Эукариотическая клетка растений. Эукариотическая клетка, основные структурные компоненты, их строение и функции: органоиды, цитоплазма, включения.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Лекция № 7. Эукариотическая клетка: строение и функции органоидов. Эукариотическая клетка растений


Прокариотическая клетка

Клетка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения игрибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии.

Отличительные признаки растительной и животной клетки

Признаки

Растительная клетка

Животная клетка

Пластиды

Хлоропласты, хромопласты, лейкопласты

Отсутствуют

Способ питания

Автотрофный (фототрофный, хемотрофный)

Гетеротрофный (сапротрофный, паразитический)

Синтез АТФ

В хлоропластах, митохондриях

В митохондриях

Расщепление АТФ

В хлоропластах и всех частях клетки, где необходимы затраты энергии

Во всех частях клетки, где необходимы затраты энергии

Клеточный центр

У низших растений

Во всех клетках

Целлюлозная клеточная стенка

Расположена снаружи от клеточной мембраны

Отсутствует

Включения

Запасные питательные вещества в виде зёрен крахмала, белка, капель масла; вакуоли с клеточным соком; кристаллы солей

Запасные питательные вещества в виде зёрен и капель (белки, жиры, углеводы, гликоген) ; конечные продукты обмена, кристаллы солей, пигменты

Вакуоли

Крупные полости, заполненные клеточным соком — водным раствором различных веществ (запасные или конечные продукты). Осмотические резервуары клетки.

Сократительные, пищеварительные, выделительные вакуоли. Обычно мелкие.

Общие признаки 1. Единство структурных систем - цитоплазмы и ядра. 2. Сходство процессов обмена веществ и энергии. 3. Единство принципа наследственного кода. 4. Универсальное мембранное строение. 5. Единство химического состава. 6. Сходство процесса деления клеток.

Строение клеток

Все клеточные формы жизни на Земле можно разделить на два надцарства на основании строения составляющих их клеток:

  • прокариоты(доядерные) — более простые по строению и возникли в процессеэволюциираньше;

  • эукариоты(ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Содержимое клетки отделено от окружающей среды плазматической мембраной, илиплазмалеммой. Внутри клетка заполненацитоплазмой, в которой расположены различныеорганоидыиклеточные включения, а также генетический материал в виде молекулыДНК. Каждый изорганоидовклетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Строение типичной клетки прокариот: капсула, клеточная стенка, плазмолемма, цитоплазма,рибосомы, плазмида, пили, жгутик,нуклеоид.

Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятсябактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды. Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма.

Эукариотическая клетка

Эукариоты — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Строение эукариотической клетки

Схематическое изображение животной клетки. (При нажатии на какое-либо из названий составных частей клетки, будет осуществлён переход на соответствующую статью.)

Поверхностный комплекс животной клетки

Состоит из гликокаликса, плазмалеммы и расположенного под ней кортикального слоя цитоплазмы. Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира — гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет собой «заякоренные» в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в неё молекулами белков, в частности, поверхностных антигенов ирецепторов. В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета — упорядоченные определённым образомактиновые микрофиламенты. Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращениепсевдоподий. При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличиемикроворсинок).

studfiles.net

Эукариотические клетки | Биология

В большинстве случаев эукариотические клетки входят в состав многоклеточных организмов. Однако в природе есть немалое количество одноклеточных эукариот, которые в структурном отношении являются клеткой, а в физиологическом — целым организмом. В свою очередь эукариотические клетки, являющиеся частью многоклеточного организма, не способны к самостоятельному существованию. Их принято делить на клетки растений, животных и грибов. Каждые из них обладают своими особенностями и имеют свои подтипы клеток, формирующие различные ткани.

Несмотря на разнообразие, все эукариоты имеют общего предка, предположительно появившегося в процессе симбиогенеза.

В клетках одноклеточных эукариот (простейших) есть структурные образования, выполняющие на клеточном уровне функции органов. Так у инфузорий имеется клеточные рот и глотка, порошица, пищеварительные и сократительные вакуоли.

Во всех эукариотических клетках выделяют цитоплазму, отграниченную от внешней среды мембраной. В цитоплазме есть отграниченные от нее уже своими мембранами ядро и различные органоиды клетки. В ядре находится ядрышко, хроматин, ядерный сок. В цитоплазме присутствуют многочисленные рибосомы (более крупные, чем у прокариот), различные включения.

Для эукариотических клеток характерна высокая упорядоченность внутреннего содержимого. Такая компартментация достигается за счет разделения клетки на части мембранами. Таким образом в клетке достигается разделение биохимических процессов. Молекулярный состав мембран, набор веществ и ионов на их поверхности отличается, что обусловливает их функциональную специализацию.

В цитоплазме присутствуют белки-ферменты гликолиза, обмена сахаров, азотистых оснований, аминокислот и липидов. Из определенных белков происходит сборка микротрубочек. Цитоплазма выполняет объединяющую и каркасную функции.

Включения — это относительно непостоянные компоненты цитоплазмы, представляющие собой запасы питательных веществ, гранулы секрета (продукты для вывода из клетки), балласт (ряд пигментов).

Органеллы постоянны и выполняют жизненно важные функции. Среди них есть органеллы общего значения (митохондрии, ЭПС, комплекс Гольджи, рибосомы, полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра, хлоропласты и другие пластиды) и специальные у специализировавшихся клеток (микроворсинки, реснички, синаптические пузырьки и др.).

Строение животной эукариотической клетки

Эукариотические клетки способны к эндоцитозу (захвату питательных веществ цитоплазматической мембраной).

Клеточная стенка эукариот (если она имеется) другой химической природы по-сравнению с прокариотами. У последних ее основу составляет муреин. У растений — это в основном целлюлоза, а у грибов — хитин.

Генетический материал эукариот содержится в ядре и упакован в хромосомы, которые представляют собой комплекс ДНК и белков (в основном гистонов).

biology.su

Строение эукариотической клетки

Все живые организмы в зависимости от наличия ядра можно условно подразделить на  две большие категории: прокариоты и эукариоты. Оба эти термина ведут свое происхождение от греческого  «karion» - ядро.

 

Те организмы, которые не имеют ядра, называют прокариотами - доядерными организмами с ядерным веществом в виде включений. Строение эукариотической клетки несколько иное. В отличие от прокариотов, эукариоты имеют оформленное ядро – это и есть их главное отличие. К прокариотам относят бактерии, цианобактерии, риккетсии и другие организмы. К эукариотам можно отнести представителей царств Грибы, Растения и Животные.

