодые побеги изгибаются, на них развиваются вздутия, затем трещины. Пораженные побеги теряют листья и высыхают. Крона деревьев приобретает кустовидную форму. Плоды мелкие с бурыми пятнами и бородавками. Листья имеют сначала ярко-зеленый цвет, а в дальнейшем появляется пятнистость и хлороз.

У яблонь заболевание проявляется в отмирании верхушек побегов — наступает увядание и свертывание листьев. Края листьев становятся как бы обожженными. У персиков наступает гибель побегов, ухудшается цветение и завязывание плодов; на листьях появляются крупные хлоротичные пятна.

- «болезнь обработки» травянистых растений проявляется в подсыхании кончиков листьев, задержке в формировании репродуктивных органов, пустозернистости колоса. При этом заболевании растения кустятся и, не переходя к стеблеванию, погибают.

Поражаются «болезнью обработки» главным образом овес, ячмень, пшеница, свекла, бобовые, лук; меньше— рожь, гречиха, клевер. «Болезнь обработки» встречается преимущественно на болотистых почвах и торфяниках; это заболевание называется также «болезнью освоения», так как она поражает овес, ячмень, яровую и озимую пшеницы и другие злаки, а также лен, коноплю, махорку и другие культуры на мелиорированных почвах.

На некоторых торфяных почвах злаки в фазе молочной спелости полегают, образуя колена. В тканях выпуклой части колена окислительные процессы (активность пероксидазы, полифенолоксидазы, цитохромоксидазы) протекают на более высоком уровне и в них содержится в 3 раза больше меди, чем в противоположно расположенных тканях.

 «Болезнь обработки» не возникает, если в почву вносят сернокислую медь в количестве 25 кг на 1 га, что ведет к нарастанию содержания меди в растениях (пшенице, ржи, овсе и других злаках).

Применение медных удобрений не только сказывается на повышении урожайности, но и на качестве сельскохозяйственных продуктов. Так, количество белка в зерне нарастает, сахаристость сахарной свеклы увеличивается, так же как процент выхода каучука у кок-сагыза, содержание витамина С и каротина в плодах и овощах, улучшаются технологические качества волокна конопли. Под влиянием медных удобрений повышается устойчивость озимой пшеницы к полеганию.

Цинк

Среднее содержание цинка в почвах составляет 0,005%; из этого количества на долю растворимого цинка приходится не более 1 %.

Солончаковые и солонцеватые почвы содержат больше всего подвижного цинка (0,0087—0,014%), что связано с высокой дисперсностью солонцеватых почв и наличием в них соединений цинка типа цинкатов натрия и калия. Промежуточное положение по количеству подвижных форм цинка занимают черноземы и серые лесные почвы; меньше всего таких форм в подзолистых почвах (0,00185—0,00241%). На кислых почвах цинк более подвижен и выносится из почв в больших количествах; поэтому на кислых почвах чаще наступает дефицит цинка, на щелочных почвах цинк наименее подвижен.

В среднем в растениях обнаруживается 0,0003% цинка. В зависимости от вида, местности произрастания, климата и т. п. содержание цинка в растениях весьма варьирует.

Цинк является компонентом ряда ферментных систем. Он необходим для образования дыхательных ферментов—цитохромов А и Б, цитохромоксидазы (активность которой резко падает при недостаточности цинка), входит в состав ферментов алкогольдегидразы и глицилглициндипептидазы. Цинк связан с превращением содержащих сульфгидрильную группу соединений, функция которых состоит в регулировании уровня окислительно-восстановительного потенциала в клетках. При недостатке цинка в вакуолях клеток накопляются полифенолы, фитостерин, лецитин как продукты неполного окисления углеводов и белков; в листьях обнаруживается больше редуцирующих сахаров и фосфора и меньше сахарозы и крахмала. При отсутствии цинка нарушается процесс фосфорилирования глюкозы. Недостаток цинка ведет к значительному уменьшению в растениях ростового гормона — ауксина.

Цинк является составным компонентом фермента карбоангидразы. Входя в состав карбоангидразы, цинк влияет на важнейшую фотохимическую реакцию «темновой» утилизации углекислого газа растениями и на процесс выделения СО2, т. е. на процесс дыхания растений. Растения, развивающиеся в условиях недостаточности цинка, бедны хлорофиллом; напротив, листья, богатые хлорофиллом, содержат максимальные количества цинка. В зеленых листьях цинк, возможно, связан с порфиринами.

Под влиянием цинка происходит увеличение содержания витамина С, каротина, углеводов и белков в ряде видов растений, цинк усиливает рост корневой системы и положительно сказывается на морозоустойчивости, а также жаро-, засухо- и солеустойчивости растений. Соединения цинка имеют большое значение для процессов плодоношения.

Горох, сорго и бобы в водных культурах не дают семян при концентрации цинка в среде 0,005 мг на 1 л и ниже. С повышением концентрации цинка в питательной смеси соответственно число семян увеличивается.

В местностях вблизи цинковых залежей произрастает так называемая галмейская флора — растения, обогащенные цинком.

Болезни недостаточности цинка распространены преимущественно среди плодовых деревьев; могут заболевать также хвойные растения и кукуруза. Главнейшие из этих болезней недостаточности следующие:

- мелколистность, или розеточная болезнь, листопадных деревьев. Поражает яблони, груши, сливу, персики, абрикос, миндаль, виноград , вишню. На заболевшем растении весной образуются укороченные побеги с розеткой мелких скрученных листьев. На листве —явления хлороза. Плоды мелкие и деформированные, часто вообще не появляются. Через 1—2 года побеги отмирают.

Заболевание излечивается непосредственно введением в стволы больных деревьев сернокислого цинка в кристаллическом виде, внесением в почву соединений пинка, опрыскиванием растений раствором цинковых солги.

При обильном развитии микроорганизмов па некоторых почвах они могут в значительной мере поглощать цинк и создавать условия цинкового голодания для высших растений. Стерилизация почв, убивая микробы и, возможно, разрушая соединения, в виде которых цинк оказывается в связанном состоянии, ставят высшие растения в условия более полной обеспеченности цинком.

- пятнистость листьев цитрусовых, «крапчатость». Между жилками листьев появляются желтые участки, поэтому листья приобретают пятнистый вид. Зеленая окраска сохраняется лишь у основания листьев, остальная часть становится белой. Листья и корневая система перестают расти, и растения погибают.

- бронзовость листьев тунговых. Листья приобретают бронзовую окраску, отдельные участки отмирают. Появляющиеся взамен погибающих новые листья деформированы. Больные деревья мало устойчивы против морозов.

- розеточная болезнь сосны. Хвоя на концах побегов приобретает бронзовую окраску.

- побеление верхушки кукурузы. Между жилками листа появляются светло-желтые полосы, развиваются некротические пятна и отверстия. Новонарастающие листья имеют бледно-желтый цвет.

Цинковые удобрения с успехом используются для повышения урожайности ряда культур: сахарной свеклы, озимой пшеницы, овса, льна, клевера, подсолнечника, кукурузы, хлопчатника, цитрусовых, других плодовых, древесных и декоративных растений.

Некоторые растения особенно отзывчивы на цинковые удобрения. При использовании минеральных удобрений, содержащих 20 кг сернокислого цинка на 1 га, наблюдается больший урожай зерна кукурузы, чем от применения любой удобрительной смеси без цинка. При этом кукуруза, больная «побелением верхушки», полностью выздоравливает — исчезает хлороз, появляются нормальные зеленые листья.

studfiles.net

Марганец | справочник Пестициды.ru

Содержание:

  • Физические и химические свойства
  • Содержание в природе
  • В минералах
  • Распределение марганца
  • В почвах
  • Содержание в различных типах почв
  • Лугово-лесные и бурые горно-лесные почвы
  • Торфяные почвы
  • Дерново-подзолистые почвы, желтоземы, красноземы
  • Карбонатный чернозем, серозем
  • Роль в растении
  • Биохимические функции
  • Недостаток (дефицит) марганца в растениях
  • Избыток марганца
  • Фитотоксичность
  • Общие симптомы избытка марганца
  • Огурец
  • Томат
  • Картофель
  • Свекла
  • Содержание марганца в различных соединениях
  • Способы применения марганцевых удобрений
  • Марганизированный суперфосфат
  • Сернокислый марганец (сульфат марганца)
  • Хлористый марганец
  • Марганцевые шлаки и шламы
  • Марганизированная нитрофоска
  • Эффект от применения марганцевых удобрений
  • Корнеплоды сахарной свеклы
  • Люцерна, клевер, тимофеевка и другие травы
  • Картофель, капуста, огурцы, томаты, синие баклажаны
  • Виноград
  • Плодово-ягодные растения
  • Зерновые культуры, силосная кукуруза, хлопчатник

Долгое время черную магнезию (МnO2) считали минералом железа, и только в 1774 году химик Карл Шееле установил, что в ее состав входит не железо, а новый элемент, названный марганцем. Вначале его назвали Magnesium, однако, когда Дэви открыл магний (которому тоже было присвоено аналогичное название), марганцу пришлось «сменить имя», и он стал известен как Manganum.

Марганец – металл; в представлении большинства людей, это значит, что вещество имеет серый, желтый или белый цвет и характерно блестит на свету. Однако марганец – настоящий химический хамелеон: пусть сам он и соответствует внешнему описанию металла, однако его соединения столь многоцветны, что образуют настоящую радугу, зависящую от степени окисления элемента в веществе. Соли марганца (II) бледно-розовые, Mn (III) – вишневые, Mn (IV) – черные. Имея в соединении валентность V, металл дает синий цвет, при степени окисления VI вещества с его содержанием оказываются зелеными, а Мn (VII) ярко-малиновый. Соединения марганца очень интересны не только по цвету, но и по свойствам: перманганат калия оказывает антисептическое действие, оксид Mn2O7 является взрывчатым веществом... Помимо этого, марганец, хоть потребность в нем крайне мала, является одним из незаменимых микроэлементов, необходимых живым клеткам.[8]

Марганец - Марганцевая руда Марганцевая руда

Марганцевая руда

Марганец - Марганцевая руда

Использовано изображение:[16]

Физические и химические свойства

Марганец – химический элемент VII группы периодической системы Менделеева. Атомный номер 25, атомная масса 54,9381. Состоит из одного устойчивого изотопа Mn 55.

В природе в чистом виде элемент не встречается. Содержание марганца в земной коре составляет 0,09 %.

Компактный марганец – металл серебристого белого цвета, хрупкий, подвержен окислению и на воздухе быстро покрывается тонкой пленкой окислов. Эта пленка предохраняет его даже в условиях нагревания. В мелкораздробленном состоянии Mn окисляется достаточно легко. С кислородом способен образовывать ряд окислов (основных, амфотерных и кислотных).

Известны четыре кристаллических модификации, существующие при высоких температурных показателях – более 700 °C. Модификация марганца при комнатной температуре обладает температурой плавления 1244°C, температура кипения 2095°C.

В химических соединениях элемент проявляет положительную валентность от 2 до 7, при этом производные 2- и 7-валентного Mn отличаются прочностью. По мере увеличения валентности усиливаются кислотные свойства элемента, а основные ослабевают.[5]

Содержание в природе

Марганец – один из наиболее распространенных в литосфере элементов. Среднее содержание элемента в земной коре – 1000 мг/кг, в горных породах – 350–2000 мг/кг. Преобладает в почвообразующих породах.[2]

. Марганец входит в состав большого числа минералов, в основном окисного типа. Наиболее распространены пиролюзит (MnO2) и псиломелан (коллоидная форма MnO2). Это окисные минералы с преобладанием четырехвалентного марганца. Кроме того, часто встречаются браунит, манганит, черная охра.

Большинство марганцевых руд обнаруживается в виде вторичных отложений, реже встречаются первичные месторождения.

Крупнейшие месторождения марганцевых руд – Чиатурское и Никопольское (СНГ), также месторождения есть в Индии, Гане, Южно-Африканском Союзе и других местах.[5]

Содержание общего и подвижного марганца (в мг/кг) в почвах стран СНГ, согласно данным:[4]

Почва

Общеий марганец (пределы колебаний)

Подвижный марганец (пределы колебаний)

Подзолистые песчаные

170

(40-330)

590

(60-1700)

Подзолистые глинистые

1270

(230-7200)

590

(60-1700)

Болотные

330

(50-1000)

320

(190-640)

Серые лесные

1000

(149-3980)

460

(115-1360)

Черноземы

840

(200-5600)

430

(54-2100)

Каштановые

960

(600-1270)

410

(210-640)

Засоленные

730

(400-1640)

420

(130-840)

Сероземы

790

(310-3800)

-

Красноземы

1440

(200-4000)

 

Горные

1170

(100-650)

670

(60-1220)

в толще почвы неоднородное. Концентрируется он не только в виде конкреций, но и в виде отдельных примазок, обогащенных другими элементами. Характерно, что отмеченная неоднородность не зависит от типа почв. Наиболее высокое содержание наблюдается в почвах, развитых на основных породах, богатых железом, а также органическим веществом. Кроме того, большое количество данного элемента содержат почвы в аридных и семиаридных районах. Марганец накапливается в различных горизонтах, особенно в тех, которые обогащены оксидом и гидроксидом железа. Но обычно он аккумулируется в верхнем слое почвы из-за его фиксации органическими веществами. марганец встречается в виде солей, оксидов, гидроксидов и комплексных ионов. Оксиды представлены аморфными соединениями, однако в некоторых видах почв обнаружены кристаллические разновидности. Наиболее устойчивы пиролюзит, манганит, гаусманит. Кроме того, марганец образует целый ряд различных минералов, в которых обычно находится в степени окисленности II, III и IV.

В породообразующих силикатных минералах более распространено состояние Mn(II).

В аэробных условиях марганец характеризуется низкой растворимостью. В щелочной среде растворимость снижается, что обусловлено образованием гидроксидов.

В кислом и нейтральном почвенном растворе меньшей, чем гидроксиды, растворимостью обладает гидрофосфат марганца. Его образование контролирует подвижность данного металла в указанных условиях.

Направленность окислительно-восстановительных реакций с участием Mn зависит от деятельности микроорганизмов, участвующих в аккумуляции и окислении данного элемента.[2]

Марганец образует соединения с гуминовыми веществами почв. Соединения марганца с фульвокислотами отличаются повышенной миграционной способностью и доступностью для растений.

Основными барьерами на пути перемещения марганца в почве являются щелочная среда, карбонаты, а также повышенное содержание гумуса.[3]

Содержание в различных типах почв

Содержание марганца в почвах равнинной части России и стран СНГ колеблется от 0,1 до 4 г/кг почвы. В среднем этот параметр составляет около 1 г/кг.

Однако различные виды почв значительно различаются по содержанию общего и обменного марганца. Содержание общего марганца может колебаться от 43 до 1800 мг/кг.

Закатальского района Азербайджана – самое высокое содержание марганца. – самое низкое содержание марганца, особенно в верховом торфе (43 мг/кг). – содержат самое большое количество обменного марганца. При этом в почвах с кислой реакцией содержание обменного марганца прямо зависит от кислотности почвы. Чем выше кислотность, тем больше марганца переходит в обменную форму.

Потребность с/х культур в марганце и симптомы его недостатка, согласно данным:[9][7]

Культура

П

Симптомы недостатка

Общие симптомы

 

Серая пятнистость,

Появление хлоротичных пятен различных тонов, которые расположены между зелеными жилками.

Рост задерживается, но верхняя почка не отмирает.

Зерновые

Озимая пшеница

В

 

Озимая рожь

С

 

Яровая пшеница

В

 

Яровая рожь

С

 

Ячмень

С

 

Овес

В

 

Зернобобовые

Горох

В

 

Бобы

Н

 

Люпин

Н

 

Масличные

Озимый рапс

В

 

Яровой рапс

В

 

Горчица

Н

 

Лен

Н

 

Овощные

Капуста цветная

С

 

Огурец

В

Молодые листья светло-зеленые с желтоватой каемкой.

На пластинке некрозные пятна в виде небольших точек.

Позднее хлорозом охватывается вся поверхность: жилки зеленые, четко выражен мраморный налет

Морковь

С

 

Редис

В

 

Редька

В

 

Томат

С

Желтеют листья среднего яруса и пластинки наиболее удаленных от главной жилки  участков листа.

Обесцвеченные участки буреют и отмирают.

Задержка роста растения.

Капуста белокочанная

С

 

Лук

В

 

Пропашные

Картофель

С

Листья на верхушке стебля между жилками желтовато-зеленые, с большим количеством пятнышек коричневого цвета. Поверхность листа неровная: хлорозные пятна выпячиваются вверх.

Свекла сахарная, кормовая, столовая

В

Листья темно-красные,

Рост растения задерживается 

Кормовые

Клевер луговой

С

 

Люцерна

С

 

Люпин

Н

 

Кукуруза на силос и зеленую массу

С

 

– обменный марганец не обнаружен.

Количество данного элемента в обменном состоянии зависит и от механического состава почв. Более тяжелые почвы содержат больше обменного марганца, чем супесчаные и легкие суглинки. В карбонатном черноземе и сероземе обменный марганец обнаружить не удалось.[4]

Роль в растении

Биохимические функции

Марганец поглощается растениями и распределяется по их органам в результате метаболических процессов. Имеет место и пассивная адсорбция, особенно при высоких и токсичных уровнях его содержания в растворе. Марганец отличается высокой степенью активности поглощения и быстрым переносом в растениях.

В растительных жидкостях и экстрактах он присутствует в виде свободных катионных форм и транспортируется в растениях в виде Mn2+, но во флоэмных экссудатах обнаруживаются комплексные соединения марганца с органическими молекулами. Более низкая концентрация марганца во флоэмном экссудате по сравнению с листовой тканью и слабое перемещение элемента во флоэмных сосудах становится причиной низкого содержания марганца в семенах, фруктах и корнеплодах.

Марганец переносится в основном в меристематических тканях, и его значительные концентрации обнаруживаются в молодых органах растений.[3]

Марганец нужен всем растениям без исключения. Одна из наиболее важных его функций – участие в окислительно-восстановительных реакциях. Mn2+ является компонентом двух ферментов: фосфотрансферазы и аргиназы. Кроме того, он может замещать в других ферментах магний и повышает активность некоторых оксидаз. Последнее происходит, вероятно, вследствие изменения валентности марганца.

Марганец активно участвует в процессе фотосинтеза, а именно, в его кислородообразующей системе, и играет основную роль в переносе электронов. Слабо связанная в хлоропластах форма марганца участвует непосредственно в выделении кислорода, а прочно связанная форма – в переносе электронов.

Роль марганца в восстановлении NO2 не вполне прояснена. Однако существует косвенная связь между активностью описываемого элемента и ассимиляцией азота растениями.[3]

Число истинных марганецсодержащих ферментов ограничено. На сегодняшний день известно более 35 ферментов, активируемых марганцем. Большинство из них являются катализаторами реакций окисления – восстановления, декарбоксилирования, гидролиза.

Марганец активирует некоторые ферменты, катализирующие превращение шикимовой кислоты, биосинтез ароматических аминокислот (тирозин) и прочих вторичных продуктов (лигнина, флавоноидов).

Марганцевозависимые ферменты принимают участие в биосинтезе каротиноидов и стеролов. Ионы марганца активно влияют на структуру и функции хроматина. Марганец оказывает влияние на увеличение содержания негистоновых белков и РНК в диффузной фракции хроматина. Марганец остро необходим для репликации и функционирования ДНК- и РНК-полимераз.[2]

Недостаток (дефицит) марганца в растениях

Симптомы недостатка марганца чаще всего наблюдаются на карбонатных и кислых известкованных почвах. Критическая минимальная концентрация данного элемента в зрелых листьях варьирует от 10 до 25 мг/кг сухой массы.

В условиях недостатка марганца в первую очередь снижается продуцирование фотосинтетического кислорода. Между тем, содержание хлорофилла и сухой массы листа меняется незначительно, но изменяется структура мембран тилакоидов.

При жестком дефиците марганца значительно снижается содержание хлорофилла в листьях, содержание липидов в хлоропластах тоже уменьшается.

Нарушение системы фотосинтеза приводит к резкому уменьшению содержания углеводов в растении, особенно в корневой части. Это является ключевым фактором замедления роста корневой системы в условиях дефицита марганца.

При недостатке марганца содержание белка в растениях почти не изменяется, одновременно увеличивается содержание растворимых форм азота.

Визуально симптомы недостатка марганца у различных видов растений несколько отличаются. Так, у двудольных это межжилковый хлороз, у трав – зеленовато-серые пятна на базальных листочках (серая пятнистость), у свеклы – темно-красный цвет листовой пластинки с пораженными бурыми участками.[2]

При остром недостатке марганца может наблюдаться полное отсутствие плодоношения у капусты, редиса, гороха, томата и других культур. Марганец способствует ускорению общего развития растений.[9]

Данные в таблице представлены согласно:[9][7]

Избыток марганца

. Переизбыток марганца приводит к угнетению и даже гибели растений. Ядовитость данного элемента ярче всего проявляется на кислых дерново-подзолистых почвах, особенно при повышенной влажности, образовании корки и внесении физиологически кислых удобрений без их нейтрализации. Подвижные формы алюминия и железа усиливают вредоносность марганца.[7]:
  • Угнетение роста
  • Гибель растений
  • Молодые жилки листа желтеют, с обратной стороны на жилках – темные точки фиолетового оттенка;
  • Такими же точками покрываются черешки листа и побеги;
  • При усилении избытка элемента лист желтеет, жилки – темно-фиолетовые;
  • На плодах темно-фиолетовые пятна;
  • Рост приостанавливается;
  • Молодые листья мельчают;
  • На листьях раннего возраста – хлороз. На старых – некротические пятна и коричневые жилки.
  • Рост нарушается;
  • Ткани растений отмирают;
  • На стеблях растений появляются продолговатые полосы коричневого цвета;
  • На нижних листьях – хлороз, позднее ткани отмирают, приобретают коричневый цвет, а пятна распространяются между жилками листовой пластинки;
  • Пораженные листья опадают, а пятнистость продвигается вверх;
  • Черешки и стебли водянистые и ломкие;
  • Преждевременное засыхание ботвы;
  • Снижение урожайности.
Марганец - Избыток марганца Избыток марганца

Избыток марганца

Марганец - Избыток марганца

1 – некротические пятна на плодах яблони;

2 – хлороз листьев табака; 3 – некротические пятна на листьях дыни; 4 – усыхание растения (табак)

Использовано изображение:[13][15][14][12]

  • Листья темно-зеленые;
  • Рост угнетенный;
  • Мраморность листьев;
  • Желтоватые округлые пятна

Содержание марганца в различных соединениях

Основной источник марганца для производства удобрений – оксидные марганцевые руды осадочного происхождения. Их подразделяют, в зависимости от содержания железа и основного вещества, на три класса:

  1. марганцевые – 40 % марганца и менее 10 % железа;
  2. железомарганцевые – 5–40 % марганца и 10–35 % железа;
  3. марганцовистые железные – менее 5 % марганца.

В оксидных рудах соединения марганца плохо растворяются в кислотах. Поэтому наиболее эффективным считается использовать для производства удобрений карбонатные марганцевые руды и промышленные отходы.[2]

Последние должны проходить стадию восстановительного обжига и содержать марганец в форме MnO.[2] Обычно это отходы предприятий марганцево-рудной промышленности, содержащие 10–18 % марганца.[2]

Для создания различных форм удобрений используют, как правило, сульфат и оксид марганца. Эти же формы можно применять и самостоятельно.[2]

Содержание марганца в удобрениях, согласно данным:[2][5]

Удобрение

Содержание, %

Марганизированный суперфосфат

1,0-2,0

Марганизированная нитрофоска

0,9

Марганцевые шламы и шлаки

10 -17

Сернокислый марганец (сульфат марганца)

20

Хлористый марганец

17

Способы применения марганцевых удобрений

применяется для внесения в почву. используется для некорневой подкормки, обработки семян, для внесения в почву. используется так же, как и сернокислый марганец, для некорневой подкормки, обработки семян, для внесения в почву. обычно используют для внесения в почву.[2]используется для внесения в почву.[6]

Данные в таблице представлены согласно:[2][6]

Марганец - Симптомы недостатка марганца:</p> хлоротичные пятна между жилками Симптомы недостатка марганца: хлоротичные пятна между жилками

Симптомы недостатка марганца: хлоротичные пятна между жилками

Марганец - Симптомы недостатка марганца:</p> хлоротичные пятна между жилками

1 – листья пшеницы; 2 – листья табака

Использовано изображение:[10][11]

Эффект от применения марганцевых удобрений

. Под влиянием марганцевых удобрений повышается урожайность и сахаристость корнеплодов. . Усиливается рост и развитие, повышается урожайность. . Значительно повышается урожайность. . На карбонатных почвах со щелочной реакцией и очень малым количеством усвояемых форм марганца применение различных марганцевых удобрений повышает урожайность и улучшает качество ягод. . Внесение марганца оказывает положительное воздействие на состояние и развитие плодово-ягодных растений. Повышается урожайность и сахаристость ягод, увеличивается содержание витамина С.[1]. Применение марганцевых удобрений способствует повышению урожайности.

www.pesticidy.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта