Клеточный сок растений. Большая Энциклопедия Нефти и Газа

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Вакуоли и клеточный сок растений. Клеточный сок растений


Вакуоли и клеточный сок

Вакуоли есть почти во всех взрослых живых растительных клетках.

Они представляют собой полости внутри протопласта, заполненные обычно водянистым содержимым — клеточным соком. Так как вакуоли образуются в результате обмена веществ протопласта, то их форма, размеры и состояние определяются состоянием самого протопласта. В очень молодых, эмбриональных клетках протопласт обычно занимает весь объем клетки и вакуолей нет. В более взрослых клетках наблюдаются многочисленные очень мелкие (2—10 мк) вакуоли, равномерно распределенные в цитоплазме. Ядро обычно лежит в центре клетки. При рассматривании в световой микроскоп эти мелкие вакуоли имеют вид отдельных изолированных зерен или тонких изогнутых нитей, по форме напоминающих митохондрии. Благодаря своей многочисленности они придают цитоплазме пенистый вид. Содержимое их отличается довольно высокой плотностью и вязкостью и представляет собой гидрогель, образованный, по-видимому, гидрофильными белками. При постепенном переходе клетки во взрослое состояние, что выражается прежде всего в ее росте, объем клетки сильно увеличивается, тогда как объем цитоплазмы увеличивается незначительно. Этот процесс, называемый процессом растяжения клетки, связан с накоплением большого количества воды, поглощаемой клеткой извне, и ростом оболочки. Цитоплазма, поглощая воду, выделяет ее затем в вакуоли вместе с продуктами своей жизнедеятельности — продуктами обмена, в виде клеточного сока. При этом мелкие вакуоли растут, содержимое их разжижается, они сливаются друг с другом и число их уменьшается. Отдельные вакуоли часто принимают неправильную форму, изменяемую движением цитоплазмы. Наконец, во взрослой клетке, достигшей своего окончательного размера, все вакуоли сливаются в одну центральную вакуолю, а протопласт оттесняется к оболочке, облекая вакуолю в виде тонкого постенного слоя. Как показали электронномикроскопические исследования, толщина этого постенного слоя цитоплазмы может быть значительно меньше толщины первичной оболочки и митохондрий. Это наблюдается, например, в клетках основной паренхимы стебля, толщина слоя цитоплазмы которых находится на пределе разрешающей способности светового микроскопа (около 0,2 мк). В этих клетках плазмалемма и тонопласт до такой степени сближаются друг с другом, что клеточные органоиды (митохондрии и пластиды), зажатые между ними, изменяют свою форму.

В постенном слое цитоплазмы располагаются ядро и другие органоиды клетки. Иногда ядро занимает центр клетки, окружающая его цитоплазма соединяется с постенной цитоплазмой тяжами, проходящими через полость вакуоли. Кроме цитоплазмы, вакуолеподобные образования могут возникать при особых условиях и в других органоидах, например, в пластидах и в ядре.

Присутствие одной крупной вакуоли, заполненной клеточным соком, является характерной особенностью дифференцированной (взрослой) растительной клетки, которая остается живой к моменту зрелости. Объем такой вакуоли обычно значительно больше объема всех других клеточных компонентов, вместе взятых, и часто почти равен объему всей клетки. Так, вакуоли клеток сочных органов растений нередко занимают свыше 90% объема клетки.

Процесс вакуолизации может быть обратимым. Так, иногда взрослые клетки опять переходят в эмбриональное состояние, приобретая способность делиться. При этом объем протопласта увеличивается, а объем клеточного сока уменьшается, вместо одной крупной вакуоли опять возникают многочисленные мелкие вакуоли, имеющие вид зернышек или коротких палочек. Содержимое вакуолей — клеточный сок — представляет собой очень маловязкую жидкость и является весьма слабым водным раствором различных веществ, синтезированных и выделенных протопластом. Таким образом, основной компонент клеточного сока — вода. В ней аккумулируются многочисленные соединения, минеральные и органические, которые находятся в состоянии истинного или коллоидного раствора и реже — в виде твердых включений. Вязкость клеточного сока связана с присутствием коллоидов, которые иногда при обезвоживании клетки могут придавать ему состояние настоящего геля. Реакция клеточного сока обычно слабокислая или нейтральная, реже щелочная. Среди веществ клеточного сока преобладают соли, органические кислоты и растворимые углеводы. Соли минеральных и органических кислот — нитраты, сульфаты, соли лимонной, щавелевой, янтарной кислот — играют наибольшую роль в создании осмотического давления клетки. Роль органических кислот клеточного сока до конца еще не выяснена. До недавнего времени их рассматривали как отбросы, конечные продукты обмена веществ протопласта. Однако появились данные, показывающие, что при определенных условиях органические кислоты могут вновь использоваться протопластом. Им приписывается также роль защиты клетки от нападения паразитов. Из растворимых углеводов в клеточном соке наиболее распространены сахароза, глюкоза (виноградный сахар) и фруктоза. Они играют роль запасных энергетических веществ и служат важнейшим питательным материалом клетки. Накапливающаяся в большом количестве в клеточном соке корнеплодов сахарной свеклы и сердцевины сахарного тростника сахароза имеет большое народнохозяйственное значение, так как служит основным источником получения сахара. Глюкоза и фруктоза, как показывает их название, распространены в плодах. В клубнях георгины, земляной груши, в корнях одуванчика и других растений семейства сложноцветных клеточный сок содержит близкий к крахмалу углевод инулин, отличающийся от крахмала растворимостью в воде. При действии спирта инулин кристаллизуется, образуя так называемые сферокристаллы.

Сферокристаллы инулина Для некоторых растительных групп (семейства кактусовых, толстянковых, орхидных) характерно накопление в клеточном соке слизистых веществ, также являющихся углеводами. Очень часто в состав клеточного сока входят глюкозиды (миндаль, наперстянка) и алкалоиды (мак, кофе, чай). Первые представляют собой соединения глюкозы со спиртами, альдегидами и другими веществами, не содержащими азот, а вторые — азотистые вещества сложного состава. Роль их в обмене веществ не выяснена. Они имеют горький вкус и в определенных количествах ядовиты для животных, предохраняя таким образом растение от поедания. В то же время многие из них представляют собой ценные лекарства, например атропин, — у белладонны, морфин и кодеин — у мака, хинин — у хинного дерева.

В клеточном соке очень часто встречаются дубильные вещества — танниды. Это сложные органические безазотистые соединения вяжущего вкуса, сильно преломляющие свет. Клеточный сок, содержащий танниды, отличается высокой вязкостью. Особенно богаты дубильными веществами клетки коры (дуб, ива, ель), листья чая, семена кофе. При отмирании клетки танниды окисляются, пропитывают клеточную оболочку и придают ей темно-коричневый цвет. Значение дубильных веществ в жизни самого растения выяснено недостаточно. Они обладают антисептическими свойствами и поэтому служат защитными веществами против нападения различных микроорганизмов. Техническое значение таннидов состоит в том, что с их помощью дубят кожу, после чего она становится мягкой, не ослизняющейся и не пропускает воду.

Все эти вещества, растворенные в клеточном соке, как правило, бесцветны и их выявляют лишь специальными реактивами. Поэтому клеточный сок может быть и бесцветным, и окрашенным в различные цвета, благодаря присутствию растворимых в воде пигментов. Наиболее распространенные пигменты клеточного сока — антоцианины и флавоны — относятся к группе глюкозидов. Чаще всего они сосредоточены в клеточном соке наружных слоев клеток высших растений. Антоцианины обусловливают красный цвет корнеплодов и листьев столовой свеклы, красный, пурпуровый или синий цвет лепестков многих цветков и других частей растений. Особенно часто они встречаются в клетках проростков и молодых растений, которые приобретают поэтому красноватые тона. Различие в оттенках цвета — от фиолетового до красного — связано с различной реакцией клеточного сока: если реакция кислая, то господствуют красные тона, при нейтральной реакции — фиолетовые, а при слабощелочной— синие. Присутствием антоцианов объясняется и цвет плодов вишни, сливы, винограда. Желтый цвет цветков, например, лепестков льнянки, желтой георгины связан с присутствием в клеточном соке пигментов группы флавонов.

Значение пигментов клеточного сока в обмене веществ выяснено недостаточно. Находясь в клетках лепестков и вызывая их яркую окраску, пигменты выполняют функцию привлечения насекомых-опылителей. Так как они сильно поглощают ультрафиолетовые лучи, то возможно, что молодые части растений благодаря этому защищены от вредного действия этих лучей.

Состав, концентрация и вязкость клеточного сока у разных видов растений различны и изменяются даже в одном растении от органа к органу, от ткани к ткани и от клетки к клетке. Поэтому за исключением воды не все клетки накапливают в вакуолях все перечисленные вещества. Многие из веществ клеточного сока, например, алкалоиды, глюкозиды встречаются только у некоторых групп растений, другие же вещества распространены более широко. Весьма часто в клеточном соке отдельных специализированных взрослых клеток накапливается практически только один продукт обмена веществ, но в больших количествах. Например, дубильные вещества накапливаются в особых крупных клетках — вместилищах, рассеянных в коре и древесине. В клеточном соке некоторых клеток могут накапливаться большие количества слизи, растворимых белков (слизевые и белковые вакуоли).

На состав и свойства клеточного сока большое влияние оказывают возраст клетки (и самого растения) и окружающие условия. Например, незрелые сочные плоды, обычно зеленые, кислые и часто вяжущие, по созревании меняют свою окраску и вкус (вишня, различные ягоды и др.). Это связано с тем, что по мере созревания плодов уменьшается содержание органических кислот, вызывающих кислый вкус, дубильных веществ, вызывающих вяжущий вкус, и накапливаются сахара. Накапливание антоцианинов особенно интенсивно происходит в листьях осенью при сухой, солнечной и прохладной погоде, когда желтеющие листья приобретают красивые красноватые оттенки, обусловленные накоплением антоцианинов.

Несмотря на то, что вакуоли с клеточным соком не обладают свойствами живого, тем не менее их значение в жизни клетки и растения очень разнообразно. Прежде всего вакуоля вместе с цитоплазмой выполняет функцию поглощения воды и растворов и передвижения их по растению. Поглощенная клеточным соком вода придает клетке упругое состояние (тургор). Тургор обеспечивает сохранение сочными органами определенной формы и положения в пространстве, а также сопротивление их действию механических факторов. Вакуоли служат также резервуарами запасной воды. Растворенные в клеточном соке соли, органические кислоты, углеводы и белки могут вновь использоваться в обмене веществ протопласта.

Механизм заложения вакуолей еще полностью не выяснен. Электронномикроскопические исследования показали, что во взрослой клетке вакуоли отграничены от цитоплазмы одной мембраной— тонопластом. Иногда, если в клетке несколько крупных вакуолей, то у них наблюдаются длинные трубки, вытягивающиеся в сторону цитоплазмы, причем трубки часто напоминают контуры гладкой эндоплазматической сети.

Участок эмбриональной клетки

Участок эмбриональной клетки

В молодых клетках, как видно на некоторых электронограммах, обнаруживаются многочисленные местные расширения межмембранного пространства эндоплазматической сети. Эти клетки при рассматривании в световой микроскоп имеют мельчайшие вакуоли, напоминающие по форме те, которые получились на электронограммах. Это дало основание некоторым ученым выдвинуть гипотезу, согласно которой вакуоли закладываются в результате местных расширений межмембранного промежутка эндоплазматической сети. В пользу этой точки зрения свидетельствует и наличие одной мембраны вокруг вакуолей. Однако до сих пор не удалось получить электронограмм, показывающих на одном срезе непрерывность ядерной оболочки, эндоплазматической сети и вакуолей. Поэтому была развита и другая гипотеза, согласно которой в отдельных участках гиалоплазмы происходит местная гидратация (оводнение) белков без всякой связи с эндоплазматической сетью. В гиалоплазме эмбриональных клеток на электронограммах были обнаружены отдельные более светлые участки, не ограниченные сначала мембраной и содержащие остатки цитоплазмы. Эти участки и считают зачатками вакуолей. При последующем слиянии этих маленьких капелек в более взрослых клетках возникал тонопласт, и вакуоля принимала типичную форму. Возникновение трубчатых удлинений у крупных вакуолей, выступающих в гиалоплазму, по этой гипотезе, объясняется деформацией вакуолей в результате движения цитоплазмы. Ограниченные мембраной структуры с признаками вакуолей были найдены в контакте с диктиосомами или близко от них. Это послужило основанием для гипотезы, согласно которой вакуоли образуются путем разбухания межмембранного пространства наружных цистерн диктиосом. При этом мембраны диктиосомы становятся мембранами тонопласта.

Какая из этих гипотез соответствует действительности, должны показать дальнейшие исследования. Вполне возможно, что существование различных гипотез объясняется различными путями заложения вакуолей.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Строение клетки. Клеточный сок.

Поиск Лекций

 

Вакуоли – производные протопласта – полость, ограниченная двойной мембраной (тонопластом) и заполненная клеточным соком. Клеточный сок – это слабоконцентрированный водный раствор минеральных и органических соединенений, образующих истинные и коллоидные растворы. При обезвоживании вакуолей они переходят в форму кристаллов или кристаллоидов. Клеточный сок имеет в основном слабокислую реакцию (рН 2 – 5). Его химический состав зависит от вида растения, его возраста и состояния. Физиологические функции вещества клеточного сока различны. В нём накапливаются и запасные питательные вещества (простые белки, углеводы), и вещества, регулирующие взаимовлияение растений, растений и животных (гликозиды, пигменты, алкалоиды), и осмотически деятельные соединения (соли органических и неорганических кислот).

Гликозиды – эфироподобные соединения моносахаридов со спиртами, с альдегидами и другими веществами. К гликозидам относятся пигменты клеточного сока – флавоноиды. Они окрашивают клеточный сок в лепестках цветков и плодах и тем самым способствуют привлечению насекомых опылителей и распространению плодов. Флавоны – жёлтые пигменты, антоцианы – пигменты, меняющие свою окраску в зависимости от рН клеточного сока.

Дубильные вещества – эфиры фруктозы и ароматических кислот, предохраняющие растения от загнивания. Соединяясь с белками, они дают нерастворимые соединения.

Алкалоиды – органические основания, содержащие азот, в растениях находятся в виде солей органических кислот, как правило проявляют большую физиологическую активность и оказывают сильное влияние на организм человека и животных, широко применяются в медицине.

Клеточный сок накапливается в каналах эндоплазматической сети в виде капелек, которые затем сливаются в вакуоль. В молодых клетках содержится много мелких вакуолей, в старых обычно одна крупная. В клеточном соке растворены различные вещества: углеводы, растворимые белки, органические кислоты, гликозиды, дубильные вещества, алкалоиды, ферменты, витамины, пигменты и другие. Вакуоль – место отложения конечных продуктов обмена веществ. Функции вакуолей заключаются с одной стороны в накоплении запасных и изоляции эргастических веществ (отбросов, конечных продуктов обмена), с другой – в поддержании тургора и регуляции водно-солевого обмена.

Между клеточным соком, протопластом и клеточными стенками постоянно передвигаются вещества и вода. Тонопласт легко проницаем для воды и, обладая избирательной проницаемостью, замедляет выход из вакуоли ионов и сахаров.

Основная роль в осмосе растительных клеток принадлежит вакуолям. Если клеточный сок имеет более высокую концентрацию, то вода будет проникать в вакуоль. Увеличиваясь при этом в объёме, вакуоль будет давить на цитоплазму, прижимая её к клеточной стенке и создавая тургорное давление. Клеточная стенка в силу своей упругости будет оказывать обратное давление на протопласт. Это противодавление клеточных стенок называется тургорным натяжением. Поступление воды в клетку хотя и происходит на основе осмоса, но лимитировано ограниченно растяжимой клеточной стенкой. Когда будет достигнут предел растяжимости клеточной стенки, всасывание воды прекратится. Концентрация клеточного сока будет наименьшей, тургорное напряжение – максимальным, клетка имеет наибольший возможный объём. Напряжённое состояние клеточной стенки, создаваемое гидростатическим давлением внутриклеточной жидкости, называется тургором. Тургор нормальное физиологическое состояние растительной клетки. Благодаря тургору поддерживается упругость клеток и тканей, растение сохраняет свою форму, занимает определённое положение в пространстве, противостоит механическим воздействиям. Если клетку в состоянии тургора поместить в раствор, осмотическое давление которого выше, чем клеточного сока (гипертонический раствор), то вода будет выходить из клетки. Сокращение объёма вакуоли приедёт к уменьшению давления её на цитоплазму, а цитоплазмы – на клеточные стенки. Клеточные стенки в силу свой эластичности станут менее растиянутыми, объём клетки уменьшится. Если объём клетки достигнет минимума, а уменьшение объёма цитоплазмы будет продолжаться, то, сжимаясь, она начнёт отставать от стенок и постепенно соберётся в центре клетки. Наступает плазмолиз - состояние, обратное тургору. Длительный и сильный плазмолиз может вызвать гибель клетки, при частичном плазмолизе растение увядает.

Включения представляют собой вещества, временно выведенные из обмена веществ или конечные его продукты. Большинство включений расположены в цитоплазме и вакуолях. Существуют жидкие и твёрдые включения.

Широко распространено отложение жиров в виде липидных капель в цитоплазме. Наиболее богаты ими плоды и семена.

Запасные белки наиболее часто встречаются в виде алейроновых зёрен, которые образуются при созревании семян из высохших вакуолей. Они имеют различную форму, размеры от 0,2 до 20 мкм. Алейроновое зерно окружено тонопластом и содержит белковый матрикс, в который погружены белковый кристалл (реже их два-три) ромбоэдрической формы и глобоид фитина (содержит запасной фосфор). Это сложное алейроновое зерно (у льна, тыквы, подсолнечника и др.). Алейроновые зёрна, содержащие только аморфный белок, называют простыми (у бобовых, риса, кукурузы, гречихи).

Наиболее распространённое запасное питательное вещество – крахмал. Следует различать крахмал ассимиляционный (или первичный), запасной (или вторичный) и транзиторный. Ассимиляционный крхиал образуется в процессе фотосинтеза в хлоропластах из глюкозы.Запасной крахмал откладывется в лейкопластах (амилопластах) в виде крахмальных зёрен. Крахмальные зёрна представляют собой сферокристаллы, состоящие из игольчатых кристаллов. В поляризованном свете в каждом зерне виден чёрный крест. В крахмальных зёрнах наблюдается слоистость, которая объясняется различныи содержанием воды, в тёмных слоях её больше, в светлых меньше. Это связано с неравномерностью поступления крахмала в течении суток. Крахмальные зёрна бывают простыми, сложными и полусложными. Простые зёрна имеют один центр крахмалообразования, вокруг которого формируются слои крахмала. У сложных зёрен в одном лейкопласте несколько центров, имеющих свои собственные слои. В полусложных зёрнах также несколько центров (два и больше), но кроме слоёв крахмала, возникших возле каждого центра, по периферии зерна имеются общие слои. Простые зёрна имеют пшеница, рожь, кукуруза, сложные – рис, овёс, гречиха. В клубнях картофеля встречаются все три типа крахмальных зёрен.

Продукты вторичного обмена веществ. Часть конечных продуктов обмена веществ выделяется наружу, часть изолируется в самом растении. Одни вещества накапливаюся в клеточном соке ( соли щавелевой кислоты, дубильные вещества, алкалоиды), другие – в специализированных клетках или особых вместилищах (эфирные масла, смолы, оксалат кальция и др.). Оксалат кальция откладывается только в вакуолях в виде кристаллов. Это могут быть одиночные многогранники, рафиды – пачки игольчатых кристаллов, кристаллический песок – скопления множества одиночных кристаллов, наиболее часто встречаются друзы – шаровидные сростки призматических кристаллов. Наличие или отсутствие кристаллов оксалата кальция и их вид, используется как диагностический признак при определении подлинности и доброкачественности лекарственного растительного сырья.

 

 

Лекция №3

Растительные ткани

Тканями называют группы клеток, сходные по строению и приспособлению к выполнению одной или нескольких функций.

Существует несколько классификаций тканей. Наиболее распространены - образовательные (меристемы), покровные, механические, проводящие, основные и выделительные.



poisk-ru.ru

Строение клетки. Клеточный сок.

Количество просмотров публикации Строение клетки. Клеточный сок. - 1408

1. Что такое вакуоль?

2. Что такое тонопласт?

3. Что такое клеточный сок?

4. От чего зависят химический состав и физическое состояние клеточного сока?

5. В чём состоят физиологические функции клеточного сока?

6. Какие вещества накапливаются в клеточном соке?

7. Что такое гликозиды, флавоноиды, антоцианы, дубильные вещества, алкалоиды?

8. Какое применение находят в медицинœе гликозиды, флавоноиды, антоцианы, дубильные вещества, алкалоиды?

9. Что такое осмос?

10. Какие вещества являются осмотически активными?

11. Что такое тургор?

12. Что такое тургорное давление?

13. Что такое тургорное натяжение?

14. Каков механизм возникновения тургора?

15. Какое значение имеет тургор в жизни растений?

16. Что такое плазмолиз? Отчего он возникает? К чему может привести?

17. В виде чего и где откладываются жиры?

18. Какие органы и ткани наиболее богаты жирами?

19. Что такое алейроновое зерно?

20. Как образуется алейроновое зерно?

21. Какие существуют виды алейроновых зёрен?

22. Что такое крахмальное зерно?

23. Как образуется крахмальное зерно?

24. Какие существуют виды крахмальных зёрен?

23. Оксалат кальция, где откладывается, какие виды кристаллов образует?

24. Какое значение имеют кристаллы оксалата кальция в медицинœе?

25. Эфирные масла, что это такое, где образуются и где накапливаются?

26. Какое значение имеют эфирные масла в медицинœе?

Вакуоли – производные протопласта – полость, ограниченная двойной мембраной (тонопластом) и заполненная клеточным соком. Клеточный сок - ϶ᴛᴏ слабоконцентрированный водный раствор минœеральных и органических соединœенений, образующих истинные и коллоидные растворы. При обезвоживании вакуолей они переходят в форму кристаллов или кристаллоидов. Клеточный сок имеет в основном слабокислую реакцию (рН 2 – 5). Его химический состав зависит от вида растения, его возраста и состояния. Физиологические функции вещества клеточного сока различны. В нём накапливаются и запасные питательные вещества (простые белки, углеводы), и вещества, регулирующие взаимовлияение растений, растений и животных (гликозиды, пигменты, алкалоиды), и осмотически деятельные соединœения (соли органических и неорганических кислот).

Гликозиды – эфироподобные соединœения моносахаридов со спиртами, с альдегидами и другими веществами. К гликозидам относятся пигменты клеточного сока – флавоноиды. Οʜᴎ окрашивают клеточный сок в лепестках цветков и плодах и тем самым способствуют привлечению насекомых опылителœей и распространению плодов. Флавоны – жёлтые пигменты, антоцианы – пигменты, меняющие свою окраску исходя из рН клеточного сока.

Дубильные вещества – эфиры фруктозы и ароматических кислот, предохраняющие растения от загнивания. Соединяясь с белками, они дают нерастворимые соединœения.

Алкалоиды – органические основания, содержащие азот, в растениях находятся в виде солей органических кислот, как правило проявляют большую физиологическую активность и оказывают сильное влияние на организм человека и животных, широко применяются в медицинœе.

Клеточный сок накапливается в каналах эндоплазматической сети в виде капелœек, которые затем сливаются в вакуоль. В молодых клетках содержится много мелких вакуолей, в старых обычно одна крупная. В клеточном соке растворены различные вещества: углеводы, растворимые белки, органические кислоты, гликозиды, дубильные вещества, алкалоиды, ферменты, витамины, пигменты и другие. Вакуоль – место отложения конечных продуктов обмена веществ. Функции вакуолей заключаются с одной стороны в накоплении запасных и изоляции эргастических веществ (отбросов, конечных продуктов обмена), с другой – в поддержании тургора и регуляции водно-солевого обмена.

Между клеточным соком, протопластом и клеточными стенками постоянно передвигаются вещества и вода. Тонопласт легко проницаем для воды и, обладая избирательной проницаемостью, замедляет выход из вакуоли ионов и сахаров.

Основная роль в осмосœе растительных клеток принадлежит вакуолям. В случае если клеточный сок имеет более высокую концентрацию, то вода будет проникать в вакуоль. Увеличиваясь при этом в объёме, вакуоль будет давить на цитоплазму, прижимая её к клеточной стенке и создавая тургорное давление. Клеточная стенка в силу своей упругости будет оказывать обратное давление на протопласт. Это противодавление клеточных стенок принято называть тургорным натяжением. Поступление воды в клетку хотя и происходит на базе осмоса, но лимитировано ограниченно растяжимой клеточной стенкой. Когда будет достигнут предел растяжимости клеточной стенки, всасывание воды прекратится. Концентрация клеточного сока будет наименьшей, тургорное напряжение – максимальным, клетка имеет наибольший возможный объём. Напряжённое состояние клеточной стенки, создаваемое гидростатическим давлением внутриклеточной жидкости, принято называть тургором. Тургор нормальное физиологическое состояние растительной клетки. Благодаря тургору поддерживается упругость клеток и тканей, растение сохраняет свою форму, занимает определённое положение в пространстве, противостоит механическим воздействиям. В случае если клетку в состоянии тургора поместить в раствор, осмотическое давление которого выше, чем клеточного сока (гипертонический раствор), то вода будет выходить из клетки. Сокращение объёма вакуоли приедёт к уменьшению давления её на цитоплазму, а цитоплазмы – на клеточные стенки. Клеточные стенки в силу свой эластичности станут менее растиянутыми, объём клетки уменьшится. В случае если объём клетки достигнет минимума, а уменьшение объёма цитоплазмы будет продолжаться, то, сжимаясь, она начнёт отставать от стенок и постепенно соберётся в центре клетки. Наступает плазмолиз - состояние, обратное тургору. Длительный и сильный плазмолиз может вызвать гибель клетки, при частичном плазмолизе растение увядает.

Включения представляют из себявещества, временно выведенные из обмена веществ или конечные его продукты. Большинство включений расположены в цитоплазме и вакуолях. Существуют жидкие и твёрдые включения.

Широко распространено отложение жиров в виде липидных капель в цитоплазме. Наиболее богаты ими плоды и семена.

Запасные белки наиболее часто встречаются в виде алейроновых зёрен, которые образуются при созревании семян из высохших вакуолей. Οʜᴎ имеют различную форму, размеры от 0,2 до 20 мкм. Алейроновое зерно окружено тонопластом и содержит белковый матрикс, в который погружены белковый кристалл (реже их два-три) ромбоэдрической формы и глобоид фитина (содержит запасной фосфор). Это сложное алейроновое зерно (у льна, тыквы, подсолнечника и др.). Алейроновые зёрна, содержащие только аморфный белок, называют простыми (у бобовых, риса, кукурузы, гречихи).

Наиболее распространённое запасное питательное вещество – крахмал. Следует различать крахмал ассимиляционный (или первичный), запасной (или вторичный) и транзиторный. Ассимиляционный крхиал образуется в процессе фотосинтеза в хлоропластах из глюкозы.Запасной крахмал откладывется в лейкопластах (амилопластах) в виде крахмальных зёрен. Крахмальные зёрна представляют из себясферокристаллы, состоящие из игольчатых кристаллов. В поляризованном свете в каждом зерне виден чёрный крест. В крахмальных зёрнах наблюдается слоистость, которая объясняется различныи содержанием воды, в тёмных слоях её больше, в светлых меньше. Это связано с неравномерностью поступления крахмала в течении суток. Крахмальные зёрна бывают простыми, сложными и полусложными. Простые зёрна имеют один центр крахмалообразования, вокруг которого формируются слои крахмала. У сложных зёрен в одном лейкопласте несколько центров, имеющих свои собственные слои. В полусложных зёрнах также несколько центров (два и больше), но кроме слоёв крахмала, возникших возле каждого центра, по периферии зерна имеются общие слои. Простые зёрна имеют пшеница, рожь, кукуруза, сложные – рис, овёс, гречиха. В клубнях картофеля встречаются всœе три типа крахмальных зёрен.

Продукты вторичного обмена веществ. Часть конечных продуктов обмена веществ выделяется наружу, часть изолируется в самом растении. Одни вещества накапливаюся в клеточном соке ( соли щавелœевой кислоты, дубильные вещества, алкалоиды), другие – в специализированных клетках или особых вместилищах (эфирные масла, смолы, оксалат кальция и др.). Оксалат кальция откладывается только в вакуолях в виде кристаллов. Это бывают одиночные многогранники, рафиды – пачки игольчатых кристаллов, кристаллический песок – скопления множества одиночных кристаллов, наиболее часто встречаются друзы – шаровидные сростки призматических кристаллов. Наличие или отсутствие кристаллов оксалата кальция и их вид, используется как диагностический признак при определœении подлинности и доброкачественности лекарственного растительного сырья.

referatwork.ru

Вакуоли и клеточный сок растений | Биология. Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест

Молодые клетки сплошь заполнены прото­плазмой. Однако детальный анализ содержимого молодых клеток позволяет обнаружить в протоплазме полости — вакуоли (рис. 19).

С увеличе­нием размеров клетки вакуоли также увеличиваются и нередко сливаются вместе, образуя несколько или даже одну большую вакуоль. Вакуоли за­полнены клеточным соком. Клеточный сок представляет собой водный рас­твор различных неорганических и органических веществ, являющихся или запасными веществами (алейроновые зерна, инулин), или продуктами обмена.

Органические кислоты — одноосновные (уксусная), двух­основные (яблочная, винная, щавелевая) и трехосновные (лимонная) — иг­рают большую роль в обмене веществ растения. Многие из них являются промежуточными продуктами углеводного обмена (пировиноградная, ян­тарная кислоты). Органические кислоты накапливаются обычно в клеточ­ном соке, придавая растению кислый вкус (плоды лимона, клюквы, незре­лые плоды ряда растений, листья щавеля, кислицы и т. д.).

Рис. 19. Молодые клетки: 1 — в точке роста; 2 — несколько ниже точки роста

К числу веществ, не играющих определенной роли и, по-видимому, представляющих собой побочные продукты обмена, относятся вещества, содержащие азот, — алкалоиды (например, морфий у мака, атро­пин у белены и белладонны и др.). К этой же группе веществ относятся эфирные масла, смолы и др. Все они имеют, по-видимому, биоло­гическое значение, почему и сохранились в процессе естественного отбора у растений. К числу отбросов, несомненно, относятся также различные кристаллы в растениях. Клетки, в которых образуются кристаллы, обычно отмирают. Образуются кристаллы главным образом в листьях. Наи­более распространены кристаллы щавелевокислой извести, встречающие­ся у различных растений в разнообразных формах: то в виде одиночных кристаллов, то в виде их сростков — друз, или в виде игольчатых крис­таллов — рафид (рис. 20). Кроме кристаллов щавелевокислой извести, известны кристаллы углекислой и сернокислой извести. Эти два вида кри­сталлов встречаются гораздо реже. Кристаллы углекислой извести чаще всего попадаются в форме цистолитов — выростов оболочки клетки, пропитанных углекислой известью. Кристаллы гипса встречаются в ваку­олях десмидиевой водоросли клостериум. Материал с сайта http://worldofschool.ru

Рис. 20. Кристаллы щавелевокислой извести: 1 — друзы; 2 — рафиды; 3 — одна рафида при более сильном увеличении

Какова же роль кристаллов? Можно считать, что роль их сводится к нейтрализации избытка кальция в растении. Кальций в больших количествах находится обычно в почвах, из которых легко поглощается расте­нием. Избыточное количество кальция отрицательно влияет на растение. Растение связывает его имеющимися в его распоряжении кислотами: ща­велевой, серной и угольной. Наибольшие количества кристаллов отклады­ваются в листьях, которые, опадая во время листопада, освобождают рас­тение от избытка извести.

В клеточном соке многих растений содержатся в растворенном виде различные красящие вещества пигменты. Самым распространенным из них является антоциан — органическое вещество типа глюкозидов. Окраска антоциана различна, в зависимости от реакции клеточного сока: при кислой реакции — красная, при щелочной — синяя. Окраска листьев красной капусты, корня красной свеклы, лепестков многих растений (на­пример, медуницы, незабудки и др.) обусловлена наличием антоцианов.

Цветки ряда растений, например той же медуницы, за время цветения изменяют свою окраску от розовой до синей, так как реакция клеточного сока меняется от кислой до слабощелочной.

На этой странице материал по темам:
  • Доклад по теме вакуоль

  • Вакуоли и клеточный сок кратко

  • Doklad xloroplast

  • Сообщение соки растений биология

  • Царство грибы вакуоли с клеточным соком биология

worldofschool.ru

Клеточный сок - Большая Энциклопедия Нефти и Газа, статья, страница 1

Клеточный сок

Cтраница 1

Клеточный сок, полученный на ОПЦ-100, намечалось варить в спиртовом цехе вместе с мезгой и зерном.  [1]

Клеточный сок, в состав которого входят растворимые белки цитоплазмы, содержит около 40 % общего азота клетки. Нуклеиновая кислота клеточного сока представлена растворимой РНК, или PttK-переносчиком ( s - PHK), которая составляет 10 - 15 % всей РНК клетки. Эта РНК не осаждается даже при центрифугировании при 100 000 g, но ее можно осадить вместе со значительной частью белка, если понизить рН до 5 ( так называемая фракция рН5 - фермента) ( стр. Надосадочная жидкость, которая остается после выпадения этого осадка ( 84-фракция), содержит ничтожные количества РНК и немного белка.  [2]

Клеточный сок многих фруктов ( яблоки, виноград и др.) и овощей ( помидоры) содержит то или иное количество органических кислот.  [3]

Выделенный клеточный сок вместе с крахмалом и мезго й собирается в специальный приямок, откуда поступает на осадочную центрифугу для отделения от крахмала и мезги.  [5]

Выделенный клеточный сок, который при переработке нормального картофеля содержит 4 - 5 % сухих веществ, направляется в спиртовое производство.  [7]

Клеточный сок растений характеризуется осмотическим давлением от 5 до 10 атм. Солончаковые почвы развивают осмотическое давление 12 5 атм, а чернозем - всего лишь 2 5 атм. Плазматическая мембрана клеток играет роль полупроницаемой мембраны. Поскольку солончаковая почва содержит более концентрированные растворы солей ( имеет большое осмотическое давление), то вода покидает клетки растения. В результате цитоплазма клетки отслаивается, а растение погибает. На черноземе картина иная - вода из почвы поступает в клетку и разбавляет теперь уже более концентрированный раствор в клетке. Растение хорошо впитывает влагу и развивается. Однако, если испарение и расход влаги недостаточны ( длительное время стоит сырая и холодная погода), то при избытке влаги клетка растения может лопнуть.  [8]

Клеточный сок корня по отношению к некоторым бактериям ядовит.  [9]

Упаренный концентрированный клеточный сок может с успехом заменять кукурузный экстракт в микробиологических производствах, объем которых в Советском Союзе будет зна.  [10]

Кислотность клеточного сока обусловлена наличием в клубнях значительного количества органических кислот. В клубнях картофеля содержится лимонная, изолимон-ная, яблочная, щавелевая, молочная, пировиноградная, винная, янтарная и некоторые другие кислоты. В настоящее время разработана технология получения чистой лимонной кислоты из картофеля; при переработке на крахмал каждой тонны клубней дополнительно получают не менее 1 кг лимонной кислоты. Количество яблочной кислоты составляет обычно несколько десятых долей процента, а других кислот меньше. Содержание органических кислот в картофеле в сильной степени изменяется в зависимости от формы азотных удобрений. При внесении под картофель нитратов количество органических кислот в клубнях обычно значительно выше, чем пр и удобрении аммиачными формами азота.  [11]

Отделение клеточного сока и выделение крахмала производится в аппаратах различного устройства. За последние годы крахмало-паточная промышленность осваивает новейшие методы производства, переоборудуя коренным образом предприятия. Так, например, старые методы промывания кашки на ситах и отстаивание полученного таким образом крахмального молока заменяются новыми методами с применением аппаратов новых конструкций.  [12]

В клеточном соке содержатся пектины и пектинаты. При извлечении пектинов из растительного материала протопектин разрушают горячей соляной к-той, и образующийся пектин осаждают спиртом. Пектины различных растений характеризуются неодинаковой мол.  [13]

В клеточном соке Zea mays содержатся соединения, напоминающие гликогены животных. Их рассматривают или как растительные гликогены, или как амилопектины с сильно разветвленной цепью. Семена ячменя и овса, а также ряд лишайников содержат полимер, состоящий из неразветвленных цепей D-глюкопиранозы, в которых половина связей представлена р - 1 4-связями и половина - 3 - 1 3-связями. Из ситовидных трубок флоэмы выделена каллоза, которая, как показано, представляет собой [ 3 - 1 3-глюкан с неразветвленной цепью. Последний очень похож на ламинарии - резервный полисахарид бурых водорослей.  [14]

При выделении клеточного сока на саржевом сите в со переходят не только растворимые вещества картофеля, но v значительное количество крахмала и мелкой - мезги, поэтом.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Клеточный сок - Справочник химика 21

    Постоянный осмос воды внутрь клеток создает там избыточное гидростатическое давление, обусловливающее прочность и упругость тканей. Равновесное осмотическое давление клеточного сока составляет 4—20 атм. [c.246]

    Необходимо особо подчеркнуть практическое значение водных растворов, так как подавляющее большинство процессов в природе совершается в водной среде. Водные растворы играют исключительно важную роль во всех процессах, протекающих в почвах, а также в животных и растительных организмах. Все природные воды представляют собой растворы различных солей. Различные биологические жидкости (кровь, лимфа, клеточный сок и т. п.) также являются растворами органических и неорганических веществ. Другими словами, водные растворы — системы, наиболее распространенные в природе, и потому учение о растворах является важным разделом физической химии. [c.37]

    Объяснение. Осмос имеет большое значение в процессах жизнедеятельности животных и растений. Он, как известно, обусловливает поднятие воды по стеблю растений, рост клетки и многие другие явления. Осмотическое давление, возникаюш,ее в клетках, сооб-ш,ает им своеобразную упругость и эластичность, а также способствует сохранению определенной формы органами растений и т. д. Каждая живая клетка имеет оболочку либо поверхностный слой протоплазмы, которые обладают свойством полупроницаемости. Так как клеточный сок — это раствор той или иной концентрации, то при погружении клеток во внешний раствор может оказаться, что  [c.53]

    Для первого случая мы будем иметь явление тургора, для второго — изотонию, а для третьего случая — плазмолиз. Опыт, проведенный с черенками листьев, наглядно показывает значение увеличения концентрации почвенного раствора. Если имеет место случай 3, т. е. осмотическое давление почвенного раствора больше давления клеточного сока (засоленная почва), вода будет поступать не из почвы в растение, а, наоборот, из растений в почву и растение на такой почве погибнет, так как оно не в состоянии бороться за воду. [c.53]

    Понижение температуры замерзания растворов имеет большое значение для живых организмов. Так, сок в их клетках представляет собой в основном раствор органических веществ его температура замерзания лежит ниже 273 К, поэтому организмы не погибают при пониженных температурах. Характерно отметить, что зимостойкость растений обусловлена концент[)ацией клеточного сока чем выше концентрация, тем более низкие температуры может переносить растение. Процесс превращения более высокомолекулярных соединений в соединения с меньшей молекулярной массой при наступлении холодов (например, крахмала в углеводы типа глюкозы), протекающий в клетках растений, также вызван стремлением повысить концентрацию клеточного сока. По этой же причине хорошо сохраняются овощи и фрукты при температуре 272 К- [c.106]

    Методы измерения концентрации клеточного сока по температурам замерзания растворов в настоящее время широко используются в селекционной работе при выведении новых зимостойких сортов различных сельскохозяйственных культур. [c.106]

    Морозостойкость сельскохозяйственных культур обусловлена свойствами связанной воды. Ранее полагали, что растения погибают от пониженных температур в результате механических повреждений протоплазмы кристаллами образующегося льда. Однако исследования показали, что механизм действия низких температур на растение гораздо сложнее низкие температуры губительны для растений не сами по себе, а в результате их обезвоживающего действия при вымораживании воды. Микроскопические исследования показали, что на первой стадии замораживания кристаллы льда образуются не внутри клеток, а в межклеточных пространствах. Разрастающиеся кристаллы льда интенсивно оттягивают воду из клеток, что в конечном итоге приводит к обезвоживанию протоплазмы и резкому увеличению концентрации клеточного сока. Однако даже в полностью убитых морозом растениях клеточные стенки остаются практически неповрежденными. [c.334]

    Обезвоживание и действие повышенной концентрации электролитов клеточного сока вызывает необратимую коагуляцию протоплазмы. [c.334]

    Аппаратура и методика определения температуры замерзания аналогичны описанной в работе 3. В качестве растворов можно использовать молоко, клеточный сок, лекарственные растворы для инъекций, почвенные растворы. [c.28]

    В клетках сине-зеленых водорослей отсутствуют вакуоли, заполненные клеточным соком. В связи с этим при плазмолизе клетка съеживается целиком. В клетках этих организмов наблюдаются [c.271]

    Для роста и развития растительных организмов имеет большое значение соотношение между осмотическими давлениями почвенного раствора и клеточного сока. Растение может нормально развиваться лишь тогда, когда осмотическое давление клеточного сока больше осмотического давления почвенного раствора. [c.146]

    Осмос и осмотическое давление имеют огромное значение в биологических явлениях, так как оболочки клеток биологических тканей являются полупроницаемыми перегородками. Осмотическое давление клеточного сока растений изменяется от 2.0-10 Па у болотных растений до 4.5-10 Па у степных. Вследствие осмоса вода и питательные растворы поднимаются на значительную высоту по стволу растений. Тканевые жидкости млекопитающих имеют осмотическое давление (6,7—8,1) 10 Па. [c.111]

    В Советском Союзе сахарозу получают из сахарной свеклы. Для этой цели сахарную свеклу измельчают и обрабатывают горячей водой. Содержащийся в клеточном соке сахар переходит в раствор. Однако, кроме сахара, в этом растворе имеется много других веществ (белковые вещества, кислоты, соли и т. д,). Поэтому полученную сахарозу тщательно очищают от примесей, а затем выпаривают раствор чистого сахара в вакуум-аппаратах. Сахароза является важнейшим пищевым продуктом, [c.359]

    Законы осмотического давления. Осмометрия. Осмос играет важную регулирующую роль в жизнедеятельности растительных и животных организмов. Клеточные соки имеют низкую концентрацию солей, поэтому вначале огромное число измерений осмотического давления относилось к разбавленным водным растворам неэлектролитов. В 1887 г., применив для обобщения результатов измерений термодинамику и молекулярно-кинетическую теорию, Вант-Гофф пришел к выводу, что между состоянием вещества в очень сильно разбавленном растворе и газовым состоянием того же вещества имеется формальное количественное сходство, несмотря на то что характер движения молекул растворенного вещества в жидкости отличается от движения молекул газа. В частности, Вант-Гофф показал, что 1) при постоянной температуре осмотическое давление прямо пропорционально концентрации или обратно пропорционально молярному объему растворенного вещества (аналогия с законом Бойля) 2) при данной концентрации осмотическое давление пропорционально абсолютной температуре (аналогия с законом Гей-Люссака) 3) при одинаковой температуре [c.203]

    Брожение — каталитический процесс его вызывают образующиеся в клетках дрожжей вещества, относящиеся к классу энзимов, или ферментов,— биологических катализаторов белкового характера. Первоначально полагали, что в клеточном соке дрожжей содержится определенный, вызывающий брожение энзим, который был назван зимазой (от греческого зиме — дрожжи). Впоследствии оказалось, что активный дрожжевой сок содержит не один фермент, а сложную систему веществ белкового и небелкового характера, в которую входит несколько различных ферментов. При их участии превращение глюкозы в этиловый спирт протекает через ряд промежуточных соединений и является результатом нескольких реакций. Поэтому следует иметь в виду, что приведенное уравнение спиртового брожения выражает лишь окончательный результат процесса. [c.115]

    В природе и технике растворы имеют огромное значение. Растения усваивают вещества в виде растворов. Усвоение пищи связано с переводом питательных веществ в раствор. Все природные воды являются растворами. Растворами являются важнейшие физиологические жидкости — кровь, лимфа и др. Клеточный сок, например, состоит из воды и различных веществ, чаще всего в виде коллоидного раствора. Многие химические реакции протекают в растворах. [c.139]

    Явление осмоса играет важную роль в жизни растений и животных. Стенки растительных клеток живых организмов представляют собой полупроницаемые мембраны, через которые свободно проходят молекулы воды, но почти полностью задерживаются вещества, растворенные в клеточном соке. Поэтому осмос служит причиной тургора (состояние напряжения) и плазмолиза (сморщивание) клеток. С ним связаны процессы усвоения пищи и обмена веществ. Прибор, схема которого приведена на рис. 54, дает возможность измерять осмотическое давление. Он называется осмометром. На основании опытных данных измерения осмотического давления при различных концентрациях и температурах было установлено, что осмотическое давление раствора пропорционально концентрации растворенного вещества и абсолютной температуре раствора [см. уравнение (У.8)], [c.147]

    Крахмал широко распространен в природе. Он является для различных растений запасным питательным материалом и содержится в них в виде крахмальных зерен. Наиболее богато крахмалом зерно злаков риса (до 86%), пшеницы (до 75%), кукурузы (до 72%), а также клубни картофеля (до 24%). В клубнях картофеля крахмальные зерна плавают в клеточном соке, в злаках они плотно склеены белковым веществом клейковиной. Крахмал является одним из продуктов фотосинтеза. [c.336]

    Плазмолиз имеет большое значение при консервировании овощей и плодов в растворах поваренной соли или сахарозы. При солении или квашении овощей поваренная соль служит, во-первых, консервирующим агентом. Растворы соли (5—7%) задерживают развитие большинства микроорганизмов, так как вызывают у них плазмолиз. Однако главное назначение поваренной соли заключается в том, что она вызывает плазмолиз растительных клеток, нарушает полупроницаемость клеточных оболочек. В результате происходит выделение клеточного сока, содержащего сахара. Эти сахара служат основой для молочнокислого брожения. Молочная кислота, являясь антисептиком, подавляет деятельность других микроорганизмов. Кроме того она придает продукту специфический вкус. [c.70]

    Осмотическое давление клеточного сока наземных органов болотных растений при 20 °С колеблется от 2,026- до 16,2-10 Па, а степных — от 8,104-10 до 40,52 х X 105 Па. Какой молярной концентрации раствора соответствует минимальное значение осмотического давления для болотных растений и максимальное для степных В каком молярном соотношении находятся эти концентрации Ответ 0,0832 и 1,664 моль/л. [c.197]

    Для некоторых организмов было доказано, что ДНК является носителем наследственности клетки. Остальная часть клетки содержит рибосомальную (80%) РНК, растворимый (клеточный сок 10—15%) РНК и информационную (5—10%) РНК. Последний, как можно полагать, управляет синтезом белка, выполняя роль матрицы, на которой собирается белковая -молекула. [c.69]

    Крахмал широко распространен в природе. Он содержится в различных растениях в виде крахмальных зерен и является для них запасным питательным материалом. Наиболее богаты крахмалом зерна злаков риса (до 86%), пшеницы (до 75%), кукурузы (до 72%), клубни картофеля (до 24%). В клубнях картофеля крахмальные зерна плавают в клеточном соке, в злаках они плотно склеены белковым веществом клейковиной. Крахмал является одним из продуктов фотосинтеза, который, как показал К- А. Тимирязев, протекает с участием зеленого пигмента листьев — хлорофилла и солнечной энергии. [c.401]

    Брожению предшествует переход глюкозы в эфиры фосфорной кислоты за счет тех фосфатов, которые находятся в клеточном соке дрожжей или в веществах, прибавляемых во время брожения. [c.336]

    Белки в природе. Белковые вещества, или белки, находятся во всех растительных и животных организмах. Белки являются главной составной частью протоплазмы, содержатся в. крови, молоке, мышцах и хрящах животных, составляют главную часть куриного яйца. Белки входят в состав волос, когтей, рогов, кожи, перьев, шерсти и шелка. Животный организм более богат белковыми веществами, чем растительный. Б растениях белки встречаются в протоплазме, ядре, клеточном соке и семенах. Главную же массу растений составляет клетчатка. [c.387]

    Ниже расположены живые крупные тонкостенные клетки паренхимы 4, вакуоли которых заполнены клеточным соком со свободноплавающими в нем крахмальными зернами. [c.13]

    Органические кислоты. Клеточный сок картофеля имеет слабокислую реакцию, обусловленную солями фосфорной и органических кислот. Из последних преобладают лимонная (0,08— 0,55%) н яблочная (около 0,17о) кислоты, в меньших количествах содержатся щавелевая (0,06—0,08%), янтарная, малоновая, молочная, хлорогеновая, кофейная и др. [c.15]

    Общая (титруемая) кислотность варьирует от 2 до 7 мл 1 н. раствора гидроксида натрия на 100 г картофеля. Такая высокая кислотность объясняется значительной буферностью, вызываемой присутствием солей слабых кислот. Активная кислотность клеточного сока изменяется от pH 5,7 до pH 6,6. [c.15]

    По современным схемам непрерывного разваривания картофель перед тепловой обработкой подвергают измельчению в кашку на молотковых дробилках или картофелетерках. При этом большая часть клеток вскрывается, вместе с клеточным соком освобождается около 70% крахмала. Картофельная кашка имеет недостаточную текучесть, поэтому в ряде случаев при ее перекачке плунжерными насосами приходится добавлять некоторое количество воды. [c.71]

    В Чехословакии применяют смесь, состоящую из 30% картофельной мезги, 30%, дробленой подсолнечной лузги, 30 %i стержней кукурузных початков и 10%, отрубей, к которой добавляют 6% кукурузного экстракта или сгущенного клеточного сока картофеля. [c.152]

    Обязательный органоид клетки вакуоли—полости, наполненные клеточным соком и отделенные от цитоплазмы вакуолярной мембраной. Форма вакуолей изменяется вследствие движения п контракции цитоплазмы. Вакуоль в молодых клетках состоит из множества мелких полостей, в старых — из одной очень большой. Клеточный сок представляет собой водный раствор различных солей, углеводов, белков, жиров и ферментов. В вакуолях сосредоточиваются различные соединения, которые должны подвергаться ферментативным превращениям, образуются продукты жизнедеятельности и отбросы. [c.195]

    В картофеле находят более 20 аминокислот, pH клеточного сока картофеля составляет 5,6—6,2. Кислотность сока обусловлена наличием органических кислот лимонной, яблочной, щавелевой, пировиноградной, винной, янтарной. Содержание лимонной кислоты доходит до 0,6 %. [c.14]

    Явление осмоса играет очень важную роль в жизнедеятельности животных и растений. Оболочки клеток представляют собой перепонки, легко проницаемые для воды, но почти непроницаемые для веществ, растворенных в клеточном соке. Поэтому пресноводные рыбы не могут жить в соленой воде (где 28 атм), а морские рыбы — в пресной. Этим же объясняется и то, что когда мы ныряем в реке, открыть глаза больно, в то время как в море, где концентрация солей выше и приближается к концентрации солей в клетках роговицы, эта боль ощущается гораздо слабее. Физиологический раствор (0,9%-ный водный раствор Na l) на человека и теплокровных животных оказывает благотворное действие, так как его осмотическое давление (- 7 атм) и солевой состав близки к осмотическому давлению и солевому составу плазмы крови. [c.161]

    Таким способом можно определять коЕщеитрацию клеточного сока растений и концентрацию ночвенного раствора. Необходимо помнить, что найденные этим методом концентрации являются суммарными, т. е. показывают содержание всех веществ, находящихся в растворе, выраженное в моль на 1 кг воды. [c.108]

    Диатомовые водоросли В1а1отеае) (рис. 88). Оболочка клеток диатомовых водорослей состоит из двух половинок, находящих одна на другую своими краями. Обе половинки не срастаются друг с другом, поэтому могут раздвигаться. Протоплазма располагается обычно тонким слоем вдоль стенок, образуя у многих видов в середине клетки протоплазматический мостик. Остальное пространство клетки заполнено клеточным соком. Ядро одно. Хроматофоры разнообразны по форме в виде зернышек, пластинок и т. д. [c.271]

    Клеточный сок растений характеризз ется осмотическим давление.м от 5 до 10 атм. Солончаковые почвы развивают ос.мотическое давление 12,5 атм, а чернозем — всего лишь 2,5 атм. Плазматическая мембрана клеток играет роль полупроницаемой мембраны. Поскольку солончаковая почва содержит более концентрированные растворы солей (имеет большое осмотическое давление), то вода покидает клетки растения. В результате цитоплазма клетки отслаивается, а растение погибает. На черноземе картина иная — вода из почвы поступает в клетку и разбавляет теперь уже более концентрированный раствор в клетке. Растение хорошо впитывает влагу и развивается. Однако, если испарение и расход влаги недостаточны (длительное время стоит сырая и холодная погода), то при избытке влаги клетка растения может лопнуть. [c.227]

    НИИ розовой, красной, фиолетовой и синей окраски растений и фруктов. А. являются глюкозидами антоцианидинов— гетероциклических соединений, содержащих кислород. По современным представлениям окраска зависит от строения А., величины pH клеточного сока и характера металла, образующего комплекс с А. в растении. Например, красная окраска обусловлена комплексом А. с Ре, синяя и фиолетовая — с Mg, белая [c.29]

    Метод исследования, основанный на измерении понижения температуры затвердевания растворов, называется криоскопи-ческим методом. Помимо определения молекулярных масс его используют для определения концентрации растворов, например для определения суммарной концентрации клеточного сока растений или концентрации почвенных растворов. [c.140]

    Выполнение работы. Метод криометрии используют для определения эффективной концентрации биологических, агрономических и лекарственных сред (кровь, молоко, клеточный сок, растворы для инъекций, почвенные растворы) так называемой осмотической концентрации оси- Природа растворенных веществ и их соотношения в растворе не даны. Величина Сосм представляет собой суммарную концентрацию частиц в растворе (молекул и ионов). Она выражается в условных единицах моль/1000 г растворителя, так как молекулярные веса компонентов неизвестны. Температуру кристаллизации определять, как описано в работе И. В пробирку 1 (см. рис. 12, а) налить около 20 мл воды, не взвешивая. Определить температуру кристаллизации о, вылить воду, сполоснуть пробирку несколько раз испытуемым раствором. Налить около 20 мл этого раствора и определить температуру его кристаллизации t. Рассчитать А кр = о—t и осмотическую концентрацию раствора по уравнению (1У.9). [c.52]

    Буферным действием обладают практически все физиологические жидкости и это имеет чрезвычайно большое биологическое значение. Для человека очень важно буферное действие крови изменение pH крови на несколько десятых приводит к серьезным нарушениям жизнедеятельности организма. Водородный показатель крови колеблется в пределах 7,3—7,4. В процессах обмена веществ в кровь может попасть большое количество органических кислот, однако pH крови остается всегда постоянным. Почвы и почвенные растворы также обладают определенной буфер-ностью и это очень важно для развития растений и почвенных микроорганизмов. Буфериость характерна и для клеточного сока растений. [c.121]

    Растворимый в клеточном соке белок представлен главным образом глобулином, называемым туберином (от tuberosum). Изо-электрическая точка белка находится при pH 4,4. Необратимая коагуляция (денатурация) наступает при температуре 60°С. Кроме туберина в небольших количествах присутствуют альбумины и протеозы. [c.14]

    Клубни картофеля имеют крупные клетки, заполненные клеточным соком, и покрытые тонкой кожицей, поэтому при разваривании целых клубней тепло быстро проникает внутрь их. Для осдаб- [c.70]

    В производстве картофельного крахмала применяют процессы очистки картофеля от легких и тяжелых примесей, мойки, измельчения, выделения клеточного сока, ситования и промывки, центрифугирования и сушки. [c.34]

chem21.info


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта