Восприятие растением светового сигнала. Короткодневные растения примеры
Восприятие растением светового сигнала
Чтобы растение могло воспринимать длину дня, ему необходимо достигнуть определенной фазы готовности к цветению, компетентности.
Например, на стадии семядольных листьев или первых настоящих листьев растение еще не способно воспринять сигнал к цветению.
Как растение “ощущает” световой сигнал? Проанализируем следующий опыт. Если всю хризантему, кроме стебля или верхушечной почки, накрыть не пропускающим свет колпаком и освещать необходимое для зацветания время, то цветения не будет. Но если освещать сформировавшийся, зрелый лист, то из верхушечной почки вскоре образуется соцветие. Можно сделать вывод, что длину дня воспринимает лист. Он и передает сигнал верхушечной почке, из которой развивается соцветие.
Согласитесь, очень похожий опыт проделали Ч. и Ф. Дарвины, обнаружившие, что восприятие света верхушкой проростка приводит к изгибанию растения в сторону источника освещения. Позже был открыт ауксин, синтезирующийся в верхушке проростка и вызывающий изгибание. За восприятие же длины дня у хризантемы отвечает лист. Как вы думаете, какой гормон участвует в этой реакции? Свое предположение вы сможете проверить чуть позже.
А можно ли сигнал к цветению передавать от одних растений к другим? Оказывается, да. Если цветущую верхушку одного растения срезать и привить на другое, это растение тоже зацветет: даже если привой (то, что прививают) длиннодневный, а подвой (растение, на которое прививают) короткодневный. Успешная прививка говорит о том, что в цветущем растении вырабатываются вещества, необходимые для цветения. Цветение подвоя может вызвать прививка облиственного побега и даже одного листа от цветущего растения.
Опыты, о которых я рассказала, были поставлены полвека назад Михаилом Христофоровичем Чайлахяном. Этот замечательный ученый всю свою долгую научную жизнь посвятил изучению регуляции цветения. Он был одним из известнейших специалистов в этой области. Его работы побудили многих физиологов растений к изучению цветения.
Продолжая опыты Чайлахяна, американский исследователь Хамнер показал, что короткодневное растение дурнишник без освещения листьев не зацветет. Но если изменить световой режим лишь для одной восьмой части зрелого листа, то этого уже будет достаточно для цветения!
Много опытов провел Чайлахян, прежде чем заявил, что фактор, заставляющий растения цвести, имеет гормональную природу. Этот фактор Чайлахян назвал флориген (флори — цветок, ген — рождающий). Он показал, что флориген состоит из двух компонентов — известного вам гиббереллина и антезина.
Антезин пока, к сожалению, не выделен, но имеются косвенные доказательства его существования.
У короткодневных растений на длинном дне синтезируется много гиббереллина, но очень мало антезина; поэтому флориген не образуется и растения не цветут, у длиннодневных растений на коротком дне достаточно антезина, но мало гиббереллина; поэтому они тоже не способны цвести. Изменение длины дня приводит к синтезу недостающего компонента, и мы наблюдаем цветение.
Длиннодневное растение, оставленное на коротком дне, не цветет из-за нехватки гиббереллина. Обработав же листья длиннодневного растения гиббереллином, можно добиться цветения без воздействия фотопериода.
Интересно, что опрыскивание листьев некоторых короткодневных растений раствором сахарозы может вызвать их цветение в полной темноте.
Судя по всему, необходимая длина светового периода определяется потребностями растения в продуктах фотосинтеза. Но до конца понять эту взаимосвязь ученые пока не могут.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
www.activestudy.info
Длинно-короткодневные растения - Справочник химика 21
Как мы видели в гл. 12, цветение многих растений регулируется длиной дня при участии фитохрома и эндогенных ритмов. Садоводы используют это для управления цветением некоторых ценных видов растений, чтобы поставлять их на рынок в благоприятное время. Например, хризантемы — короткодневные растения в природе они зацветают при уменьшении длины дня осенью. Помещая над растениями источник искусственного света, можно предотвратить их цветение. За 6 недель до продажи растений искусственный свет выключают, и если естественные дни короткие, будет инициироваться цветение. Таким образом можно получать цветы на протяжении всей зимы. Цветки хризантемы можно также получить летом, закрывая растения от света на определенную часть дня. [c.422]
Важный шаг вперед в понимании всего этого бьш сделан тогда, когда стало ясно, что важна длина не светлого, а темного периода суток. Таким образом, короткодневные растения на самом деле оказываются длинноночными . Если выращивать эти растения в условиях короткого дня, прерывая длинную ночь небольщим светлым периодом, то цветения не дождаться. Напротив, длиннодневный вид в таких условиях зацветет. Вместе с тем эффект длинного дня не снимается прерыванием короткой ночной темноты. Три основные группы растений по отнощению к фотопериоду рассмотрены в табл. 16.6. [c.275]
Уменьшение содержания крахмала при выращивании картофеля в северных районах обусловлено рядом причин. Одна из них — короткий вегетационный период, вследствие чего ботва часто погибает от ранних заморозков, и в клубнях не успевают закончиться процессы накопления крахмала. Кроме того, важное значение имеет продолжительность дня в период клубнеобразования. Картофель относится к короткодневным растениям, и длинный день в период клубнеобразования может задерживать накопление крахмала. Низкие температуры з северных районах также могут замедлять процесс биосинтеза крахмала в клубнях. [c.426]
Дурнишник - короткодневное растение, следовательно, в обычных условиях его цветение индуцируется длинными темповыми периодами. В опытах было изучено, как влияет на цветение прерывание длинной ночи (12 ч) красным и красным/дальним красным светом на протяжении трех последовательных длинных ночей. Интенсивность цветения измерялась в баллах от 1 до 8 в зависимости от его стадии . Полученные данные приведены в табл. 16.7. [c.275]
Органы, воспринимающие фотопериод, и органы, реагирующие на него, у растений часто обособлены друг от друга. Примером может служить короткодневное растение дурнишник, которое зацветает, если непрерывный темновой период длится более 9 ч. Предположим, что мы создаем для какой-то части растения условия короткого дня, помещая ее в светонепроницаемый контейнер, в то время как остальное растение находится в условиях длинного дня. Если бы не было эффекта передачи, можно было бы ожидать, что цвести будет участок, существовавший при коротком дне. Однако на самом деле цветки образуются из всех почек, даже тех, которые находились в условиях длинного дня. Очевидно, что какой-то сигнал передается из одной части растения в другую. [c.375]
РЕГУЛЯЦИЯ ЦВЕТЕНИЯ РАСТЕНИЙ ДЛИННО-КОРОТКОДНЕВНЫХ ВИДОВ С ПОМОЩЬЮ ГИББЕРЕЛЛИНА И НЕПРЕРЫВНОЙ ТЕМНОТЫ [c.204]
Эффективный период темноты для короткодневного растения можно сделать неэффективным путем простой уловки — достаточно немного укоротить его (всего на несколько минут) или прервать в середине вспышкой слабого света. Это говорит о том, что растение может измерять продолжительность темноты с точностью до нескольких минут и что фотопериодизм связан с работой необычайно чувствительной оветовоспринимающей системы. Короткодневное растение дурнишник цветет при режиме 15 ч света 4-9 ч темноты, но не будет цвести, если темный период составляет 8,5 ч или же 9-часовой темный период прерывается коротким световым периодом (рис. 11.2). Всего лишь один подходящий период темноты может привести к цветению, даже если последующие темные периоды недостаточно длинны. Этот феномен известен как фотопериодичёская индукция. У многих растений длинного дня имеет место аналогичный, но обратно направленный феномен прерывание слишком длинного темного периода вспышкой света приводит к индукции и к заложению цветков. Таким образом, растения длинного и коротко- [c.333]
Подытоживая результаты приведенных здесь опытов, следует подчеркнуть, что минимальные величины фотопериодической и химической индукции цветения растений длинно-короткодневных [c.192]
У других растений реакция на фотопериод может быть количественной, а не качественной. Такие растения могут зацветать и при длинном, и при коротком дне, но при определенных фотопериодах образуют лучше развитые цветки или большее число цветков. При другом варианте количественной реакции— у рождественского кактуса и ряда других короткодневных растений — зацветание ускоряют низкие температуры (в соче- [c.374]
ВЛИЯНИЕ ГИББЕРЕЛЛИНА И ИНГИБИТОРОВ РОСТА НА ЦВЕТЕНИЕ РАСТЕНИЙ ДЛИННО-КОРОТКОДНЕВНЫХ ВИДОВ [c.197]
Как правило, характер реакции различных растений на изменение длины дня определяется их происхождением, условиями, в которых шло формирование свойств того или иного вида или экотипа растений. Например, в длиннодневную группу входят большей частью растения северных широт, тогда как в короткодневную — южные растения. [c.596]
Цветение растений — результат множества трудноуловимых метаболических изменений, приводящих к появлению цветочных почек. В 1920 г. Гарднер и Аллард [130] установили, что многие растения проявляют особую чувствительность к освещению, причем цветочные почки у них формируются только при определенной длине дня. В последующих работах было установлено, что критическим периодом является продолжительность ночи. В качестве примера одного из наиболее чувствительных к свету растений можно привести сахарный тростник. В 1938 г. Аллард отнес сахарный тростник к промежуточному типу, но в более поздних работах было показано, что это короткодневное растение, образующее цветки только в рамках критической длины дня. Для зацветания представителям этого класса необходим период непрерывной темноты. Для предотвращения цветения у сахарного тростника обычно достаточно даже кратковременного прерывания темноты светом низкой интенсивности (538,2 лк/мин) [1, 131, 132]. [c.23]
Согласно М. X. Чайлахяну, завершающие оксидазы представлены у растений длинного дня по преимуществу металлопротеи-дами, тогда как у короткодневных растений — ферментами флавиновой группы. [c.609]
Короткодневный сорт сои Билокси так чувствителен к свету, что индуктивный эффект длительных темновых периодов можн снять даже минутным облучением с помощью ламп накаливания (без фильтра) в середине ночи. По этой причине X. Борт-вик и С. Хендрикс с сотрудниками пришли к выводу, что это растение было бы идеальным объектом для выяснения вопроса о том, какие длины волн наиболее эффективно предотвращают инициацию цветения а эти сведения в свою очередь могли бы помочь в идентификации фоторецепторного пигмента, участвующего в контроле цветения. Поэтому они определили спектр действия для данного процесса, используя большой спектрограф для одновременного облучения групп растений светом с разной длиной волны (рис. 11.3). Полученные спектры действия для ингибирования цветения короткодневных растений сои и дурнишника и для активации цветения длиннодневных растений Ногйеит (ячмень) и Нуозсуатиз (белена) оказались поразительно сходными (рис. 11.4). Во всех случаях был обнаружен максимум активности в красной области спектра (около 660 нм) при почти полной неэффективности других областей. Сходство спектров позволяло считать вероятным, что зацветание растений как короткого, так и длинного дня контролируется одним и тем же пигментом. Анализ спектра действия привел к предположению, что поглощающий пигмент сходен с пигментом [c.334]
У некоторых растений, чувствительных к фотопериоду, реакция на длину не прерываемой светом ночи представляет собой феномен типа всё или ничего . Без надлежащих индуцирующих темновых периодов такие растения остаются в вегетативном состоянии неопределенно долго. У короткодневного растения дурнишника для индукции некоторой репродуктивной активности достаточно одного длительного периода темноты, хотя большее число фотоиндуктивных циклов может давать более энергичную реакцию цветения (рис. 12.15). Другие растения короткого дня, такие как соя, нуждаются для инициации цветения примерно в четырех последовательных фотоиндуктивных циклах, а некоторые виды —даже в большем их числе. [c.374]
Фотопериодизм. Понятия фотопериод и фотопериодизм были введены в науку американскими физиологами растений У. Гарнером и Г. А. Аллардом (1920— 1923). В зависимости от реакции на длину дня, ускоряющей зацветание, растения делятся на длиннодневные (ДДР), короткодневные (КДР), растения, нуждающиеся в чередовании разных фотопериодов,— длинно-короткодневные (ДКДР) и коротко-длиннодневные (КДДР), а также на нейтральные по отношению к длине дня растения (НДР). К ДДР относятся, в частности, хлебные злаки, многие крестоцветные, укроп и др., к КДР — рис, соя, дурнишник, конопля, к НДР — гречиха, горох и т. д. ДДР распространены в основном в умеренных и приполярных широтах, КДР — в субтропиках. [c.372]
Половое размножение цветковых растений начинается с индукции цветения, которая может определяться возрастом, а может зависеть от яровизации и (или) фотопериода. По отношению к фотопериодическо-му воздействию растения делятся на нейтральные, длиннодневные, короткодневные, длинно-короткодневные и др. Фотопериодическое воздействие воспринимается листьями и осушествляется при участии фитохрома. Предполагается, что в листьях образуется гормон цветения — флориген, в состав которого входят гиббереллин и антезин. Длиннодневные растения имеют достаточное количество антезина, но им недостает гиббереллина, который синтезируется на длинном дне. Короткодневные растения, наоборот, не испытывают недостатка в гиббереллине, но им необходим антезин, образующийся в условиях короткодневного фотопериода. Флориген поступает в вегетативные апексы и индуцирует их превращение в апексы флоральные (эвокация). Дифференцировка пола у двудольных растений определяется генотипом и гормональным балансом. Дальнейшие этапы полового размножения включают в себя развитие цветка, опыление и оплодотворение, формирование семян и плодов. [c.389]
Исследовав темновые потребности сои, Хамнер перешел к изучению ее световых потребностей. Используя постоянный 16-часовой темновой период и меняя длину светового, он обнаружил, что реакция цветения усиливается с увеличением длины светового периода приблизительно до 12 ч (рис. 9.6). Дальнейшее увеличение светового периода вело к уменьшению числа образующихся цветков, а при 20-часовом световом периоде цветения вообще не наблюдалось, хотя этот световой период давался при длинном (16-часовом) темновом периоде. Таким образом, для зацветания сои должны быть соблюдены следующие условия 1) ежедневный темновой период должен превышать 10 ч и 2) продолжительность светового периода не должна превышать определенной величины. Конечно, в естественных условиях 10-часовой или больший темновой период может сопровождаться только 14-часовым или меньшим световым периодом, поэтому в природе реакция цветения регулируется, по-видимому,, в большей степени длиной темнового периода, чем светового. Па этой причине для короткодневных растений больше подошло бы название длинноночные . У некоторых КДР, например у Xant Ыит, длинные фотопериоды не ингибируют цветение, поскольку оно определяется исключительно длиной темнового периода. [c.330]
Для выяснения вопроса о ролн корней в фотопериодизме и цветении длинно-короткодневных видов нами был поставлен опыт с растениями длинно-короткодневного вида Б. daigremoniianum [Чайлахян и др., 1970]. Известно, что при перестановке взрос- [c.196]
Проведенный опыт показывает, что у длинно-короткодневного вида В. daigremoniianum, как и у короткодневиого вида —периллы красной и длиннодневного вида — капусты абиссинской, корни и продукты их метаболизма не влияют на наступление и скорость цветения растений. [c.197]
Из всего этого следует, что неспособность растеинй длинно-короткодневных впдов к цветению прп перестановке их с короткого дня на длинный связана, по-впдимому, с неустойчивостью и быстрым разрушением антезинов в условиях длиииого дпя. Вероятно, неспособность растений коротко-длиниодиевных видов к цветению при перестановке пх с длинного дпя на короткий связана с неустойчивостью и разрушением гиббереллинов в условиях короткого дня. [c.208]
Гиббереллины обладают необычайно высокой и устойчивой активностью индукции цветения у множества растений — длиннодневных, длинно-короткодневных, коротко-длииподневных видов, озимых форм, двухлетпиков, многолетников и других видов. Среди фитогормоиов гиббереллины занимают особое место, так как они представлены различными формами, имеющими общую структуру, в то время как ауксины и цитокинины представлены лишь несколькими соединениями, а АБК и этилен одним. Это придает значительную пластичность гиббереллинам в степени их эффекта на цветение различных видов. [c.306]
В целом с помощью листовой модели исследовались доиорно-акцепторные механизмы в регуляции цветения растеиий. При этом выяснялась роль листа как продуцента трофических и гормональных веществ, стимулирующих цветение в моделях, где сохранялась связь между стеблевой почкой и листом, находящимся на благоприятном фотопериоде. В моделях, где один из листьев находился на благоприятной длине дня, а другой на неблагоприятной длине дня, изучалась роль листа как продуцента веществ, ингибирующих цветеиие. Наконец, в моделях с использованием растений с двухступенчатой фотопериодической реакцией — длинно-короткодневных и коротко-длиниодиевных видов, [c.438]
Исследования, проведенные на растениях короткого дня, показали, что для дх перехода к образованию репродуктивных органов (пветенню) важна длительность не дни, а ночи. Иначе говоря, для короткодневных растений необходим темновой период определенной длины. Если в середине темнового периода дать хотя бы вспышку [c.279]
Иная картина складывается у короткодневных растений. У этой группы растений содержание гиббереллинов достаточно высоко при любой длине дня. Именно поэтому дополнительпое экзогенное внесение этого фитогормона ее оказывает влияния, однако у них пе хватает группы фитогормонов — антезииов, которые образуются именно на коротком дне. Поскольку в листьях цветущих растений как ко-282 [c.282]
Исследовались продукты фотосиптетической ассимиляции меченной С двуокиси углерода у короткодневных и длиннодневиых растений при разных фотопериодах [135]. При этом показано, что длина дня не оказывает влияния на состав продуктов фотосинтеза у растений с различным фотопериодом. Установлены сходство и различия в продуктах фотосинтеза у растений различных видов [136]. Наиболее обстоятельно исследовано фотосинтетическое включение С в кетокислоты растений [c.84]
chem21.info
Экофизиологическая роль фотопериодизма у растений
Приднестровский государственный университет им. Т.Г. Шевченко
Кафедра ботаники и экологии
Курсовая работа по физиологии растений
На тему: Экофизиологичсекая роль фотопериодизма у растений
Тирасполь, 2009
Оглавление
- В в е д е н и е -
1. Понятие фотопериодизма
2. Локализация фотопериодической реакции
3. Практическое использование явления фотопериодизма
Заключение
Литература
- В в е д е н и е -
Огромное влияние на жизнедеятельность растений и животных оказывает соотношение светлого (длина дня) и темного (длина ночи) периодов суток в течение года. Реакция организмов на суточный ритм освещения, выражающаяся в изменении процессов их роста и развития, называется фотопериодизмом. Регулярность и неизменная повторяемость из года в год данного явления позволила организмам в ходе эволюции согласовывать свои важнейшие жизненные процессы с ритмом этих временных интервалов. Под фотопериодическим контролем находятся практически все метаболические процессы, связанные с ростом, развитием, жизнедеятельностью и размножением растений.
Центральным моментом развития организма является переход от вегетативного роста к репродуктивному развитию (у цветковых растений – к цветению). Условия среды могут влиять на реализацию генетической информации и тем самым ускорять или замедлять наступление определенных этапов развития, в первую очередь переход растения к цветению. На основании выше сказанного приходим к выводу, что развитие растений совершается при взаимодействии генетических ᴨᴏᴛенций и факторов внешней среды. Основными факторами среды, оказывающими влияние на переход растения к репродукции – к цветению, является температура и продолжительность дневного освещения.
1. Понятие фотопериодизма
Понятия фотопериод и фотопериодизм были введены в науку американскими физиологами растений У. Гарнером и Г.А. Аллардом (1920-1923).
Фотопериодизм – ритмические изменения морфологических, биохимических и физиологических свойств и функций под влиянием чередования и длительности свеᴛᴏʙых и темновых интервалов.
ФОТОПЕРИОДИЧЕСКИЕ ГРУППЫ - группы растений с различной фотопериодической реакцией, названные по длине дня, ускоряющей их зацветание.
Учитывая зависимость от этого растения делятся на:
1. Нейтральные растения (НР) - длина дня не оказывает заметного влияния, растения цветут по достижении определенного возраста или размера.
bigreferat.ru
Фотопериодизм - 1.docx
Доступные файлы (1):
содержание1.docx
Реклама MarketGid: Приднестровский государственный университетим. Т.Г.Шевченко.
Кафедра ботаники и экологии.
Регистрационный № ____ выполнила студентка III курса
От ___________________ 302 группы
Допущена к защите: ____ естественно-географического
Защищена на «__» факультета
«___» ____________2009г Гарбалы Светлана.
Руководитель:
Преподаватель: Ионова
Людмила Григорьевна
Тирасполь,2009г.
Оглавление.
Введение ……………………………………………………..3
I. Понятие фотопериодизма………………………………………….4
II.Локализация фотопериодической реакции……………………….8
III.Практическое использование явления фотопериодизма………12
Заключение…………………………………………………………...16
Литература……………………………………………………………18
Введение.
Огромное влияние на жизнедеятельность растений и животных оказывает соотношение светлого (длина дня) и темного (длина ночи) периодов суток в течение года. Реакция организмов на суточный ритм освещения, выражающаяся в изменении процессов их роста и развития, называется фотопериодизмом. Регулярность и неизменная повторяемость из года в год данного явления позволила организмам в ходе эволюции согласовывать свои важнейшие жизненные процессы с ритмом этих временных интервалов. Под фотопериодическим контролем находятся практически все метаболические процессы, связанные с ростом, развитием, жизнедеятельностью и размножением растений.
Центральным моментом развития организма является переход от вегетативного роста к репродуктивному развитию ( у цветковых растений – к цветению). Условия среды могут влиять на реализацию генетической информации и тем самым ускорять или замедлять наступление определенных этапов развития, в первую очередь переход растения к цветению. Таким образом, развитие растений совершается при взаимодействии генетических потенций и факторов внешней среды. Основными факторами среды, оказывающими влияние на переход растения к репродукции – к цветению, является температура и продолжительность дневного освещения.
I. Понятие фотопериодизма.
Понятия фотопериод и фотопериодизм были введены в науку американскими физиологами растений У. Гарнером и Г.А. Аллардом (1920-1923).
Фотопериодизм – ритмические изменения морфологических, биохимических и физиологических свойств и функций под влиянием чередования и длительности световых и темновых интервалов.
^ — группы растений с различной фотопериодической реакцией, названные по длине дня, ускоряющей их зацветание.
В зависимости от этого растения делятся на :
- ^ (НР) - длина дня не оказывает заметного влияния, растения цветут по достижении определенного возраста или размера. Обычно нейтральные растения происходят из экваториальных областей.
- ^ (ДДР) - зацветают только в том случае, если длина дня больше некоторой критической величины. ДДР происходят из умеренных областей с равномерным увлажнением по сезонам.
- ^ (КДР) - зацветают только тогда, когда длина дня меньше, чем некоторая критическая величина. Они происходят из субтропических и тропических областей с зимним максимумом увлажнения. (Есть и растения с количественной реакцией на короткий день: цветение ускоряется на коротком дне, хотя длина дня не играет принципиальной роли).
- ^ (ДКДР) - для цветения необходима определенная последовательность: сначала длинные дни, а затем короткие. Эти растения настроены на благоприятный осенний период.
- Короткодлиннодневные растения (КДДР) - для цветения необходима смена коротких дней на длинные (но не наоборот). Благоприятный период у этой группы ассоциируется с весенним сезоном.
- Среднедневные растения (СДР) - для цветения необходим определенный интервал длины дня: ни при увеличенной, ни при
- уменьшенной длине дня эти растения не цветут. Это - сравнительно редкий тип регуляции цветения.
- ^ (АФПР) - для цветения неблагоприятен узкий интервал, а при большей или меньшей длине дня цветение наступает. Этот тип физиологических ответов также достаточно редок.
Свет и его роль в жизни растений .
Живая природа не может существовать без света, так как солнечная радиация, достигающая поверхности Земли, является практически единственным источником энергии для поддержания теплового баланса планеты, создания органических веществ фототрофными организмами биосферы, что в итоге обеспечивает формирование среды, способной удовлетворить жизненные потребности всех живых существ.
Биологическое действие солнечного света зависит от его спектрального состава, продолжительности, интенсивности, суточной и сезонной периодичности.
Солнечная радиация представляет собой электромагнитное излучение в широком диапазоне волн, составляющих непрерывный спектр от 290 до 3 000 нм. Ультрафиолетовые лучи (УФЛ) короче 290 им, губительные для живых организмов, поглощаются слоем озона и до Земли не доходят. Земли достигают главным образом инфракрасные (около 50% суммарной радиации) и видимые (45%) лучи спектра. На долю УФЛ, имеющих длину волны 290—380 нм, приходится 5% лучистой энергии. Длинноволновые УФЛ, обладающие большой энергией фотонов, отличаются высокой химической
активностью. В небольших дозах они оказывают мощное бактерицидное действие, способствуют синтезу у растений некоторых витаминов, пигментов, а у животных и человека — витамина D; кроме того, у человека они вызывают загар, который является защитной реакцией кожи. Инфракрасные лучи длиной волны более 710 нм оказывают тепловое действие.
В экологическом отношении наибольшую значимость представляет видимая область спектра (390—710 нм), или фотосинтетически активная радиация (ФАР), которая поглощается пигментами хлоропластов и тем самым имеет решающее значение в жизни растений. Видимый свет нужен зеленым растениям для образования хлорофилла, формирования структуры хлоропластов; он регулирует работу устьичного аппарата, влияет на газообмен и транспирацию, стимулирует биосинтез белков и нуклеиновых кислот, повышает активность ряда светочувствительных ферментов. Свет влияет также на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цветения и плодоношения, оказывает формообразующее воздействие.
Световой режим любого местообитания зависит от его географической широты, высоты над уровнем моря, состояния атмосферы, растительности, сезона и времени суток, солнечной активности и т. д. Поэтому разнообразие световых условий на нашей планете чрезвычайно велико: от таких сильно освещенных территорий, как высокогорья, пустыни, степи, до сумеречного освещения в водных глубинах и пещерах. В разных местообитаниях различаются не только интенсивность света, но и его спектральный состав, продолжительность освещения, пространственное и временное распределение света разной интенсивности и т. д. Соответственно, разнообразны и приспособления растений к жизни при том или ином световом режиме.
Экологические группы растений по отношению к свету.
По отношению к количеству света, необходимого для нормального развития, растения подразделяют натри экологические группы.
Светолюбивые, или гелиофиты, с оптимумом развития при полном освещении; сильное затенение действует на них угнетающе. Это растения открытых, хорошо освещенных местообитаний: степные и луговые травы,
прибрежные и водные растения (с плавающими листьями), большинство культурных растений открытого грунта, сорняки и др.
Тенелюбивые, или теневые, с оптимальным развитием в пределах 1/10—1/3 от полного освещения, т. е. для них приемлемы области слабой освещенности. К тенелюбам относятся растения нижних затененных ярусов сложных растительных сообществ — темнохвойных и широколиственных лесов, а также водных глубин, расщелин скал, пещер и т. д. Тенелюбами являются и многие комнатные и оранжерейные растения. В лесах Беларуси и России типичными теневыми растениями являются копытень европейский, ветреница дубравная, сныть обыкновенная, чистотел большой, кислица обыкновенная, майник двулистный и др.
Теневыносливые растения имеют широкую экологическую амплитуду выносливости по отношению к свету. Они лучше растут и развиваются при полной освещенности, но хорошо адаптируются и к слабому свету. К ним относится большинство видов зоны смешанных лесов — ель, пихта, граб, бук, лещина, бузина, брусника, ландыш майский и др.
Адаптация растений к световому режиму.
Под влиянием различных условий светового режима у растений выработались соответствующие приспособительные качества. Прежде всего это касается величины листовых пластинок: у гелиофитов по сравнению с теплолюбивыми они обычно более мелкие. Ориентация листьев у светолюбов вертикальная или имеет разный угол по отношению к солнечным лучам, чтобы избежать избыточного света и перегрева. Листья теневыносливых растений, напротив, ориентированы к свету всей поверхностью листовой пластинки и расположены так, чтобы не затенять соседние листья (листовая мозаика).
У многих гелиофитов поверхность листовой пластинки блестящая, покрыта светлым восковым налетом, густо опушена, что способствует отражению палящих солнечных лучей или ослаблению их действия.
Световые и теневые растения имеют четкие различия и по анатомическому строению. Так, у гелиофитов хорошо развиты осевые органы с оптимальным соотношением ксилемы и механических тканей, менее сложные по форме листья с характерной дифференцировкой мезофилла на столбчатый и губчатый, высокой степенью жилкования, большим числом устьиц на
единицу поверхности листа. У светолюбивых растений количество хлоропластов, приходящихся на единицу площади листовой пластинки, в несколько раз больше, чем у тенелюбивых. Сами хлоропласты у гелиофитов более мелкие и светлые (с малым содержанием хлорофилла), способные к изменению ориентировки и перемещениям в клетке: на сильном свету они занимают постенное положение и становятся «ребром» к направлению лучей, что защищает хлорофилловое разрушения.
Теневыносливые растения встречаются в местообитаниях с различным световым режимом благодаря увеличению ассимилирующей поверхности, снижению интенсивности дыхания и уменьшению относительной массы нефотосинтезирующих тканей, увеличению размеров хлоропластов и концентрации хлорофилла. Кроме того, в листьях наблюдается слабая дифференцировка на столбчатый и губчатый мезофилл или таковая совсем отсутствует, отмечается сравнительно малое количество устьиц и т. д.
Таким образом, способность воспринимать длину дня и реагировать на нее широко распространена в мире живых существ. Это означает, что живые организмы способны ориентироваться во времени, т. е. они обладают биологическими часами. Другими словами, для многих организмов характерна способность ощущать суточные, приливные, лунные и годичные циклы, что позволяет им заранее готовиться к предстоящим изменениям среды.
Правильно подобрав режимы освещения, температуры и другие факторы, наиболее соответствующие биоритмам, можно заметно повысить жизнедеятельность и продуктивность разводимых животных и растений, причем без каких-либо дополнительных затрат. Например, благодаря увеличению в теплицах, оранжереях и парниках светового дня до 12—15 ч зимой выращивают овощные культуры и декоративные растения, ускоряют рост и развитие рассады. Продлив за счет искусственного освещения световой период зимой, можно увеличить яйценоскость кур, уток, гусей, регулировать размножение пушных зверей на зверофермах.
Влияние качества света на развитие.
Много внимания было уделено исследователями качеству света, необходимого для цветения растений. Красный свет воспринимается растениями как свет в процессе развития, а сине-фиолетовая часть спектра – как темнота. Однако при увеличении интенсивности синего света он тоже
начинает восприниматься растениями как свет. Опыты показывают, что если выровнять интенсивность света по числу квантов, то красный и синий свет становиться одинаково эффективным.
Важно выяснить в каких условиях проходят соответствующие изменения у растений короткого и длинного дня. Как показали опыты, во время пребывания растения в темноте на небольшой отрезок времени, в несколько минут, прервать темноту, то цветения не наступает. Того же самого можно достигнуть, давая этим растениям мигающий свет, где интервалы между светом равны секундами или минутами. У развития и важным является лишь то, чтобы в сумме число освещения соответствовало числу часов, характерному для длинного дня[4].
II. Локализация фотопериодических реакций.
Фотопериодические воздействия воспринимаются главным образом листьями, а не апексами побега. У большинства растений максимальной чувствительность к фотопериоду обладают листья, только что прекратившие рост. Для дурнишника, зацветание которого индуцируется одним короткодневным фотопериодом, для фотоиндукции зацветания достаточно нескольких квадратных сантиметров листа. Основную роль в восприятии фотопериода листом играет фитохром. Предполагается, что его темновое превращение может служить способом измерения времени по типу песочных часов. Вспышка красного света устанавливает фазу эндогенного ритма.
Необходимость большой поверхности листьев и достаточной интенсивности света для перехода к цветению у многих растений объясняется потребностью растущих меристем в ассимилятах. Устранение СО2 из воздуха во время светового периода снижает инициацию цветения у некоторых короткодневных растений и длиннодневных растения.
У фотопериодически нейтральных растений переход к зацветанию обеспечивается возрастным изменениям.
Таким образом, сущность фотопериодической реакции заключается в том, что циклическое чередование света и темноты переводит растение из вегетативного в репродуктивное состояние.
Фотопериодизм, представляет собой приспособительную реакцию, позволяющую растениям зацветать в определённое, наиболее благоприятное
время года. Как правило, длиннодневные растения северные, а короткодневные – южные. Для короткодневных растений более благоприятны повышенные ночные температуры, тогда как для длиннодневных – пониженные. Фотопериодическая реакция затрагивает не только процесс развития растений, но и вызывает некоторые изменения ростовых процессов.
Растения сильно различаются по числу фотопериодических циклов (числу суток с определённой длинной дня), которые вызывают затем переход к цветению одним растениям достаточно одного цикла, иначе говоря, воздействия определенной длинной дня в течение одних суток. Другим растениям необходимо получить определенную длину дня в течении 25 суток (25 циклов). Таким образом, фотопериодическое воздействие необходимо растительному организму лишь на протяжении определенного периода, после чего растение зацветает уже при любом соотношении дня и ночи. Это явление называют фотопериодической индукцией.
Исследования, проведенные на растениях короткого дня, показали, что для их перехода к образованию репродуктивных органов (цветению) важна длительность не дня, а ночи. Иначе говоря, для короткодневных растений необходим теневой период определенной длины. Если в середине темнового периода дать хотя бы вспышку света, то растение короткого дня к цветению уже не переходит. Так, если 14-часовая ночь прерывается освещением на 10 мин, то короткодневные растения не зацветают. Для длиннодневных растений нужен именно длинный световой период.
Фотопериодическое воздействие вызывается светом малой интенсивности. Так, достаточно прервать темновой период суток вспышкой света интенсивностью в 3-5 люкс, чтобы короткодневные растения не зацвели. Даже лунный свет препятствует переходу к цветению короткодневных растений. Фотосинтез при таких интенсивностях освещения еще не идет. Эти данные показывают относительную независимость явлений фотопериодизма от фотосинтеза. Вместе с тем, по мнения М.Х. Чайлахяна, переходу растений к цветению должен предшествовать определенный период нормального протекания фотосинтеза.
Фотопериодическая реакция растений наиболее успешно проходит лишь в лучах определенной длины волны, что доказано опытами американских ученых Хендрикса и Борствика. Наиболее активными в смысле задержки цветения сои оказались красные лучи (длина 600Нм). Сине-фиолетовые
лучи(используемые при фотосинтезе) оказались не активными. Таким образом спектр действия фотопериодической реакции оказался совпадающим со спектром действия фитохрома. Это подтверждается тем, что действие вспышки красного света (Фк) на задержку цветения короткодневных растений снимается действием дальнего красного света (Фдк). В ночной период Фдк под влиянием дальних красных лучей превращается вФк , и это способствует началу реакций, приводящих короткодневные растения к цветению. При вспышке красного света Фк превращается в Фдк, и это ингибирует реакции, приводящие к цветению. Следовательно, для перехода к цветению короткодневных растений нужно меньшее содержание активного фитохрома, поглощающего дальние красные лучи, тогда как для перехода к цветению длиннодневных необходимо его более высокое содержание.
Для фотопериодического действия рецепторным(воспринимающим) органом является лист. В опытах, проведенных с короткодневными растениями, в частности хризантемой, воздействию короткого дня подвергали либо листья, либо обезлиственные побеги. С этой целью указанные части растения закрывали на определенное время пакетами из непроницаемой для света бумаги. Оказалось, что растение зацветало в том случае, если воздействию укороченного дня подвергали только листья или листья вместе с точкой роста. Те растения, у которых воздействию короткого дня подвергали только точку роста или обезлиственные побеги, не зацветали.
Таким образом, именно листья являются органами, воспринимающими фотопериодическое воздействие, под влиянием которого происходят ответные изменения в точке роста. Результатом этих изменений является превращение вегетативной почки в цветочную. Это дало основание М.Х. Чайланяну предположить, что в листе вырабатываются вещества (гормоны), которые вызывают переход к цветению. Оказалось далее, что возникающие в листе вещества по преимуществу локализуются в том побеге, где они образуются, так как передвижение идет от листьев к точке роста, расположенной на том же побеге.
Интересные результаты дали опыты с прививками. Оказалось, что, если побеги с листьями короткодневного растения ( например хризантемы), выдержанного на коротком дне, привит на растение этого же типа, выдержанного на длинном дне, то последнее зацветает. Это подтвердило положение, что в листьях первого растения образуется гормональные вещества, которые при прививке вызывают изменения – развитие цветочной почки - у второго растения. Важные результаты были получены при
прививках длиннодневных растений на короткодневные и обратно. Оказалось, что при прививке растений топинамбура (растение короткого дня) на цветущее растение подсолнечника (растение короткого дня) топинамбур зацветал при длинном дне. Сходные результаты были получены в опытах в которых длиннодневные растения прививались на цветущее короткодневное. Таким образом, исследователи показали, что листья, выдержанные на соответствующем фотопериоде, содержат вещества, вызывающие цветение в независимости от условий, в которых содержаться остальные растения. При этом вещества, вызывающие цветение, идентичны как для короткодневных, так и для длиннодневных растений[3].
III. Практическое использование явления фотопериодизма.
Размножение клубнями.
Способность к клубнеобразованию формируется в процессе онтогенеза постепенно и проявляется после завершения ювенильного этапа в процессе клубнеобразования вначале развиваются столоны – стебли с измененной геотропической реакцией(1-я фаза), а затем на них формируются клубни (2-я фаза). Наиболее существенное влияние на клубнеобразование оказывают температура и длина дня. При этом у одной группы растений клубни образуются только в условиях короткого дня, а у другой – как при коротком, так и при длинном дне. В опятах с прививками растений, не образующих клубни, на клубненосы (например, томатов на картофель, подсолнечника на топинамбур) было выяснено, что стимул клубнеобразования у фотопериодически чувствительных клубненосов вырабатывается в листьях, что он не обладает видоспецифичностью и имеет гормональную природу. Оказалось, что в этом процессе взаимодействуют основные группы фитогормонов: ауксин подавляет клубнеобразование; гиббереллины, индуцирующие рост стеблей, усиливают рост столонов и тем самым в определенном отношении способствуют росту клубней. Наиболее значительное влияние на формирование клубней оказывают цитокинины. В условиях короткого дня в корнях и столонах наблюдается высокое содержание цитокининов, а в листьях – абсцизинов. При длинном дне в листьях выше содержание гиббереллинов, а в стеблевых почках – ауксинов.
Согласно М.Х.Чайлахяну, механизм гормональной индукции клубнеобразования у видов, образующих клубни на коротком дне, включает
в себя две фазы. В начале из листьев в нижние стеблевые почки поступают гиббереллины и абсцизины. Поскольку при коротком дне соотношение их сдвинуто в сторону преобладания абсцизинов (АБК/ГА), ускоренный рост столонов, вызываемый гиббереллином, тормозиться. Во время второй фазы образуются клубни, рост которых регулируется более высокой концентрацией цитокинина в корнях и столонах по сравнению с ауксином (ЦК/ИУК).
В условиях длинного дня при неблагоприятном для клубнеобразования соотношении гормонов ( в листьях ГА/АБК, в корнях – ИУК/Цк) происходит образование и рост корней и столонов. Таким образом, стимулом клубнеобразования, вырабатываемым в листьях, служит определенное соотношение гиббереллинов и абсцизинов, влияющее на первую фазу клубнеобразования.
Развитие и рост клубней поддерживается притоком к ним продуктов фотосинтеза, образуемых в листьях. При этом интенсивность транспорта ассимилятов в клубни коррелирует с содержанием в них ауксинов и гиббереллинов, создающих оттрагирующую силу клубней. Именно поэтому при интенсивном клубнеобразвании замедляется рост надземных частей растения.
У сортов картофеля, выращиваемых в условиях короткого дня, вначале идет рост надземных частей, а затем – интенсивное столоно-и клубнеобразование. Для сортов, образующих клубни и при длинном дне, характерен более протяженный период вегетации, когда развивается надземная масса, а формирование клубней начинается с ускорением дня во второй половине лета[1].
Размножение луковицами.
Если большинство клубненосов образует клубни на коротком дне, то для луковичных растений, напротив, характерно формирование луковиц на длинном дне. Возможно, это связано с эколого-географическим происхождением разных видов. Регуляция образования луковиц изучено гораздо слабее, чем регуляция клубнеобразования. Органами, рецептирующими действие фотопериода, в данном случае также являются листья. В опытах Ф.Э.Реймерса выдерживание даже части листьев на коротком дне замедляло формирование луковицы. Фотопериодический стимул может передаваться от одного побега лука к другому только при
условии, что второй побег обезлиствен. Если же побеги с листьями подвергаются воздействию разных фотопериодов, то луковицу формирует, лишь побег, находившийся на длинном дне. При образовании луковиц фотпериодический стимул, как при клубнеобразовании и цветении, по-видимому, является комплексом фитогормонов. Так, формирование луковицы сопровождается уменьшением активности ауксинов, а повышение из концентрации ведет к росту листьев и луковичных чешуй в длину. Однако вегетативное размножение луковичных растений связано не столько с формирование луковицы, сколько с образованием на ней пазушных побегов – будущих дочерних луковичек, «деток». Они закладываются в период зимнего покоя луковиц. Обнаружено, что под действием кинетина, ГА3 и ИУК, нанесенных на донце луковицы, значительно усиливается образование почек, формирующих дочерние луковички. Тот же эффект наблюдается при повышении температуры зимнего хранения луковиц или при удалении цветоносного побега. Прорастание клубней и луковиц происходит по истечении периода покоя. У луковичных растений в отличии от семян и почек, ростовые процессы полностью не прекращаются. В период покоя, хотя и очень медленно, формируются новые органы. Выход из состояния окоя ускоряется после обработки луковиц низкой температурой, т.е. после яровизации. Состояние покоя луковиц поддерживается высоким содержанием в них АБК, а при прорастании снижается уровень ингибиторов и повышается содержание ауксинов, цитокининов и гиббериллинов.
Знание принципов регуляции состояния покоя клубней и луковиц позволяет предотвращать их прорастание в период хранения, например лука и картофеля, с помощью многих ингибиторов роста, таких, как гидразид малеиновой кислоты[1].
Регуляция цветения у покрытосеменных растений.
В любом онтогенезе происходит постепенная реализация генетической информации, заключенной в ДНК. Молекулярные основы наследственной информации, связанные с редупликацией ДНК (хранением), транскрипцией (передачей) и трансляцией (реализацией) генетической информации, очень универсальны и обнаруживают большую общность во всем мире растительных организмов. В то же время выявляется широкое разнообразие видовой и фазовой специфичности регуляции пути от ДНК до белка, которая, в частности, зависит от условий среды.
Соответственно, кроме фотопериодической реакции, регуляторными механизмами развития являются температурные и возрастные факторы. Все эти условия не исключают, а дополняют друг друга.
В результате световых и темновых реакций фотопериодизма синтезируются гормональные регуляторы цветения. В результате этих преобразований в точках роста происходят изменения вегетативного морфогенеза на репродуктивный. В случае, если происходит блокировка любого из звеньев ДНК – РНК - белок, цветение не наступает.
Рецепторная роль листа в фотопериодической реакции заставляет предполагать, что у всех растений это свойство связано с каким-то фундаментальным процессом. Эту общую основу ищут в нескольких направлениях, а именно в роли фитохрома или эндогенного циркадного (суточного) ритма или отводят основную роль окислительно- восстановительным процессам листа, а именно взаимодействию процессов фотосинтеза и дыхания.
По этому воззрению, на свету получают большое значение процессы, связанные с восстановлением СО2 и фотофосфолирированием, а в темноте – с окислительным фосфорилированием.
Таким образом, в листе происходит функциональное взаимодействие митохондрий и хлоропластов, регулируемое светом и темнотой, сопряженное с биосинтезом гормональных веществ.
Таково дальнейшее течение гормональной концепции развития растений, многие звенья которой еще пока гипотетичны. Все опыты по влиянию фитогормонов и других физиологически активных веществ представляет большой интерес с точки зрения того, что развитие растений обусловлено исторически в эволюционном процессе, однако проявляются различно, в зависимости от внешних условий, в связи с приспособлением растений к окружающим условиям, т.е. к длине дня, температуре и т.д.[4]
С. С. Шаин экспериментально доказал, что при посеве растений длинного дня радами с севера на юг, а короткого дня- с востока на запад они лучше развиваются и дают больший урожай. Растения, высеянные рядами с севера на юг, лучше освещаются, потому что лучи падают перпендикулярно к ним в утренние и вечерние часы, когда сравнительно больше длинноволновой фракции спектра. В полдень, когда в солнечном свете сравнительно много
коротковолновых лучей, растения в рядах затеняют друг друга. Следовательно, посевы с рядами, расположенными с востока на запад, получают больше коротковолновых лучей в течении дня, чем при посеве с севера на юг.
В опятах лаборатории фотосинтеза Украинской сельскохозяйственной академии при пунктирных посевах кукурузы с ориентацией рядов с севера-востока на юго-запад КПД фотосинтеза за вегетационный период повышается на 0,15-0,21% по сравнению с ориентацией рядов с севера на юг. Урожайность зерна кукурузы при этом возросла на 10-13%. Современные методы измерения фотосинтетически активной радиации показали, что при высоте солнца над горизонтом 20о и в течении дня спектральный состав ФАР почти не изменяется. Кроме того, большая продуктивность посевов с определенной ориентацией рядов обуславливается не только условиями освещения. При разной ориентации рядов растений условия корневого питания и водного режима также будут неодинаковыми, что, в свою очередь, влияет на поглощение и использование ФАР.
Повышенную продуктивность посевов с определенной ориентацией рядов канадский ученый У. Питтман объясняет реакцией корневой системы на направленность магнитных силовых линий Земли. В результате этого создаются лучшие условия растений. Направленность рядов имеет большое значение при посевах и посадках лесных пород, а также при уборках, уходе за молодняком. В южных широтах и в условиях резко выраженного климата широтное распоряжение рядов деревьев имеет положительное значение, так как лучше обеспечивается их взаимная защита от избыточной радиации и перегрева. В северных широтах более эффективно меридиальное расположение рядов, что способствует лучшему прогреванию почвы в междурядьях[5].
Заключение.
Под контролем фотопериода находятся самые разнообразные процессы. Так, у многих растений от длины дня зависит перестройка работы меристемы побега и образование цветков. При определенной длине дня возникают и почки у многих деревьев. Земляника образует расселительные побеги - усы - при наступлении длинных дней. Сбрасывание листьев у репчатого лука и тюльпанов происходит на длинном дне, а у березы и осины - на коротком. Образование запасающих органов (кочанов у капусты, клубней у диких видов картофеля и топинамбура) также зависит от длины дня. Растения
пустынь могут изменять листья С-3 типа на С-4 и наоборот, а водные растения - сменяют подводные листья на надводные, получая из внешней среды фотопериодический сигнал. Из всего выше сказанного понятно что, фотопериодизм играет очень важную роль в жизни растений.
Литература.
- Полевой В.В. «Физиология растений». М.: Высшая школа. 1989.
- Э.Ф. Шабельская. « Физиология растений». Минск.: Высшая школа.1987.
- Н.И.Якушкина. «Физиология растений». М.: Просвещение.1980.
- П.А. Генкель. «Физиология растений». М.: Просвещение. 1975.
- С.И. Лебедев «Физиология растений». М.: ВО «Агропромиздат» 1988.
- Р. Ван Дер Вин, Г. Мейер «Свет и рост растений». М.:,1962г.
- Рубин Б.А. «Курс физиологии растений». М.: Москва, 1982г.
- Чайлахян М.Х. «Фотопериодическая и гормональная регуляция клубнеобразования у растений». М.: 1984г.
gendocs.ru