 

Строение эукариотической клетки различных ядерных организмов сходно. Главные их составляющие – ядро и цитоплазма, которые вместе составляют протопласт. Цитоплазма представляет собой полужидкое основное вещество, или, как ее еще называют, гиалоплазму, в которой находятся клеточные структуры – органеллы, выполняющие различные функции. С внешней стороны цитоплазма окружена плазматической мембраной. Растительные и грибные клетки имеют помимо плазматической мембраны жесткую клеточную оболочку. Цитоплазма клеток растений и грибов содержит вакуоли – пузырьки, которые заполнены водой с различными растворенными в ней веществами. Помимо этого, в клетке находятся включения в виде запасных питательных веществ или конечных продуктов обмена. Особенности строения эукариотической клетки обусловлены функциями включений, находящихся в клетке.

 

Строение и функции эукариотической клетки:

  • плазматическая мембрана – это двойной липидный слой с погруженными в него белками. Основная функция плазматической мембраны – обмен веществ между самой клеткой и окружающей средой. За счет плазматической мембраны осуществляется и контакт между двумя соседними клетками.
  • ядро – этот клеточный элемент имеет двумембранную оболочку. Основная функция ядра - сохранение наследственной информации – дезоксирибонуклеиновой кислоты. Благодаря ядру регулируется клеточная активность, передается генетический материал дочерним клеткам.
  • митохондрии – эти органеллы присутствуют только в растительной и животной клетках. Митохондрии, как и ядро, имеют две мембраны, между которыми есть внутренние складки – кристы. В митохондриях содержится кольцевая ДНК, рибосомы, множество ферментов. Благодаря этим органеллам осуществляется кислородный этап дыхания клетки (синтезируется аденозинтрифосфорная кислота).
  • пластиды – имеются лишь в растительной клетке, поскольку их основная функция – осуществление фотосинтеза.
  • эндоплазматическая сеть (ретикулум) -  это целая система уплощенных мешочков – цистерн, полостей и трубочек. На эндоплазматическом ретикулуме (шероховатом) располагаются важные органеллы – рибосомы. В цистернах сети изолируются и дозревают белки, которые также транспортируются самой сетью. На мембранах гладкого ретикулума осуществляется синтез стероидов и липидов.
  • комплекс Гольджи – система плоских одномембранных цистерн и пузырьков, прикрепленных к расширенным концам цистерн. Функция комплекса Гольджи – накопление и преобразование белков и липидов. Здесь же образуются секреторные пузырьки, выводящие вещества за пределы клетки. Строение эукариотической клетки таково, что клетка имеет собственный механизм выделения отработанных веществ.
  • лизосомы – одномембранные пузырьки, которые содержат гидролитические ферменты. Благодаря лизосомам клетка переваривает поврежденные органеллы, отмершие клетки органов.
  • рибосомы – бывают двух типов, но основная их функция – сборка молекул белка.
  • центриоли – это система микротрубочек, которые построены из белковых молекул. Благодаря центриолям образуется внутренний скелет клетки, она может поддерживать свою постоянную форму.

Строение эукариотической клетки сложнее, чем клетки прокариота. Благодаря наличию ядра, эукариоты имеют возможность передавать генетическую информацию, тем самым обеспечивая постоянство своего вида.

fb.ru

Эукариотическая клетка, основные структурные компоненты, их строение и функции: органоиды, цитоплазма, включения.

К эукариотам относятся царства растений, животных, грибов.

Основные признаки эукариот.

  1. Клетка разделена на цитоплазму и ядро.
  2. Большая часть ДНК сосредоточена в ядре. Именно ядерная ДНК отвечает за большую часть процессов жизнедеятельности клетки и за передачу наследственности дочерним клеткам.
  3. Ядерная ДНК расчленена на нити, не замкнутые в кольца.
  4. Нити ДНК линейно вытянуты внутри хромосом, отчетливо видны в процессе митоза. Набор хромосом в ядрах соматических клеток диплоидный.
  5. Развита система наружных и внутренних мембран. Внутренние делят клетку на отдельные отсеки – компартменты. Принимают участие в образовании органоидов клетки.
  6. Органоидов много. Некоторые органоиды окружены двойной мембраной: ядро, митохондрии, хлоропласты. В ядре, наряду с оболочкой и ядерным соком, обнаруживается ядрышко и хромосомы. Цитоплазма представлена основным веществом (матриксом, гиалоплазмой) в которой распределены включения и органеллы.
  7. Большое число органелл ограничено одинарной мембранной (лизосомы, вакуоли и т.д.)
  8. В эукариотической клетке выделяют органеллы общего и специального значения. Например: общего значения – ядро, митохондрии, ЭПС и т.д.; специального значения — микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов.
  9. Характерен митоз – механизм воспроизведения в поколениях генетически сходных клеток.
  10. Свойствен половой процесс. Образуются истинные половые клетки – гаметы.
  11. Не способны к фиксации свободного азота.
  12. Аэробное дыхание происходит в митохондриях.
  13. Фотосинтез проходит в хлоропластах содержащих мембраны, которые обычно уложенные в граны.
  14. Эукариоты представлены одноклеточными, нитчатыми и истинно многоклеточными формами.

Основные структурные компоненты эукариотической клетки

органоиды

Ядро. Строение и функции.

В клетке выделяют ядро и цитоплазму. Клеточное ядросостоит из оболочки, ядерного сока, ядрышка и хроматина. Функциональная рольядерной оболочкизаключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Последнее может сообщаться с канальцами цитоплазматической сети.

Ядерная оболочка пронизана порожу диаметром 80—90нм. Область поры или поровый комплекс с диаметром около 120нм имеет определенное строение, что указывает на сложный механизм регуляции ядерно-цитоплазматических перемещений веществ и структур. Количество пор зависит от функционального состояния клетки. Чем выше синтетическая активность в клетке, тем больше их число. Подсчитано, что у низших позвоночных животных в эритробластах, где интенсивно образуется и накапливается гемоглобин, на 1мкм2ядерной оболочки приходится около 30пор. В зрелых эритроцитах названных животных, сохраняющих ядра, на 1мк»г оболочки остается до пяти пор, т.е. в 6 раз меньше.

В области перового комплекса начинается так называемая плотная пластинка —белковый слой, подстилающий на всем протяжении внутреннюю мембрану ядерной оболочки. Эта структура выполняет прежде всего опорную функцию, так как при ее наличии форма ядра сохраняется даже в случае разрушения обеих мембран ядерной оболочки. Предполагают также, что закономерная связь с веществом плотной пластинки способствует упорядоченному расположению хромосом в интерфазном ядре.

Основу ядерного сока,илиматрикса,составляют белки. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуютнитчатые,илифибриллярные, белки, с которыми связано выполнение опорной функции: в матриксе находятся также первичные продукты транскрипции генетической информации — гетероядерные РНК (гя-РНК), которые здесь же подвергаются процессингу, превращаясь в м-РНК (см. 3.4.3.2).

Ядрышкопредставляет собой структуру, в которой происходит образование и созреваниерибосомальныхРНК (рРНК). Гены рРНК занимают определенные участки (в зависимости от вида животного) одной или нескольких хромосом (у человека 13—15и 21—22пары) — ядрышковые организаторы, в области которых и образуются ядрышки. Такие участки в метафазных хромосомах выглядят как сужения и называютсявторичными перетяжками. Спомощью электронного микроскопа в ядрышке выявляют нитчатый и зернистый компоненты. Нитчатый (фибриллярный) компонент представлен комплексами белка и гигантских молекул РНК-предшественниц, из которых затем образуются более мелкие молекулы зрелых рРНК. В процессе созревания фибриллы преобразуются в рибонуклеопротеиновые зерна (гранулы), которыми представлен зернистый компонент.

Хроматиновые структуры в виде глыбок,рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки

цитоплазма

В цитоплазмеразличают основное вещество (матрикс, гиалоплазма), включения и органеллы.Основное вещество цитоплазмызаполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Обычный электронный микроскоп не выявляет в нем какой-либо внутренней организации. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гаиколиза, обмена Сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сборка таких структур, как микротрубочки.

Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связано с выявляемой с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами толщиной 2—3нм и пронизывающей всю цитоплазму. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Основное вещество цитоплазмы следует рассматривать так же, как сложную коллоидную систему, способную переходить из золеобразного (жидкого) состояния в гелеобразное. В процессе таких переходов совершается работа. О функциональном значении таких переходов см. разд. 2.3.8.

Включениями(рис. 2.5)называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

Органеллы —это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции.

Выделяют органеллы общего значенияиспециальные.Последние в значительном количестве присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие вещества —переносчики нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы. Детальное рассмотрение специальных органелл входит в задачу курса гистологии.

К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласта, в которых происходит фотосинтез.

Канальцеваяивакуолярная системыобразованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. Нередко цистерны имеют пузыревидные расширения. В названной системе выделяютшероховатуюигладкую цитоплазматическую сети(см. рис. 2.3).Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называютсяэргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Рибосома —это округлая рибонуклеопротеиновая частица диаметром 20—30нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называютполисомой.Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма —с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока).

Пластинчатый комплекс Голъджиобразован совокупностью диктиосом числом от нескольких десятков (обычно около 20)до нескольких сотен и даже тысяч на клетку.

Диктиосома(рис. 2.6,А) представлена стопкой из 3—12уплощенных дискообразных цистерн, от краев которых отшнуровываются пузырьки (везикулы). Ограниченные определенным участком (локальные) расширения цистерн дают более крупные пузырьки (вакуоли). В дифференцированных клетках позвоночных животных и человека диктиосомы обычно собраны в околоядерной зоне цитоплазмы. В пластинчатом комплексе образуются секреторные пузырьки или вакуоли, содержимое которых составляют белки и другие соединения, подлежащие выводу из клетки. При этом предшественник секрета (просекрет), поступающий.в диктиосому из зоны синтеза, подвергается в ней некоторым химическим преобразованиям. Он также обособляется (сегрегируется) в виде «порций», которые здесь же одеваются мембранной оболочкой. В пластинчатом комплексе образуются лизосомы. В диктиосомах синтезируются полисахариды, а также их комплексы с белками (гликопротеины) и жирами (гликолипиды), которые затем можно обнаружить в гликокаликсе клеточной оболочки.

Митохондрии(рис. 2.6, Б) —это структуры округлой или палочко-видной, нередко ветвящейся формы толщиной 0,5мкм и длиной обычно до 5—10мкм. В большинстве животных клеток количество митохондрий колеблется от 150до 1500,однако в женских половых клетках их число достигает нескольких сотен тысяч. В сперматозоидах нередко присутствует одна гигантская митохондрия, спирально закрученная вокруг осевой части жгутика. Одна разветвленная митохондрия обнаружена в клетке такого паразита человека, как трипаносома.

Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матриксорганеллы. В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20—40нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.

В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2—б копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. По основным свойствам: размерам и структуре рибосом, организации собственного наследственного материала —этот аппарат сходен с таковым у прокариот и отличается от аппарата биосинтеза белка цитоплазмы эукариотической клетки (чем подтверждается симбиотическая гипотеза происхождения митохондрий; см. § 1.5).Гены собственной ДНК кодируют нуклеотидные последовательности митохондриальных рРНК и тРНК, а также последовательности аминонокислот некоторых белков органеллы, главным образом ее внутренней мембраны. Аминокислотные последовательности (первичная структура) большинства белков митохондрий закодированы в ДНК клеточного ядра и образуются вне органеллы в цитоплазме.

Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата —АТФ). В целом этот процесс называетсяокислительным (расформированием.В энергетической функции митохондрий активно участвуют компоненты матрикса и внутренняя мембрана. Именно с этой мембраной связаны цепь переноса электронов (окисление) и АТФ-синтетаза, катализирующая сопряженное с окислением фосфорилирование АДФ в АТФ. Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Лизосомы(рис. 2.6,В) представляют собой пузырьки диаметром обычно 0,2—0,4мкм, которые содержат набор ферментов кислых гидролаз, катализирующих при низких значениях рН гидролитическое (в водной среде) расщепление нуклеиновых кислот, белков, жиров, полисахаридов. Их оболочка образована одинарной мембраной, покрытой иногда снаружи волокнистым белковым слоем (на электронограммах «окаймленные» пузырьки). Функция лизосом — внутриклеточное переваривание оазличных химических соединений и структур.

Первичными лизосомами(диаметр 100нм) называют неактивные органеллы,вторичными —органеллы, в которых происходит процесс переваривания. Вторичные лизосомы образуются из первичных. Они подразделяются нагетеролизосомы(фаголизосомы) иаутолизосомы (цитолизосомы). В первых (рис. 2.6,Г) переваривается материал, поступающий в клетку извне путем пиноцитоза и фагоцитоза, во вторых разрушаются собственные структуры клетки, завершившие свою функцию. Вторичные лизосомы, в которых процесс переваривания завершен, называютостаточными тельцами(телолизосомы). В них отсутствуют гидролазы и содержится непереваренный материал.

Микротельца составляют сборную группу органелл. Это ограниченные одной мембраной пузырьки диаметром 0,1—1,5мкм с мелкозернистым матриксом и нередко кристаллоидными или аморфными белковыми включениями. К этой группе относят, в частности,пероксисомы.Они содержат ферменты оксидазы, катализирующие образование пероксида водорода, который, будучи токсичным, разрушается затем под действием фермента пероксидазы. Эти реакции включены в различные метаболические циклы, например в обмен мочевой кислоты в клетках печени и почек. В печеночной клетке число пероксисом достигает70—100.

К органеллам общего значения относят также некоторые постоянные структуры цитоплазмы, лишенные мембран. Микротрубочки(рис.2.6,Д) —трубчатые образования различной длины с внешним диаметром 24нм, шириной просвета 15нм и толщиной стенки около 5нм. Встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Свободные микротрубочки и микротрубочки ресничек, жгутиков и центриолей имеют разную устойчивость к разрушающим воздействиям, например химическим (колхицин). Микротрубочки строятся из стереотипных субьединиц белковой природы путем их полимеризации. В живой клетке процессы полимеризации протекают одновременно с процессами деполимеризации. Соотношением этих процессов определяется количество микротрубочек. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток, а также являются факторами направленного перемещения внутриклеточных компонентов.

Микрофиламентами(рис. 2.6,Е) называют длинные, тонкие образования, иногда образующие пучки и обнаруживаемые по всей цитоплазме. Существует несколько разных типов микрофиламентов.Актиновые микрофиламентыблагодаря присутствию в них сократимых белков (актин) рассматривают в качестве структур, обеспечивающих клеточные формы движения, например амебоидные. Им приписывают также каркасную роль и участие в организации внутриклеточных перемещений органелл и участков гиалоплазмы.

По периферии клеток под плазмалеммой, а также в околоядерной зоне обнаруживаются пучки микрофиламентов толщиной 10нм — промежуточные филстенты.В эпителиальных, нервных, глиальных, мышечных клетках, фибробластах они построены из разных белков. Промежуточные филаменты выполняют, по-видимому, механическую, каркасную функцию.

Актиновые микрофибриллы и промежуточные филаменты, как и микротрубочки, построены из субъединиц. В силу этого их количество зависит от соотношения процессов полимеризации и деполимеризации.

Для животных клеток, части клеток растений, грибов и водорослей характерен клеточный центр,в состав которого входят центриоли.Центриолъ(под электронным микроскопом) имеет вид «полого» цилиндра диаметром около 150нм и длиной 300—500нм. Ее стенка образована 27микротрубочками, сгруппированными в 9триплетов. В функцию центриолей входит образование нитей митотического веретена, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромосом) в анафазе митоза.

Эукариотическая клетка имеет клеточный скелет (цитоскелет) из внутриклеточных волокон (Кольцов) – начало ХХ века, в конце 1970 вновь открыт. Эта структура позволяет клетке иметь свою форму, иногда изменяя ее. Цитоплазма находится в движении. Цитоскелет участвует с процессе переноса органоидов, участвует в регенерации клеток.

Митохондрии – сложные образования с двойной мембраной(0,2-0,7мкм) и разной формой. Внутренняя мембрана имеет кристы. Наружная мембрана проницаема практически для всех химических веществ, внутренняя – только активный транспорт. Между мембранами – матрикс. Митохондрии располагаются там, где необходима энергия. Митохондрии имеют систему рибосом, молекулу ДНК. Возможно возникновение мутаций (более66 заболеваний). Как правило, они связаны с недостаточной энергией АТФ, часто связаны с сердечно-сосудистой недостаточностью, патологиями. Количество митохондрий разное (в клетке трипаносомы- 1 митохондрия). Количество зависит от возраста, функции, активности ткани (печень – более1000).

Лизосомы – тельца, окруженные элементарной мембраной. Содержат 60 ферментов( 40 лизосомальных, гидролитических). Внутри лизосомы – нейтральная среда. Активизируются низкими значениями рН, выходя в цитоплазму (самопереваривание). Мембраны лизосом защищают цитоплазму и клетку от разрушения. Образуются в комплексе Гольджи (внутриклеточный желудок, могут перерабатывать отработавшие свое структуры клетки). Есть 4 вида. 1-первичные, 2-4 – вторичные. С помощью эндоцитоза в клетку попадает вещество. Первичная лизосома (запасающая гранула) с набором ферментов, поглощает вещество и образуется пищеварительная вакуоль (при полном переваривании расщепление идет до низкомолекулярных соединений). Непереваренные остатки остаются в остаточных тельцах, которые могут накапливаться (лизосомные болезни накопления). Остаточные тельца, накапливающиеся в эмбриональном периоде, приводят к гаргалеизму, уродствам, мукополисахаридозам. Аутофагирующие лизосомы уничтожают собственные структуры клетки( ненужные структуры). Могут содержать митохондрии, части комплекса Гольджи. Часто образуются при голодании. Могут возникать при воздействии других клеток (эритроциты).

alexmed.info

Строение эукариотической клетки — Науколандия

Строение эукариотической клетки сложнее, чем у прокариотической. В первую очередь это касается наличия ядра и мембранных органелл у эукариот. Однако это не единственные отличия. Согласно наиболее принятой гипотезе эукариотическая клетка произошла в результате симбиогенеза нескольких прокариот.

Структурные компоненты клетки взаимосвязаны между собой различными биохимическими процессами, направленными на поддержание гомеостаза, деление, приспособление к окружающей среде, в том числе внутренней (для многоклеточных организмов).

В строении эукариотических клеток можно выделить такие основополагающие части:

  • ядро,
  • цитоплазма, содержащая органоиды и включения,
  • цитоплазматическая мембрана и клеточная стенка.

Ядро выполняет роль управляющего центра, регулирует все клеточные процессы. Здесь содержится генетический материал — хромосомы. Также важна роль ядра в клеточном делении.

Цитоплазма состоит из полужидкого содержимого — гиалоплазмы, в которой находятся органеллы, включения, различные молекулы.

Клеточная мембрана есть у всех клеток, представляет собой липидный бислой с содержащимися в нем и на его поверхностях белками. Клеточная стенка есть только у растительных и грибных клеток. Причем у растений основным ее компонентом является целлюлоза, а у грибов — хитин.

Органеллы, или органоиды, эукариотических клеток принято делить на мембранные и немембранные. Содержимое мембранных органоидов окружено мембраной, подобной той, которая окружает всю клетку. При этом одни органоиды окружены двумя мембранами — внешней и внутренней, а другие — только одной.

Ключевыми мембранными органеллами эукариотических клеток являются:

  • митохондрии,
  • хлоропласты,
  • эндоплазматическая сеть,
  • комплекс Гольджи,
  • лизосомы.

К немембранным органоидам относятся:

  • рибосомы,
  • клеточный центр.

Особенности строения органоидов эукариотической клетки связаны с выполняемыми ими функциями.

Так митохондрии выполняют роль энергетических центров клетки, в них синтезируется большая часть молекул АТФ. В связи с этим внутренняя мембрана митохондрий имеет множество выростов — крист, содержащих ферментативные конвейеры, функционирование которых приводит к синтезу АТФ.

Хлоропласты есть только у растений. Это тоже двумембранный органоид, содержащий внутри себя структуры — тилакоиды. На мембранах тилакоидов происходят реакции световой фазы фотосинтеза.

В процессе фотосинтеза за счет энергии Солнца происходит синтез органических веществ. Эта энергия накапливается в химических связях сложных соединений. В процессе дыхания, которое большей частью происходит в митохондриях, происходит расщепление органических веществ с высвобождением энергии, которая сначала аккумулируется в АТФ, а далее используется для обеспечения любой активности клетки.

По каналам эндоплазматической сети (ЭПС) идет транспорт веществ из одной части клетки в другую, здесь же синтезируется большая часть белков, жиров и углеводов. Причем белки синтезируются рибосомами, расположенными на поверхности мембраны ЭПС.

В комплексе Гольджи образуются лизосомы, содержащие различные ферменты в основном для расщепления поступивших в клетку веществ. Им формируются везикулы, содержимое которых экскретируется за пределы клетки. Также Гольджи принимает участие в построении цитоплазматической мембраны и клеточной стенки.

Рибосомы состоят из двух субъединиц, выполняют функцию синтеза полипептидов.

Клеточный центр у большинства эукариот состоит из пары центриолей. Каждая центриоль похожа на цилиндр. Его составляют расположенные по окружности микротрубочки в количестве 27 штук, объединенные по 3, т. е. получается 9 триплетов. Основная функция клеточного центра — организация веретена деления, состоящего из «вырастающих» из него микротрубочек. Веретено деления обеспечивает равномерное распределение генетического материала при делении эукариотической клетки.

Строение клетки эукаритСтроение животной клетки

Выше перечислены наиболее важные и обязательные компоненты эукариотической клетки. Однако строение клеток разных эукариот, а также разных клеток одного организма несколько отличается. У дифференцированных клеток может исчезать ядро. Такие клетки уже не делятся, а только выполняют свою функцию. У растений клеточный центр не имеет центриолей. Клетки одноклеточных эукариот могут содержать специальные органоиды, такие как сократительные, выделительные, пищеварительные вакуоли.

Крупная центральная вакуоль есть во многих зрелых растительных клетках.

Также все клетки содержат цитоскелет из микротрубочек и микрофилламентов, пероксисомы.

Необязательными компонентами клетки являются включения. Это не органоиды, а различные продукты обмена веществ, имеющие разное предназначение. Например, жировые, углеводные и белковые включения используются как питательные вещества. Есть включения, подлежащие выделению из клетки, - экскреты.

Таким образом, строение эукариотической клетки показывает, что это сложная система, функционирование которой направлено на поддержание жизни. Такая система возникла в процессе длительной сначала химической, биохимической и потом биологической эволюции на Земле.

scienceland.info

Лекция № 7. Эукариотическая клетка: строение и функции органоидов

Поиск Лекций

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной.

Различают два вида ЭПС:

1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и

2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции:

1) транспорт веществ из одной части клетки в другую,

2) разделение цитоплазмы клетки на компартменты ( «отсеки»),

3) синтез углеводов и липидов (гладкая ЭПС),

4) синтез белка (шероховатая ЭПС),

5) место образования аппарата Гольджи.

Аппарат Гольджи

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи:

1) накопление белков, липидов, углеводов,

2) модификация поступивших органических веществ,

3) «упаковка» в мембранные пузырьки белков, липидов, углеводов,

4) секреция белков, липидов, углеводов,

5) синтез углеводов и липидов,

6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают:

1) первичные лизосомы,

2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом:

1) внутриклеточное переваривание органических веществ,

2) уничтожение ненужных клеточных и неклеточных структур,

3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Митохондрии

Строение митохондрии:1 — наружная мембрана;2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н+.

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

Строение пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

Строение рибосомы:1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

 

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Клеточный центр

Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

http://licey.net/free/6-biologiya/21-lekcii_po_obshei_biologii/stages/261-lekciya

Содержание воды в клетке — от 40 до 98% ее массы.

Рольводы в клетке: — обеспечение упругости клетки. Последствия потери клеткой воды — увядание листьев, высыхание плодов; — ускорение химических реакций за счет растворения веществ в воде; — обеспечение перемещения веществ: поступление большинства веществ в клетку и удаление их из клетки в виде растворов; — обеспечение растворения многих химических веществ (ряда солей, Сахаров) ;

— участие в ряде химических реакций; — участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.

https://otvet.mail.ru/question/38326886

Цитология

  • Основные положения клеточной теории. Клетка – структурная и функциональная единица живого стр. 1
  • Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки стр. 3
  • Органические вещества клетки: липиды, АТФ, биополимеры (углеводы, белки, нуклеиновые кислоты) и их роль в клетке. стр.5
  • Ферменты, их роль в процессе жизнедеятельности стр.7
  • Особенности строения клеток прокариот и эукариот стр. 9
  • Основные структурные компоненты клетки стр. 11
  • Поверхностный аппарат клетки стр. 12
  • Транспорт молекул через мембраны стр. 14
  • Рецепторная функция и ее механизм стр. 18
  • Структура и функции клеточных контактов стр. 19
  • Локомоторная и индивидуализирующая функции ПАК стр. 20
  • Органеллы общего значения. Эндоплазматическая сеть стр. 21
  • Комплекс Гольджи стр. 23
  • Лизосомы стр. 24
  • Пероксисомы стр. 26
  • Митохондрии стр. 26
  • Рибосомы стр.27
  • Пластиды стр.28
  • Клеточный центр стр. 28
  • Органеллы специального значения стр. 29
  • Ядро клетки. Строение и функции стр. 29
  • Обмен веществ и превращение энергии в клетке стр. 32
  • Хемосинтез стр. 36

1. Основные положения клеточной теории. Клетка – структурная и функциональная единица живого.

Цитология - наука о клетки. Цитология изучает строение и химический состав клетки, функции внутриклеточных структур, функции клеток в организме животных, растений, размножение и развитие клеток. Из 5 царств органического мира, только царство Вирусы, представленные формами живого, не имеют клеточного строения. Остальные 4 царства имеют клеточное строение: царство Бактерии объединяют прокариотов – доядерные формы. Ядерные формы – эукариоты, к ним относятся царства Грибы, Растения, Животные. Основные положения клеточной теории: Клетка –функциональная и структурная единица живого. Клетка –элементарная система – основа строения и жизнедеятельности организма. Открытие клетки связано с открытием микроскопа: 1665г. – Гук изобрел микроскоп и на срезе пробки он увидел ячейки, которые он назвал клетками.1674г. –А. Левингук впервые обнаружил в воде одноклеточные организмы. Начало 19в. –Я. Пуркинье назвал протоплазмой вещество, заполняющее клетку. 1831г. –Броун обнаружил ядро. 1838-1839гг. –Шванн сформулировал основные положения клеточной теории. Основные положения клеточной теории:

1. Клетка –главная структурная единица всех организмов.

2. Процесс образования клеток обуславливается ростом, развитием и дифференцировкой растительных и животных клеток.

1858г. –вышел труд Вирхова “Целлюлярная патология”, в которой он связал патологические изменения в организме с изменениями в строении клеток, положив основу патологии – началу теоретической и практической медицины. Конец 19в. –Бэр открыл яйцеклетку, показав, что все живые организмы берут начало из одной клетки (зиготы). Было обнаружено сложное строение клетки, описаны органоиды, изучен митоз. Начало 20в. –стало ясным значение клеточных структур и передачи наследственных свойств. Современная клеточная теория включает следующие положения:

1. Клетка –основная единица строения и развития всех живых организмов, наименьшая единица живого.

2. Клеткивсех одноклеточных и многоклеточных организмов сходны по своему строению, химическому составу, основным проявлением жизнедеятельности и обмену веществ.

3. Размножение клеток происходит путем из деления, и каждая новая клетка образуется путем деления исходной (материнской) клетки.

4. В сложных многоклеточных организмах клетки специализированныпо выполняемым функциям и образуют ткани. Из тканей состоят органы, которые связаны между собой и подчинены нервным и гуморальным системам регуляции.

Клетка –является открытой системой для всех живых организмов, для которой характерны потоки вещества, энергии и информации, связанные с обменом веществ (ассимиляцией и диссимиляцией).Самообновление осуществляется в результате обмена веществ. Саморегуляция осуществляется на уровне обменных процессов по принципу обратной связи. Самовоспроизведение клетки обеспечивается при ее размножении на основе потока вещества, энергии и информации. Клетка и клеточное строение обеспечивает:

1. Благодаря большой поверхности – благоприятные условия для обмена веществ.

2. Наилучшее хранение и передача наследственной информации.

3. Способность организмов хранить и передавать энергию и превращать ее в работу.

4. Постепенная замена всего организма (многоклеточного) отмирающих частей без замены всего организма.

5. В многоклеточном организме специализация клеток обеспечивает широкую приспосабливаемость организма и его эволюционные возможности.

Клетки имеют структурное сходство, т.е. сходство на разных уровнях: атомарном, молекулярном, надмолекулярном и т.д. Клетки имеют функциональное сходство, единство химических процессов метаболизма.

2. Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки.

Химическая организация клетки: 80% - вода. 1-2% - липиды 1-2% - неорганические вещества. 1-2% - нуклеиновые кислоты. 1-1,5% - низкомолекулярные вещества. 1-2% - углеводы. 10-12% - белки. Химический состав неорганических веществ клетки:

Кислород – 65-75 % Магний – 0,02-0,03% Цинк – 0,0003%
Углерод – 15-18% Натрий – 0,02-0,03% Медь – 0,0002%
Водород – 8-10% Кальций – 0,04-2,00% Йод – 0,0001%
Азот – 1,5-3.0% Железо – 0,01-0,015% Фтор – 0,0001%
  Сера – 0,15-0,20%  
  Калий – 0,15-0,40%  
  Фосфор – 0,20-1,00%  
  Хлор – 0,05-0,10%  

Вода –обязательный компонент клетки. В ней растворены многие вещества, в т.ч. органические (гидрофильные – углеводы и гидрофобные – белки). Вода необходима для работы ферментов. Функции воды:

1. Служит для протекания реакций.

2. Участвует в химических реакциях

3. Регулирует обмен веществ

4. Участвует в терморегуляции

5. Смачивание поступающей пищи.

Биологическая роль воды определяется особенностью ее молекулярной структуры. Осмос –проникновение молекул растворителя через полупроницаемую мембрану из раствора с меньшей концентрацией в раствор с большей концентрацией. Давление воды, с которой она давит на мембрану – осмотическое давление. Растворы, имеющие одинаковое осмотическое давление называются изотоническими. Растворы:

1. Гипертонические – вызывают сморщивание клеток

2. Гипотонические – вызывают разрыв клеток

Тургор –давление, с которым вода давит изнутри на оболочку. Соли: К неорганическим веществам кроме воды относятся и соли. Они находятся в диссоциироранном состоянии: Na+ , K+, Ca2+, Mg2+ - катионы и HPO42-, h3PO4-, HCO3- - анионы. От концентрации солей зависит осмотическое давление и ее буферные свойства, т.е. поддерживать реакцию на слабощелочном или нейтральном уровне РН. РН – отрицательный логарифм концентрации водородных ионов. РН = 7 – среда нейтральная. РН = (7;14) – щелочная среда. РН = (1;7) – кислая среда. В некоторых клетках находятся нерастворимые минеральные соли (костные клетки) за счет присутствия Ca3PO4, CaCO3.

3. Органические вещества клетки: липиды, АТФ, биополимеры (углеводы, белки, нуклеиновые кислоты) и их роль в клетке.

Липиды - сложные эфиры высокомолекулярных жирных кислот и трехатомного спирта глицерина. Липиды содержатся во всех клетках животных и растений. Они входят в состав многих клеточных структур. Витамины А, D, E, К – являются жирорастворимыми. Функции жиров:

1. Энергетическая – 1г. жира – 9,2 ккал.

2. Строительная – входит в состав всех мембран.

3. Некоторые липиды являются предшественниками гормонов – регулируют обмен веществ.

4. Защитная.

5. Терморегуляторная.

Аденозинтрифосфорная кислота (АТФ) АТФ обеспечивает клетку энергией. Любое проявление жизнедеятельности нуждается в затрате энергии. Энергетический обмен связан с пластическим. Все реакции пластического обмена нуждаются в затрате энергии. Для осуществления реакций энергетического обмена необходим постоянный синтез ферментов, т.к. продолжительность жизни ферментов невелика. Через пластический и энергетический обмен осуществляется связь клетки с внешней средой. Живая клетка представляет собой открытую систему, т.к. между клеткой и внешней средой постоянно происходит обмен веществ и энергией. Клетка – высокоорганизованная структура, в которой экономно расходуется материалы и энергия и процессы идут с высоким КПД. КПД митохондрий - 45-60%, хлоропластов – 25%. Использование энергии АТФ:

1. Ассимиляция.

2. Транспорт веществ.

3. Деление клетки и ее органоидов.

4. На процессы жизнедеятельности.

Углеводы - органические вещества с общей формулой (Ch3O)n. В живой клетке - 1-2%, в печени и мышцах – до 5%. В растительной клетке до 90% (картофель, семена). Углеводы:

1. Простые – моносахариды – определяются по числу атомов углерода: триозы, тетрозы, пентозы, гексозы. Наиболее важны: пентозы C5h20O5 и гексозы C6h22O6. Из петоз выделяют рибозы и дезоксирибозы (рибозы входят в состав РНК, АТФ; дезоксирибозы - ДНК). Из гексоз выделяют глюкозу, фруктозу, галактозу.

2. Сложные –дисахариды, полисахариды.

Дисахариды – сахароза (глюкоза + фруктоза), лактоза (глюкоза + галактоза). Подисахариды – состоят из множества молекул моносахаридов: целлюлоза (полимер из 150-200 молекул глюкозы), крахмал. Функции углеводов:

1. Энергетическая – окисление в митохондриях мышц.

2. Строительная – целлюлоза в клеточной стенки растений, хитин в скелете членистоногих.

Белки - входят в состав всех организмов. По химической природе – белки – полимеры, мономеры которых – аминокислоты. Аминокислота – органическая кислота. Состав аминокислоты:

1. Аминогруппа – Nh3

2. Карбоксильная группа – СООН

Аминогруппа в цепи белка соединена пептидной связью (CO-NH), образована карбоксильной группой и группой другой аминокислоты. Живыми организмами используется только 20 аминокислот, хотя существует их значительно больше: глицин, аланин, валин, лейцин, изолейцин, серин, треонин, аспарагиновая кислота, глутаминовая кислота, аспарагин, глутамин, лизин, аргинин, цистеин, метионин, фенилаланин, тирозин, триптофан, гистидин, пролин. Различают 4структуры белка: Первичная структура -аминокислотная цепь, связанная между собой пептидными связями. Вторичная структура - белковая нить закручена в спираль и соединение участков цепи происходит за счет водородных связей (Н-Н). Третичная структура –сворачивание вторичной структуры в клубок. Эта структура специфическая для каждой молекулы белка. Сворачивание происходит за счет дисульфидных мостиков (-S-S-), и сульфгидрильных мостиков (-S-H-). Четвертичная структура –имеется не у всех белков – объединение нескольких структур (субъединиц). Например: гемоглобин.По своему составу белки бывают:

1. Простые – состоят только из аминокислот

2. Сложные –содержат нуклеиновые кислоты (нуклеопротеиды), жиры (липопротеиды), углеводы (гликопротеиды), металлы (металлопротеиды).

Функции белков:

1. Строительная (мембраны, ядро).

2. Транспортная (перенос О2 гемоглобином).

3. Ферментативная (ускорение биохимических реакций).

4. Двигательная (сократительная).

5. Защитная (гаммаглобулины).

6. Энергетическая (1г. – 4,2 ккал).

7. Сигнальная.

Нарушение природной структуры белка называется денатурацией.Денатурация бывает обратимой и необратимой. Ренатурация –восстановление структуры белка после прекращения воздействия. 4. Ферменты, их роль в процессе жизнедеятельности. По химической природе ферменты – белки. Ферменты – биологические катализаторы. Они способствуют ускорению реакций, входят в состав тканей.

Ферменты специфически катализируют химические реакции, т.е. 1 фермент катализирует 1 тип реакций. И превращает лишь в соответствующий субстрат. Ферменты в основном катализируют превращение веществ, размеры которых по сравнению с размерами фермента очень малы. Ферменты бывают:

1. Простые

2. Сложные

Простые –состоят только из белка, молекулы которых имеют активный центр – определенную, специфическую для фермента группу аминокислот в молекуле. В основном это гидролитические ферменты: амилаза, пепсин, трипсин и др. Сложные – состоят из белковой и небелковой части. Белок называется апоферментом (носителем фермента). Небелковая часть – коферментом или простатической группой: пример – органические вещества: витамины, НАД, НАДФ; неорганические вещества: атомы металлов – железо, цинк, магний. Апофетмент отвечает за специфичность молекулы фермента с молекулой субстрата. Кофермент отвечает за тип катализируемой реакции. Механизм действия ферментов: Снижение энергии активации, т.е. снижение уровня энергии, необходимой для придания реакционной способности молекулы субстрата т.к. молекула фермента имеет большую величину, то возникает сильное электрическое поле, в которой молекула субстрата становится асимметричной, в результате чего химические связи в ней ослабевают. Фермент образует с субстратом фермент-субстратный комплекс. Присоединение субстрата происходит с помощью активного центра. По завершению реакции комплекс распадается на фермент и продукт реакции. Ферменты образуют в клетке ферментные системы (мультиферментативные комплексы). При этом продукт предыдущей реакции является субстратом для последующей. Активность ферментов в клетках контролируется на генетическом уровне по принципу обратной связи. Свойства ферментов:

1. Специфичны

2. В отличие от химических катализаторов – ускоряют реакции в обычных условиях.

3. Активность ферментов меняется в зависимости от Т0, РН, концентрации субстрата.

4. Активируют в малых количествах, т.е. не разрушаются в процессе реакций

5. Ферменты – белки и имеют свойства белков.

Классификация ферментов: В 1961 году Международный биохимический съезд утвердил классификацию ферментов, в основу которого положен тип реакции, катализируемый данным ферментом. По этому принципу все ферменты разделены на 6 классов:

1. Оксидоредуктазы –ферменты, катализирующие окислительно-восстановительные реакции.

2. Трансферазы – катализирующие перенос атомов или радикалов: пример – каталаза – 2Н2О2 = 2Н2О + О2

3. Гидролазы - ферменты разрывающие внутримолекулярные связи путем присоединения молекул воды: например – фосфатаза.

4. Лиазы– Ферменты, отщепляющие от субстрата ту или иную группу негидролитическим путем, например, отщепление карбоксильной группы декарбоксилазой.

5. Изомеразы– ферменты, катализирующие превращение одного изомера в другой: глюкозо-6-фосфат в глюкозо-1-фосфат.

6. Синтеазы– ферменты, катализирующие реакции синтеза, синтез пептидов из аминокислот, т.е. катализируют реакции соединения молекул с образование новых связей.

5. Особенности строения клеток прокариот и эукариот.

По особенностям организации выделяют клетки прокариотического и эукариотического типов. К царству Прокариот относят царство Бактерий, к царству эукариот – все остальные царства: Грибы, Растения, Животные. Эволюционно прокариоты более ранние, чем эукариоты, они возникли в Архейскую эру (около 3*109лет назад). Первые эукариоты появились около 2*109лет назад, возможно от прокариот. Прокариоты –доядерные – не имеют морфологически обособленного ядра, т.к. ядерный материал не отграничен от цитоплазмы ядерной мембраной. Эукариоты –ядерные – генетический материал окружен ядерной оболочкой. Типичной прокариотической клеткой является бактериальные клетка: снаружи окружена клеточной стенкой особого химического состава, под клеточной стенкой – плазматическая мембрана, окружающая цитоплазму, в которой находится нуклеотид – аналог ядра. Сравнительная характеристика эукариот и прокариот:

poisk-ru.ru

Строение эукариотической клетки грибов, растений и животных :: SYL.ru

Для всех организмов существует два вида клеток. Это прокариотические и эукариотические клетки. Они имеют существенные различия. Строение эукариотической клетки имеет ряд отличий от прокариотической. Поэтому в животном мире выделили два надцарства, которые назвали прокариотами и эукариотами.

строение эукариотической клетки

Основное отличие

Строение эукариотической клетки отличается тем, что она имеет ядро, в котором находятся хромосомы, состоящие из ДНК. ДНК прокариотической клетки не организованы в хромосомы и не имеют ядра. Поэтому прокариотические организмы назвали доядерными, а эукариотические - ядерными. Отличаются клетки и размерами. Эукариотические клетки намного больше, чем прокариотические. Доядерными организмами являются бактерии. К эукариотам принадлежат растения, грибы и животные. Следовательно, особенности строения эукариотической клетки состоят в наличии ядра. Конечно, есть и другие отличия между клетками, но они несущественны.

строение и функции эукариотической клетки

Строение и функции эукариотической клетки

Клетка ядерных организмов имеет множество органелл, отсутствующих у прокариотов. Клетка растений, грибов и животных состоит из цитоплазматической мембраны, защищающей клетку и придающей ей форму, и цитоплазмы. Цитоплазма объединяет все компоненты клетки, участвует во всех обменных процессах и служит скелетом клетки, благодаря наличию миротрубочек. В цитоплазме располагаются одномембранные, двумембранные и немембранные органеллы.

Одномембранные органоиды

Одномембранными органоидами называют эндоплазматическую сеть, аппарат Гольджи, лизосомы и вакуоли из-за того, что они покрыты одной мембраной. Эндоплазматическая сеть бывает гладкой и шероховатой, или гранулярной. Гладкая эндоплазматическая сетка образовывает углеводы и липиды. Шероховатая сетка синтезирует белки. Этим занимаются рибосомы, находящиеся на ней. Аппарат Гольджи сохраняет и транспортирует питательные вещества. Лизосомы обеспечивают расщепление белков, жиров и углеводов.

особенности строения эукариотической клетки

Двумембранные органоиды

Двумембранные органоиды имеют две мембраны: наружную и внутреннюю. К ним относят митохондрии и пластиды. Митохондрии участвуют в дыхании клетки и снабжают клетку энергией. Благодаря пластидам происходит фотосинтез.

Немембранные органоиды

Немембранными органеллами являются рибосомы, клеточный центр, реснички и жгутики. Рибосомы осуществляют синтез белка. Клеточный центр участвует в делении клеток. Реснички и жгутики – органеллы, служащие для движения.

Отличия клеток растений, грибов и животных

Несмотря на единство общего плана, строение эукариотической клетки разных царств организмов имеет некоторые отличия. Растительные клетки не содержат лизосом и клеточного центра. Клетки животных и грибов характеризуются отсутствием пластид и вакуолей. Клеточная стенка грибов содержит хинин, а растений – целлюлозу. В животных клеточной стенки нет, а в состав мембраны входит гликокаликс. Строение эукариотической клетки имеет отличие и в резервных питательных углеводах. В растительных клетках запасается крахмал, а в клетках грибов и животных – гликоген.

строение эукариотической клетки

Дополнительные отличия

Различается не только строение эукариотической клетки и прокариотической, но и способы их размножения. Количество бактерий увеличивается в результате образования перетяжки или почкования. Размножение эукариотических клеток происходит путем митоза. Многие процессы, свойственные эукариотической клетке (фагоцитоз, пиноцитоз и циклоз), у прокариотов не наблюдаются. Для нормальной работы клеткам грибов, растений и животных необходима аскорбиновая кислота. Бактерии в ней не нуждаются.

www.syl.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта