Хромосомы растений состоят. 14) Хромосомы растений состоят из : 1) белка, 2) ДНК, 3) РНК , 4 ) белка и ДНК 15) В каком случае показано анализирующее скрещивание

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

11. Строение хромосомы. Типы хромосом. Эу– и гетерохроматин. Хромосомы растений состоят


Строение хромосом

Хромосомы - это интенсивно окрашенное тельце, состоящее из молекулы ДНК, связанной с белками-гистонами. Хромосомы формируются из хроматина в начале деления клеток (в профазе митоза), но лучше их изучать в метафазе митоза. Когда хромосомы располагаются в плоскости экватора и хорошо видны в световой микроскоп, ДНК в них достигают максимальной спирализации.

Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки - центромеры. Центромера делит хромосому на 2 плеча. В зависимости от расположения центромеры хромосомы подразделяются на:

  • метацентрические центромера расположена в середине хромосомы и плечи ее равны;

  • субметацентрические центромера смещена от середины хромосом и одно плече короче другого;

  • акроцентрические - центромера расположена близко к концу хромосомы и одно плечо значительно короче другого.

В некоторых хромосомах есть вторичные перетяжки, отделяющие от плеча хромосомы участок, называемый спутником, из которого в интерфазном ядре образуется ядрышко.

Правила хромосом

1. Постоянство числа. Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, у мушки-дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность. Каждая хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Индивидуальность. Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Непрерывность. Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде и, таким о6разом, хромосомы непрерывны - от хромосомы образуется хромосома.

Все хромосомы подразделяются на аутосомы и половые хромосомы. Аутосомы - все хромосомы в клетках, за исключением половых хромосом, их 22 пары. Половые - это 23-я пара хромосом, определяющая формирование мужского и женского организма.

В соматических клетках имеется двойной (диплоидный) набор хромосом, в половых - гаплоидный (одинарный).

Определенный набор хромосом клетки, характеризующийся постоянством их числа, размером и формой, называется кариотипом.

Для того чтобы разобраться в сложном наборе хромосом, их располагают попарно по мере убывания их величины, с учетом положения центромеры и наличия вторичных перетяжек. Такой систематизированный кариотип называется идиограммой.

Впервые такая систематизация хромосом была предложена на конгрессе генетиков в Денвере (США, 1960 г.)

В 1971 г. в Париже классифицировали хромосомы по окраске и чередованию темных и светлых полос гетеро-и эухроматина.

Для изучения кариотипа генетики используют метод цитогенетического анализа, при котором можно диагностировать ряд наследственных заболеваний, связанных с нарушением числа и формы хромосом.

1.2. Жизненный цикл клетки.

Жизнь клетки от момента возникновения в результате деления до ее собственного деления или смерти называется жизненным циклом клетки. В течение всей жизни клетки растут, дифференцируются и выполняют специфические функции.

Жизнь клетки между делениями называется интерфазой. Интерфаза состоит из 3-х периодов: пресинтетического, синтетического и постсинтетического.

Пресuнтетический период следует сразу за делением. В это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом.

В синтетический период происходит репликация (удвоение) количества ДНК, а также синтез РНК и белков.

В постсинmетический период клетка запасается энергией, синтезируются белки ахроматинов ого веретена, идет подготовка к митозу.

Существуют различные типы деления клеток: амитоз, митоз, мейоз.

Амитоз - прямое деление прокариотических клеток и некоторых клеток у человека.

Митоз - непрямое деление клеток, во время которого из хроматина образуются хромосомы. Путем митоза делятся соматические клетки эукариотических организмов, в результате чего дочерние клетки получают точно такой же набор хромосом, какой имела дочерняя клетка.

Митоз

Митоз состоит из 4-х фаз:

  1. Профаза - начальная фаза митоза. В это время начинается спирализация ДНК и укорочение хромосом, которые из тонких невидимых нитей хроматина становятся короткими толстыми, видимыми в световой микроскоп, и располагаются в виде клубка. Ядрышко и ядерная оболочка исчезает, и ядро распадается, центриоли клеточного центра расходятся по полюсам клетки, между ними растягиваются нити веретена деления.

  2. Метафаза - хромосомы движутся к центру, к ним прикрепляются нити веретена. Хромосомы располагаются в плоскости экватора. Они хорошо видны в микроскоп и каждая хромосома состоит из 2-х хроматид. В этой фазе можно сосчитать число хромосом в клетке.

  3. Анафаза - сестринские хроматиды (появившиеся в синтетическом периоде при удвоении ДНК) расходятся к полюсам.

  4. Телофаза (telos греч. - конец) противоположна профазе: хромосомы из коротких толстых видимых становятся тонкими длинными невидимыми в световой микроскоп, формируются ядерная оболочка и ядрышко. Заканчивается телофаза разделением цитоплазмы с образованием двух дочерних клеток.

Биологическое значение митоза заключается в следующем:

  • дочерние клетки получают точно такой же набор хромосом, который был у материнской клетки, поэтому во всех клетках тела (соматических) поддерживается постоянное число хромосом.

  • делятся все клетки, кроме половых:

  • происходит рост организма в эмбриональном и постэмбриональном периодах;

  • все функционально устаревшие клетки организма (эпителиальные клетки кожи, клетки крови, клетки слизистых оболочек и др.) заменяются новыми;

  • происходят процессы регенерации (восстановления) утраченных тканей.

Схема митоза

При воздействии неблагоприятных условий на делящуюся клетку веретено деления может неравномерно растянуть хромосомы к полюсам, и тогда образуются новые клетки с разным набором хромосом, возникает патология соматических клеток (гетероплоидия аутосом), что приводит к болезни тканей, органов, организма.

studfiles.net

Хромосомы растений - Справочник химика 21

    Одной из основных проблем при получении трансгенных растений был способ введения чужеродных генов в хромосомы растений, т. е. трансформация растительных клеток. Значительный прорыв был сделан при открытии возможности использования природной системы трансформации растений Ti-плазмидами почвенных агробактерий. [c.51]     Векторы для трансформации растений на основе Ti-плазмид. Уникальные биологические свойства Ti-плазмиды делают ее идеальным природным вектором для переноса генов Ti-Плазмида имеет широкий круг хозяев, встраивает Т-ДНК в хромосомы растений, где она может реплицироваться, и ее гены транслируются с образованием белка. Существенно также, что границы Т-ДНК обозначены прямыми повторяющимися последовательностями длиной 25 нуклеотидных пар, и любой фрагмент чужеродной ДНК, вставленный между этими повторами, будет перенесен в растительную клетку. Однако манипуляции с Ti-плазмидой затруднены из-за больших размеров, вставить ген в плазмиду традиционными методами не представляется возможным. Поэтому Ti-плазмида была модифицирована генно-инженерными путями, и на ее основе были получены векторы для трансформации растений. [c.54]

    Органоиды - зто протоплазматические тельца разного размера ядро, пластиды, митохондрии. Ядро содержит нуклеиновые кислоты (ДНК и РНК) оно является центром процессов синтеза, регулирует жизненные функции и служит носителем наследственных свойств клетки благодаря содержащимся в нем хромосомам. Для растений характерно наличие пластид, которые вьшолняют функции, связанные с фотосинтезом, и классифицируются в зависимости от наличия пигментов (см. 8.5.3 и 11.10). Более мелкие тельца митохондрии играют важную роль в дыхательной активности, запасают и передают энергию. В органоидах клетки образуются ферменты - биокатализаторы синтеза органических веществ - и Другие белки возникают в результате клеточного дыхания богатые энергией соединения синтезируются полисахариды и т.д. [c.195]

    ДНК с белком образует хромосомы, которые еще до открытия ДНК были известны как носители генетической информации данного вида живых существ (животных, растений, микроорганизмов). Вирус представляет из себя гигантскую нуклеиновую кислоту, одетую снаружи чехлом из белковой молекулы. Твердо установлено, что ДНК не участвует в синтезе белков, но передает наследственную информацию при делении клеточных ядер. [c.733]

    Однако вирусы как векторы обладают четырьмя существенными недостатками они патогенны, их емкость небольшая, вирусы не способны встраиваться в хромосомы растительных клеток, они, в основном, видоспецифичны, то есть поражают определенный круг растений — хозяев. [c.513]

    Растения в период синтеза ДНК получали в качестве специфического предшественника ДНК меченный тритием тимидин [15]. Во время деления обе дочерние хроматиды оказались мечеными. Однако нри следуюш ем цикле удвоения, когда Н -тимидин был удален, обе эти хромосомы дали, как и предполагалось, но одной меченой и одной немеченой хроматиде. [c.197]

    Наиболее важный процесс, происходящий во время обычного деления клетки, — это деление клеточного ядра, а наиболее ответственный процесс в делении ядра (митозе) состоит в том, что хромосома удваивается, образуя две дочерние хромосомы. Эти последние отделяются друг от друга и идут к разным полюсам. Так образуются два новых ядра. У растений затем между этими ядрами образуется клеточная стенка, показывающая, что деление ядра привело к возникновению двух отдельных клеток. [c.25]

    Это относится к мужским и женским гаметам у растений, животных и человека, несмотря на то, что с женскими гаметами дело обстоит сложнее, поскольку лишь одна из четырех клеток, образующихся в процессе мейоза из исходной материнской клетки, способна функционировать. Легко понять, что функционирующая яйцеклетка будет с одинаковой частотой нести гены Л и а, поскольку хромосомы, несущие эти гены, располагаются в метафазе мейоза случайно. И в самом деле у млекопитающих частота случаев, в которых аллель Л попадает в полярное тельце, и случаев, когда он остается в яйцеклетке, одинакова. В принципе то же самое происходит и при делении материнской клетки мегаспоры у цветковых растений. [c.44]

    Хромосомы сильно вытянуты и поэтому наиболее удобны для наблюдения в стадии профазы мейоза, когда хромосомы растений могут достигать длины 100 мк. У некоторых организмов на этой стадии хромосомы имеют вид нитки с бусами, причем во время синапсиса конъюгируют друг с другом попарно не хромосомы в целом, а точно прилегающие друг к другу отдельные бусины, или хромомеры. [c.109]

    При скрещивании ржи (2п— 14) и пшеницы (2п= А2) образуется ржано-пшеничный гибрид с 2п = 28, который в результате колхициновой полиплоидизации дает форму с 56 хромосомами, называемую Triti ale. Скрещивая Triti ale с мягкой пшеницей (2/г =42), получают растения с 2/г =49, содержащие диплоидный набор пшеницы и гаплоидный набор ржи (2/г= 42-[ 7). При последующих скрещиваниях этих растений с пшеницей может появиться потомство с числом хромосом от 42 до 49. Формы с набором хромосом 2/г =43 в дополнение к диплоидному набору пшеницы (в действительности это аллогексаплоид) несут одну хромосому ржи. При самоопылении таких растений (с 2/г =43) можно ожидать потомство с 42, 43 и 44 хромосомами. Растения с 2/г = 44 — дисомики по одной паре хромосом ржи в дополнение к хромосомному набору пшеницы (2/г =42 + 2). [c.367]

    Однако определение положения единичных генов в небольших и весьма многочисленных хромосомах растений и позвоночных путем гибрвдизации in situ затруднено по двум причинам. Во-первых, не всегда легко вдентифицировать отдельные хромосомы. [c.335]

    В 1866 г. аббат Грегор Мендель (1822—1884) предложил простую теорию передачи наследственных признаков, основанную на результатах опытов по скрещиванию двух сортов гороха, которые он проводил в саду августинского монастыря в Брюнне в Моравии (ныне Брно, Чехословакия). Он установил, что результаты опытов можно объяснить, если допустить, что каждое растение второго поколения получает от каждого из двух родительских растений некий задаток или фактор (называемый теперь геном), определяющий развитие одного наследственного признака. Согласно современным представлениям, гены линейно расположены в более крупных структурах — хромосомах, которые можно увидеть в ядрах клеток при помощи сильного микроскопа. [c.452]

    Большинство клеток высших организмов обычно имеет диплоидный набор хромосом, однако в некоторых из них набор хромосом может быть удвоен или увеличен в еще большее число раз. Клетка, в которой число хромосом увеличено по сравнению с диплоидным в два раза, называется тетраплоидной, а в большее число раз — полиплоидной. Селекционерам удалось получить много разновидностей тетраплоидных цветковых растений, размеры которых, как правило, больше диплоидных, Большинство клеток нашего организма также диплоидные, однако и у нас имеются полиплоидные клетки. Некоторые из них, например, обнаруживаются в печени. Наиболее выразительным примером увеличения содержания ДНК в клетке могут служить гигантские политенные хромосомы личинки двукрылых. ДНК клеток слюнных желез и некоторых других частей этих личинок может удваиваться без деления клетки приблизительно в 13 раз, причем количество ДНК может возрастать при этом в несколько тысяч раз (например, в 2 раз). Сусперсппрализованные удвоенные молекулы ДНК располагаются ря-до.м друг с другом в более вытянутой форме, чем в обычных хромосомах. Общая длина четырех гигантских хромосом дрозофилы составляет приблизительно 2 мм, тогда как в обычной диплоидной клетке их длина равна 7,5 мкм. Гигантские хромосомы имеют поперечнополосатую структуру по всей длине хромосомы можно видеть приблизительно 3000 поперечных дисков. Поскольку было установлено наличие корреляции между видимыми изменениями дисков I и коакретиыми [c.267]

    После заражения часть Ti-плазмиды встречается в хромосомах клеток растения-хозяина. Следовательно, А. tumefa iens встраивает часть своего генома в ДНК растительной клетки и заставляет ее таким способом изменять метаболизм, синтезируя вещества, необходимые для бактерий. Именно это свойство А. tumefa iens и послужило поводом для создания на основе Ti-плазмиды вектора, доставляющего необходимые гены в клетку. [c.146]

    Участок Ti-плазмиды, встречающийся в хромосомах раститель-ньге клеток, называется Т-областью в бактерии и Т-ДНК в клетках растений. Т-область включает примерно 10% Ti-плазмиды и содержит гены, отвечающие за индукцию опухоли, синтез опинов и подавление дифференцировки (гормоннезависимый рост клеток). Важно отметить, что все гены, ответственные за перенос и интеграцию генов Т-области, находятся не в ней самой, а рядом — в области вирулентности — vir-области (рис. 5.17). [c.146]

    С. Магешвари. В настоящее время в культуре гаплоидные растения получают из изолированных пыльников (андрогенез), изолированных семяпочек (гиногенез) из гибридного зародыша, у которого в результате несовместимости потеряны отцовские хромосомы (партеногенез). Новые сорта ячменя — Исток и Одесский-15 — были выведены благодаря комбинации партеногенетического метода с культурой изолированных зародышей за 4 года вместо 10 — 12 лет, необходимых для обычной селекции. [c.186]

    Эукариоты (Eukaryotes) Организмы, у которых I) имеется ядро, где содержатся хромосомы 2) в цитоплазме присутствуют различные органеллы - митохондрии, хлоропласты и т.д. К эукариотам относятся животные, растения, грибы, некоторые водоросли. [c.565]

    Практическое значение. Изучение нитрогеназной системы, механизма ее функционирования имеет большое практическое значение. Ведутся поиски биологических методов, с помощью которых можно было бы сделать азот атмосферы более доступным для практических нужд. Большую часть биологически значимого азота дают клубеньковые бактерии — ризобии в симбиозе с бобовыми растениями. Методами генной инженерии можно интенсифицировать азотфиксацию этих бактерий с целью создания более эффективных симбиотических азотфиксаторов. Клубеньковые бактерии содержат значительное количество генов, отвечающих за азотфиксацию в симбиозе с соответствующим растением. К ним относятся непосредственно гены симбиоза, отвечающие за специфичность связывания бактерии с растением, гены собственно азотфиксации, кодирующие синтез нитрогеназы, а также вспомогательные гены, отвечающие за обеспечение процесса энергией, регуляцию и др. Эти гены локализованы как в плазмидах, так и в хромосомах ризобий. Стратегия генно- [c.397]

    Репликация, транскрипция и трансляция геномов органелл. В хлоропластах и митохондриях ДНК представлена небольшими двухцепочечными молекулами, обычно кольцевыми, и не связана с гистонами. Таким образом, генетическая информация органелл содержится в структурах, весьма сходных с хромосомами прокариот, хотя и значительно меньших по размерам. В каждой органелле имеется множество копий ДНК (до 40—50 в некоторых хлоропластах). Кроме того, хлоропласты и митохондрии содержат аппарат транскрипции и трансляции, включая специфические для органелл рибосомы, которые меньше цитоплазматических 808-рибосом и близки по величине к 708-рибосо-мам прокариот. Синтез белка в органеллах ингибируется хлорам нико-лом и некоторыми другими антибиотиками, подавляющими этот процесс и у прокариот, но не влияющими на синтез белка в цитоплазме эукариотической клетки. Таким образом, хлоропласты и митохондрии обнаруживают ряд важных черт фундаментального сходства с прокариотическими клетками. Митохондрии обладают еще одной особенностью, характерной для клеток, но не для других компонентов клетки они образуются путем деления предсуществующих органелл. Это продемонстрировано также в отношении многих типов хлоропластов у водорослей. У высших растений зрелые хлоропласты развиваются из более простых структур — пропластид на стадии пропластид и происходит воспроизводство этих органелл. [c.49]

    Вирусы растений — как векторы обычно мало пригодны из-за своей патогенности для растительных организмов и неспособности встраиваться в хромосомы хозяйской эукариотической клетки В настоящее время наметились подходы к изучению и оценке трех векторных систем двухцепочечной ДНК вируса мозаики цветной капусты, одноцепочечной РНК вируса погремковости табака, одноцепочечной ДНК вируса золотистой мозаики фасоли Из них лишь первая оставляет надежды на дальнейшее продвижение этой системы в сторону практической реализации пока в лабораторных условиях Не исключается возможность объединения ДНК вируса мозаики цветной капусты с Т-ДНК Ti-плазмиды из Agroba tenmn и расширить крзт растений — реципиентов такой векторной системы [c.197]

    Фактическая ненужность Ti-плазмиды после индукции опухоли у растения связана с тем, что стерильные опухолевые клетки в своих хромосомах содержат ковалентно связанную часть этой плазмиды (около 10%), получившей название Т-ДНК (от англ. transferred — перенесенный), а применительно к клеткам [c.511]

Рис. 145. А. Схема пер носа Т-ДНК из агробактери в растение с последующи формированиемкорончатог галла (1 — бактериальна хромосома, 2 — Т-ДНК, 3 -Т1-плазмида, 4 — ядро расти тельной клетки, 5 — встроен ная Т-ДНК, 6 — корончаты галл) Б. Т-ДНК в Т1-плазмид октопинового типа (продук ты генов 1 и 2 ингибирую--транскрипты побеги, гена 3 — ингибирую-корни). Рис. 145. А. Схема пер носа Т-ДНК из агробактери в растение с последующи формированиемкорончатог галла (1 — <a href="/info/32685">бактериальна хромосома</a>, 2 — Т-ДНК, 3 -Т1-плазмида, 4 — ядро расти тельной клетки, 5 — встроен ная Т-ДНК, 6 — <a href="/info/200157">корончаты галл</a>) Б. Т-ДНК в Т1-плазмид октопинового типа (продук ты генов 1 и 2 ингибирую--транскрипты побеги, гена 3 — ингибирую-корни).
Рис. 146. Перенос гена (а) из хромосомы (б) Es heri hia oU в растение (5) с помощью Т-ДНК (в) Ti-плазмиды (г) А.tumefa iens (2,3) в ядерную ДНК (д) растительной клетки (4). Рис. 146. <a href="/info/97684">Перенос гена</a> (а) из хромосомы (б) Es heri hia oU в растение (5) с помощью Т-ДНК (в) Ti-плазмиды (г) А.tumefa iens (2,3) в ядерную ДНК (д) растительной клетки (4).
    Нуклепротеиды, простетическая группа — нуклеиновые кислоты, содержатся в клеточных ядрах и плазме животных и растений в хромосомах именно они являются носителями генетической информации (см. ниже). Протеиды вирусов — это главная, а часто единственная их составная часть. [c.550]

    Эксперименты в области эмбриологии и образования структур часто напоминают аномальные прививки растений. Например, в ходе развития можно изменить ориентацию наружного покрова и наблюдать, на какие структуры это окажет воздействие. Дефекты в развивающихся тканях действуют подобно экспериментатору, работающему в лучших по сравнению с другими условиях. Дислокации, фокальные изгибы и дисинклииации наблюдались в покрытиях членистоногих [4, 5, 94]. Их тщательное изучение позволяет проверить некоторые выводы, полученные в классических экспериментах, и выдвинуть новые концепции [7]. Винтовые дислокации и дисинклинации наблюдались в хромосомах [94] и, по-види-мому, играют функциональную роль в их расщеплении [4, 94]. [c.309]

    ДНК рассматривают как главный и, возможно, единственный генетический материал (исключение составляют только некоторые вирусы, в частности вирусы растений). По-видимому, ДНК является всеобщей составной частью хромосом. За немногими исключениями ее содержание в ядрах отдельных видов постоянно для данной степени плоидности. В растениях большая часть ДНК найдена в хромосомах в тесной связи с белками. Типичные белки ядер растений — гистоны — представляют собой низкомолекулярные основные белки. В самых различных растительных тканях повышение содержания гистонов совпадает с синтезом ДНК. [c.472]

    Функционирование многоклеточного организма, каким является высшее растение, есть результат взаимодействия ряда регуляторных систем, которые схематически могут быть расположены в следуюш,ей усложняюш,ейся последовательности регуляторы клетки (гена, хромосомы, ядра, цитоплазмы), ткани и, наконец, регуляторы целого организма. Эти своеобразные этажи регуляции представляют собой схему для изучения регуляторных систем в биологическом объекте. Согласованное функционирование регуляторных систем на всех этажах иерархической лестницы целого организма поддерживает его нормальную жизнедеятельность и обеспечивает его ответную реакцию на воздействие внешней среды. Регуляторные системы более высоких этажей организма представляют собой механизмы, эволюционно сформированные на основе систем управления низших этажей , однако у этих высоких этажей появляются и специфические, только им присущие особенности регуляции. Так, способность координации роста органов, регулируемая у целого растения с помощью комплекса фитогормонов, это та специфическая система, которая присуща главным образом только верхнему, организмен-ному уровню регуляции. При переходе от нижнего уровня к верхнему старые механизмы регуляции не исчезают, а совершенствуются, что приводит к возникновению качественно новых систем управления, одной из которых и является гормональный механизм, функционирующий в растении. Формирование таких специфических метаболитов, как гормоны, есть одно из звеньев эволюции регуляторных систем. [c.7]

    Проведя оценку существующих сортов культур как потенциальных продуцентов биомассы, мы можем улучшать их путем применения новых способов разведения, изучения их фотосин-тетических возможностей и размножения растений нетрадиционными способами. Реализовать эти возможности в будущем поможет использование технологии рекомбинантных ДНК. Для продвижения вперед в этой области нам необходимо 1) разработать методы выявления положительных изменений в фотосинтезе и приспособить сложные лабораторТные тесты для работы в полевых условиях 2) предложить методы усиления генетической изменчивости 3) понять, как организован геном растений и хромосома хлоропласта и как регулируется их работа 4) выявить типы изменений, которые могут быть в них вызваны S) разработать новые способы селекции, направленные на ускорение размножения и генетическую стабилизацию сортов. [c.50]

    Эукариоты имеют истинное ядро. Оно содержит преобладающую 4a ib генома эукариотической клетки. Геном в основном представлен набором хромосом, которые в ходе процесса, называемого митозом, удваиваются и распределяются между дочерними клетками. В хромосомах ДНК находится в связи с гистонами. В эукариотической клетке имеются и другие органеллы, содержащие ДНК,-митохондрии и (у растений) хлоропласты, но в этих органеллах находится лишь очень малая часть клеточного генома, которая представлена молекулами ДНК, замкнутыми в кольцо. Рибосомы в эукариотической клетке более крупные (80S), чем у прокариот. [c.11]

    У всех высших растений и животных в процессе полового размножения происходит смена ядерных фаз. При оплодотворении половые клетки (гаметы) и их ядра сливаются, образуя зиготу. Отцовское и материнское ядра вносят при оплодотворении одинаковое число хромосом (п) таким образом, ядро зиготы содержит двойной хромосомный набор (2п). Иными словами, гаметы-гаплоидные клетки (т.е. клетки с одним набором хромосом), а соматические клетки-диплоидные (с двумя наборами). Поэтому при образовании гамет следующего поколения число хромосом в клетке (2и) должно уменьшиться вдвое (2и/2 = и). Совокупность процессов, приводящих к уменьшению числа хромосом, называют мейозом или редукционным делением (рис. 2.3). Мейоз - важнейший процесс у организмов, размножающихся половым путем он приводит к двум результатам 1) к перекомбинированию отцовских и материнских наследственных факторов (генов) и 2) к уменьшению числа хромосом. Мейоз начинается с конъюгации хромосом-каждая хромосома соединяется с соответствующей (гомологичной) хромосомой, происходящей от дфугого родителя. Во время конъюгации путем разрыва и перекрестного воссоединения (кроссинговера) может происходить обмен фрагментами одинаковой длины между гомологичными хромосомами. Затем следует двукратное разделение спаренных расщепившихся хромосом, и в результате образуются четыре клетки, каждая из которых имеет гаплоидное ядро. Таким образом, в процессе мейоза не только происходит перетасовка хромосом материнского и отцовского происхождения, но может произойти и обмен сегментами между гомологичными хромосомами. Оба процесса приводят к новым сочетаниям генов (к их рекомбинации). [c.24]

    Другие признаки, определяемые плазмидами. Плазмиды могут содержать также гены, обусловливающие ряд специфических биологических свойств, которые в определенных условиях создают селективное преимущество. Гены ферментов, необходимых для расщепления камфоры, салициловой кислоты, нафталина, октана, 2,4-дихлорфеноксиуксусной кислоты и многих других необычных субстратов, могут находиться в плазмидах. Мы уже упоминали о плазмиде бактерии Agroba terium tumefa iens, вызывающей опухоли у растений, и ее биохимической активности (разд. 4.3). Перечень свойств, наследуемых с плазмидами, стал сейчас очень длинным и включает, в частности, азотфиксацию, образование клубеньков, синтез индолилуксусной кислоты, диацетила, гидрогеназы, поглощение сахаров. Некоторые из этих свойств могут определяться генами бактериальной хромосомы это свидетельствует о том, что более или менее часто происходит обмен генами или группами генов между хромосомой и плазмидой. Плазмиды, вероятно, играли очень важную роль в эволюции прокариот. [c.464]

    Сейчас получено много данных, подтверждающих, что при бактериальной трансформации ДНК действует как наследственный детерминант, вызывая необратимое изменение наследственных признаков клеток, аналогичное тем изменениям, которые имеют место при мутации. Бойвип [5] рассматривает этот процесс как направленную мутацию. Уже давно было известно, что в выс-1яих растениях и животных ДНК локализована в хромосомах и что в бактериях содержится ядерный материал и генетический аппарат, аналогичный таковым у высших организмов [1]. Поэтому есть все основания думать, что бактериальные трансформации свидетельствуют о том, что ДНК — это активный материал гена, что оп может быть экстрагирован и очищен, сохраняя при этом свою генетическую функцию, и что он может проникнуть в гомо-логршпую клетку и стать постоянной составной частью ее генетического аппарата. [c.305]

    В ядрах клеток высших животных и растений ДНК входит в состав сложного морфологического образования — хромосомы главным компонентом которого помимо ДНК являются основные белки — гистоны, в небольших количествах присутствует также РНК и негистонные белки. Молекулярная организация хромосом сложна и еще не вполне выяснена установлено, во всяком случае, о внутри одной клетки содержится набор гетерогенных молекул ДНК. Вопрос о размерах интактных молекул ДНК внутри [c.33]

    То, что организмы состоят из клеток, впервые было обнаружено еще в ХУП в., но лишь в 1831 г., когда появились более совершенные микроскопы, английский исследователь Роберт Браун открыл самую важную часть клетки, а именно клеточное ядро. Прошло еще несколько десятков лет, прелсде чем ученые поняли, что ядро также дифференцировано и состоит из различных компонентов. В 1848 г. были впервые описаны наиболее важные его компоненты — хромосомы. Однако активное изучение хромосом началось лишь в восьмидесятых годах XIX в. с тех пор было исследовано много видов растений и животных, с тем чтобы выяснить число и форму имеющихся в их клетках хромосом. [c.24]

    Об ратимся сначала к тем случаям, когда для данного локуса известно лишь два аллеля эти различные устойчивые состояния локуса обозначают буквами Л и а. Одна определенная хромосома может нести лишь один из этих аллелей либо А, либо а, но только не оба одновременно Аа). У высших животных и растений особи диплоидны , т. е. содержат по две хромосомы каждого типа гомологичные хромосомы) на фиг. 16 схематически изображены все различные комбинации, которые могут при этом возникнуть. [c.42]

    Как можно убедиться, процесс мейоза в принципе несложен и заключается в двух последовательных делениях ядра, при которых хромосомы удваиваются только один раз. Однако в своих деталях мейоз представляет сложное явление и у разных организмов идет несколько различными путями. Наиболее сильные отклонения от нормального течения мейоза наблюдаются у тех организмов, хромосомы которых не имеют обособленной центромеры в этом случае центромерными свойствами обладает хромосома по всей своей длине. Такие случаи известны у некоторых насекомых и у явнобрачных растений рода Ьиги1а. [c.104]

    У двудомных растений, так же как и у животных, в ряде случаев обнаружены специфические половые хромосомы. Впервые половые хромосомы у растений были обнаружены Алленом в 1917 г. при исследовании печеночного мха Sphaero- arpus. Выше было указано (стр. 35), что растения мхов всегда гаплоидны, тогда как спорофит — т. е. спорангий и его ножка — диплоидны. У вида, изученного Алленом, было обнаружено, что мужское растение имеет 7 обычных хромосом и одну маленькую точечную Y-хромосому, тогда как хромосомный набор женских растений состоит из тех же семи обычных хромосом и одной очень длинной Х-хромосомы (фиг. 52). При оплодотворении эти два хромосомных набора соединяются, и таким образом спорофит имеет набор 14А + X -Ь Y. Во время мейоза образуется 7 пар аутосом и одна пара X = У. Следовательно, половина спор получит набор 7А + X, а другая по- [c.135]

    У Зркаегосагриз (а также и у других споровых) можно проследить за четырьмя спорами, образуемыми одной материнской клеткой. Две из этих спор всегда дают начало женским растениям с Х-хромосомой, а две другие—мужским растениям с У-хромосомой. Поскольку X- и У-хромосомы в [c.136]

chem21.info

Хромосомы: строение, функции и мутации

Хромосома представляет собой вытянутую, структурированную совокупность генов, которая несет информацию о наследственности и образована из конденсированного хроматина. Хроматин состоит из ДНК и белков, которые плотно упакованы вместе для образования волокон хроматина. Конденсированные волокна хроматина образуют хромосомы. Хромосомы расположены в ядре наших клеток. Наборы хромосом соединяются вместе (один от матери и один от отца) и известны как гомологичные хромосомы.

Схема строения хромосомы на этапе метафазы

Недублированные хромосомы являются одноцепочечными и состоят из области центромера, которая соединяет плечи хромосомы. Короткое плече обозначают буквой p, а длинное буквой q. Конечные области хромосом называются теломерами, которые состоят из повторяющихся некодирующих последовательностей ДНК, укорачивающихся во время деления клетки.

Дублирование хромосом

Хромосомное дублирование происходит до процессов деления посредством митоза или мейоза. Процессы репликации ДНК позволяют сохранить правильное число хромосом после деления родительской клетки. Дуплицированная хромосома состоит из двух идентичных хромосом, называемых сестринскими хроматидами, которые связаны в области центромера. Сестринские хроматиды остаются вместе до конца процесса деления, где они разделяются волокнами веретена и заключаются в дочерние клетки. Как только парные хроматиды отделены друг от друга, каждая из них становится дочерней хромосомой.

Хромосомы и деление клеток

Одним из наиболее важных элементов успешного деления клеток является правильное распределение хромосом. В митозе это означает, что хромосомы должны распределяться между двумя дочерними клетками. В мейозе хромосомы распределяются между четырьмя дочерними клетками. Веретено деления отвечает за перемещение хромосом во время деления клеток.

Такой тип движения клеток связан с взаимодействием между микротрубочками веретена и моторными белками, работающими вместе для разделения хромосом. Жизненно важно, чтобы в дочерних клетках сохранялось правильное количество хромосом. Ошибки, возникающие при делении клеток, способны приводить к неуравновешенными хромосомным числами, имеющим слишком много или недостаточно хромосом. Это отклонение известено как анеуплоидия и может происходит в аутосомных хромосомах во время митоза или в половых хромосомах во время мейоза. Аномалии в хромосомных числах могут приводить к врожденным дефектам, нарушениям развития и смерти.

Хромосомы и производство белков

Производство белка является жизненно важным клеточным процессом, который зависит от ДНК и хромосом. ДНК содержит сегменты, называемые генами, кодирующими белки. Во время производства белка ДНК разматывается, а его кодирующие сегменты транскрибируются в транскрипт РНК. Затем транскрипт РНК транслируется с образованием белка.

Мутация хромосом

Мутации хромосом — это изменения, которые происходят в хромосомах и обычно являются результатом ошибок, происходящих во время мейоза или при воздействии мутагенов, таких как химические вещества или радиация.

Поломка и дублирование хромосом может привести к нескольким типам структурных изменений хромосомы, которые обычно вредны для человека. Эти типы мутаций приводят к хромосомам с дополнительными генами, находящимися в неправильной последовательности. Мутации также могут продуцировать клетки с неправильным числом хромосом. Аномальные числа хромосом обычно возникают в результате нерасхождения или нарушения гомологичных хромосом во время мейоза.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

← Подписывайтесь на наши аккаунты в соц.сетях, чтобы не пропустить самую интересную информацию!

natworld.info

2. Хромосомный набор клетки. Размножение организмов

2. Хромосомный набор клетки

Важная роль в клеточном цикле принадлежит хромосомам. Хромосомы — носители наследственной информации клетки и организма, содержащиеся в ядре. Они не только осуществляют регуляцию всех обменных процессов в клетке, но и обеспечивают передачу наследственной информации от одного поколения клеток и организмов другому. Число хромосом соответствует числу молекул ДНК в клетке. Увеличение числа многих органоидов не требует точного контроля. Все содержимое клетки при делении распределяется более или менее равномерно между двумя дочерними клетками. Исключением являются хромосомы и молекулы ДНК: они должны удвоиться и совершенно точно распределиться между вновь образуемыми клетками.

Строение хромосом

Изучение хромосом эукариотических клеток показало, что они состоят из молекул ДНК и белка. Комплекс ДНК с белком называется хроматином. В прокариотной клетке содержится только одна кольцевая молекула ДНК, не связанная с белками. Поэтому, строго говоря, ее нельзя назвать хромосомой. Это нуклеоид.

Если бы удалось растянуть нить ДНК каждой хромосомы, то ее длина значительно превысила бы размер ядра. Важную роль в упаковке гигантских молекул ДНК играют ядерные белки — гистоны. Последние исследования структуры хромосом показали, что каждая молекула ДНК соединяется с группами ядерных белков, образуя множество повторяющихся структур — нуклеосом (рис. 2). Нуклеосомы являются структурными единицами хроматина, они плотно упакованы вместе и образуют единую структуру в виде спирали толщиной 36 нм.

Рис. 2. Строение интерфазной хромосомы: А — электронная фотография хроматиновых нитей; Б — нуклеосома, состоящая из белков — гистонов, вокруг которых располагается спирально закрученная молекула ДНК

Большинство хромосом в интерфазе растянуты в виде нитей и содержат большое количество деспирализованных участков, что делает их практически невидимыми в обычный световой микроскоп. Как уже было сказано выше, перед делением клетки молекулы ДНК удваиваются и каждая хромосома состоит из двух молекул ДНК, которые спирализуются, соединяются с белками и приобретают четкие формы. Две дочерние молекулы ДНК упаковываются порознь и образуют сестринские хроматиды. Сестринские хроматиды удерживаются вместе центромерой и образуют одну хромосому. Центромера — это участок сцепления двух сестринских хроматид, контролирующий движение хромосом к полюсам клетки во время деления. К этой части хромосом прикрепляются нити веретена деления.

Отдельные хромосомы различаются только в период деления клетки, когда они максимально плотно упакованы, хорошо окрашиваются и видны в световой микроскоп. В это время можно определить их количество в клетке, изучить общий вид. В каждой хромосоме выделяются плечи хромосом и центромера. В зависимости от положения центромеры различают три типа хромосом — равноплечные, разноплечные и одноплечные (рис. 3).

Рис. 3. Строение хромосомы. А — схема строения хромосомы: 1 — центромера; 2 — плечи хромосомы; 3 — сестринские хроматиды; 4 — молекулы ДНК; 5 — белковые компоненты; Б — виды хромосом: 1 — равноплечные; 2 — разноплечные; 3 — одноплечные

Хромосомный набор клеток

Клетки каждого организма содержат определенный набор хромосом, который называется кариотипом. Для каждого вида организмов характерен свой кариотип. Хромосомы каждого кариотипа отличаются по форме, — величине и набору генетической информации.

Кариотип человека, например, составляет 46 хромосом, плодовой мушки дрозофилы — 8 хромосом, одного из культурных видов пшеницы — 28. Хромосомный набор строго специфичен для каждого вида.

Исследования кариотипа различных организмов показали, что в клетках может содержаться одинарный и двойной набор хромосом. Двойной, или диплоидный (от греч. diploos — двойной и eidos — вид), набор хромосом характеризуется наличием парных хромосом, которые одинаковы по величине, форме и характеру наследственной информации. Парные хромосомы называются гомологичными (от греч. homois — одинаковый, подобный). Так, например, все соматические клетки человека содержат 23 пары хромосом, т. е. 46 хромосом представлены в виде 23 пар. У дрозофилы 8 хромосом образуют 4 пары. Парные гомологичные хромосомы внешне очень похожи. Их центромеры находятся в одних и тех же местах, а гены расположены в одинаковой последовательности.

Рис. 4. Наборы хромосом клеток: А — растения скерды, Б — комара, В — дрозофилы, Г — человека. Набор хромосом в половой клетке дрозофилы гаплоидный

В некоторых клетках или организмах может существовать одинарный набор хромосом, который называется гаплоидным (от греч. haploos — одиночный, простой и eidos — вид). Парные хромосомы в этом случае отсутствуют, т. е. гомологичных хромосом в клетке нет. Например, в клетках низших растений — водорослей набор хромосом гаплоидный, тогда как у высших растений и животных набор хромосом диплоидный. Однако в половых клетках всех организмов всегда содержится только гаплоидный набор хромосом.

Хромосомный набор клеток каждого организма и вида в целом строго специфичен и является его основной характеристикой. Хромосомный набор принято обозначать латинской буквой n. Диплоидный набор соответственно обозначается 2n, а гаплоидный — n. Количество молекул ДНК обозначается буквой c. В начале интерфазы число молекул ДНК соответствует числу хромосом и в диплоидной клетке равно 2c. Перед началом деления количество ДНК удваивается и равно 4c.

Вопросы для самоконтроля

1. Какое строение имеет интерфазная хромосома?

2. Почему в интерфазу невозможно увидеть хромосомы в микроскоп?

3. Как определяется количество и внешний вид хромосом?

4. Назовите основные части хромосомы.

5. Из скольких молекул ДНК состоит хромосома в предсинтетический период интерфазы и перед самым делением клетки?

6. За счет какого процесса изменяется количество молекул ДНК в клетке?

7. Какие хромосомы называются гомологичными?

8. По набору хромосом дрозофилы определите равноплечные, разноплечные и одноплечные хромосомы.

9. Что такое диплоидный и гаплоидный наборы хромосом? Как они обозначаются?

Поделитесь на страничке

Следующая глава >

bio.wikireading.ru

11. Строение хромосомы. Типы хромосом. Эу– и гетерохроматин.

Хромосома- постоянный компонент ядра, отличающийся особой структурой, индивидуальностью, функцией и способностью к самовоспроизведению, что обеспечивает их преемственность, а тем самым и передачу наследственной информации от одного поколения растительных и животных организмов к другому.

Размеры хромосом у разных организмов варьируют в широких пределах. Длина хромосом может колебаться от 0,2 до 50 мкм. Число хромосом у различных объектов также значительно колеблется, но характерно для каждого вида животных или растений. Совокупность числа, величины и морфологии хромосом называется кариотипомданного вида.

Хромосомы животных и растений представляют собой палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом удается легко найти зону первичной перетяжки, которая делит хромосому на два плеча. В области первичной перетяжки находится центромера, где расположенкинетохор. Некоторые хромосомы имеютвторичную перетяжку.

В конце интерфазы каждая хромосома состоит из двух сестринских хроматид. Каждая из них, в свою очередь, состоит из двух половинок – полухроматид или хромонем. Хромонемы содержат уплотненные участки – хромомеры, которые в световом микроскопе имеют вид темноокрашенных гранул. Их число, положение и величина в обеих хроматидах одинаковы и для каждой хромосомы относиельно постоянны. Расстояния между хромомерами называются межхромомерными участками.

Когда говорят о морфологии хромосом, то принимают во внимание следующие признаки: длину плеч, положение центромеры, наличие вторичной перетяжки или спутника. Спутники разных хромосом отличаются по форме, величине и длине нити, соединятющей их с основным телом.

Спутник– это хромосомный сегмент, чаще всего гетерохроматический, расположенный дистально от вторичной перетяжки. По классическим определениям спутник – сферическое тельце с диаметром, равным диаметру хромосомы или меньше его, которое связано с хромосомой тонкой нитью. Выделяют следующие 5 типов спутников:

  1. микроспутники – сфероидальной формы, маленькие спутники с диаметром вдвое или еще меньше диаметра хромосомы;

  2. макроспутники – довольно крупные формы спутников с диаметром, превышающим половину диаметра хромосомы;

  3. линейные С. - спутники, имеющие форму длинного хромосомного сегмента. Вторичная перетяжка значительно удалена от терминального конца;

  4. терминальные С. – спутники, локализованные на конце хромосомы;

  5. интеркалярные С. – спутники, локализованные между двумя вторичными перетяжками.

Вторичная перетяжка, соединяющая спутник с телом хромосомы, способна к участию в процессе формирования и сборки ядрышек. Такая вторичная перетяжка поэтому называется еще ядрышковым организатором.

Спутник вместе с вторичной перетяжкой составляют спутничный район.Вторичные перетяжки могут быть у одних хромосом на длинном плече, у других - на коротком. Концевые участки хромосомы называюттеломерами.Особенность их состоит в том, что они не способны к соединению с другими участками хромосом.

Нормальная длина каждой хромосомы и суммарная длина всех хромосом кариотипа постоянна. Морфология хромосомы определяется в первую очередь положением центромеры. В соответствии с местом расположения центромеры выделяют основные формы хромосом: метацентрические, субметацентрические, акроцентрические и изохромосомы.

Метацентрическиехромосомы отличаются тем что плечи у них одинаковой или почти одинаковой длины.Субметацентрическиехромосомы имеют плечи разной длины. Уакроцентрическиххромосом центромера расположена к близко к одной из теломер.

Изохромосомы – моноцентрические хромосомы с двумя генетически идентичными плечами, появляющиеся как результат неправильного деления центромеры после разрыва и воссоединения сестринских хроматид в области центромеры.Изохромосомаимеет одинаковые плечи в результате деления центромеры по горизонтали.Дицентрические и ацентрическиеизохромосомы образуются после разрыва сестринских хроматид вне центромерной области и воссоединения их в центрические и ацентрический фрагменты.

Хроматин - основной компонент клеточного ядра. В среднем в хроматине 40% приходится на ДНК и около 60% на белки. В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида, которые состоят из ДНК, ассоциированной с гистонами и иногда еще с негистоновыми белками. Способность к дифференциальному окрашиванию легла в основу выявления двух фракций хроматина – гетеро – и эухроматина. Хейтц, открывший это явление, нашел, что определенные участки хромосом остаются в конденсированном состоянии в течении всего клеточного цикла и назвал их гетерохроматин, а участки, деконденсирующиеся в конце митоза и слабо окрашенные – эухроматином. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые, в которых и локализована большая часть известных генов. Однако, гетерохроматин имеет определенное генетическое влияние; к примеру, определяющие пол хромосомы не могут рассматриваться как генетически неактивные, хотя они часто полностью состоят из гетерохрома тина. Кроме того, установлено, что стабильность генетического выражения эухроматина обуславливается близостью к гетерохроматину.

studfiles.net

Где находятся хромосомы? Где в клетке находятся хромосомы

Где находятся хромосомы? 6 класс, значит, прогуливали? Но не волнуйтесь, мы найдём ответ на этот вопрос, а также определим, какую важность они имеют для живых организмов. Каков механизм их размещения и построения?

Небольшое отступление

где находятся хромосомыХромосомы являются важной частью генного механизма. Они выступают в качестве хранилища ДНК. Некоторые вирусы имеют одноцепочные молекулы, но в большинстве случаев они двуцепочные и являются линейными или замкнутыми в кольцо. Но размещается ДНК в хромосомах исключительно в клеточных организмах. То есть это хранилище в вирусах не используется в обычном понимании, поскольку сам микроорганизм выступает в такой роли. При свертывании в спираль молекулы размещаются более компактно. Хромосомы состоят из хроматина. Это специальное волокно, которое образуется, когда эукариотическая ДНК обматывает специальные белковые частицы, называемые гистонами. Они располагаются через определённый интервал, поэтому структура получается стабильной.

О хромосомах

где в клетке находятся хромосомыОни являются основными структурными элементами клеточного ядра. Благодаря наличию способности самовоспроизведения, хромосомы могут обеспечивать генетическую связь между поколениями. Следует отметить разницу их длины у разных животных и людей: их размер может колебаться от долей к десяткам микрон. В качестве химической основы построения используются нуклеопротеиды, что формируются из таких белков, как протамины и гистоны. Хромосомы непрерывно находятся в клеточном ядре. И это относится ко всем возможным высшим формам жизни. Так, приведённое утверждение про то, где находятся хромосомы в животной клетке, с точно такой же уверенностью можно отнести и к растениям. Выгляните в окно. Какие деревья можете увидеть за ним? Липу, дуб, берёзу, орех? Или, может, кусты смородины и малины? Отвечая на вопрос о том, где находятся хромосомы у растений, что были перечислены, можно сказать, что они там же, где и в животных организмах, – в ядрах клеток.

Расположение хромосом в клетке: как делается выбор

где находятся хромосомы у человекаМногоклеточный эукариот является обладателем диплоидного набора хромосом. Он составляется из генома отца и матери. Благодаря процессу мейоза они конъюгируют между собой. Это обеспечивает протекание процесса обмена участками – кроссинговера. Возможным в данных случаях является спаривание гомологичных хромосом. Это необходимо, чтобы обеспечить функционирование генов в клетках, что не делятся, а находятся в покоящемся состоянии. Вытекающим из этого является следствие, что хромосомы находятся в ядре и для продолжения функций делений они не должны покидать его пределы. Конечно, найти нуклеотидные остатки в самой клетке не составит труда. Но в большинстве случаев это или геном в митохондриях, или отдельные части целого, что откололись и сейчас в «свободном плавании». Встретить полноценную хромосому за пределами ядра очень сложно. А если такое и происходит, то исключительно из-за физических повреждений.

Хромосомный набор

где находятся хромосомы у бактерийТак называют всю совокупность хромосом, которые есть в ядре клетки. У каждого биологического вида есть свой постоянный и характерный для него набор, который закрепился во время эволюции. Он может быть двух типов: одиночный (или гаплоидный, встречается в половых клетках животных) и двойной (или диплоидный). Наборы разнятся количеством хромосом, что в них присутствуют. Так, у лошадей их количество равняется двум. А вот у простейших и некоторых споровых растениях их количество может достигать тысяч. Кстати, если говорить про то, где находятся хромосомы у бактерий, то следует отметить, что у них они тоже, как правило, находятся в ядре, но не исключено и то, что они будут «свободно» плавать в цитоплазме. Но это относится исключительно к одноклеточным. Причем разнятся они не только количеством, но и размером. У человека в наборе имеется 46 хромосом.

Морфология хромосом

где находятся хромосомы в растительной клеткеОна напрямую связана с их спирализацией. Так, когда они находятся в стадии интерфазы, то они наиболее развернуты. Но при начале процесса деления хромосомы начинают интенсивно укорачиваться путём проведения своей спирализации. Наибольшая степень этого состояния припадает на стадию метафазы. На ней формируются относительно короткие и плотные структуры. Метафазная хромосома формируется из двух хроматид. Они в свою очередь состоят из так называемых элементарных нитей (хромонем).

Индивидуальные хромосомы

Их различают в зависимости от места нахождения центромеры (первичная перетяжка). Если эта составляющая теряется, то хромосомы теряют способность к делению. И вот первичная перетяжка делит хромосому на два плеча. Также могут образовываться вторичные (в этом случае полученный результат называют спутником). Каждый вид организмов обладает своими специфическими (численно, по размеру или форме) наборами хромосом. Если он двойной, то его обозначают как кариотип.

Хромосомная теория наследственности

Впервые эти носители были описаны И.Д. Чистяковым в 1874 году. В 1901-м Уилсон обратил внимание на присутствие параллелизма в их поведении. Затем он сфокусировался на Менделеевских факторах наследственности в мейозе и при оплодотворении и пришел к выводу, что гены расположены в хромосомах. На протяжении 1915-1920 годов Морганом и его сотрудниками это положение было доказано. Они локализировали несколько сотен генов в хромосомах дрозофилы, создав первую генетическую карту. Данные, полученные в это время, легли в основу всего последующего развития науки в данном направлении. Также на основании этой информации была разработана хромосомная теория наследственности, по которой преемственность клеток и целых организмов обеспечивается благодаря именно этим носителям.где находятся хромосомы у бактерий

Химический состав

Исследования продолжались, и во время биохимических и цитохимических экспериментов в 30-50 годах прошлого столетия было установлено, из чего они скомпонованы. Их состав такой:

  1. Основные белки (протамины и гистоны).
  2. ДНК.
  3. Негистонные белки.
  4. Переменные компоненты. В их качестве могут выступать РНК и кислый белок.

Хромосомы сформированы из дезоксирибонуклеопротеидных нитей. Они могут соединяться в пучки. В 1953 году было открыто строение молекулы ДНК и разобран механизм её авторепродукции. Знания, полученные о нуклеиновом коде, послужили основой для возникновения новой науки – генетики. Сейчас мы не только знаем, где в клетке находятся хромосомы, но также имеем представление, из чего они составляются. Когда в обычных бытовых разговорах говорят про наследственный аппарат, то обычно подразумевают одну ДНК, но вы-то теперь знаете, что она является только его составляющей.

Половые хромосомы

Гены, которые отвечают за пол млекопитающего (и человека в том числе), находятся в специальной паре. Могут быть и другие случаи организации, в которых всё определяется соотношением каждого вида половых хромосом. Животные, обладающие таким типом определения, называются аутосомами. У человека же (и других млекопитающих тоже) женский пол определяется одинаковыми хромосомами, которые обозначаются как Х. Для мужского используется Х и У. А как же происходит выбор, какого пола будет ребёнок? Первоначально созревает женский носитель (яйцеклетка), в котором размещена Х. А пол определяется всегда по содержимому сперматоцитов. Они в равной пропорции (плюс/минус) содержат и Х, и У-хромосомы. От носителя, который первым совершит оплодотворение, и зависит пол будущего ребёнка. И в результате может возникнуть или женщина (ХХ), или мужчина (ХУ). Итак, мы не только выяснили, где находятся хромосомы у человека, но также разобрались с особенностями их размещения и комбинирования при создании нового организма. Стоит заметить, что этот процесс является несколько облегченным у более простых форм жизни, поэтому, знакомясь с тем, что у них и как протекает, вы можете заметить небольшие отличия от описанной здесь модели.

Функционирование

где находятся хромосомы 6 классХромосомная ДНК может быть представлена как матрица, которая работает, чтобы синтезировать специфические молекулы информационной РНК. Но этот процесс может протекать только при условии деспирализации определённого участка. Говоря про возможность работы гена или целой хромосомы, следует отметить, что для их функционирования могут понадобиться определённые условия. Вы, наверное, слышали про инсулин? Ген, отвечающий за его выработку, есть во всём человеческом теле. Но вот активироваться и работать он может исключительно при нахождении в нужных клетках, которые создают поджелудочную железу. И таких случаев довольно много. Если говорить об исключении из метаболизма целой хромосомы, то тут можно вспомнить про образование тела полового хроматина.

Хромосомы человека

В 1922 году Пейтнером была выдвинута гипотеза о том, что человек имеет 48 хромосом. Конечно, это было сказано не на пустом месте, а основываясь на определённых данных. Но в 1956 году учеными Тиром и Леваном при использовании новейших методов исследования генома человека было установлено, что на самом деле человек имеет только 46 хромосом. Они же и дали описание нашего кариотипа. Нумерация пар идёт от единицы до двадцати трех. Хотя последней паре часто не присваивают число, а отдельно называют, из чего она состоит.

Заключение

где находятся хромосомы у растенийИтак, мы определили на протяжении статьи, какую роль имеют хромосомы, где они размещены и как строятся. Конечно, главное внимание получил геном человека, но были рассмотрены и животные, а также растения. Мы знаем, где в клетке находятся хромосомы, особенности их расположения, а также возможные трансформации, которые с ними могут происходить. Если говорить про геном, то помните, что он может быть и в других частях, а не только ядре. Но вот на то, какими будут дочерние объекты, влияет именно то, что имеется в хромосомах. Причем от количества оных не сильно зависят особенности организма. Итак, рассказав о том, где находятся хромосомы в растительной клетке и организмах животных, считаем, что наша задача была выполнена.

fb.ru

1) белка, 2) ДНК, 3) РНК , 4 ) белка и ДНК 15) В каком случае показано анализирующее скрещивание, беларуская мова

10-11 класс

1) ааbb x aabb 2) AABb x AABB 3) AaBb x aabb 4) aaBB x aabb

16) Покоящаяся вирусная частица

1) эмбрион, 2) вибрион, 3) варигон, 4) вирион

17) Можно считать, что львы и тигры находятся на одном и том же трофическом уровне,

1) поедают растительноядных животных, 2) используют свою пищу примерно на 10%, 3) живут в сходных местообитаниях, 4) кормовая база их очень разнообразна

18) Последовательность нуклеотидов в и - РНК комплентарна последовательности

1) двух цепочках молекулы ДНК, 2) одной цепочке молекулы ДНК, одной молекуле т - РНК, всех молекул т - РНК,

19) К какой функциональной группе организмов в биоценозе относятся насекомые - опылители?

1) продуценты, 2) консументы 1 порядка, 3) консументы 2 порядка, 4) редуценты

20) высшие растения произошли от:

1) бурых и красных водорослей, 2) риниофитов и сине-зеленых водорослей, 3) риниофитов и бурых водорослей, 4) зеленых водорослей

21) Оболочка клеток растений может содержать целлюлозу, лигнин, пектин. В какой последовательности включаются эти компоненты при ее образовании?

1) целлюлоза, пектин, лигнин, 2) целлюлоза, лигнин, пектин, 3) пектин, целлюлоза, лигнин, 4) пектин, легнин, целлюлоза

22) Исследования состояния ДНК показали, что одно из соотношений может меняться

1) А/Г, 2) Г/Ц, 3) А+Т / Г+Ц, 4) А+Г/Т+Ц

23) Гаметофитическая генерация создается

1) оплодотворение яйцеклетки сперматозоидом, 2) митотическим делением клеток спородонта, 3) гаплоидной спорой, которая делится митозом, 4) соединением женских и мужских клеток спорофита

24) Наиболее высокое осмотическое давление свойственно клеткам:

1) гидрофитов, 2) мезофитов, 3) ксерофитов, 4) галофитов

25) Общей тенденцией в эволюции насекомых является:

1) увеличение размеров, 2) уменьшение размеров, 3) у одних - к увеличению, у других - к уменьшению, 4) размеры не связаны с процессом эволюции

26) Концентрация этого вещества в Броуменовых капсулах здоровой почки равняется 0,1, в то время как концентрация данного вещества в моче в норме равна нулю. Это:

1) фосфат кальция, 2) глюкоза, 3) мочевина, 4) хлористое железо

27) Мужской гаметофит в цикле воспроизведения сосны образуется после:

1) второго деления 2) четвертого деления, 3) восьмого деления, 4) шестнадцатого деления

28) Поверхностный комплекс клетки включает:

1) плазмалемму, 2) гликокаликс, 3) матрикс, 4) цитозоль

29) Дезоксинуклеотид - трифосфаты необходимы для процесса:

1) репликации, 2) транскрипции, 3) теиновой репарации, 4) трансляции

30) Белки содежащие гемм:

1) миоглобин, 2) цитохромы, 3) ДНК- полимераза, 4) миелопероксидаза

Karving04 12 дек. 2015 г., 19:42:39 (2 года назад)

belaruskaa-mova.neznaka.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта