Клонирование растения. Клонирование растений в домашних условиях

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Клонирование животных и растений. Клонирование растения


Клонирование растений в домашних условиях — Elfterra.ru

В отличие от животных, явление клонирования в царстве растений существует уже много лет. Можно, конечно, вырастить растение из семячка, но на много быстрее сделать его клон. При этом при помощи клонирования можно засадить всю свою гидропонную установку лучшими представителями и притом абсолютно бесплатно.

Клонирование это способ размножения растений, называемый вегетативное размножение растений. Вегетативный способ работает, так как конец обрезанного листочка – это большое количество неспециализированных клеток, которые называются мозоль.  При подходящих условиях, мозоль будет расти, делится и образовывать различные специализированные клетки (корень, стебель), в конце концов, образуя новое растение. Хорошая статья как клонировать растения есть здесь.

Семенное размножение некоторых растений затруднено ввиду низкой доброкачественности и длительной всхожести семян, а также медленного роста сеянцев. Так же семена, полученные от гибридов F1 сильно отличаются по своим характеристикам от самих гибридов F1, и обычно, не в лучшую сторону. Следовательно, вегетативное размножение является оптимальным способом размножения. Самый распространенный способ вегетативного размножения растений стеблевыми черенками. При этом важное значение имеет правильная заготовка черенков, уход за ними, подготовка субстрата и т. д. Например, теплые парники с электроподогревом и туманообразующими установками чаще всего дают максимальный эффект укоренения. Опыт показал, что в теплых парниках укореняемость черенков на 15 — 25% выше, чем в холодных. Кроме того, у черенков из теплых парников развивается более мощная корневая система.

Повышает процент укоренения черенков, улучшает развитие корневой системы, сокращает сроки укоренения использование регуляторов роста. К традиционным регуляторам роста относятся ауксины: индолилуксусная кислота, индолилмасляная, нафтилуксусная, янтарная кислота и марганцевокислый калий. Не следует смешивать перманганат калия с другими веществами от этого эффект может быть прямо противоположный. Так же следует помнить, что при передозировке корнеобразователей происходит резкое торможение роста корней, вплоть до гибели растений.

Существуют и другие активаторы корнеобразования, такие как янтарная кислота. Так же используют обмакивание в мед. Следует следить,  чтобы мед не был перетопленым. Так же используют сок алоэ. Лист алоэ срезают, заворачивают в фольгу и кладут на 2-3 дня в холодильник. Затем из него выжимают сок. Сок алоэ является слабым, но абсолютно безвредным стимулятором корнеобразования.

Доступ к запрашиваемому ресурсу ограничен по решению суда или по иным основаниям,

установленным законодательством Российской Федерации

Проверить наличие доменного имени и (или) указателя страницы сайта, сетевого адреса в Едином реестре можно в разделе

Указатель страницы и (или) доменное имя включены в Реестр организаторов распространения информации в сети «Интернет» и сайтов (или) страниц сайтов в сети «Интернет», на которых размещается общедоступная информация и доступ к которым в течение суток составляет более трех тысяч пользователей сети «Интернет».

Проверить наличие доменного имени и (или) указателя страницы сайта в Реестре можно в разделе «Просмотр реестра» на

Черенки или клоны — это генетические копии их родителя — Материнского растения. Благодаря тому, что клон имеет идентичный генетический набор, что и его прародитель, садовод может сфокусироваться на изменении других аспектов системы выращивания, чтобы получать более продуктивные урожаи.

Клонирование также позволяет обойти «лотерею», присущую выращиванию из семян. К тому же, это относительно простой процесс, и важнейший инструмент при коммерческом выращивании. Здесь мы дадим простые советы, которые позволят вам начать заниматься клонированием.

Как и в любом начинании, ключом к успеху получения черенков будет хорошая подготовка.

Вам следует подготовоить следующие инструменты:

1. Острый нож. Острое лезвие минимизирует разрыв живой ткани растения в процессе срезания. Чем меньший разрыв вы вызовете, тем проще будет восстановиться и черенку, и материнскому растению. Так как вам придётся работать со всех сторон материнского растения и среди его ветвей, то есть смысл покупать короткий нож с длинной рукояткой. Скальпель будет хорошим решением, но и маленький кухонный нож тоже будет работать. Ножницам же свойственно ломать стебель с обеих сторон, и их использования лучше избегать.

2. Субстрат для укоренения. На рынке существует множество различных субстратов для укоренения. Есть смысл попробовать несколько из них, чтобы найти тот, с которым у вас получаются лучшие результаты. Кубики минеральной ваты, пожалуй, наиболее просты в использовании, но вы можете предпочесть и торфяные таблетки или старые добрые горшочки с землёй.

3. Проращиватель. Проращиватели продаются в магазинах для садоводов, часто снабжённые лотками для рассады. Вы можете выбрать любой по своему вкусу.

4. Лотки с ячейками. Продаются в тех же магазинах для садоводов. Их можно разрезать, добиваясь нужных размеров, чтобы эффективно использовать отведённое под рассаду место.

5. Корневые гормоны. Честно говоря, гормоны стимуляции роста корней не обязательны для клонирования. Но на практике они сильно увеличивают шансы на успех. Корневые гормоны ускоряют процесс преобразования клеток, который лежит в основе процесса клонирования. К тому же смесь корневого стимулятора защищает клон от различных заражений.

Эти смеси выпускаются в виде порошка, жидкости или геля. Потратьте время на изучение того, что в ваших руках работает лучше. Но я всё же посоветовал бы делать выбор в сторону геля, нежели порошка. Ещё корневые гормоны имеют короткий срок хранения, поэтому покупайте и открывайте упаковку такого объёма, который сможете использовать за раз.

6. Сосуд для корневого стимулятора. Макание ваших черенков непосредственно в баночку с корневым стимулятором может привести к распространению болезней между наборами клонов, поэтому так делать не рекомендуется. Короткий стакан прекрасно подойдёт для жидкости и геля, а блюдце или крышечка — для порошка.

7. Материнское растение, с которого вы будете срезать черенки.

Скорость, но не спешка — важный фактор в подготовке черенков.

Равно как и чистота. Не забудьте продезинфицировать все инструменты и рабочее место перед тем, как начнёте. Расположите инструменты так, чтобы их было удобно брать, дабы минимизировать время на срезание и посадку черенков.

Это может казаться смешным, но я люблю сначала «вхолостую» проделать все движения, прежде чем начну. Нет ничего хуже, чем осознать, что вам нужно что-нибудь найти посреди работы, и если это случается, то скорее всего вы потеряете срезанный черенок. Черенки высыхают невероятно быстро, так что если вы занимаетесь ими в гроу-руме, убедитесь, что вы выключили все вентилляторы, а так же избегайте работы под прямыми лучами мощных ламп.

Посадка черенков впритык друг к другу — верный путь к проблемам.

Это способствует распространению болезней, и усложняет работу с растениями.

Расположение в шахматном порядке — популярный способ использовать пространство рассадного лотка. Относительно небольшая потеря места перевешивает возможные неприятности, возникающие при слишком близкой посадке.

Выбранный вами субстрат должен быть смочен тёплой водой перед тем, как вы что-либо в него посадите.

Есть смысл смачивать субстрат сильно разбавленным питательным раствором: не более 1/4 нормальной концентрации.

Перед тем, как садить, удалите лишнюю жидкость из субстрата: он не должен быть чрезмерно сырым и пропитанным. Пробки и кубики из минеральной ваты следует отжимать до удаления жидкости. Почвосмесь можно отжать с помощью мелкой хлопчатобумажной ткани (например через старый но чистый носок).

Если в вашем субстрате ещё нет отверстий или лунок под посадку, то проделайте их сами на грубину сантиметр-полтора от основания.

Когда всё это сделано, можно приступать к подготовке черенков.

Черенки, срезаемые с вершины растения склонны быстрее пускать корни, нежели те, которые срезаются снизу.

То, на что это влияет на практике, является темой для многочисленных споров среди зелёной братии.

Чем меньше будет черенок, тем больше времени займёт его прорастание, и тем сложнее будет с ним работать.

Каждый черенок должен иметь пару здоровых молодых побегов, три-четыре листа, и адекватной длины ствол, чтобы растение смогло стоять в субстрате. 5-10 сантиметров длины — оптимальный размер черенка: 2 см пойдёт в субстрат, и как минимум ещё два сантиметра стебля должно быть над поверхностью.

Одинаковое удаление среза между двумя узлами побега даст лучшие шансы на продолжение здорового роста как побегу, так и материнскому растению.

Срезание стебля под 45 углом градусов увеличивает площадь поверхности среза, тем самым увеличивая корневой потенциал черенка.

Совершая срез, старайтесь сделать его чистым. Не тяните и не дёргайте растение, иначе вы можете сломать стебель между пальцами. Минимизируя стресс растения, вы увеличиваете шансы на здоровый рост черенка и восстановление материнского растения.

Возможно понадобится удалить нижние листья черенка. В любом случае эти листья скорее всего сами отомрут. Удаляя листья, старайтесь уменьшить площадь среза.

Сразу после срезания черенка важно действовать быстро.

Если в стебле формируется воздушный пузырь, то он будет блокировать способность черенка получать питание, что вероятнее всего приведёт к его смерти. Если вы срезаете сразу несколько черенков за раз, то важно поместить их в воду до того, как они будут высажены. Профессионалы вообще срезают черенки под водой, дабы минимизировать шансы образования воздушных пузырьков в стебле.

В идеале сразу после среза следует макнуть черенок в корневой стимулятор, а затем сразу поместить его в субстрат.

Поместите черенок в смесь стимулятора роста корней на 10-15 секунд.

Следите чтобы срез и ближайшая часть стебля хорошо смочились.

Будьте очень аккуратны, когда высаживаете черенок в субстрат.

Если черенок не входит легко, не мучайте его. Попробуйте увеличить лунку длинным тонким инструментом, а затем снова вставьте растение под другим углом. Убедитесь, что нижний конец стебля не достиг дна субстрата. Добейтесь того, чтобы растение надёжно стояло, слегка утрамбовав субстрат вокруг стебля.

Если вы новичок в этом деле, то наверняка у вас возникнут сложности. Если вы нечаянно согнули или прижали черенок, то не тратьте время, пытаясь его сохранить. Скорее всего он не выживет. Примите этот опыт на заметку, и двигайтесь дальше.

Удалите всю лишнюю влагу из лотка. Накройте крышкой, на которой закройте все вентилляционные отверстия, если они имеются. Крышка должна быть запотевшей от влаги.

Ваши черенки не будут чувствовать себя хорошо под прямым светом яркой лампы.

Найдите тенистый уголок в вашей комнате для выращивания или теплице, либо накройте проращиватель каким-нибудь тонким материалом, чтобы рассеять свет.

Как альтернативу, вы можете попробовать использовать лампы меньшей мощности для освещения ваших черенков. 400 Ватт — это слишком, а вот 250 Ватт флюоресцентного света будет идеально.

Если же ни один из этих вариантов вам не подходит, то хотя бы убедитесь, что яркая лампа расположена как минимум в метре от верхушек черенков.

Ваш успех зависит от количества внимания, которое вы уделяете растениям.

Приглядывайте за черенками на первых порах. Для начала, субстрат всегда должен быть достаточно влажным. Черенки, страдающие от недостатка влаги, скоро засохнут и погибнут. При излишней влаге черенки быстро превратятся в рассадник плесени и грибной инфекции. Каждый раз, когда вы подходите к черенкам, слейте лишнюю воду с лотка и с крышки проращивателя. Потом мягко опрыскайте растения, и аккуратно верните крышку на место. Если субстрат слишком сухой, то смочите его водяным раствором, слейте или аккуратно отожмите лишнюю влагу, и поместите обратно в лоток.

Потребуется до двух недель, чтобы черенки развили достаточно корней.

Проверяйте субстрат на предмет появления белых корней снизу и с боков. Перед тем как высаживать растение в большую ёмкость, дождитесь, когда появится как минимум несколько корней. Чем ближе к концу начального цикла проращивания черенков, тем более они будут нуждаться во влаге, и возможно будут необходимы поливы в течение дня.

Вначале черенки могут вянуть, что совершенно естественно, и должно пройти через пару дней. Удаляйте любые нижние листья, которые завяли и пожелтели.

  • Цветы и растения

elfterra.ru

Клонирование животных и растений — википедия орг

Естественное клонирование животных и растений часто происходит в результате бесполого и вегетативного размножения, а также в результате амейотического партеногенеза.

Искусственное клони́рование живо́тных и расте́ний — новый вид человеческой деятельности, возникший в конце XX-го — начале XXI-го века, состоящий в воспроизведении старых и создании новых биологических организмов, связанных с изучением генома, предполагающий вмешательство в его структуру, нацеленный на решение множества практических задач (кроме научных).

Термины «клон», «клонирование» первоначально использовались в микробиологии и селекции, после — в генетике, в связи с успехами которой и вошли в общее употребление. Надо добавить, что их популяризации в значительной мере способствовали также киноискусство и литература.

Следует иметь в виду, что точное воспроизведение животного или растения как при естественном, так и при искусственном клонировании невозможно. Новый организм в любом случае будет отличаться от материнского за счет соматических мутаций, эпигенетических изменений наследственного материала, влияния окружающей среды на фенотип и случайных отклонений, возникающих в ходе онтогенеза.

В начале пути

  • 1826 г. — Открытие яйцеклетки млекопитающих русским эмбриологом Карлом Бэром
  • 1883 г. — Открытие сущности оплодотворения (слияния пронуклеусов) немецким цитологом Оскаром Гертвигом.
  • 1943 г. — Журнал Science сообщил об успешном оплодотворении яйцеклетки «в пробирке».
  • 1962 г. — Профессор зоологии Оксфордского университета Джон Гёрдон клонирует шпорцевых лягушек[3] (более доказательные опыты — в 1970 г.).
  • 1978 г. — Рождение в Англии Луизы Браун, первого ребёнка «из пробирки».
  • 1985 г., 4 января — в одной из клиник северного Лондона родилась девочка у миссис Коттон — первой в мире суррогатной матери (зачата не из яйцеклетки миссис Коттон).
  • 1987 г. — В СССР в лаборатории Бориса Николаевича Вепринцева (Л. М. Чайлахян и др.) из клетки эмбриона клонирована мышь с использованием метода электростимулируемого слияния клеток[4].
  • 1987 г. — Специалисты Университета имени Дж. Вашингтона, использовавшие специальный фермент, сумели разделить клетки человеческого зародыша и клонировать их до стадии тридцати двух клеток (бластомеров).

Клонирование амфибий (Дж. Гёрдон)

Первые успешные опыты по клонированию животных были проведены в 1960-е годы английским эмбриологом Дж. Гёрдоном (J. Gurdon) в экспериментах на шпорцевой лягушке. В этих первых опытах для пересадки использовались ядра клеток кишечника головастиков. Они были подвергнуты критике, так как в кишечнике головастиков могли сохраниться первичные половые клетки. В 1970 г удалось провести опыты, в которых замена ядра яйцеклетки на генетически помеченное ядро из соматической клетки взрослой лягушки привела к появлению головастиков и взрослых лягушек. Это показало, что техника трансплантации ядер из соматических клеток взрослых организмов в энуклеированные (лишенные ядра) ооциты позволяет получать генетические копии организма, послужившего донором ядер дифференциированных клеток. Результат эксперимента стал основанием для вывода об обратимости эмбриональной дифференцировки генома по крайней мере у земноводных.

Клонирование млекопитающих

Клонирование млекопитающих возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo. Клонирование взрослых животных достигается в результате переноса ядра из дифференцированной клетки в неоплодотворённую яйцеклетку, у которой удалено собственное ядро (энуклеированная яйцеклетка) с последующей пересадкой реконструированной яйцеклетки в яйцевод приёмной матери. Однако долгое время все попытки применить описанный выше метод для клонирования млекопитающих были безуспешными. Одними из первых успешное клонирование млекопитающего (домовой мыши) осуществили советские исследователи[5] в 1987 г. Они использовали метод электропорации для слияния энуклеированной зиготы и клетки эмбриона мыши с ядром.

Значительный вклад в решение этой проблемы был сделан шотландской группой исследователей из Рослинского института и компании «PPL Therapeuticus» (Шотландия) под руководством Яна Вильмута (Wilmut). В 1996 году появились их публикации по успешному рождению ягнят в результате трансплантации ядер, полученных из фибробластов плода овцы, в энуклеированные ооциты.[6] В окончательном виде проблема клонирования животных была решена группой Вильмута в 1996 г., когда родилась овца по кличке Долли — первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы.[7] В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова), а также взятых у мёртвых, замороженных[8] на несколько лет, животных. Появление технологии клонирования животных вызвало не только большой научный интерес, но и привлекло внимание крупного бизнеса во многих странах. Подобные работы ведутся и в России, но целенаправленной программы исследований не существует. В целом технология клонирования животных ещё находится в стадии развития. У большого числа полученных таким образом организмов наблюдаются различные патологии, приводящие к внутриутробной гибели или гибели сразу после рождения, хотя при клонировании овец в 2007 году выжил каждый 5-й эмбрион (в случае с Долли — понадобилось 277).

В 2004 году американцы начали коммерческое клонирование кошек, а в апреле 2008 года Южнокорейские таможенники приступили к дрессировке семи щенков, клонированных из соматических клеток лучшего корейского розыскного пса породы канадский лабрадор-ретривер. По мнению южнокорейских ученых, 90 % клонированных щенков будут удовлетворять требованиям для работы на таможне, тогда как лишь менее 30 % обычных щенков проходят тесты на профпригодность.[9][10]

В Китае фирмой BGI уже производится в промышленных масштабах клонирование животных для медицинских исследований [11]. Предполагается, что подобная методика в будущем будет использована для выращивания в свиньях запасных органов для трансплантации человеку.

Клонирование может быть использовано для воссоздания естественных популяций вымерших животных. Несмотря на наличие определённых проблем и трудностей, первые результаты в данном направлении уже имеются.

Клонирование испанского козерога

В Испании в 2009 г. родился клонированный детеныш вымершего подвида пиренейского горного козла букардо (Capra pyrenaica pyrenaica). Сообщение о клонировании появилось в январском номере журнала Theriogenology.

Данный подвид пиренейских козлов полностью исчез к 2000 году (причины вымирания точно не известны[13]). Последний представитель вида, самка по имени Селия (Celia), погибла в 2000 году. Но до того (в 1999-м г.) Хосе Фольк (Jose Folch) из Исследовательского центра сельского хозяйства и технологий Арагона (CITA) взял у Селии несколько клеток кожи с целью анализа и сохранения в жидком азоте. Этот генетический материал был использован в первой попытке клонировать вымерший подвид.

Экспериментаторы переносили ДНК букардо в яйцеклетки домашней козы, лишенные собственного генетического материала. Полученные эмбрионы подсаживали суррогатным матерям — самкам других подвидов испанского козла или гибридных видов, полученных скрещиванием домашних и диких коз. Таким образом было создано 439 эмбрионов, 57 из которых были имплантированы в суррогатные матки. Всего семь операций закончилось беременностью и только одна коза, в конце концов, родила самку букардо, умершую спустя семь минут после рождения от проблем с дыхательной системой.

Несмотря на неудачное клонирование и смерть клонированного козлёнка, многие ученые полагают, что такой подход может быть единственным способом спасения видов, стоящих на грани вымирания. Это вселяет в ученых надежду на то, что подвергающиеся опасности и недавно вымершие виды можно будет воскресить с использованием замороженных тканей.[14][15]

Клонирование бантенгов

В 2004 году на свет появилась пара бантенгов (диких быков, обитавших в Юго-Восточной Азии), клонированных из клеток животных, умерших более 20 лет назад. Два бантенга были клонированы из уникального «замороженного зоопарка» Сан-Диего, созданного ещё до того, как люди поняли, что клонирование вообще возможно. Произведшая клонирование американская компания Advanced Cell Technology сообщила, что в нём использовались клетки животных, которые умерли в 1980 году, не оставив потомства.

Бантенгов клонировали, перенеся их генетический материал в пустые яйцеклетки обычных домашних коров; из 16 зародышей до рождения дожили только два.[16][17]

Императорский дятел

В последний раз императорского дятла видели в Мексике в 1958 году. С тех пор орнитологи пытаются найти следы этой популяции, но безуспешно. Около десяти лет назад появились даже слухи, что птица ещё живёт на планете, но и они не подтвердились.

Однако в музеях остались чучела птицы. Научный сотрудник Дарвиновского музея Игорь Фадеев считает, что если операцию по выделению ДНК провести со всеми чучелами, которые находятся в разных странах мира, то дятла можно будет воскресить. В разных музеях мира на сегодняшний день осталось лишь десять чучел императорского дятла.

Если проект увенчается успехом, то в недалеком будущем на нашей планете, возможно, вновь появится императорский дятел. В Государственном Дарвиновском музее уверены, что последние методы молекулярной биологии позволяют выделить и воспроизвести ДНК этих птиц.[18]

Дронт

В июне 2006 года голландские учёные обнаружили на острове Маврикий хорошо сохранившиеся останки дронта — вымершей исторически недавно (в XVII веке) нелетающей птицы. Ранее наука не располагала останками птицы. Но теперь появилась определенная надежда на «воскрешение» этого представителя пернатых.[19]

Клонирование гигантских птиц

Планы по клонированию исчезнувших гигантских птиц были поставлены под сомнение в результате исследований учёных Оксфордского университета. Выделив участки ДНК из останков вымерших птиц, учёные обнаружили, что их генетический материал настолько разрушен, что современная технология не позволяет провести полноценное клонирование. Цель научных работ состояла в возрождении вымерших несколько веков назад новозеландского страуса моа, а также мадагаскарского эпиорниса (птицы-слона).

Образцы ДНК были взяты из фрагментов тканей, сохранившихся в музеях. Однако учёные не смогли получить достаточную по своей длине цепочку ДНК, чтобы провести клонирование. Тем не менее, некоторые учёные считают, что в ближайшие годы будет разработана технология восстановления утраченных частей ДНК путём вшивания туда «заплат» из ДНК близкородственных видов.[20].

Позже исследовательская группа Майкла Бьюнса (Michael Bunce) из университета Мердока (Австралия) разработала эффективный метод извлечения ДНК из скорлупы ископаемых яиц, показавший свою эффективность на скорлупе яиц моа и эпиорниса возрастом до 19,000 лет включительно, что делает планы по клонированию гигантских ископаемых птиц более реалистичными.[21][22]

Клонирование мамонта

Лаборатория Джорджа Черча (George Church) из Гарвардского университета (США) в середине октября 2014 года объявила о начале проекта по «воскрешению» мамонтов. Шансы на воскрешение мамонтов появились благодаря появлению в 2012 году революционной технологии «перезаписи» генома CRISPR/CAS, которая позволяет точечным образом менять и удалять произвольные гены в ДНК млекопитающих. Используя эту методику, Черч и его коллеги смогли успешно вставить в геном клеток кожи слона гены, предположительно отвечающие за типичные признаки мамонта — маленькие уши, толстый слой подкожного жира, длинную шерсть и бурый цвет. Клетки пережили эту трансформацию и сейчас ученые думают над тем, как их можно превратить в настоящую кожную ткань[23].

В марте 2015 года было объявлено, что американские генетики впервые смогли успешно пересадить часть генов мамонта, извлеченных из фрагментов ДНК гигантов ледникового периода, в геном клетки обычного африканского слона и размножить их. Таким образом, генетики совершили первый шаг на пути к воскрешению мамонта или к созданию мамонтоподобного слона. (См. также раздел Возможности клонирования вымерших животных статьи Плейстоценовый парк).

В мае 2015 года в журнале «Current Biology» была опубликована статья о расшифровке генома двух мамонтов[24]. Возможно, новые данные найдут применение при клонировании мамонтов, но пока специалисты не смогут обойтись без яйцеклеток современных слонов[25].

www-wikipediya.ru

Клонирование животных и растений.

Поиск Лекций

Естественное клонирование животных и растений часто происходит в результате бесполого и вегетативного размножения, а также в результате амейотического партеногенеза.

Искусственное клонирование животных и растений — новый вид человеческой деятельности, возникший в конце XX-го начале XXI-го века, состоящий в воспроизведении старых и создании новых биологических организмов, связанных с изучением генома, предполагающий вмешательство в его структуру, нацеленный (кроме научных) на решение множества практических задач.

Термины клон, клонирование первоначально использовались в микробиологии и селекции, после — в генетике, в связи, с успехами которой и вошли в общее употребление. Надо добавить, что их популяризации в значительной мере способствовали также киноискусство и литература.

Следует иметь в виду, что точное воспроизведение животного или растения как при естественном, так и при искусственном клонировании невозможно. Новый организм в любом случае будет отличаться от материнского за счет соматических мутаций, эпигенетических изменений наследственного материала, влияния окружающей среды на фенотип и случайных отклонений, возникающих в ходе онтогенеза.

Создать животных и растения с заданными качествами всегда было чем-то чрезвычайно заманчивым потому, что это означало создать организмы уникальнейшие и нужнейшие, устойчивые к болезням, климатическим условиям, дающие достаточный приплод, необходимое количество мяса, молока, плодов, овощей и прочих продуктов. Использование технологии клонирования предполагает уникальную возможность получать фенотипически и генетически идентичные организмы, которые могут быть использованы для решения различных теоретических и прикладных задач, стоящих перед биомедициной и сельским хозяйством. В частности, использование клонирования могло бы способствовать изучению проблемы тотипотентности дифференцированных клеток, развития и старения организмов, злокачественного перерождения клеток. Благодаря технологии клонирования предполагается появление ускоренной генетической селекции и тиражирования животных с исключительными производственными показателями. В сочетании с трансгенозом клонирование животных открывает дополнительные возможности для производства ценных биологически активных белков для лечения различных заболеваний животных и человека. Клонирование животных, возможно, позволит проводить испытания медицинских препаратов на идентичных организмах.

 

 

Клонирование растений:

Клонирование растений осуществляется путем регенерации целого растения из каллуса путем изменения пропорционального соотношений цитокининов и ауксинов в питательной среде. Для получения первичного каллуса можно использовать любые клетки и ткани растения (кроме находящихся в премортальном состоянии) ввиду того, что клетки растений способны к дедифференциации при определенных концентрациях фитогормонов в питательной среде. Но чаще используют для этой цели клетки меристемы ввиду их малой степени дифференциации. В питательную среду для каллусообразования обязательно входят ауксин (для дедифференциации клеток) и цитокинин (для индукции клеточных делений), после получения каллусной культуры каллус можно разделить и каждую часть использовать для регенерации целых растений. Так как каллус является бесформенной недифференцированной клеточной массой, то для регенерации растения необходимо индуцировать морфогенез путем изменения концентраций фитогормонов в среде. Клонирование растений позволяет получать безвирусный посадочный материал (при использовании апикальной меристемы как источника клеток), быстрого размножения растений в больших масштабах (в том числе редких и исчезающих), клонирование из пыльников и последующее восстановление диплоидности позволяет получить гомозиготные по всем генам растения, которые можно использовать в дальнейшей селекции. Также можно культивировать на искусственных питательных средах протопласты растений, из которых в некоторых случаях можно регенерировать целые растения (протопласты удобны для трансгенеза ввиду отсутствия у них клеточной стенки и возможности слияния с другими клетками).

Клонирование животных:

Клонирование млекопитающих возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo. Клонирование взрослых животных достигается в результате переноса ядра из дифференцированной клетки в неоплодотворённую яйцеклетку, у которой удалено собственное ядро (энуклеированная яйцеклетка) с последующей пересадкой реконструированной яйцеклетки в яйцевод приёмной матери. Однако долгое время все попытки применить описанный выше метод для клонирования млекопитающих были безуспешными. Одними из первых успешное клонирование млекопитающего (домовой мыши) осуществили советские исследователи в 1987 г. Они использовали метод электропорации для слияния энуклеированной зиготы и клетки эмбриона мыши с ядром.

Значительный вклад в решение этой проблемы был сделан шотландской группой исследователей из Рослинского института и компании «PPL Therapeuticus» (Шотландия) под руководством Яна Вильмута (Wilmut). В 1996 году появились их публикации по успешному рождению ягнят в результате трансплантации ядер, полученных из фибробластов плода овцы, в энуклеированные ооциты. В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997 г., когда родилась овца по кличке Долли — первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы. В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова), а также взятых у мёртвых, замороженных на несколько лет, животных. Появление технологии клонирования животных вызвало не только большой научный интерес, но и привлекло внимание крупного бизнеса во многих странах. Подобные работы ведутся и в России, но целенаправленной программы исследований не существует. В целом технология клонирования животных ещё находится в стадии развития. У большого числа полученных таким образом организмов наблюдаются различные патологии, приводящие к внутриутробной гибели или гибели сразу после рождения, хотя при клонировании овец в 2007 году выжил каждый 5-й эмбрион (в случае с Долли — понадобилось 277).

В 2004 году американцы начали коммерческое клонирование кошек, а в апреле 2008 года Южнокорейские таможенники приступили к дрессировке семи щенков, клонированных из соматических клеток лучшего корейского розыскного пса породы канадский лабрадор-ретривер. По мнению южнокорейских ученых, 90 % клонированных щенков будут удовлетворять требованиям для работы на таможне, тогда как лишь менее 30 % обычных щенков проходят тесты на профпригодность.

Итак:

1970 г. — успешное клонирование лягушки.

1985 г. — клонирование костных рыб.

1997 г. — первая мышь.

1996 г. — овечка Долли.

1998 г. — первая корова.

1999 г. — первый козёл.

2001 г. — первая кошка.

2002 г. — первый кролик.

2003 г. — первый бык, мул, олень.

2004 г. — первый опыт клонирования с коммерческими целями (кошки).

2005 г. — первая собака (афганская борзая по кличке Снуппи).

2006 г. — первый хорёк.

2007 г. — вторая собака.

2008 г. — третья собака (лабрадор по кличке Чейс). Клонирована по государственному заказу.Начало коммерческого клонирования собак

2009 г. — первое успешное клонирование верблюда. Также впервые на Ближнем Востоке (а именно в Иране) была успешно клонирована коза (предыдущие страны, которым это удалось: США, Великобритания, Канада, Китай).

2011 г. — восемь клонированных щенков койота.

 

Так как овца Долли является одним из самых успешных экспериментов, расскажу о ней подробнее.

В 1996 году весь мир был взбудоражен новостью об овечке Долли. В результате экспериментов, выполненных под руководством Яна Уилмута, родилась овца, генетически идентичная взрослой овце. В норме особь вырастает из одной оплодотворенной яйцеклетки, получив половину генетического материала от одного родителя и вторую половину — от второго. При клонировании же генетический материал берут из клетки одной живущей особи. Делается это так: из одной оплодотворенной клетки (зиготы) удаляют ядро (в котором находится ДНК). Затем извлекают ядро из клетки взрослой особи этого же вида и имплантируют его в лишенную ядра зиготу. Это яйцо имплантируют в матку самки данного вида и дают ему возможность расти, пока не придет время родов.

Сенсационность клонирования, принесшая Яну Уилмуту и Долли мировую известность, заключается в характере изменений клеточной ДНК по мере развития эмбриона . В начале в зиготе «включены» все гены, другими словами, все они могут работать. Однако в определенные сроки клетки становятся специализированными — в них отключаются разные гены, и их эффект больше не проявляется (на языке генетиков это называется «они не могут экспрессироваться»). Например, в каждой клетке вашего организма есть гены, отвечающие за синтез инсулина, но при этом инсулин вырабатывается только определенными участками поджелудочной железы. Во всех остальных клетках вашего тела (например, в клетках кожи, нервных клетках головного мозга) ген инсулина отключен.

Очевидно, что в ДНК, имплантированной в оплодотворенную яйцеклетку, какие-то гены уже отключены; какие именно и в какой последовательности — определяется тем, из какого органа взрослой особи была получена клетка. Оказывается, оплодотворенное яйцо — мы до конца не понимаем, как это происходит — способно вновь установить часы клетки на «0», т. е. вновь включить все гены, благодаря чему становится возможным нормальное развитие эмбриона. В этом суть великого открытия Уилмута.

Не все попытки клонирования оказываются успешными. Одновременно с Долли эксперимент по замене ДНК был проведен на 273 других яйцеклетках, и лишь в одном случае выросло живое взрослое животное. После Долли были клонированы многие виды млекопитающих, назовем лишь некоторых — корова, мышь и свинья. Из яйцеклетки мыши получено несколько поколений клонированных животных — клоны, клоны из клонов, клоны из клонов и т. д.

Серьезнейшие разногласия вызвала возможность применения данной технологии к человеку. С одной стороны, новая технология несет ужасающую угрозу нравственности, поэтому клонирование человека надо запретить. С другой стороны, благодаря этой технологии много бесплодных супружеских пар получают шанс иметь биологически родственных им детей, и значит, по мнению многих, это вполне этично.

Пока споры продолжаются, обратим внимание на один важный аспект. С технической точки зрения, клон, каким является Долли, всего лишь особь, ДНК которой идентична ДНК другой особи. Нам нередко приходится сталкиваться с особями, имеющими идентичную ДНК — мы называем их близнецами. Клон — это просто-напросто близнец, родившийся на несколько лет или десятилетий позже — «асинхронный близнец». Так же как нам никогда не пришло бы в голову ожидать, что один близнец может отдать другому свое сердце для пересадки, перспектива выращивания клонов для заготовки пересаживаемых органов — лишь страшный сон, который никогда не станет явью. Я на собственном опыте убедился, что стоит заменить слово «клон» на «близнец», как дебаты по клонированию человека утрачивают пафос.

Не могу поручиться, но думаю, что ближе к 2020 году клонирование будет считаться не более предосудительным, чем оплодотворение в пробирке или другие современные методы лечения бесплодия. Поскольку клонирование — довольно простая процедура, предусматривающая использование стандартных приемов, я ожидаю в скором времени появления клонированных людей.

 

Клонирование человека — действие, заключающееся в формировании и выращивании принципиально новых человеческих существ, точно воспроизводящих не только внешне, но и на генетическом уровне того или иного индивида, ныне существующего или ранее существовавшего.

Пока технология клонирования человека не отработана. В настоящее время достоверно не зафиксировано ни одного случая клонирования человека. И здесь встаёт ряд как теоретических, так и технических вопросов. Однако, уже сегодня есть методы, позволяющие с большой долей уверенности говорить, что в главном вопрос технологии решён.

Наиболее успешным из методов клонирования высших животных оказался метод «переноса ядра». Именно он был применён для клонирования овцы Долли в Великобритании, которая прожила шесть с половиной лет и оставила после себя 6 ягнят, чтобы можно было говорить об успехе эксперимента. По мнению учёных, эта техника является лучшей из того, что мы имеем сегодня, чтобы приступить к непосредственной разработке методики клонирования человека.

Более ограниченным и проблематичным выглядит метод партеногенеза, в котором индуцируется деление и рост неоплодотворённой яйцеклетки, даже если он будет реализован, то позволит говорить только об успехах в клонировании индивидов женского пола.

Так называемая технология «расщепления» эмбриона, хотя и должна давать генетически идентичных между собой индивидов, не может обеспечить их идентичности с «родительским» организмом, и поэтому технологией клонирования в точном смысле слова не является и как возможный вариант не рассматривается.

 

poisk-ru.ru

Клонирование животных и растений - это... Что такое Клонирование животных и растений?

Клони́рование (англ. cloning от др.-греч. κλών — «веточка, побег, отпрыск») — в самом общем значении — точное воспроизведение какого-либо объекта любое требуемое количество раз. Объекты, полученные в результате клонирования (каждый по отдельности и вся их совокупность) называются клоном.

Основные сведения

Естественное клонирование животных и растений часто происходит в результате бесполого и вегетативного размножения, а также в результате амейотического партеногенеза.

Искусственное клони́рование живо́тных и расте́ний — новый вид человеческой деятельности, возникший в конце XX-го начале XXI-го века, состоящий в воспроизведении старых и создании новых биологических организмов, связанных с изучением генома, предполагающий вмешательство в его структуру, нацеленный (кроме научных) на решение множества практических задач.

Термины клон, клонирование первоначально использовались в микробиологии и селекции, после — в генетике, в связи с успехами которой и вошли в общее употребление. Надо добавить, что их популяризации в значительной мере способствовали также киноискусство и литература.

Следует иметь в виду, что точное воспроизведение животного или растения как при естественном, так и при искусственном клонировании невозможно.

Новый организм в любом случае будет отличаться от материнского за счет соматических мутаций, эпигенетических изменений наследственного материала, влияния окружающей среды на фенотип и случайных отклонений, возникающих в ходе онтогенеза.

Значение

Создать животных и растения с заданными качествами всегда было чем-то чрезвычайно заманчивым потому, что это означало создать организмы уникальнейшие и нужнейшие, устойчивые к болезням, климатическим условиям, дающие достаточный приплод, необходимое количество мяса, молока, плодов, овощей и прочих продуктов. Использование технологии клонирования предполагает уникальную возможность получать фенотипически и генетически идентичные организмы, которые могут быть использованы для решения различных теоретических и прикладных задач, стоящих перед биомедициной и сельским хозяйством. В частности, использование клонирования могло бы способствовать изучению проблемы тотипотентности дифференциированных клеток, развития и старения организмов, злокачественного перерождения клеток. Благодаря технологии клонирования предполагается появление ускоренной генетической селекции и тиражирования животных с исключительными производственными показателями. В сочетании с трансгенозом клонирование животных открывает дополнительные возможности для производства ценных биологически активных белков для лечения различных заболеваний животных и человека. Клонирование животных возможно позволит проводить испытания медицинских препаратов на идентичных организмах.

Клонирование растений

Клонирование растений (более общеупотребимы термины культуры тканей in vitro, клональное микроразмножение растений) осуществляется путем регенерации целого растения из каллуса путем изменения пропорционального соотношений цитокининов и ауксинов в питательной среде. Для получения первичного каллуса можно использовать любые клетки и ткани растения (кроме находящихся в премортальном состоянии) ввиду того, что клетки растений способны к дедифференциации при определенных концентрациях фитогормонов в питательной среде. Но чаще используют для этой цели клетки меристемы ввиду их малой степени дифференциации. В питательную среду для каллусообразования обязательно входят ауксин (для дедифференциации клеток) и цитокинин (для индукции клеточных делений). после получения каллусной культуры каллус можно разделить и каждую часть использовать для регенерации целых растений. Так как каллус является бесформенной недифференцированной клеточной массой, то для регенерации растения необходимо индуцировать морфогенез путем изменения концентраций фитогормонов в среде. Клонирование растений позволяет получать безвирусный посадочный материал (при использовании апикальной меристемы как источника клеток), быстрого размножения растений в больших масштабах (в том числе редких и исчезающих), клонирование из пыльников и последующее восстановление диплоидности позволяет получить гомозиготные по всем генам растения, которые можно использовать в дальнейшей селекции. Также можно культивировать на искусственных питательных средах протопласты растений, из которых в некоторых случаях можно регенерировать целые растения (протопласты удобны для трансгенеза ввиду отсутствия у них клеточной стенки и возможности слияния с другими клетками [1]).

В случае с орхидеями конкретному растению, культивару, может быть дано неформальное название – имя клона, но в том случае, если эта орхидея имеет превосходные качества для данного вида (или гибрида)[2]. Пример: × Laeliocattleya Hsin Buu Lady 'Red Beauty'.

Предыстория

В начале пути

  • 1826 г. — Открытие яйцеклетки млекопитающих русским эмбриологом Карлом Бэром
  • 1883 г. — Открытие сущности оплодотворения (слияния пронуклеусов) немецким цитологом Оскаром Гертвигом.
  • 1943 г. — Журнал Science сообщил об успешном оплодотворении яйцеклетки «в пробирке».
  • 1962 г. — Профессор зоологии Оксфордского университета Джон Гордон клонирует шпорцевых лягушек[3] (более доказательные опыты — в 1970 г.).
  • 1978 г. — Рождение в Англии Луизы Браун, первого ребёнка «из пробирки».
  • 1983 г. — из клеток эмбриона клонирована мышь[4]
  • 1987 г. — В СССР в лаборатории Бориса Николаевича Вепринцева (Л. М. Чайлахян и др.) из клетки эмбриона клонирована мышь с использованием метода электростимулируемого слияния клеток.
  • 1985 г., 4 января — в одной из клиник северного Лондона родилась девочка у миссис Коттон — первой в мире суррогатной матери (зачата не из яйцеклетки миссис Коттон).
  • 1987 г. — Специалисты Университета имени Дж. Вашингтона, использовавшие специальный фермент, сумели разделить клетки человеческого зародыша и клонировать их до стадии тридцати двух клеток (бластомеров).

Клонирование амфибий (Дж. Гёрдон)

Первые успешные опыты по клонированию животных были проведены в 1960-е годы английским эмбриологом Дж. Гёрдоном (J. Gurdon) в экспериментах на шпорцевой лягушке. В этих первых опытах для пересадки использовались ядра клеток кишечника головастиков. Они были подвергнуты критике, так как в кишечнике головастиков могли сохраниться первичные половые клетки. В 1970 г удалось провести опыты, в которых замена ядра яйцеклетки на генетически помеченное ядро из соматической клетки взрослой лягушки привела к появлению головастиков и взрослых лягушек. Это показало, что техника трансплантации ядер из соматических клеток взрослых организмов в энуклеированные (лишенные ядра) ооциты позволяет получать генетические копии организма, послужившего донором ядер дифференциированных клеток. Результат эксперимента стал основанием для вывода об обратимости эмбриональной дифференцировки генома по крайней мере у земноводных.

Клонирование млекопитающих

Клонирование млекопитающих возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo. Клонирование взрослых животных достигается в результате переноса ядра из дифференцированной клетки в неоплодотворённую яйцеклетку, у которой удалено собственное ядро (энуклеированная яйцеклетка) с последующей пересадкой реконструированной яйцеклетки в яйцевод приёмной матери. Однако долгое время все попытки применить описанный выше метод для клонирования млекопитающих были безуспешными. Одними из первых успешное клонирование млекопитающего (домовой мыши) осуществили советские исследователи [5] в 1987 г. Они использовали метод электропорации для слияния энуклеированной зиготы и клетки эмбриона мыши с ядром.

Значительный вклад в решение этой проблемы был сделан шотландской группой исследователей из Рослинского института и компании «PPL Therapeuticus» (Шотландия) под руководством Яна Вильмута (Wilmut). В 1996 году появились их публикации по успешному рождению ягнят в результате трансплантации ядер, полученных из фибробластов плода овцы, в энуклеированные ооциты.[6] В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997 г., когда родилась овца по кличке Долли — первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы.[7] В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова), а также взятых у мёртвых, замороженных[8] на несколько лет, животных. Появление технологии клонирования животных вызвало не только большой научный интерес, но и привлекло внимание крупного бизнеса во многих странах. Подобные работы ведутся и в России, но целенаправленной программы исследований не существует. В целом технология клонирования животных ещё находится в стадии развития. У большого числа полученных таким образом организмов наблюдаются различные патологии, приводящие к внутриутробной гибели или гибели сразу после рождения, хотя при клонировании овец в 2007 году выжил каждый 5-й эмбрион (в случае с Долли — понадобилось 277).

В 2004 году американцы начали коммерческое клонирование кошек, а в апреле 2008 года Южнокорейские таможенники приступили к дрессировке семи щенков, клонированных из соматических клеток лучшего корейского розыскного пса породы канадский лабрадор-ретривер. По мнению южнокорейских ученых, 90 % клонированных щенков будут удовлетворять требованиям для работы на таможне, тогда как лишь менее 30 % обычных щенков проходят тесты на профпригодность.[9][10]

Клонирование без использования пересадки ядер

В 2009 году была опубликована работа, в которой с помощью метода тетраплоидной комплементации впервые было показано, что индуцированные плюрипотентные стволовые клетки (iPS) могут давать полноценный организм, в том числе и его клетки зародышевого пути [11]. iPS, полученные из фибробластов кожи мышей с помощью трансформации с использованием ретровирусного вектора, в некотором проценте случаев дали здоровых взрослых мышей, которые были способны нормально размножаться. Таким образом, впервые были получены клонированные животные без примеси генетического материала яйцеклеток (при стандартной процедуре клонирования митохондриальная ДНК передается потомству от яйцеклетки реципиента).

Клонирование с целью воссоздания вымерших видов

Клонирование может быть использовано для воссоздания естественных популяций вымерших животных. Несмотря на наличие определённых проблем и трудностей, первые результаты в данном направлении уже имеются.

Клонирование испанского козерога

В Испании в 2009 г. родился клонированный детеныш вымершего подвида пиренейского горного козла букардо (Capra pyrenaica pyrenaica). Сообщение о клонировании появилось в январском номере журнала Theriogenology.

Несмотря на то, что созданный испанскими учеными клон вымершего животного прожил всего несколько минут, этот опыт уже признан первым в мире успешным экспериментом по воссозданию исчезнувшего подвида.[источник не указан 663 дня]

Данный подвид пиренейских козлов полностью исчез к 2000 году (причины вымирания точно не известны[12]). Последний представитель вида, самка по имени Селия (Celia), погибла в 2000 году. Но до того (в 1999-м г.) Хосе Фольк (Jose Folch) из Исследовательского центра сельского хозяйства и технологий Арагона (CITA) взял у Селии несколько клеток кожи с целью анализа и сохранения в жидком азоте. Этот генетический материал был использован в первой попытке клонировать вымерший подвид.

Экспериментаторы переносили ДНК букардо в яйцеклетки домашней козы, лишенные собственного генетического материала. Полученные эмбрионы подсаживали суррогатным матерям — самкам других подвидов испанского козла или гибридных видов, полученных скрещиванием домашних и диких коз. Таким образом было создано 439 эмбрионов, 57 из которых были имплантированы в суррогатные матки. Всего семь операций закончилось беременностью и только одна коза, в конце концов, родила самку букардо, умершую спустя семь минут после рождения от проблем с дыхательной системой.

Несмотря на неудачное клонирование и смерть клонированного козлёнка, многие ученые полагают, что такой подход может быть единственным способом спасения видов, стоящих на грани вымирания. Это вселяет в ученых надежду на то, что подвергающиеся опасности и недавно вымершие виды можно будет воскресить с использованием замороженных тканей. [13][14][15]

Клонирование бантенгов

В 2004 году на свет появилась пара бантенгов (диких быков, обитавших в Юго-Восточной Азии), клонированных из клеток животных, умерших более 20 лет назад. Два бантенга были клонированы из уникального «замороженного зоопарка» Сан-Диего, созданного ещё до того, как люди поняли, что клонирование вообще возможно. Произведшая клонирование американская компания Advanced Cell Technology сообщила, что в нём использовались клетки животных, которые умерли в 1980 году, не оставив потомства.

Бантенгов клонировали, перенеся их генетический материал в пустые яйцеклетки обычных домашних коров; из 16 зародышей до рождения дожили только два.[16][17]

Императорский дятел

В последний раз императорского дятла видели в Мексике в 1958 году. С тех пор орнитологи пытаются найти следы этой популяции, но безуспешно. Около десяти лет назад появились даже слухи, что птица ещё живёт на планете, но и они не подтвердились.

Однако в музеях остались чучела птицы. Научный сотрудник Дарвиновского музея Игорь Фадеев считает, что если операцию по выделению ДНК провести со всеми чучелами, которые находятся в разных странах мира, то дятла можно будет воскресить. В разных музеях мира на сегодняшний день осталось лишь десять чучел императорского дятла.

Если проект увенчается успехом, то в недалеком будущем на нашей планете, возможно, вновь появится императорский дятел. В Государственном Дарвиновском музее уверены, что последние методы молекулярной биологии позволяют выделить и воспроизвести ДНК этих птиц.[18]

Дронт

В июне 2006 года голландские учёные обнаружили на острове Маврикий хорошо сохранившиеся останки дронта — вымершей исторически недавно (в XVII веке) нелетающей птицы. Ранее наука не располагала останками птицы. Но теперь появилась определенная надежда на «воскрешение» этого представителя пернатых.[19]

Клонирование гигантских птиц

Планы по клонированию исчезнувших гигантских птиц были поставлены под сомнение в результате исследований учёных Оксфордского университета. Выделив участки ДНК из останков вымерших птиц, учёные обнаружили, что их генетический материал настолько разрушен, что современная технология не позволяет провести полноценное клонирование. Цель научных работ состояла в возрождении вымерших несколько веков назад новозеландского страуса Моа, а также Мадагаскарского эпиорниса (птицы-слона).

Образцы ДНК были взяты из фрагментов тканей, сохранившихся в музеях. Однако учёные не смогли получить достаточную по своей длине цепочку ДНК, чтобы провести клонирование. Тем не менее, некоторые учёные считают, что в ближайшие годы будет разработана технология восстановления утраченных частей ДНК путем вшивания туда «заплат» из ДНК близкородственных видов.[20]

Клонированные животные

Литература

  • Шевелуха В. С., Калашникова Е. А., Дегтярёв С. В. Сельскохозяйственная биотехнология — М.: Высшая школа, 1998 — ISBN 5-06-003535-2
  • Генная инженерия растений (лабораторное руководство) / Под ред. Дж. Рейпера.— М.:Мир, 1991

См. также

Примечания

  1. ↑ Krens E.A., Molendijk L., Wullems G.I., Schilperoort R.A. In vitro Transformation of Plant Protoplasts with Ti-Plasmid DNA // Nature. 1982. Vol. 296. P. 72-74.
  2. ↑ Интервью с владельцем питомника 'AWZ'
  3. ↑ Gurdon, JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10: 622-40
  4. ↑ James McGrath and Davor Solter. Nuclear Transplantation in the Mouse Embryo by Microsurgery and Cell Fusion. Science, New Series, Vol. 220, No. 4603 (Jun. 17, 1983), pp. 1300—1302
  5. ↑ Чайлахян Л.М., Вепринцев Б.Н., Свиридова Т.А., Никитин В.А. Электростимулируемое слияние клеток в клеточной инженерии. Биофизика, 1987, т.32, №5,с.с. 874-887
  6. ↑ Campbell, K.H.S., McWhir, J., Ritchie, W.A. nad Wilmut, A. Sheep cloned by nuclear transfer from a cultured cell line, PMID 8598906 Nature, 1996 issue 6569, pages 64-66 (англ.)
  7. ↑ Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., Campbell, K.H.S. Viable offspring derived from fetal and adult mammalian cells PMID 9039911 Nature, 1997 issue 6619 pages 810—813 (англ.)
  8. ↑ lenta.ru : «Можно ли сделать из мыши мамонта» по материалам Proceedings of the National Academy of Sciences
  9. ↑ lenta.ru. 2008. «Южнокорейские таможенники приступили к дрессировке клонированных щенков»
  10. ↑ BBC News. 2008. S Korea trains sniffer-dog clones (англ.)
  11. ↑ Xiao-yang Zhao, Wei Li, Zhuo Lv,, Lei Liu, Man Tong, Tang Hai, Jie Hao, Chang-long Guo, Qing-wen Ma, Liu Wang, Fanyi Zeng, Qi Zhou. iPS cells produce viable mice through tetraploid complementation. Nature 461, (3 September 2009), 86-90
  12. ↑ Capra pyrenaica
  13. ↑ Ошибка в сносках?: Неверный тег <ref>; для сносок ufo.ck.ua не указан текст
  14. ↑ Попытка учёных воскресить вымерший вид провалилась — Известия НаукиШаблон:Сайт не работает
  15. ↑ 1 2 Испанцы впервые клонировали вымершее животное — Мембрана.ru
  16. ↑ FederalPost. 2003. Учёные клонировали вымерших 20 лет назад бантенгов
  17. ↑ Collaborative Effort Yields Endangered Species Clone
  18. ↑ Российские учёные будут воскрешать вымершую птицу
  19. ↑ Week Survey — Клонирование птицы Льюиса Кэрола
  20. ↑ Учёным из Оксфорда не удалось клонировать вымерших птиц
  21. ↑ 1 2 клонирование животных — история метода
  22. ↑ BBC News. 1998. Cloned mice follow Dolly (англ.)
  23. ↑ BBC News. 1998. World: Asia-Pacific Japanese scientists clone cow (англ.)
  24. ↑ BBC News. 1999. Scientists clone a goat (англ.)
  25. ↑ BBC News. 2002. First pet clone is a cat (англ.)
  26. ↑ Медицинские новости Солвей Фарма. 2002.
  27. ↑ FederalPost. 2003. Учёные клонировали вымерших 20 лет назад бантенгов
  28. ↑ SciTecLibrary.ru. 2003. Клонирование мула…
  29. ↑ Корреспондент.net. 2003. Американские учёные объявили о клонировании оленя
  30. ↑ Утро.ru. 2004. Американцы приступили к коммерческому клонированию кошек
  31. ↑ Lenta.ru. 2006. Крупнейшим научным достижением года признали клонированную собаку
  32. ↑ MEMBRANA | Мисси выполнима: опальный учёный продаёт с аукциона собачье бессмертие
  33. ↑ Би-би-си | Наука и техника | В Южной Корее клонировали собак-ищеек
  34. ↑ Первый клонированный верблюд появился в Арабских Эмиратах
  35. ↑ Membrana: На Ближнем Востоке появился первый клонированный козёл
  36. ↑ Lenta.ru. 2011. Южнокорейский ученый клонировал койота

Ссылки

dal.academic.ru

Клонирование животных и растений - это... Что такое Клонирование животных и растений?

Клони́рование (англ. cloning от др.-греч. κλών — «веточка, побег, отпрыск») — в самом общем значении — точное воспроизведение какого-либо объекта любое требуемое количество раз. Объекты, полученные в результате клонирования (каждый по отдельности и вся их совокупность) называются клоном.

Основные сведения

Естественное клонирование животных и растений часто происходит в результате бесполого и вегетативного размножения, а также в результате амейотического партеногенеза.

Искусственное клони́рование живо́тных и расте́ний — новый вид человеческой деятельности, возникший в конце XX-го начале XXI-го века, состоящий в воспроизведении старых и создании новых биологических организмов, связанных с изучением генома, предполагающий вмешательство в его структуру, нацеленный (кроме научных) на решение множества практических задач.

Термины клон, клонирование первоначально использовались в микробиологии и селекции, после — в генетике, в связи с успехами которой и вошли в общее употребление. Надо добавить, что их популяризации в значительной мере способствовали также киноискусство и литература.

Следует иметь в виду, что точное воспроизведение животного или растения как при естественном, так и при искусственном клонировании невозможно.

Новый организм в любом случае будет отличаться от материнского за счет соматических мутаций, эпигенетических изменений наследственного материала, влияния окружающей среды на фенотип и случайных отклонений, возникающих в ходе онтогенеза.

Значение

Создать животных и растения с заданными качествами всегда было чем-то чрезвычайно заманчивым потому, что это означало создать организмы уникальнейшие и нужнейшие, устойчивые к болезням, климатическим условиям, дающие достаточный приплод, необходимое количество мяса, молока, плодов, овощей и прочих продуктов. Использование технологии клонирования предполагает уникальную возможность получать фенотипически и генетически идентичные организмы, которые могут быть использованы для решения различных теоретических и прикладных задач, стоящих перед биомедициной и сельским хозяйством. В частности, использование клонирования могло бы способствовать изучению проблемы тотипотентности дифференциированных клеток, развития и старения организмов, злокачественного перерождения клеток. Благодаря технологии клонирования предполагается появление ускоренной генетической селекции и тиражирования животных с исключительными производственными показателями. В сочетании с трансгенозом клонирование животных открывает дополнительные возможности для производства ценных биологически активных белков для лечения различных заболеваний животных и человека. Клонирование животных возможно позволит проводить испытания медицинских препаратов на идентичных организмах.

Клонирование растений

Клонирование растений (более общеупотребимы термины культуры тканей in vitro, клональное микроразмножение растений) осуществляется путем регенерации целого растения из каллуса путем изменения пропорционального соотношений цитокининов и ауксинов в питательной среде. Для получения первичного каллуса можно использовать любые клетки и ткани растения (кроме находящихся в премортальном состоянии) ввиду того, что клетки растений способны к дедифференциации при определенных концентрациях фитогормонов в питательной среде. Но чаще используют для этой цели клетки меристемы ввиду их малой степени дифференциации. В питательную среду для каллусообразования обязательно входят ауксин (для дедифференциации клеток) и цитокинин (для индукции клеточных делений). после получения каллусной культуры каллус можно разделить и каждую часть использовать для регенерации целых растений. Так как каллус является бесформенной недифференцированной клеточной массой, то для регенерации растения необходимо индуцировать морфогенез путем изменения концентраций фитогормонов в среде. Клонирование растений позволяет получать безвирусный посадочный материал (при использовании апикальной меристемы как источника клеток), быстрого размножения растений в больших масштабах (в том числе редких и исчезающих), клонирование из пыльников и последующее восстановление диплоидности позволяет получить гомозиготные по всем генам растения, которые можно использовать в дальнейшей селекции. Также можно культивировать на искусственных питательных средах протопласты растений, из которых в некоторых случаях можно регенерировать целые растения (протопласты удобны для трансгенеза ввиду отсутствия у них клеточной стенки и возможности слияния с другими клетками [1]).

В случае с орхидеями конкретному растению, культивару, может быть дано неформальное название – имя клона, но в том случае, если эта орхидея имеет превосходные качества для данного вида (или гибрида)[2]. Пример: × Laeliocattleya Hsin Buu Lady 'Red Beauty'.

Предыстория

В начале пути

  • 1826 г. — Открытие яйцеклетки млекопитающих русским эмбриологом Карлом Бэром
  • 1883 г. — Открытие сущности оплодотворения (слияния пронуклеусов) немецким цитологом Оскаром Гертвигом.
  • 1943 г. — Журнал Science сообщил об успешном оплодотворении яйцеклетки «в пробирке».
  • 1962 г. — Профессор зоологии Оксфордского университета Джон Гордон клонирует шпорцевых лягушек[3] (более доказательные опыты — в 1970 г.).
  • 1978 г. — Рождение в Англии Луизы Браун, первого ребёнка «из пробирки».
  • 1983 г. — из клеток эмбриона клонирована мышь[4]
  • 1987 г. — В СССР в лаборатории Бориса Николаевича Вепринцева (Л. М. Чайлахян и др.) из клетки эмбриона клонирована мышь с использованием метода электростимулируемого слияния клеток.
  • 1985 г., 4 января — в одной из клиник северного Лондона родилась девочка у миссис Коттон — первой в мире суррогатной матери (зачата не из яйцеклетки миссис Коттон).
  • 1987 г. — Специалисты Университета имени Дж. Вашингтона, использовавшие специальный фермент, сумели разделить клетки человеческого зародыша и клонировать их до стадии тридцати двух клеток (бластомеров).

Клонирование амфибий (Дж. Гёрдон)

Первые успешные опыты по клонированию животных были проведены в 1960-е годы английским эмбриологом Дж. Гёрдоном (J. Gurdon) в экспериментах на шпорцевой лягушке. В этих первых опытах для пересадки использовались ядра клеток кишечника головастиков. Они были подвергнуты критике, так как в кишечнике головастиков могли сохраниться первичные половые клетки. В 1970 г удалось провести опыты, в которых замена ядра яйцеклетки на генетически помеченное ядро из соматической клетки взрослой лягушки привела к появлению головастиков и взрослых лягушек. Это показало, что техника трансплантации ядер из соматических клеток взрослых организмов в энуклеированные (лишенные ядра) ооциты позволяет получать генетические копии организма, послужившего донором ядер дифференциированных клеток. Результат эксперимента стал основанием для вывода об обратимости эмбриональной дифференцировки генома по крайней мере у земноводных.

Клонирование млекопитающих

Клонирование млекопитающих возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo. Клонирование взрослых животных достигается в результате переноса ядра из дифференцированной клетки в неоплодотворённую яйцеклетку, у которой удалено собственное ядро (энуклеированная яйцеклетка) с последующей пересадкой реконструированной яйцеклетки в яйцевод приёмной матери. Однако долгое время все попытки применить описанный выше метод для клонирования млекопитающих были безуспешными. Одними из первых успешное клонирование млекопитающего (домовой мыши) осуществили советские исследователи [5] в 1987 г. Они использовали метод электропорации для слияния энуклеированной зиготы и клетки эмбриона мыши с ядром.

Значительный вклад в решение этой проблемы был сделан шотландской группой исследователей из Рослинского института и компании «PPL Therapeuticus» (Шотландия) под руководством Яна Вильмута (Wilmut). В 1996 году появились их публикации по успешному рождению ягнят в результате трансплантации ядер, полученных из фибробластов плода овцы, в энуклеированные ооциты.[6] В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997 г., когда родилась овца по кличке Долли — первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы.[7] В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова), а также взятых у мёртвых, замороженных[8] на несколько лет, животных. Появление технологии клонирования животных вызвало не только большой научный интерес, но и привлекло внимание крупного бизнеса во многих странах. Подобные работы ведутся и в России, но целенаправленной программы исследований не существует. В целом технология клонирования животных ещё находится в стадии развития. У большого числа полученных таким образом организмов наблюдаются различные патологии, приводящие к внутриутробной гибели или гибели сразу после рождения, хотя при клонировании овец в 2007 году выжил каждый 5-й эмбрион (в случае с Долли — понадобилось 277).

В 2004 году американцы начали коммерческое клонирование кошек, а в апреле 2008 года Южнокорейские таможенники приступили к дрессировке семи щенков, клонированных из соматических клеток лучшего корейского розыскного пса породы канадский лабрадор-ретривер. По мнению южнокорейских ученых, 90 % клонированных щенков будут удовлетворять требованиям для работы на таможне, тогда как лишь менее 30 % обычных щенков проходят тесты на профпригодность.[9][10]

Клонирование без использования пересадки ядер

В 2009 году была опубликована работа, в которой с помощью метода тетраплоидной комплементации впервые было показано, что индуцированные плюрипотентные стволовые клетки (iPS) могут давать полноценный организм, в том числе и его клетки зародышевого пути [11]. iPS, полученные из фибробластов кожи мышей с помощью трансформации с использованием ретровирусного вектора, в некотором проценте случаев дали здоровых взрослых мышей, которые были способны нормально размножаться. Таким образом, впервые были получены клонированные животные без примеси генетического материала яйцеклеток (при стандартной процедуре клонирования митохондриальная ДНК передается потомству от яйцеклетки реципиента).

Клонирование с целью воссоздания вымерших видов

Клонирование может быть использовано для воссоздания естественных популяций вымерших животных. Несмотря на наличие определённых проблем и трудностей, первые результаты в данном направлении уже имеются.

Клонирование испанского козерога

В Испании в 2009 г. родился клонированный детеныш вымершего подвида пиренейского горного козла букардо (Capra pyrenaica pyrenaica). Сообщение о клонировании появилось в январском номере журнала Theriogenology.

Несмотря на то, что созданный испанскими учеными клон вымершего животного прожил всего несколько минут, этот опыт уже признан первым в мире успешным экспериментом по воссозданию исчезнувшего подвида.[источник не указан 663 дня]

Данный подвид пиренейских козлов полностью исчез к 2000 году (причины вымирания точно не известны[12]). Последний представитель вида, самка по имени Селия (Celia), погибла в 2000 году. Но до того (в 1999-м г.) Хосе Фольк (Jose Folch) из Исследовательского центра сельского хозяйства и технологий Арагона (CITA) взял у Селии несколько клеток кожи с целью анализа и сохранения в жидком азоте. Этот генетический материал был использован в первой попытке клонировать вымерший подвид.

Экспериментаторы переносили ДНК букардо в яйцеклетки домашней козы, лишенные собственного генетического материала. Полученные эмбрионы подсаживали суррогатным матерям — самкам других подвидов испанского козла или гибридных видов, полученных скрещиванием домашних и диких коз. Таким образом было создано 439 эмбрионов, 57 из которых были имплантированы в суррогатные матки. Всего семь операций закончилось беременностью и только одна коза, в конце концов, родила самку букардо, умершую спустя семь минут после рождения от проблем с дыхательной системой.

Несмотря на неудачное клонирование и смерть клонированного козлёнка, многие ученые полагают, что такой подход может быть единственным способом спасения видов, стоящих на грани вымирания. Это вселяет в ученых надежду на то, что подвергающиеся опасности и недавно вымершие виды можно будет воскресить с использованием замороженных тканей. [13][14][15]

Клонирование бантенгов

В 2004 году на свет появилась пара бантенгов (диких быков, обитавших в Юго-Восточной Азии), клонированных из клеток животных, умерших более 20 лет назад. Два бантенга были клонированы из уникального «замороженного зоопарка» Сан-Диего, созданного ещё до того, как люди поняли, что клонирование вообще возможно. Произведшая клонирование американская компания Advanced Cell Technology сообщила, что в нём использовались клетки животных, которые умерли в 1980 году, не оставив потомства.

Бантенгов клонировали, перенеся их генетический материал в пустые яйцеклетки обычных домашних коров; из 16 зародышей до рождения дожили только два.[16][17]

Императорский дятел

В последний раз императорского дятла видели в Мексике в 1958 году. С тех пор орнитологи пытаются найти следы этой популяции, но безуспешно. Около десяти лет назад появились даже слухи, что птица ещё живёт на планете, но и они не подтвердились.

Однако в музеях остались чучела птицы. Научный сотрудник Дарвиновского музея Игорь Фадеев считает, что если операцию по выделению ДНК провести со всеми чучелами, которые находятся в разных странах мира, то дятла можно будет воскресить. В разных музеях мира на сегодняшний день осталось лишь десять чучел императорского дятла.

Если проект увенчается успехом, то в недалеком будущем на нашей планете, возможно, вновь появится императорский дятел. В Государственном Дарвиновском музее уверены, что последние методы молекулярной биологии позволяют выделить и воспроизвести ДНК этих птиц.[18]

Дронт

В июне 2006 года голландские учёные обнаружили на острове Маврикий хорошо сохранившиеся останки дронта — вымершей исторически недавно (в XVII веке) нелетающей птицы. Ранее наука не располагала останками птицы. Но теперь появилась определенная надежда на «воскрешение» этого представителя пернатых.[19]

Клонирование гигантских птиц

Планы по клонированию исчезнувших гигантских птиц были поставлены под сомнение в результате исследований учёных Оксфордского университета. Выделив участки ДНК из останков вымерших птиц, учёные обнаружили, что их генетический материал настолько разрушен, что современная технология не позволяет провести полноценное клонирование. Цель научных работ состояла в возрождении вымерших несколько веков назад новозеландского страуса Моа, а также Мадагаскарского эпиорниса (птицы-слона).

Образцы ДНК были взяты из фрагментов тканей, сохранившихся в музеях. Однако учёные не смогли получить достаточную по своей длине цепочку ДНК, чтобы провести клонирование. Тем не менее, некоторые учёные считают, что в ближайшие годы будет разработана технология восстановления утраченных частей ДНК путем вшивания туда «заплат» из ДНК близкородственных видов.[20]

Клонированные животные

Литература

  • Шевелуха В. С., Калашникова Е. А., Дегтярёв С. В. Сельскохозяйственная биотехнология — М.: Высшая школа, 1998 — ISBN 5-06-003535-2
  • Генная инженерия растений (лабораторное руководство) / Под ред. Дж. Рейпера.— М.:Мир, 1991

См. также

Примечания

  1. ↑ Krens E.A., Molendijk L., Wullems G.I., Schilperoort R.A. In vitro Transformation of Plant Protoplasts with Ti-Plasmid DNA // Nature. 1982. Vol. 296. P. 72-74.
  2. ↑ Интервью с владельцем питомника 'AWZ'
  3. ↑ Gurdon, JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10: 622-40
  4. ↑ James McGrath and Davor Solter. Nuclear Transplantation in the Mouse Embryo by Microsurgery and Cell Fusion. Science, New Series, Vol. 220, No. 4603 (Jun. 17, 1983), pp. 1300—1302
  5. ↑ Чайлахян Л.М., Вепринцев Б.Н., Свиридова Т.А., Никитин В.А. Электростимулируемое слияние клеток в клеточной инженерии. Биофизика, 1987, т.32, №5,с.с. 874-887
  6. ↑ Campbell, K.H.S., McWhir, J., Ritchie, W.A. nad Wilmut, A. Sheep cloned by nuclear transfer from a cultured cell line, PMID 8598906 Nature, 1996 issue 6569, pages 64-66 (англ.)
  7. ↑ Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., Campbell, K.H.S. Viable offspring derived from fetal and adult mammalian cells PMID 9039911 Nature, 1997 issue 6619 pages 810—813 (англ.)
  8. ↑ lenta.ru : «Можно ли сделать из мыши мамонта» по материалам Proceedings of the National Academy of Sciences
  9. ↑ lenta.ru. 2008. «Южнокорейские таможенники приступили к дрессировке клонированных щенков»
  10. ↑ BBC News. 2008. S Korea trains sniffer-dog clones (англ.)
  11. ↑ Xiao-yang Zhao, Wei Li, Zhuo Lv,, Lei Liu, Man Tong, Tang Hai, Jie Hao, Chang-long Guo, Qing-wen Ma, Liu Wang, Fanyi Zeng, Qi Zhou. iPS cells produce viable mice through tetraploid complementation. Nature 461, (3 September 2009), 86-90
  12. ↑ Capra pyrenaica
  13. ↑ Ошибка в сносках?: Неверный тег <ref>; для сносок ufo.ck.ua не указан текст
  14. ↑ Попытка учёных воскресить вымерший вид провалилась — Известия НаукиШаблон:Сайт не работает
  15. ↑ 1 2 Испанцы впервые клонировали вымершее животное — Мембрана.ru
  16. ↑ FederalPost. 2003. Учёные клонировали вымерших 20 лет назад бантенгов
  17. ↑ Collaborative Effort Yields Endangered Species Clone
  18. ↑ Российские учёные будут воскрешать вымершую птицу
  19. ↑ Week Survey — Клонирование птицы Льюиса Кэрола
  20. ↑ Учёным из Оксфорда не удалось клонировать вымерших птиц
  21. ↑ 1 2 клонирование животных — история метода
  22. ↑ BBC News. 1998. Cloned mice follow Dolly (англ.)
  23. ↑ BBC News. 1998. World: Asia-Pacific Japanese scientists clone cow (англ.)
  24. ↑ BBC News. 1999. Scientists clone a goat (англ.)
  25. ↑ BBC News. 2002. First pet clone is a cat (англ.)
  26. ↑ Медицинские новости Солвей Фарма. 2002.
  27. ↑ FederalPost. 2003. Учёные клонировали вымерших 20 лет назад бантенгов
  28. ↑ SciTecLibrary.ru. 2003. Клонирование мула…
  29. ↑ Корреспондент.net. 2003. Американские учёные объявили о клонировании оленя
  30. ↑ Утро.ru. 2004. Американцы приступили к коммерческому клонированию кошек
  31. ↑ Lenta.ru. 2006. Крупнейшим научным достижением года признали клонированную собаку
  32. ↑ MEMBRANA | Мисси выполнима: опальный учёный продаёт с аукциона собачье бессмертие
  33. ↑ Би-би-си | Наука и техника | В Южной Корее клонировали собак-ищеек
  34. ↑ Первый клонированный верблюд появился в Арабских Эмиратах
  35. ↑ Membrana: На Ближнем Востоке появился первый клонированный козёл
  36. ↑ Lenta.ru. 2011. Южнокорейский ученый клонировал койота

Ссылки

veter.academic.ru

Клонирование животных и растений - это... Что такое Клонирование животных и растений?

Клони́рование (англ. cloning от др.-греч. κλών — «веточка, побег, отпрыск») — в самом общем значении — точное воспроизведение какого-либо объекта любое требуемое количество раз. Объекты, полученные в результате клонирования (каждый по отдельности и вся их совокупность) называются клоном.

Основные сведения

Естественное клонирование животных и растений часто происходит в результате бесполого и вегетативного размножения, а также в результате амейотического партеногенеза.

Искусственное клони́рование живо́тных и расте́ний — новый вид человеческой деятельности, возникший в конце XX-го начале XXI-го века, состоящий в воспроизведении старых и создании новых биологических организмов, связанных с изучением генома, предполагающий вмешательство в его структуру, нацеленный (кроме научных) на решение множества практических задач.

Термины клон, клонирование первоначально использовались в микробиологии и селекции, после — в генетике, в связи с успехами которой и вошли в общее употребление. Надо добавить, что их популяризации в значительной мере способствовали также киноискусство и литература.

Следует иметь в виду, что точное воспроизведение животного или растения как при естественном, так и при искусственном клонировании невозможно.

Новый организм в любом случае будет отличаться от материнского за счет соматических мутаций, эпигенетических изменений наследственного материала, влияния окружающей среды на фенотип и случайных отклонений, возникающих в ходе онтогенеза.

Значение

Создать животных и растения с заданными качествами всегда было чем-то чрезвычайно заманчивым потому, что это означало создать организмы уникальнейшие и нужнейшие, устойчивые к болезням, климатическим условиям, дающие достаточный приплод, необходимое количество мяса, молока, плодов, овощей и прочих продуктов. Использование технологии клонирования предполагает уникальную возможность получать фенотипически и генетически идентичные организмы, которые могут быть использованы для решения различных теоретических и прикладных задач, стоящих перед биомедициной и сельским хозяйством. В частности, использование клонирования могло бы способствовать изучению проблемы тотипотентности дифференциированных клеток, развития и старения организмов, злокачественного перерождения клеток. Благодаря технологии клонирования предполагается появление ускоренной генетической селекции и тиражирования животных с исключительными производственными показателями. В сочетании с трансгенозом клонирование животных открывает дополнительные возможности для производства ценных биологически активных белков для лечения различных заболеваний животных и человека. Клонирование животных возможно позволит проводить испытания медицинских препаратов на идентичных организмах.

Клонирование растений

Клонирование растений (более общеупотребимы термины культуры тканей in vitro, клональное микроразмножение растений) осуществляется путем регенерации целого растения из каллуса путем изменения пропорционального соотношений цитокининов и ауксинов в питательной среде. Для получения первичного каллуса можно использовать любые клетки и ткани растения (кроме находящихся в премортальном состоянии) ввиду того, что клетки растений способны к дедифференциации при определенных концентрациях фитогормонов в питательной среде. Но чаще используют для этой цели клетки меристемы ввиду их малой степени дифференциации. В питательную среду для каллусообразования обязательно входят ауксин (для дедифференциации клеток) и цитокинин (для индукции клеточных делений). после получения каллусной культуры каллус можно разделить и каждую часть использовать для регенерации целых растений. Так как каллус является бесформенной недифференцированной клеточной массой, то для регенерации растения необходимо индуцировать морфогенез путем изменения концентраций фитогормонов в среде. Клонирование растений позволяет получать безвирусный посадочный материал (при использовании апикальной меристемы как источника клеток), быстрого размножения растений в больших масштабах (в том числе редких и исчезающих), клонирование из пыльников и последующее восстановление диплоидности позволяет получить гомозиготные по всем генам растения, которые можно использовать в дальнейшей селекции. Также можно культивировать на искусственных питательных средах протопласты растений, из которых в некоторых случаях можно регенерировать целые растения (протопласты удобны для трансгенеза ввиду отсутствия у них клеточной стенки и возможности слияния с другими клетками [1]).

В случае с орхидеями конкретному растению, культивару, может быть дано неформальное название – имя клона, но в том случае, если эта орхидея имеет превосходные качества для данного вида (или гибрида)[2]. Пример: × Laeliocattleya Hsin Buu Lady 'Red Beauty'.

Предыстория

В начале пути

  • 1826 г. — Открытие яйцеклетки млекопитающих русским эмбриологом Карлом Бэром
  • 1883 г. — Открытие сущности оплодотворения (слияния пронуклеусов) немецким цитологом Оскаром Гертвигом.
  • 1943 г. — Журнал Science сообщил об успешном оплодотворении яйцеклетки «в пробирке».
  • 1962 г. — Профессор зоологии Оксфордского университета Джон Гордон клонирует шпорцевых лягушек[3] (более доказательные опыты — в 1970 г.).
  • 1978 г. — Рождение в Англии Луизы Браун, первого ребёнка «из пробирки».
  • 1983 г. — из клеток эмбриона клонирована мышь[4]
  • 1987 г. — В СССР в лаборатории Бориса Николаевича Вепринцева (Л. М. Чайлахян и др.) из клетки эмбриона клонирована мышь с использованием метода электростимулируемого слияния клеток.
  • 1985 г., 4 января — в одной из клиник северного Лондона родилась девочка у миссис Коттон — первой в мире суррогатной матери (зачата не из яйцеклетки миссис Коттон).
  • 1987 г. — Специалисты Университета имени Дж. Вашингтона, использовавшие специальный фермент, сумели разделить клетки человеческого зародыша и клонировать их до стадии тридцати двух клеток (бластомеров).

Клонирование амфибий (Дж. Гёрдон)

Первые успешные опыты по клонированию животных были проведены в 1960-е годы английским эмбриологом Дж. Гёрдоном (J. Gurdon) в экспериментах на шпорцевой лягушке. В этих первых опытах для пересадки использовались ядра клеток кишечника головастиков. Они были подвергнуты критике, так как в кишечнике головастиков могли сохраниться первичные половые клетки. В 1970 г удалось провести опыты, в которых замена ядра яйцеклетки на генетически помеченное ядро из соматической клетки взрослой лягушки привела к появлению головастиков и взрослых лягушек. Это показало, что техника трансплантации ядер из соматических клеток взрослых организмов в энуклеированные (лишенные ядра) ооциты позволяет получать генетические копии организма, послужившего донором ядер дифференциированных клеток. Результат эксперимента стал основанием для вывода об обратимости эмбриональной дифференцировки генома по крайней мере у земноводных.

Клонирование млекопитающих

Клонирование млекопитающих возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo. Клонирование взрослых животных достигается в результате переноса ядра из дифференцированной клетки в неоплодотворённую яйцеклетку, у которой удалено собственное ядро (энуклеированная яйцеклетка) с последующей пересадкой реконструированной яйцеклетки в яйцевод приёмной матери. Однако долгое время все попытки применить описанный выше метод для клонирования млекопитающих были безуспешными. Одними из первых успешное клонирование млекопитающего (домовой мыши) осуществили советские исследователи [5] в 1987 г. Они использовали метод электропорации для слияния энуклеированной зиготы и клетки эмбриона мыши с ядром.

Значительный вклад в решение этой проблемы был сделан шотландской группой исследователей из Рослинского института и компании «PPL Therapeuticus» (Шотландия) под руководством Яна Вильмута (Wilmut). В 1996 году появились их публикации по успешному рождению ягнят в результате трансплантации ядер, полученных из фибробластов плода овцы, в энуклеированные ооциты.[6] В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997 г., когда родилась овца по кличке Долли — первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы.[7] В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова), а также взятых у мёртвых, замороженных[8] на несколько лет, животных. Появление технологии клонирования животных вызвало не только большой научный интерес, но и привлекло внимание крупного бизнеса во многих странах. Подобные работы ведутся и в России, но целенаправленной программы исследований не существует. В целом технология клонирования животных ещё находится в стадии развития. У большого числа полученных таким образом организмов наблюдаются различные патологии, приводящие к внутриутробной гибели или гибели сразу после рождения, хотя при клонировании овец в 2007 году выжил каждый 5-й эмбрион (в случае с Долли — понадобилось 277).

В 2004 году американцы начали коммерческое клонирование кошек, а в апреле 2008 года Южнокорейские таможенники приступили к дрессировке семи щенков, клонированных из соматических клеток лучшего корейского розыскного пса породы канадский лабрадор-ретривер. По мнению южнокорейских ученых, 90 % клонированных щенков будут удовлетворять требованиям для работы на таможне, тогда как лишь менее 30 % обычных щенков проходят тесты на профпригодность.[9][10]

Клонирование без использования пересадки ядер

В 2009 году была опубликована работа, в которой с помощью метода тетраплоидной комплементации впервые было показано, что индуцированные плюрипотентные стволовые клетки (iPS) могут давать полноценный организм, в том числе и его клетки зародышевого пути [11]. iPS, полученные из фибробластов кожи мышей с помощью трансформации с использованием ретровирусного вектора, в некотором проценте случаев дали здоровых взрослых мышей, которые были способны нормально размножаться. Таким образом, впервые были получены клонированные животные без примеси генетического материала яйцеклеток (при стандартной процедуре клонирования митохондриальная ДНК передается потомству от яйцеклетки реципиента).

Клонирование с целью воссоздания вымерших видов

Клонирование может быть использовано для воссоздания естественных популяций вымерших животных. Несмотря на наличие определённых проблем и трудностей, первые результаты в данном направлении уже имеются.

Клонирование испанского козерога

В Испании в 2009 г. родился клонированный детеныш вымершего подвида пиренейского горного козла букардо (Capra pyrenaica pyrenaica). Сообщение о клонировании появилось в январском номере журнала Theriogenology.

Несмотря на то, что созданный испанскими учеными клон вымершего животного прожил всего несколько минут, этот опыт уже признан первым в мире успешным экспериментом по воссозданию исчезнувшего подвида.[источник не указан 663 дня]

Данный подвид пиренейских козлов полностью исчез к 2000 году (причины вымирания точно не известны[12]). Последний представитель вида, самка по имени Селия (Celia), погибла в 2000 году. Но до того (в 1999-м г.) Хосе Фольк (Jose Folch) из Исследовательского центра сельского хозяйства и технологий Арагона (CITA) взял у Селии несколько клеток кожи с целью анализа и сохранения в жидком азоте. Этот генетический материал был использован в первой попытке клонировать вымерший подвид.

Экспериментаторы переносили ДНК букардо в яйцеклетки домашней козы, лишенные собственного генетического материала. Полученные эмбрионы подсаживали суррогатным матерям — самкам других подвидов испанского козла или гибридных видов, полученных скрещиванием домашних и диких коз. Таким образом было создано 439 эмбрионов, 57 из которых были имплантированы в суррогатные матки. Всего семь операций закончилось беременностью и только одна коза, в конце концов, родила самку букардо, умершую спустя семь минут после рождения от проблем с дыхательной системой.

Несмотря на неудачное клонирование и смерть клонированного козлёнка, многие ученые полагают, что такой подход может быть единственным способом спасения видов, стоящих на грани вымирания. Это вселяет в ученых надежду на то, что подвергающиеся опасности и недавно вымершие виды можно будет воскресить с использованием замороженных тканей. [13][14][15]

Клонирование бантенгов

В 2004 году на свет появилась пара бантенгов (диких быков, обитавших в Юго-Восточной Азии), клонированных из клеток животных, умерших более 20 лет назад. Два бантенга были клонированы из уникального «замороженного зоопарка» Сан-Диего, созданного ещё до того, как люди поняли, что клонирование вообще возможно. Произведшая клонирование американская компания Advanced Cell Technology сообщила, что в нём использовались клетки животных, которые умерли в 1980 году, не оставив потомства.

Бантенгов клонировали, перенеся их генетический материал в пустые яйцеклетки обычных домашних коров; из 16 зародышей до рождения дожили только два.[16][17]

Императорский дятел

В последний раз императорского дятла видели в Мексике в 1958 году. С тех пор орнитологи пытаются найти следы этой популяции, но безуспешно. Около десяти лет назад появились даже слухи, что птица ещё живёт на планете, но и они не подтвердились.

Однако в музеях остались чучела птицы. Научный сотрудник Дарвиновского музея Игорь Фадеев считает, что если операцию по выделению ДНК провести со всеми чучелами, которые находятся в разных странах мира, то дятла можно будет воскресить. В разных музеях мира на сегодняшний день осталось лишь десять чучел императорского дятла.

Если проект увенчается успехом, то в недалеком будущем на нашей планете, возможно, вновь появится императорский дятел. В Государственном Дарвиновском музее уверены, что последние методы молекулярной биологии позволяют выделить и воспроизвести ДНК этих птиц.[18]

Дронт

В июне 2006 года голландские учёные обнаружили на острове Маврикий хорошо сохранившиеся останки дронта — вымершей исторически недавно (в XVII веке) нелетающей птицы. Ранее наука не располагала останками птицы. Но теперь появилась определенная надежда на «воскрешение» этого представителя пернатых.[19]

Клонирование гигантских птиц

Планы по клонированию исчезнувших гигантских птиц были поставлены под сомнение в результате исследований учёных Оксфордского университета. Выделив участки ДНК из останков вымерших птиц, учёные обнаружили, что их генетический материал настолько разрушен, что современная технология не позволяет провести полноценное клонирование. Цель научных работ состояла в возрождении вымерших несколько веков назад новозеландского страуса Моа, а также Мадагаскарского эпиорниса (птицы-слона).

Образцы ДНК были взяты из фрагментов тканей, сохранившихся в музеях. Однако учёные не смогли получить достаточную по своей длине цепочку ДНК, чтобы провести клонирование. Тем не менее, некоторые учёные считают, что в ближайшие годы будет разработана технология восстановления утраченных частей ДНК путем вшивания туда «заплат» из ДНК близкородственных видов.[20]

Клонированные животные

Литература

  • Шевелуха В. С., Калашникова Е. А., Дегтярёв С. В. Сельскохозяйственная биотехнология — М.: Высшая школа, 1998 — ISBN 5-06-003535-2
  • Генная инженерия растений (лабораторное руководство) / Под ред. Дж. Рейпера.— М.:Мир, 1991

См. также

Примечания

  1. ↑ Krens E.A., Molendijk L., Wullems G.I., Schilperoort R.A. In vitro Transformation of Plant Protoplasts with Ti-Plasmid DNA // Nature. 1982. Vol. 296. P. 72-74.
  2. ↑ Интервью с владельцем питомника 'AWZ'
  3. ↑ Gurdon, JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10: 622-40
  4. ↑ James McGrath and Davor Solter. Nuclear Transplantation in the Mouse Embryo by Microsurgery and Cell Fusion. Science, New Series, Vol. 220, No. 4603 (Jun. 17, 1983), pp. 1300—1302
  5. ↑ Чайлахян Л.М., Вепринцев Б.Н., Свиридова Т.А., Никитин В.А. Электростимулируемое слияние клеток в клеточной инженерии. Биофизика, 1987, т.32, №5,с.с. 874-887
  6. ↑ Campbell, K.H.S., McWhir, J., Ritchie, W.A. nad Wilmut, A. Sheep cloned by nuclear transfer from a cultured cell line, PMID 8598906 Nature, 1996 issue 6569, pages 64-66 (англ.)
  7. ↑ Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., Campbell, K.H.S. Viable offspring derived from fetal and adult mammalian cells PMID 9039911 Nature, 1997 issue 6619 pages 810—813 (англ.)
  8. ↑ lenta.ru : «Можно ли сделать из мыши мамонта» по материалам Proceedings of the National Academy of Sciences
  9. ↑ lenta.ru. 2008. «Южнокорейские таможенники приступили к дрессировке клонированных щенков»
  10. ↑ BBC News. 2008. S Korea trains sniffer-dog clones (англ.)
  11. ↑ Xiao-yang Zhao, Wei Li, Zhuo Lv,, Lei Liu, Man Tong, Tang Hai, Jie Hao, Chang-long Guo, Qing-wen Ma, Liu Wang, Fanyi Zeng, Qi Zhou. iPS cells produce viable mice through tetraploid complementation. Nature 461, (3 September 2009), 86-90
  12. ↑ Capra pyrenaica
  13. ↑ Ошибка в сносках?: Неверный тег <ref>; для сносок ufo.ck.ua не указан текст
  14. ↑ Попытка учёных воскресить вымерший вид провалилась — Известия НаукиШаблон:Сайт не работает
  15. ↑ 1 2 Испанцы впервые клонировали вымершее животное — Мембрана.ru
  16. ↑ FederalPost. 2003. Учёные клонировали вымерших 20 лет назад бантенгов
  17. ↑ Collaborative Effort Yields Endangered Species Clone
  18. ↑ Российские учёные будут воскрешать вымершую птицу
  19. ↑ Week Survey — Клонирование птицы Льюиса Кэрола
  20. ↑ Учёным из Оксфорда не удалось клонировать вымерших птиц
  21. ↑ 1 2 клонирование животных — история метода
  22. ↑ BBC News. 1998. Cloned mice follow Dolly (англ.)
  23. ↑ BBC News. 1998. World: Asia-Pacific Japanese scientists clone cow (англ.)
  24. ↑ BBC News. 1999. Scientists clone a goat (англ.)
  25. ↑ BBC News. 2002. First pet clone is a cat (англ.)
  26. ↑ Медицинские новости Солвей Фарма. 2002.
  27. ↑ FederalPost. 2003. Учёные клонировали вымерших 20 лет назад бантенгов
  28. ↑ SciTecLibrary.ru. 2003. Клонирование мула…
  29. ↑ Корреспондент.net. 2003. Американские учёные объявили о клонировании оленя
  30. ↑ Утро.ru. 2004. Американцы приступили к коммерческому клонированию кошек
  31. ↑ Lenta.ru. 2006. Крупнейшим научным достижением года признали клонированную собаку
  32. ↑ MEMBRANA | Мисси выполнима: опальный учёный продаёт с аукциона собачье бессмертие
  33. ↑ Би-би-си | Наука и техника | В Южной Корее клонировали собак-ищеек
  34. ↑ Первый клонированный верблюд появился в Арабских Эмиратах
  35. ↑ Membrana: На Ближнем Востоке появился первый клонированный козёл
  36. ↑ Lenta.ru. 2011. Южнокорейский ученый клонировал койота

Ссылки

ushakov.academic.ru

Клонирование животных и растений Википедия

Клони́рование (англ. cloning от др.-греч. κλών — «веточка, побег, отпрыск») — в самом общем значении — точное воспроизведение какого-либо объекта любое требуемое количество раз. Объекты, полученные в результате клонирования (каждый по отдельности и вся их совокупность), называются клоном.

Основные сведения[ | код]

Естественное клонирование животных и растений часто происходит в результате бесполого и вегетативного размножения, а также в результате амейотического партеногенеза.

Искусственное клони́рование живо́тных и расте́ний — новый вид человеческой деятельности, возникший в конце XX-го — начале XXI-го века, состоящий в воспроизведении старых и создании новых биологических организмов, связанных с изучением генома, предполагающий вмешательство в его структуру, нацеленный на решение множества практических задач (кроме научных).

Термины «клон», «клонирование» первоначально использовались в микробиологии и селекции, после — в генетике, в связи с успехами которой и вошли в общее употребление. Надо добавить, что их популяризации в значительной мере способствовали также киноискусство и литература.

Следует иметь в виду, что точное воспроизведение животного или растения как при естественном, так и при искусственном клонировании невозможно. Новый организм в любом случае будет отличаться от материнского за счет соматических мутаций, эпигенетических изменений наследственного материала, влияния окружающей среды на фенотип и случайных отклонений, возникающих в ходе онтогенеза.

Значение[ | код]

Создание животных и растений с заданными качествами всегда было чрезвычайно заманчивым потому, что это означало создать организмы уникальнейшие и нужнейшие, устойчивые к болезням, климатическим условиям, дающие достаточный приплод, необходимое количество мяса, молока, плодов, овощей и прочих продуктов. Использование технологии клонирования предполагает уникальную возможность получать фенотипически и генетически идентичные организмы, которые могут быть использованы для решения различных теоретических и прикладных задач, стоящих перед биомедициной и сельским хозяйством. В частности, использование клонирования могло бы способствовать изучению проблемы тотипотентности дифференциированных клеток, развития и старения организмов, злокачественного перерождения клеток. Благодаря технологии клонирования предполагается появление ускоренной генетической селекции и тиражирования животных с исключительными производственными показателями. В сочетании с

ru-wiki.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта