Фототропизм растений. 65 Движение раст. – тропизмы и настии, их физиологическая природа.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Урок биологии в 6 классе "Тропизмы и настии растений". Фототропизм растений


определение, причины, механизм работы и факты

Вы разместили свое любимое растение на солнечном подоконнике. Вскоре стало заметно, что оно наклонилось к окну, вместо того чтобы расти прямо вверх. Что же заставляет растения расти в сторону?

Что такое фототропизм?

Явление, которое вы наблюдаете, называется фототропизмом. Для лучшего понимания значения этого термина, обратите внимание, что префикс «фото» означает «свет», а суффикс «тропизм» означает «поворот». Таким образом, фототропизм — это когда растения поворачиваются или сгибаются в направлении света.

Почему происходит фототропизм?

Растениям нужен свет, чтобы обеспечить производство своей энергии. Этот процесс называется фотосинтезом. Свет, создаваемый солнцем или из других источников, вместе с водой и двуокисью углерода необходим для производства сахаров, которые используются растениями в качестве энергии. В процессе фотосинтеза, также образуется кислород, и многие жизненные формы на Земле нуждаются в нем для дыхания.

Фототропизм, вероятно, является механизмом выживания растений, позволяющим получать как можно больше света. Когда листья растений направлены к свету, фотосинтез может происходить гораздо активней, позволяя генерировать больше энергии.

Как раньше ученые объяснили фототропизм?

Ранние мнения о причинах фототропизма варьировались среди различных ученых. Теофраст (371 г. до н.э.-287 г. до н.э.) считал, что фототропизм вызывает уменьшение жидкости с освещаемой стороны стебля растения, а позднее Фрэнсис Бэкон (1561-1626) предположил, что фототропизм вызван увяданием.

Роберт Шаррок (1630-1684) полагал, что растения изгибаются в ответ на «свежий воздух», а Джон Рэй (1628-1705) думал, что растения склоняются к более прохладным температурам ближе к окну.

Чарльз Дарвин (1809-1882) решил провести первые соответствующие эксперименты по фототропизму. Он предположил, что кривизну вызывает вещество, вырабатываемое в верхушке растения.

Дарвин экспериментировал, накрывая верхушки некоторых растений и оставлял другие открытыми. Растения с накрытыми верхушками не сгибались к свету. Когда он накрыл нижнюю часть стеблей, но оставил открытым вверх, то растения двигались к свету.

Дарвин не знал, какое «вещество» вырабатывается в верхушках растений, а также как оно вызывает изгиб. Тем не менее, Николай Чолодный и Фриц Вент в 1926 году обнаружили, что высокие концентрации этого вещества перемещаются на затененную сторону стебля растения, приводя к его изгибу, чтобы верхушка двигалась к свету. Точный химический состав вещества, признанного первым идентифицированным растительным гормоном, не был выяснен до тех пор, пока не был выделен Кеннетом Тиманн (1904-1977), идентифицировавшим его как индол-3-уксусная кислота (ИУК) или ауксин.

Как работает фототропизм?

Нынешняя мысль о механизме фототропизма заключается в следующем. Свет, на длине волны около 450 нанометров (сине-фиолетовый свет), освещает растение. Белок, называемый фоторецептором, улавливает свет, реагирует на него и вызывает ответ. Группа белков фоторецептора синего света, ответственных за фототропизм, называется фототропинами. Неясно, как именно фототропины сигнализируют о движении ауксина, но известно, что ауксин перемещается на более темную затененную сторону стебля в ответ на световое воздействие.

Ауксин стимулирует выделение ионов водорода в клетках затененной стороны стебля, что приводит к снижению рН клеток. Снижение рН активирует ферменты (называемые экспансинами), которые вызывают набухание клеток и приводят к изгибу стебля в направлении света.

Интересные факты о фототропизме

  • Если у вас есть растение, испытывающее на окне фототропизм, попробуйте повернуть его в противоположном направлении, чтобы оно было отвернуто от света. Растению требуется всего около восьми часов для возвращения к свету.
  • Некоторые растения растут от света, явление, называемое отрицательным фототропизмом. Это происходит из-за изгиба верхних частей корня.
  • Настические движения схожи с фототропизмом, поскольку также связаны с движением растения из-за определенного раздражителя, но они осуществляются не к световому стимулу, а в заданном направлении. Движение определяется самим растением, а не светом. Примером настии является открытие и закрытие листьев или цветов из-за наличия или отсутствия света.
← Подписывайтесь на наши аккаунты в соц.сетях, чтобы не пропустить самую интересную информацию!

natworld.info

Фототропизм.

Количество просмотров публикации Фототропизм. - 594

Геотропизм.

Все растительные клетки и организмы развиваются в гравитационном поле Земли. Геотропизм — ориентация в пространстве и изгибание под действием гравитационного поля вследствие разной скорости роста противоположных сторон органа. В почве при прорастании семян, клубней (т. е. в темноте) растения ориентируются прежде всœего по гравитационному полю.

Органы, которым свойственно занимать строго вертикальное положение к поверхности земли, носят название ортотропных. Органы, расположенные по отношению к ортотропным под прямым углом, называются диатропными, а под каким-либо другим углом – плагиотропными. К этим органам относятся листья и различные боковые ответвления.

Та или иная ориентировка органа отражает его активную способность расти в определœенном направлении и сохранять эту способность, в случае если даже растение, частью которого данный орган является, выведено из нормального для него положения.

Свойство органа расти по направлению к центру земли принято называть положительным геотропизмом. К отрицательно геотропным относятся органы, растущие в направлении обратном действию силы тяжести.

Восприятие силы тяжести связано с воздействием давления на клеточные мембраны находящихся в цитоплазме тяжелых частиц – статолитов. В качестве статолитов могут выступать амилопласты, хлоропласты, аппарат Гольджи и др. Размещено на реф.рфКлетки, содержащие статолиты, называют статоцитами. В корне роль статоцитов выполняют клетки центральной части корневого чехлика, а статолитами служат амилопласты.

О процессах, происходящих после перемещения статолитов, известно мало. Их давление на мембраны может приводить к сдвигам в мембранном транспорте, поляризации клеток и к поперечной поляризации органа в целом. При этом нижняя часть стеблей и корней, приведенных в горизонтальное положение, приобретает электроположительный заряд.

Фототропизм. Ростовые изгибы органов растений под влиянием одностороннего освещения называют фототропизмами. При положительном фототропизме воспринимается не направление света͵ а разность в количестве света между теневой и освещенной сторонами органа. Отрицательный фототропизм наблюдается у корней некоторых растений, у ризоидов печеночников и заростков папоротника. Листья могут осуществлять диафототропизмы, занимая положение, перпендикулярное к падающему свету. Фототропические изгибы обусловлены различием в скорости роста растяжением на освещенной и неосвещенной сторонах органа. Затененная сторона растет более интенсивно. В ряде случаев характер фототропической реакции у одного и того же органа изменяется исходя из интенсивности освещения.

Более сложен вопрос о характере фототропической реакции корней. У многих растений корни не проявляют чувствительности к свету. Наряду с этим у большого числа видов корни обладают отрицательным фототропизмом.

В ряде случаев фотропическая реакция одного и того же органа изменяется исходя из условий освещения. Так, при чрезмерно сильном освещении положительная фотореакция обычно изменяется на отрицательную.

В корне фототропических изгибов лежит различная скорость роста отдельных участков ткани одного и того же органа в связи с неравномерной их освещенностью.

Одной из замечательных особенностей фотропической реакции растения является высокая чувствительность точек роста по отношению к предельно низким интенсивностям света͵ особенно свойственная этиолированным проросткам.

Своеобразны также реакции фототропизма у листьев. У многих растений листья размешаются перпендикулярно световому потоку. Таковы листья плюща и некоторых других растении. У других видов листья расположены по отношению к свету под разными углами, благодаря чему они способны эффективно использовать как прямой, так и рассеянный свет. Известны растения, листья которых расположены под прямым углом к солнечным лучам лишь в ранние утренние и поздние вечерние часы. С другой стороны, имеются растения, листья которых на всœем протяжении дня сохраняют одно и то же положение относительно солнца. Все эти особенности отражают специфику различных экологических групп растении и имеют большое приспособительное значение.

Движения листьев обусловлены, главным образом, изменениями положения их черешков.

referatwork.ru

Урок биологии в 6 классе "Тропизмы и настии растений"

Приложение 1

Движение - проявление жизни растений

У живых существ самое заметное проявление жизни - движение. Это относится и к растениям, у которых оно совершается гораздо медленней, по сравнению с животными. У растений очень медленно движутся органы: листья, стебли, корни, цветы. Движутся они путем изгиба или скручивания. У вьющихся растений, например хмеля, вьюна или декоративной фасоли, растущие верхушки стеблей в поисках опоры совершают круговые движения. Это легко можно наблюдать с помощью замедленной киносъемки. 

Фототропизм

Фототропизмом называется способность движения растений в зависимости от направления лучей света. Положительным фототропизмом обладают стебли, а корни и усики – отрицательным. Листья располагаются обычно перпендикулярно к падающим лучам. Фототропизм имеет огромное значение в жизни растений, так как благодаря ему стебли и листья оказываются в положении наиболее выгодного освещения.

Почему подсолнух всегда повернут к солнцу? Ученые установили, что «чудеса»  подсолнухи творят благодаря особенному строению стебля. Стебель подсолнуха, устремленный на запад, в ночное время суток растет быстрей. Так, миллиметр за миллиметром цветочек продвигает свою «макушку» и утром встречает солнце на востоке. А днем все происходит с точность наоборот: восточная часть стебля растет быстрее западной. Такие «трюки» подсолнух творит, чтобы получить больше солнечной энергии – на 15 процентов больше. Когда подсолнух полностью созревает, он теряет способность двигаться за солнцем и всегда смотрит на восток!

Наблюдать фототропизм удобно в фототропической камере, представляющей собой темный ящик с отверстием в одной из стенок. Если в такую камеру поставить цветочный вазон с посевом ячменя или вики, то через несколько часов можно заметить изгибы растений к свету, причем изгибы появляются в местах наиболее сильного роста стебля. У проростка горчицы, поставленного в фототропическую камеру, вскоре же происходит изгиб стебля к свету и отклонение корня от света. Отрицательный фототропизм корней можно хорошо подметить при проращивании семянок гречихи. При резко одностороннем освещении корни проростков сильно отклоняются от света, а стебли – к свету

Понятно значение для растений положительного и отрицательного фототропизма. Зеленым стеблям и листьям нужен свет для усвоения углерода. Многие цветки обладают положительным фототропизмом; так, соцветия подсолнечника и череды до распускания корзинок все время поворачиваются к солнцу. 

Благодаря отрицательному фототропизму боковые корни растений, отклоняясь от света, зарываются в землю.

Геотропизм— способность различных органов растения располагаться и расти в определённом направлении по отношению к центру земного шара. Всем известно, что стебель растёт вверх, а корень вниз. На основании этого повсеместно наблюдаемого факта можно заключить, что причина такой ориентировки кроется в силе земного притяжения, или силе тяжести. Если молодое (ещё растущее) растение положить горизонтально, то через некоторый промежуток времени (различный для разных растений, обычно несколько часов) конец корня загнётся вниз, а конец стебля — вверх. Такие геотропические изгибы происходят лишь в области растущего участка (зоны) , участки же, переставшие расти, не изгибаются. У злаков изгиб происходит на месте узла, и стебель подымается вверх ломаной линией

Обнаружить отрицательный геотропизм стеблей можно простым опытом. Цветочный вазон с бальзамином (или с другим растением) ставим в темное помещение в горизонтальном положении. Через несколько дней обнаруживается геотропический изгиб: стебель направляет свой рост от земли.

 В 1974-1975 годах на борту орбитальной станции "Салют-4" проводились длительные эксперименты, целью которых было изучение влияния факторов полета не только на прорастание, но и на рост и развитие растений. Опыты с горохом сорта Пионер длились около месяца. Анализ замедленной киносъемки показал, что начальные фазы роста проростков в космосе не отличались от контрольных, выращиваемых на Земле. В дальнейшем рост проростков в условиях невесомости замедлялся, и они погибали на разных стадиях развития. Характерная черта растений, выращенных во время космического полета, - угнетение образования корневой системы, нарушение белкового и углеводного обменов, изменения в структуре органелл. Таким образом, в условиях невесомости (где устранено одностороннее действие силы тяжести) растения не смогли осуществить весь цикл своего развития и погибали. Следовательно, сила тяжести - необходимый экологический фактор для роста, образования органов и размножения растения. И в будущем, по-видимому, для выращивания растений на космических орбитальных станциях потребуется искусственная сила тяжести. 

Если посадить в бедную почву по кругу диаметром до 1 метра какие-нибудь семена, а в центр положить кусочек навоза, то, когда растения хорошо разовьются, нужно раскопать землю возле круга. Можно увидеть, что все растения протянули свои корни к лежащему в центре комку навоза и оплели его.

Причины тропических изгибов стеблей и корней объясняются неравномерным распределением гормонов роста на верхней и нижней поверхности горизонтально расположенного органа. Если рассмотреть клетки на внешней и внутренней стороне изгиба (при любых тропизмах), то видно, что на внешней стороне изгиба клетки вытянутые и более крупные, а на внутренней стороне – мелкие.

Приложение 2

Настии движения дорсовентральных (плоских: листьев, лепестков…) органов растений, которые обусловлены особенностями самого растения и проявляются при ненаправленном воздействии факторов окружающей среды (температура, свет и др.).

Растение кислица реагирует на свет. Их листья являются закрытыми и направленными вертикально вниз в темноте и прохладном окружающем воздухе, а «открываются» в горизонтальное положение на свету и при тепле (фотонастии и термонастии). В реальном времени процесс занимает около 90 минут.

К примеру, цветки  тюльпана открываются и закрываются в ответ на изменение температуры окружающей среды (термонастии). В тепле происходит ускорение роста внутренней стороны лепестков — и цветки раскрываются, а при холоде происходит ускорение роста их внешней стороны — происходит закрытие цветка.

Существуют настии, не связанные с процессами роста тканей. Листья мимозы стыдливой  также могут складываться и при сотрясениях (сейсмонастия). Сейсмонастиями также являются движения тычиночных нитей и рылец в цветках растений, опыляемых насекомыми.

Настии принято разделять на положительные и отрицательные. По утрам, при ярком солнечном освещении открываются соцветия-корзинки одуванчиков, а при уменьшении освещённости происходит их закрытие (фотонастия).Именно поэтому солнечным днем луг с одуванчиками ярко-желтый, а вечером и в ненастную погоду – темно-зеленого цвета, так как соцветия одуванчика закрылись.

Цветки душистого табака раскрываются в вечернее время, при уменьшении освещённости. Это явление называется отрицательной фотонастией.

Принято различать фотонастии, термонастии, хемонастии, никтинастии, сейсмонастии

  • Термонастии — движения, которые вызваны изменениями температуры.

  • Фотонастии — движения, которые вызваны сменой освещенности.

  • Никтинастии — движения растений, связанные с комбинированным изменением, как освещенности, так и температуры. Такое комбинированное воздействие наступает при сменах дня и ночи.

  • Сейсмонастии — движения, вызванные прикосновением, сотрясением и т.п

Бы́стрые движе́ния расте́ний являются разновидностью движений у растений, осуществляющихся сравнительно быстро, иногда менее чем за секунду. Например, Венерина мухоловка закрывает створки листа за 100 миллисекунд.  Цветок кизила канадского открывает лепестки и выстреливает пыльцой менее чем за половину миллисекунды. Известным на данный момент рекордистом является шелковица белая, цветки которой за 25 миллисекунд разгоняют лепестки до половины скорости звука, приближаясь к теоретическому пределу скорости для растений вообще.

infourok.ru

65 Движение раст. – тропизмы и настии, их физиологическая природа.

Тропизмы у растений

Высшие растения, в отличие от некоторых низших и животных организмов, остаются в течение всей жизни прикрепленными кор­нями или ризоидами к субстрату и не перемещаются в простран­стве. Поэтому сформировалось представление, что растения вообще не двигаются. Однако это не так. Не сходя с места, растения способны к различным движениям; среди которых важное место занимают тропизмы.

Тропизм — это движение растения, вызванное односто­ронне действующими факторами. Одним из главных является геотропизм — движение по отношению к центру земли. Он может быть положительным — вниз (у корней) и отрицатель­ным — вверх (у стеблей и листьев). Иноща геотропизм может быть выражен очень слабо или совсем не наблюдаться (у боковых корней и боковых побегов). Биологическое значение геотропизма заключается в правильной ориентации органов растений в про­странстве. В связи с этим становится понятным смысл сильного геотропизма у центральных органов и слабого или его отсутствия у боковых: если бы все корни росли строго вертикально вниз, а побеги строго вертикально вверх, то они не могли бы охватить значительного пространства почвы и атмосферы и мешали бы друг другу. Прямое сельскохозяйственное значение геотропизма заклю­чается в том, что он способствует выпрямлению стеблей хлебных злаков при раннем полегании (вследствие избытка воды и азота). Вторым важным в жизни растений является фототро­пизм — движение в определенном направлении к одностороннему источнику света. Он также может быть положительным — к свету (у стеблей и листьев) и отрицательным — от света (у корней). У боковых побегов он может совсем не проявляться или проявляться ослабленно. Направление фототропизма зависит от интен­сивности освещения: слабый свет вызывает положительный тро­пизм стеблей и листьев, но слишком сильный свет может вызвать у них же отрицательный фототропизм. Биологическое значение фототропизма заключается в лучшей ориентации органов растений по отношению к свету, особенно это имеет значение для опти­мального расположения листьев в целях более полного использо­вания света. Вследствие фототропизма в лиственном лесу образуется световая мозаика.

Кроме этих двух, существуют и другие тропизмы, которые изучены слабее, и поэтому считается, что они имеют меньшее значение в жизни растений. К их числу относится хемотро­пизм — движение в определенном (положительном или отрица­тельном) направлении к различным веществам. Он характерен для гифов грибов, проросших пыльцевых трубок, а в почве — для корней при движении по направлению к крупным гранулам — очагам удобрений — и от них — при излишне высокой их кон­центрации. Известен гидротропизм — движение корней по направлению к источнику воды. Иногда наблюдается термо­тропизм — изгиб по направлению к благоприятной темпера­туре. Как и другие тропизмы, он может быть положительным и отрицательным, но направление движения органа связано не с его физиологическими особенностями, а исключительно с уровнем вы­сокой или низкой температуры. Наконец, различают еще травмотропизм — движение по отношению к источнику механи­ческого раздражения. В отличие от всех других тропизмов он бывает только отрицательным. Так как в природных условиях на растения оказывает действие одновременно несколько факторов, то и проявление тропизмов мо­жет быть смешанным, коща один тропизм может перекрывать другой. Например, при неблагоприятной температуре почвы (очень низкой или слишком высокой) корни не будут расти вертикально вглубь, т. е. их положительный геотропизм не проявится. То же происходит, если прорастающие семена поместить н$ нижней по­верхности наклонно расположенного стекла, покрытого влажной фильтровальной бумагой. Они будут расти не вертикально вниз, а наклонно, вдоль бумаги. Подобное можно наблюдать и в отноше­нии стеблей и листьев. Таким образом, тропизм, который считается второстепенным, может перекрыть в своем действии основной.

Тропизмы присущи не всем частям растений, а только расту­щим. Они строго локализованы там, где есть меристема, в точках роста стебля и корня, междоузлиях стебля однодольного растения и в других подобных местах. Причиной движения-изгиба является неравномерный рост противоположных сторон органа. В настоящее время предложено много гипотез о физиологиче­ской природе тропизмов. Наибольшим распространением пользу­ется теория, разработанная одновременно в 30-х гг. текущего сто­летия украинским физиологом Н. Г. Холодным и нидерландским ученым Ф. Вентом. Она так и называется — гормональная теория Холодного — Вента. Сущность ее заключается в том, что при действии какого-либо раздражающего фактора происходит поляри­зация органа, вследствие чего при горизонтальном положении его ауксины стекают на нижнюю сторону, а при одностороннем осве­щении — на затененную. Различные органы растений обладают неодинаковой чувствительностью к концентрации ауксина (кривые Тимана). Самые чувствительные органы — корни, менее чувстви­тельные — стебли, так что одна и та же концентрация ауксина может подавлять рост корня и стимулировать рост стебля. Это и проявляется при тропизмах: при горизонтальном положении уско­ряется рост верхней части корня и замедляется нижней, корень изгибается вниз (верхняя наружная дуга длиннее нижней внутрен­ней). Напротив, у стебля, находящегося в таком же положении, ускоряется рост нижней части и замедляется рост верхней, в ре­зультате чего происходит изгиб вверх. Такая же картина может быть в случае фототропизма и, видимо, в случае всех других тропизмов. Возникает вопрос: что же вызывает поляризацию тканей и пе­ремещение ауксина вниз или на затененную сторону? На этот счет существуют различные гипотезы. Так, предполагают, что в случае геотропизма при изменении положения органа меняется положение органелл в клетках, в том числе расположение зерен статолитного крахмала. Они давят на мембраны эндоплазматического ретикулума, что изменяет их конформацию и проницаемость мембран цитоплазмы. Это в свою очередь изменяет расположение метаболитов в клетке, в том числе и ауксинов, в результате чего происходит описанная выше поляризация и ростовой изгиб. При одностороннем освещении происходит изменение реакции среды на различных сторонах клеточной мембраны, вследствие чего возни­кают потенциалы действия, а затем и электротоки. Вся клетка становится электрополяризованной, и ауксин перетекает на менее освещенную теневую сторону, что и вызывает ростовой фототро­пический изгиб.

Настические движения Кроме тропизмов, в растительном мире широко распространены также настические движения, или наст и и, — изги­бы, вызванные диффузно, т. е. разносторонне действующими раз­дражителями (факторами). Известно несколько типов настических движений, главные из которых — никтинастии и сейсмонастии. Никтинастии (никти — ночь) — движения, вызванные сменой дня и ночи. Они очень распространены у растений и вы­ражаются в подъеме и опускании листьев, в раскрывании и за­крывании цветков в разные часы дня. Эти движения, особенно у венчиков цветков, настолько разнообразны во времени и. в то же время так специфичны для некоторых видов, что позволили Карлу Линнею составить так называемые "часы флоры", действующие наподобие солнечных часов, по которым можно было определить время суток. Сейсмонастии — движения в ответ на механические раз­дражения. Примером этого явления служит реакция тычинок в цветках многих растений (в частности у шалфея) на прикосновение насекомого к тычиночной нити. Другой пример — моментальное складывание и опускание листьев мимозы. Физиологической причиной настических движений может быть неодинаковая скорость роста верхней и нижней сторон органа. При открывании венчика сильнее растет верхняя сторона лепестков, а при его закрывании — нижняя. Вторая причина — изменение тургорного состояния клеток в сочленениях листьев у мимозы и кислицы: уменьшение. его при опускании листьев и увеличение при их поднятии. Часто наблюдается совмещение обеих этих при­чин. Первичные механизмы всех настических движений выяснены еще недостаточно. Предполагают, что в основе их лежит появление yl распространение потенциалов действия и биотоков, что изменяет скррость роста различных сторон органа. При сейсмонастиях в процессе, возможно, принимают участие актомиозиноподобные со­кратительные белки, которые при участии АТФ-аз выбрасывают вору из вакуолей особых моторных клеток, быстро изменяя таким образом их тургорное состояние.

studfiles.net

51. Изучение фототропизма растений

Растения при недостаточном освещении всегда растут в сторону света. Это явление но­сит название фототропизма, в данном случае — положительного.

Корни растений находятся в земле, свет для их роста не нужен, поэтому у большинства растений корни фототропически нейтральны. Но у ряда растений корни способны проявлять при освещении отчетливую отрицательную ре­акцию, изгибаясь от источника света.

Для опыта нужны семена растений семей­ства крестоцветных, например капусты, гор­чицы. сарептской, редиса посевного, опилки, невысокий стакан, кусочек пробки или пено-

129

пласта, фототропическая камера или черный колпак с небольшим отверстием для света.

Во влажных опилках вырастите проростки исследуемого растения таким образом, чтобы корешок был прямым. Для этого наклюнув­шиеся семена зафиксируйте, как описано в опыте № 48. Можно также вырастить расте­ние в пробирке. В кусочке пробки или пено­пласта проделайте отверстие и пропустите в него корешок растения.

Пробку с укрепленным проростком поме­стите в стакан с водой и перенесите в темное место на сутки. За это время под действием силы земного тяготения корень вырастет отвесно вниз, а стебель вертикально вверх.

Измените условия освещения. Поставьте стакан с проростком в фототропическую камеру или накройте черным колпаком с располо­женным сбоку отверстием для света. Уже через несколько часов можно заметить изменения в ориентации органов: стебелек начинает изги­баться в сторону света, а корень — в противо­положную (рис. 30).

Проведите хронометраж опыта. Вскоре ста­новится ясно, что в стебле затененная сторона растет быстрее, чем освещаемая, что приводит к изгибу в сторону источника света.

Наблюдая за развитием изгиба в корне, от­метьте, что в нем быстрее происходит рост клеток освещаемой стороны. Торможение ро­ста затененной стороны вызывает изгиб от света.

Противоположная реакция стебля и корня на одно и то же воздействие указывает на различие физиологических свойств клеток этих органов.

130

И в корне, и в стебле действие света вос­принимается верхуш­кой органа, а изгиб происходит ниже, в той части, где клетки проходят фазу растя­жения.

Установлено, что при неравномерном освещении стебля в нем происходит пере­распределение гормона ауксина: до 75 % его перемещается на зате­ненную сторону. Это приводит к усилению растяжения клеток и удлинению затененной стороны.

Рис. 30. Фототропизм стебля и корня горчицы.

В корне большую роль в торможении рос­та затененной стороны играет, вероятно, абсцизовая кислота, которая синтезируется в корневом чехлике и накапливается в большом количестве на затененной стороне.

Задание. Выясните, являются ли вер­хушки стебля и корня местом восприятия действия света. Для этого описанный выше опыт дополните еще одним вариантом с про­ростками, у которых удалена верхушка органа.

52. Движение корзинки подсолнечника

Интересной разновидностью фототропизма является гелиотропизм — движение органа вслед за движением солнца по небосводу в те­чение дня.

131

Рис. 31. Гелиотропизм подсолнечника

Для опыта нужны растущие на открытом месте растения подсолнечника с раскрытыми и закрытыми соцветиями, компас, несколько листов бумаги, карандаш, отвес — нитка с привязанным небольшим грузом, например, гвоздем.

Лист бумаги через прорезь в нем наденьте на стебель растения и опустите на землю. С помощью компаса отметьте на бумаге направ­ление сторон горизонта. К центральной части соцветия поднесите нить отвеса так, чтобы гвоздь острием почти касался бумаги. Проек­цию отвеса отметьте на бумаге карандашом (в виде точки) и заметьте время В течение дня через каждые час-два повторяйте измере­ния. Точки соедините, стрелкой укажите на­правление движения соцветия.

Наблюдения показывают (рис. 31), что раскрывшиеся желтые корзинки подсолнечника

132

в течение дня остаются неподвижными, ори­ентированными на восток, тогда как нераскрыв­шиеся зеленые корзинки поворачиваются за солнцем, совершая путь с востока на запад.

Этот опыт отчетливо показывает зависи­мость ростовых движений растений от возраста органа: изгибы органа возможны только до тех пор, пока клетки его проходят фазу растя­жения. Клетки полностью дифференцировав­шихся тканей, в данном опыте — обертки рас­крытого соцветия подсолнечника, уже не могут делиться, расти в длину и поэтому не обнару­живают движения.

Задание. Выясните, существует ли яв­ление гелиотропизма у других растений.

studfiles.net

Виды тропизмов, настии, таксисы у растений

Тропизмы (от греческого тропос – поворот) – процессы изгибания растущих частей прикрепленных растений, вызываемые односторонне действующими раздражителями (свет, сила тяжести и др.). Тропизмы являются результатом более быстрого роста клеток на одной стороне побега, корня или листа. При характеристике тропизмов сначала называют вызывающий их фактор. Так фототропизм – ориентировка осевых органов растений (стебель, корень, лист) к одностороннему освещению, которая выражается в направленном росте или изгибе к свету (положительный тропизм), или от света (отрицательный тропизм).

Родоначальником учения о фототропизме считают Ч. Дарвина. Он выяснил, что световое раздражение воспринимается верхушкой, ответная реакция (изгиб) возникает в зоне растяжения, лежащей ниже. Таким образом, клетки, воспринимающие световой сигнал (рецепторы), и клетки, отвечающие на раздражение, пространственно разобщены. Это позволило предположить существование веществ, которые синтезируются в одном месте, а действуют в другом (гормоны).

В 1928 г. физиологи Н. Г. Холодный и Ф. В. Вент независимо друг от друга сформулировали гормональную теорию фототропизма. В основе этой теории лежит представление о перераспределении гормонов в верхушке побега. Одностороннее освещение вызывает электрическую поляризацию тканей верхушки: освещенная сторона получает отрицательный заряд, а затененная положительный. Эта поляризация вызывает смещение тока гормона на затененную сторону, клетки которой в результате этого растягиваются сильнее, чем освещенной, и в конечном итоге, происходит изгиб в сторону света.

Выяснено, что гормоном, вызывающим рост клеток при фототропической реакции является ИУК.

Неравномерное распределение ауксина оказывается не единственным фактором, поперечной поляризации. Возникают и другие явления, связанные с физиологией обмена веществ, в частности изменяется содержание сахара, концентрация ионов водорода в клетках освещенной стороны.

Спектр действия фототропизма определяется и качеством света. Фототропизм лучше проявляется в ультрафиолетовой области и в синей части спектра. У семенных растений фототропическая реакция вызывается коротковолновыми лучами. Фототропическая реакция зависит и от интенсивности освещения: чем слабее свет, тем дольше нужно освещать растения для получения фототропического эффекта. Произведение силы света на продолжительность его воздействия является величиной постоянной. Эта зависимость получила название закона количества раздражения. При фототропизме рецепторами являются флавопротеиды.

Фототропическая чувствительность может не проявляться, если освещать растения сразу сильным светом после их проращивания в темноте. В фототропической реакции свет выступает как раздражитель, необходимый лишь для запуска различных физиологических процессов; при этом расходуется малое количество энергии. Для ростовых процессов требуется много энергии.

Геотропизм – ориентировка осевых органов растений, которая вызвана односторонним действием силы земного тяготения. Положительный геотропизм корней вызывает его направленный рост к центру Земли, отрицательный – рост стебля от центра.

Геотропическая реакция так же, как и фототропическая, изменяется в процессе онтогенеза. Цветки некоторых растений до распускания обладают отрицательным геотропизмом, а после распускания он изменяется на положительный. Геотропизм у боковых стеблей и корней выражен меньше, чем у главных. В результате  главный побег растет строго вертикально вверх, главный корень – вертикально вниз, а боковые побеги и корни располагаются под некоторым углом к ним. Это помогает растению поглощать воду и минеральные элементы из почвы, а надземным частям растений – поглощать СО2 из воздуха и избегать затенения друг друга.

Для осуществления геотропической реакции требуется определенное количество раздражения, причем неважно, будет ли это сильное раздражение в течение короткого времени  или слабое в течение длительного времени. Здесь, как и в фототропизме, действует закон количества раздражителя.

Для объяснения механизма геотропизма следует обратиться к гормональной теории Холодного – Вента, согласно которой при вертикальном положении проростка ток гормонов распределяется равномерно, что и приводит к равномерному росту. При горизонтальном положении проростка гормон концентрируется на нижней стороне органа. При этом рост клетки на нижней стороне ускоряется, и стебель изгибается вверх, а у корня тормозится и он изгибается вниз. Клетки корня обладают большей чувствительностью, чем клетки стебля, поэтому одна и та же концентрация гормона на нижней стороне может подавить рост клеток корня и стимулировать растяжение клеток стебля. В результате два органа проявляют разную геотропическую реакцию.

У корней органом, воспринимающим раздражение, служит корневой чехлик. Если удалить корневой чехлик, растение утрачивает способность к геотропизму. После регенерации корневого чехлика геотропическая реакция восстанавливается.

Восприятие силы тяжести может происходить только в результате перемещения имеющих массу частиц. Такую функцию у растений могут выполнять статолиты. В 1900 г. чешский ботаник Б. Немец и немецкий физиолог Г. Геберландт независимо друг от друга создали статолитную теорию геотропизма и указали на крахмальные зерна в лейкопластах как структуры, воспринимающие силу тяжести. Такие крахмальные зерна встречаются в клетках корневого чехлика и в эндосперме – клетках первичной коры стеблей растений. При изменении положения корня крахмальные зерна в силу своей тяжести передвигаются и занимают всегда самую нижнюю часть клетки, оказывая давление на цитоплазму, которая возбуждается.

Если из лейкопластов удалить крахмал, то способность к геотропным реакциям утрачивается. Следовательно, крахмал лейкопластов играет решающую роль при выполнении ими функции статолитов.

В настоящее время предполагают, что у высших растений возможность воздействия крахмала осуществляется через давление на плазматические структуры, которые и вызывают возбуждение. Кроме крахмальных зерен аналогичную функцию, по-видимому, могут выполнять в клетках корня кристаллы белка, хлоропласты, митохондрии и другие структуры. В результате восприятия растением земного притяжения в клетках за счет статолитов наблюдается поперечная поляризация, которая проявляется в первую очередь в неравномерном распределении ауксина. Это вызывает усиление роста клеток и активное передвижение веществ.

В геотропической реакции, как и при фототропизме, различают четыре стадии: восприятие раздражения, возбуждение клетки, приводящее к накоплению гормонов, проведение возбуждения, неравномерный рост органа.

Геотропический изгиб как ростовое движение свойственен молодым частям растений; у взрослых, закончивших свой рост, он наблюдается очень редко.

Геотропическая чувствительность может меняться под влиянием факторов внешней среды. Так полегшие растения не могут подняться, если почва сильно переувлажнена и корни находятся в анаэробных условиях. При неблагоприятных условиях среды (засуха, низкая или высокая температура, действие химических веществ) крахмальные зерна исчезают, геотропическая чувствительность не проявляется.

Хемотропизм – это изгибы корней при неравномерном распределении в почве какого-либо химического вещества. Хемотропизм кроме корней свойственен пыльцевым трубкам, проросткам растений-паразитов. И здесь наблюдается положительный и отрицательный хемотропизм, который может изменяться в зависимости от концентрации и характера веществ. У корней химический сигнал воспринимает кончик корня, а изгиб находится в зоне растяжения. Механизм хемотропизма неизвестен.

Благодаря хемотропизму растение способно усваивать удобрения, избегать их избыточного накопления. Это связано с движением корня (ростом) в направлении имеющихся удобрений или при избытке их – от удобрений.

Гидротропизм – разновидность хемотропизма. При этом виде тропизма наблюдается изгибание растущих частей растений под влиянием воды. Гидрочувствительность также присуща кончику корня.

Тигмотропизм – это ростовое движение в ответ на прикосновение, давление (механическое воздействие). Типичным примером является тигмотропическое движение волосков росянки, движение усиков вьющихся растений, черешков и вершин некоторых листьев и т. д.

Термотропизм – изгиб растущего органа в направлении одностороннего действия теплового излучения.

Электротропизм – движение (изгиб), вызываемый электрическим полем, током. При этом побеги изгибаются к аноду, а корни к катоду. Изучение механизма тропизмов, в частности фототропизма и геотропизма, показало, что в них необходимо распознавать два последовательных периода:

1) возникновение разницы в физических и химических потенциалах на противоположных сторонах органа, индуцируемого односторонним светом или силой земного тяготения;

2) непосредственный тропический изгиб органа, который происходит в результате неравномерного распределения ауксинов.

Если тропизмы это ростовые движения, то настии еще и тургорные. Настии (от греческого слова нассо – уплотняю, закрываю) – движения органов растения, вызываемые (в отличие от тропизмов) раздражителями, действующими равномерно на все растения, например изменениями температуры, влажности, освещенности и т. п.

«Сонное движение» (никтинастии) некоторых цветов и листьев, когда они закрываются или открываются в ответ на изменение света (фотонастии) или температуры (термонастии) относятся к настиям потому, что внешние только запускают их, а направление зависит от внутренних факторов. Некоторые цветы, например тюльпан, закрываются ночью потому, что лепестки растут быстрее (гипонастии), а открываются в результате того, что начинает быстрее расти и верхняя часть лепестков (эпинастии).

У многих растений, особенно у бобовых (клевер) в листьях и листочках имеются особые структуры, которые называются листовыми подушечками. Быстрое  изменение тургорного давления в таких клетках приводит к тому, что листовая подушечка начинает работать как шарнир, с помощью которого и происходит движение.

Гиптонастическое движение, которое происходит в ответ на прикосновение, принадлежит к самым интересным движениям (движение у мимозы). Как считают раздражение передается электрическим путем и может быть связано с движением гормонов по ксилеме.

Сейсмонастии – это быстрая реакция в ответ на сотрясение. Такой  сейсмонастичной реакцией обладают листья мимозы, тычиночные нити барбариса и т. д.

Наиболее изучен механизм сейсмонастии у мимозы, у которой при сотрясении (или действии другого раздражителя) происходит заметное движение ее черешков и листьев. Опускание листьев мимозы обусловлено сокращением сочленовой подушечки, поддерживающей листовой черешок. Такого же типа подушечки, но поменьше, расположены в местах прикрепления к главному черешку четырех подчерешков, и совсем мелкие – у каждой листовой доли.

При легком встряхивании или ударе происходит опускание черешка вниз, четыре подчерешка спадают попарно назад, противоположные доли складываются вместе, и вытягиваются вверх. Опадение листа мимозы происходит вследствии сокращения в объеме сочленовой подушечки в результате потери тургора.

Протяженность периода сокращения, т. е. времени пребывания листа в движении при складывании, составляет около трех секунд. После непродолжительного покоя в опущенном состоянии лист начинает подниматься; скорость такого подъема очень невелика по сравнению со скоростью опускания; общее время так называемого периода восстановления – возвращение листа в исходное состояние – примерно 16 минут,   т. е. в 300 раз больше времени сокращения. Движение определяется возникновением волны возбуждения на раздражение.

Исследователями более позднего периода было установлено, что механизм передачи раздражения у мимозы довольно сложен. Прежде всего, раздражение ударом отдельного листа чаще всего не передается другим листьям через стебель; если удар не очень сильный потенциал действия распространяется по листовому черешку лишь до сочленовой подушечки. Более слабое раздражение кончика одного из подчерешков может передаваться только соседним подчерешком. На рис. 6.22 показаны пути распространения потенциала действия при слабом раздражении одного из подчерешков.

Рис. 6.22. Распространение потенциала действия при раздражении одного  из подчерешков листа мимозы

Как видим, при раздражении одного из двух центральных подчерешков реагируют, в конечном счете, три подчерешка – два центральных и один крайний; если же раздражается крайний подчерешок – возбуждение передается лишь одному центральному подчерешку, соседнему с ним.

Помимо волны потенциала действия, возникающей при раздражении ударом, в проводящих пучках мимозы может распространяться и другой тип возбуждения – так называемая медленная волна (вариабельный потенциал), появляющаяся исключительно при порезах, надломах, ожогах и химических раздражениях. Природа этой волны – не электрическая; как считают, она связана с распространением так называемых раневых гормонов – специфических регуляторных веществ, возникающих в ткани при механическом повреждении.

В отличие от потенциалов действия, возникающих при ударе и, как упоминалось, обычно не распространяющихся за пределы одного листа или даже части подчерешков, медленная волна свободно минует сочленовые подушечки, омертвевшие участки стебля или черешка и т. п. Достигая стебля, медленная волна вызывает возникновение потенциала действия, распространяющегося вдоль стебля и проводящего к опусканию близлежащих листьев. В настоящее время, помимо мимозы, вариабельный потенциал обнаружен у других высших растений (тыква, виноград и др.).

Иными словами, мы видим две специализированные, но взаимодействующие системы передачи возбуждения.

Заметные движения характерны и для других органов высших растений. Довольно быстро происходит движение тычинок у барбариса. В спокойном состоянии тычинки расправлены в радиальном направлении, они прилегают к лепесткам цветка. Если осторожно прикоснуться к какой-либо из них, она быстро загнется внутрь, а затем возвратиться назад (рис. 6.24, а). Движение тычинок, как показал Кабш в 1868 г. связано с электрической активностью тычинок при возбуждении. Обстоятельные исследования, выполненные впоследствии К. Умратом и Э. Бюнингом на тычиночных нитях барбариса, позволили обнаружить ПД, появляющийся при раздражении и предшествующий сгибанию тычиночной нити.

У некоторых растений способностью к движению при раздражении обладают и пестики, например у мимулуса. Рыльце его пестика снабжено лопастями, которые при раздражении закрываются. Эти движения довольно быстрые – полное соприкосновение лопастей происходит в среднем за одну минуту (рис. 6.24, б) и сопровождается возникновением ПД.

Рис. 6.24. Движение тычинок и пестиков: а – цветок барбариса: 1 – пестик; 2 – тычинка до раздражения; 3 – тычинка, поднявшаяся после раздражения; б – цветок мимулуса: 1 – лопасти пестика открыты; 2 – лопасти пестика закрыты после раздражения

Очень убедительными оказались опыты, выполненные на цветке стилидиум. Две тычинки этого цветка срастаются вместе и располагаются под некоторым углом к пестику. После раскрытия пыльников оба органа приобретают способность к движению: при механическом воздействии сдвоенная тычинка и пестик склоняются друг к другу. Электрофизиологические исследования позволили и здесь выявить электрический характер возбуждения: ПД распространяется от возбудимых клеток вдоль органа и вызывает реакцию клеток основания.

Тропизмы обнаруживаются в самом начальном этапе онтогенеза растения и проявляются в форме реакций (движений и ростовых) на действие внешних факторов еще до начала его контактов с факторами окружающей среды.

Функционирование рецепторов, принимающих участие в таких процессах как фотоморфогенез и фототропизм, создает основу для формирования хлоропластов в листе, которые разворачиваются к свету, и таким образом, и для процесса фотосинтеза.

Прикрепленная к субстрату (почве) растение выработало специфическую реакцию на одностороннее действие внешних факторов (тропизмы) или на диффузионно-действующие внешние стимулы (настии). Центры, которые участвуют в реализации таких реакций, как фототропизм или геотропизм, находятся в меристемах, а сами процессы осуществляются при участии сложного комплекса регуляторных факторов. Жизнь растения зависит от цепи экологических факторов, таких как свет, влажность, температура, сила тяжести, которые изменяются на протяжении года и неодинаковы в разных климатических зонах.

Особую группу составляют движения улавливания и захватывания, присущие насекомоядным растениям. У этих растений процессы генерации и распространения волны ПД возбуждения необходимы для обеспечения важных жизненных функций.

Известно более 500 видов насекомоядных растений, относящихся к 7 семействам. Насекомоядные растения относятся как к водным (альдрованда), так и наземным растениям (росянка, венерина мухоловка и др.). Основная функция движения органов – обеспечение недостающими элементами питания, в частности азотными соединениями.

Рис. 6.25. Венерина мухоловка: а – общий вид; б – раскрытый ловчий лист; в – поперечный срез листа в захлопнутом состоянии

Например, закрытие ловчего листа венериной мухоловки происходит достаточно быстро, если между повторными раздражениями чувствительных волосков интервал составил не более 20 секунд. Почти все этапы связанные с движением и перевариванием пищи у насекомоядных растений контролируется электрическими сигналами.

Таксисы – это перемещение всей клетки или всего организма, которое вызывается и направляется определенными внешними стимулами. Как и тропизмы таксисы также делятся на положительные и отрицательные; кроме того, их можно классифицировать в соответствии с природой раздражителя: сила тяжести, света, химические воздействия (тигмо-, фото-, хемотаксисы).

Многие из физиологических реакций (движений)  осуществляются потому, что в растениях имеются специфические структуры – рецепторы (лучше биологические мишени), воспринимающие сигналы. К числу таких рецепторов, прежде всего, относится комплекс каротиноидов и флавинов, которые осуществляют ориентацию стебля в пространстве. Крахмальные зерна (статолиты) участвуют в регулировании геотропизма корня. Интересно, что эти вещества близки по строению к рецепторам высших животных и человека. Каротиноиды подобны  витамину А, хлорофилл имеет сходство с гемом эритроцитов. Рецепторы чувствительно реагируют на смену внешних факторов и передают сигнал об этой смене растительному организму. При этом часто происходит изменение структуры самого рецептора.



biofile.ru

Тропизмы - это... Что такое Тропизмы?

У этого термина существуют и другие значения, см. Тропизм (значения).

Тропизмы (от греч. τροπος — поворот, направление) — реакция ориентирования клетки, то есть направление роста или движения клеток относительно раздражителя (химического, светового и др.).

Если растение под влиянием раздражителя изгибается к источнику раздражителя, то это положительный тропизм, а если оно изгибается в противоположную сторону от раздражителя, то это отрицательный тропизм.

  • Ортотропизм — расположение органа растения вдоль градиента раздражителя.
  • Диатропизм — расположение под прямым углом к градиенту раздражителя.
  • Плагиотропизм — ориентация под любыми другими углами.

В основе тропизма лежит одно из свойств цитоплазмы клетки — её раздражимость, как ответной реакции на различные факторы внешней среды.

Термин «тропизм» в основном применяют при описании автоматизмов поведения растений. Для характеристики простейших автоматизмов, включённых в сложное поведение животных, исследователи употребляют такое понятие как таксисы. Ранее термин «тропизм» нередко употребляли в зоологии в том же смысле, что термин «таксисы».

Двигательные реакции органов растений на ненаправленные факторы воздействия внешней среды называются настии. Обычной причиной, вызывающей настии, является изменение в тканях растения концентрации кальция и хлора.

Тропизм растений

Ответные реакции растений на различные односторонние воздействия раздражителей внешней среды (свет, земное притяжение, химические вещества и др.) заключаются в направленных ростовых и сократительных движениях (изгибах) органов растения, приводящих к изменению его ориентации в пространстве. Ростовые движения зависят от вида раздражителя, механизм действия которого на растения сложен. Эти движения могут возникать в растущих частях растений, как следствие более быстрого роста клеток, расположенных на одной стороне органа растения (стебле, корне, листе). В органах растения возникают растяжения, связанные с асимметричным распределением в них фитогормонов роста растений — ауксина и абсцизовой кислоты и др.

Тропизмы различают в зависимости от вида раздражителя.

Геотропизм

Геотропизм связан с воздействием на растения силы тяжести Земли. При положительном геотропизме рост главного корня направлен строго вниз по направлению к центру Земли, что связано не только с деятельностью гормонов, но и с особыми крахмальными зёрнами в корневом чехлике, выполняющим роль статолита. Отрицательный геотропизм характерен для главного стебля.

Фототропизм

Фототропизм вызывает направленный изгиб растения к источнику света. Этот изгиб имеет химическую природу. Под влиянием фитогормона ауксина на теневой стороне деление и рост клеток интенсивнее по сравнению со световой стороной, где ауксина меньше и рост клеток замедлен. В связи с этим растение изгибается в сторону клеток медленно растущих, то есть к свету. У стеблей наблюдается положительный фототропизм, корней — отрицательный, листьев — поперечный. Примером поперечного гелиотропизма, который свойствен, скажем, листьям растений, живущих в засушливых зонах, например, листьям эвкалиптовых деревьев. В солнечный день эти листья поворачиваются ребром и пропускают солнечные лучи мимо себя так, что найти тень в эвкалиптовой роще является нелегкой задачей. Такие деревья демонстрируют, так сказать, «обратный эффект жалюзи».

Благодаря положительному фототропизму растения образуют листовую мозаику, то есть листья в пространстве располагаются так, чтобы максимально использовать свет.

Хемотропизм

Основная статья: Хемотропизм

Хемотропизм вызывает движение растений под влиянием химических соединений. Наиболее яркий пример хемотропизма — рост корней в сторону больших концентраций питательных веществ в почве.

Другие факторы

Кроме того, у некоторых растений наблюдают термотропизмы и гидротропизмы.

Тропизм микроорганизмов

Тропизм у паразитов выражается в свойстве избирать в качестве среды обитания определённые организмы (видовой тропизм) или органы (органный, или тканевой, тропизм). Видовой тропизм обусловливает круг резервуаров и источников возбудителей инфекционных и паразитарных болезней, органный — место локализации возбудителя и специфического патологического процесса в организме хозяина.Знания о тропизме используют при заборе материала для микробиологического исследования. Органный тропизм высоко выражен у вирусов, менее у облигатно-патогенных бактерий, мало — у условно-патогенных бактерий и грибов.

См. также

Ссылки

dic.academic.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта