Активный и пассивный транспорт веществ в растениях. Разное / Всякое / Физика темы 1-52 расширенный курс / 11.Пассивный транспорт веществ через мембрану. Роль концентрационного, осмотического

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Пассивный транспорт веществ через мембрану: описание, особенности. Активный и пассивный транспорт веществ в растениях


Биология для студентов - 017. Пассивный транспорт веществ в живой клетке

Существует четыре основных механизма для поступления веществ в клетку или выхода их из клетки наружу:

  • диффузия,
  • осмос, 
  • активный транспорт.
  • экзо- или эндоцитоз.

Два первых процесса носят пассивный характер, т. е. не требуют затрат энергии, два последних — активные процессы, связанные с потреблением энергии.

Если вещества двигаются через мембрану из участка с высокой концентрацией в сторону более низкой концентрации, то такой транспорт называют пассивным, или диффузией. Диффузия протекает без затрат энергии и может быть простой или облегченной.  Этот процесс принципиально отличен от обычной тепловой диффузии. Последняя лежит в основе пассивного транспорта, который протекает по обычному закону Фика в направлении градиента концентрации. Пассивный транспорт в клетке играет минимальную роль, но все же не равен нулю.

Виды пассивного транспорта веществ:

  • простая диффузия,
  • осмос,
  • диффузия ионов,
  • облегченная диффузия.

Простая диффузия представляет собой процесс, при помощи которого газ или растворенные вещества распространяются и заполняют весь доступный объем. Молекулы и ионы, растворенные в жидкости, находятся в хаоти­ческом движении, сталкиваясь друг с другом, молекулами раствори­теля и клеточной мембраной. Столкновение молекулы или иона с мембраной может иметь двоякий исход: молекула либо «отскочит» от мембраны, либо пройдет через нее. Когда вероятность последнего события высока, то говорят, что мембрана проницаема для данного вещества.

Если концентрация вещества по обе стороны мембраны различна, возникает поток частиц, направленный из более концентрированно­го раствора в разбавленный. Диффузия происходит до тех пор, пока концентрация вещества по обе стороны мембраны не выравнивается. Через клеточную мембрану проходят как хорошо растворимые в воде {гидрофильные) вещества, так и гидрофобные, плохо или совсем в ней нерастворимые.

Гидрофобные, хорошо растворимые в жирах вещества, диффунди­руют благодаря растворению в липидах мембраны. Вода и вещества хорошо в ней растворимые проникают через временные дефекты углеводородной области мембраны, так называемые кинки, а также через поры, постоянно существующие гидрофильные участки мембраны.

В случае, когда клеточная мембрана непроницаема или плохо про­ницаема для растворенного вещества, но проницаема для воды, она подвергается действию осмотических сил. При более низкой кон­центрации вещества в клетке, чем в окружающей среде, клетка сжи­мается; если концентрация растворенного вещества в клетке выше, вода устремляется внутрь клетки.

Осмос — движение молекул воды (растворителя) через мембрану из области меньшей в область большей концентрации растворенного вещества. Осмотическим давлением называется то наименьшее дав­ление, которое необходимо приложить к раствору для того, чтобы предотвратить перетекание растворителя через мембрану в раствор с большей концентрацией вещества.

Молекулы растворителя, как и молекулы любого другого вещества, приводятся в движение силой, возникающей вследствие разности химических потенциалов. Когда какое-либо вещество растворяется, химический потенциал растворителя уменьшается. Поэтому в облас­ти, где концентрация растворенного вещества выше, химический по­тенциал растворителя ниже. Таким образом, молекулы растворителя, перемещаясь из раствора с меньшей в раствор с большей концент­рацией, движутся в термодинамическом смысле «вниз», «по гради­енту».

Объем клеток в значительной степени регулируется количеством содержащейся в них воды. Клетка никогда не находится в состо­янии полного равновесия с окружающей средой. Непрерывное дви­жение молекул и ионов через плазматическую мембрану изменяет концентрацию   веществ   в   клетке   и, соответственно, осмотическое

давление ее содержимого.

Диффузия ионов происходит, в основном, через специализированные белковые структуры мембраны — ионные ка­налы, когда они находятся в открытом состоянии. В зависимости от вида ткани клетки могут иметь различный набор ионных каналов. Различают натриевые, калиевые, кальциевые, натрий-кальциевые и хлорные каналы. Перенос ионов по каналам имеет ряд особеннос­тей, отличающих его от простой диффузии. В наибольшей степени это касается кальциевых каналов.

Ионные каналы могут находиться в открытом, закрытом и инактивированном состояниях. Переход канала из одного состояния в другое управляется или изменением электрической разности потен­циалов на мембране, или взаимодействием физиологически активных веществ с рецепторами. Соответственно, ионные каналы подразде­ляют на   потенциал-зависимые   и рецептор-управляемые.   Избирательная проницаемость ионного канала для конкретного иона опре­деляется наличием специальных селективных фильтров в его устье.

Облегченная диффузия. Через биологические мембраны кроме воды и ионов путем простой диффузии проникают многие вещества (от этанола до сложных лекарственных препаратов). В то же время даже сравнительно небольшие полярные молекулы, например, гликоли, мо­носахариды и аминокислоты практически не проникают через мем­брану большинства клеток за счет простой диффузии. Их перенос осуществляется путем облегченной диффузии. Облегченной называется диффузия вещества по градиенту его концентрации, которая осущест­вляется при участии особых белковых молекул-переносчиков.

Транспорт Na+, K+, Сl-, Li+, Ca2+, НСО3- и Н+ могут также осуществлять специфические переносчики. Характерными чертами этого вида мембранного транспорта являются высокая по сравнению с простой диффузией скорость переноса вещества, зависимость от строения его молекул, насыщаемость, конкуренция и чувствитель­ность к специфическим ингибиторам — соединениям, угнетающим облегченную диффузию.

vseobiology.ru

Пассивный транспорт веществ через мембрану: описание, особенности

Что такое пассивный транспорт? Трансмембранное перемещение различных высокомолекулярных соединений, клеточных компонентов, надмолекулярных частиц, которые не способны проникать сквозь каналы в мембране, осуществляется посредством специальных механизмов, например, с помощью фагоцитоза, пиноцитоза, экзоцитоза, переноса через межклеточное пространство. То есть перемещение веществ сквозь мембрану может происходить при помощи различных механизмов, которые подразделяются по признакам участия в них специфических переносчиков, а также по энергозатратам. Ученые подразделяют транспорт веществ на активный и пассивный.

Основные виды транспорта

Пассивный транспорт представляет собой перенос вещества сквозь биологическую мембрану по градиенту (осмотический, концентрационный, гидродинамический и другие), не требующий расхода энергии.

Активный транспорт представляет собой перенос вещества сквозь биологическую мембрану против градиента. При этом расходуется энергия. Примерно 30 - 40% энергии, которая образуется в результате метаболических реакции в организме человека, тратится на осуществление активного транспорта веществ. Если рассматривать функционирование человеческих почек, то в них на активный транспорт тратится около 70 - 80% потребленного кислорода.

Пассивный транспорт веществ

он подразумевает перенос различных веществ сквозь биологические мембраны по разнообразным градиентам. Такими градиентами могут быть:

  • градиент электрохимического потенциала;
  • градиент концентрации вещества;
  • градиент электрического поля;
  • градиент осмотического давления и прочие.

Процесс осуществления пассивного транспорта не требует каких-либо энергозатрат. Он может происходить при помощи облегченной и простой диффузии. Как нам известно, диффузия представляет собой хаотическое перемещение молекул вещества в разнообразных средах, которое обусловлено энергией тепловых колебаний вещества.

Если частица вещества является электронейтральной, то направление, в котором будет происходить диффузия, определяется разностью концентрации веществ, содержащихся в средах, которые разделены мембраной. К примеру, между отсеками клетки, внутри клетки и вне ее. Если частицы вещества, его ионы имеют электрический заряд, то диффузия будет зависеть не только от разности концентраций, но и от величины заряда данного вещества, наличия и знаков заряда с обеих сторон мембраны. Величина электрохимического градиента определяется алгебраической суммой электрического и концентрационного градиентов на мембране.

Что обеспечивает транспорт через мембрану?

Пассивный транспорт мембраны возможен, благодаря наличию градиентов концентрации вещества, осмотического давления, возникающего между разными сторонами мембраны клетки или электрического заряда. К примеру, средний уровень содержащихся в плазме крови ионов Na+ составляет около 140 мМ/л, а содержание его в эритроцитах примерно в 12 раз больше. Подобный градиент, выражающийся в разности концентраций, способен создавать движущую силу, обеспечивающую перенос молекул натрия в эритроциты из плазмы крови.

Следует отметить, что скорость подобного перехода весьма низкая из-за того, что для клеточной мембраны характерна низкая проницаемость для ионов данного вещества. Гораздо большей проницаемостью данная мембрана обладает в отношении ионов калия. Энергия клеточного метаболизма не используется для совершения процесса простой диффузии.

Скорость диффузии

Активный и пассивный транспорт веществ через мембрану характеризуется скоростью диффузии. Описать ее можно при помощи уравнения Фика: dm/dt=-kSΔC/x.

В данном случае dm/dt представляет собой количество того вещества, которое диффундирует за одну единицу времени, а k представляет собой коэффициент процесса диффузии, который характеризует проницаемость биомембраны для диффундирующего вещества. S равняется площади, на которой происходит диффузия, а ΔC выражает разность концентрации веществ с разных сторон биологической мембраны, при этом x характеризует расстояние, которое имеется между точками диффузии.

Очевидно, что через мембрану наиболее легко будут перемещаться те вещества, которые диффундируют одновременно по градиентам концентраций и электрических полей. Немаловажным условием для осуществления диффузии вещества сквозь мембрану являются физические свойства самой мембраны, ее проницаемость для каждого конкретного вещества.

В силу того, что бислой мембраны сформирован углеводородными радикалами фосфолипидов, обладающих гидрофобными свойствами, вещества гидрофобной природы с легкостью диффундируют через нее. В частности, это относится к веществам, которые легко растворяются в липидах, например, тиреоидные и стероидные гормоны, а также некоторые вещества наркотического характера.

Минеральные ионы и низкомолекулярные вещества, имеющие гидрофильную природу, диффундируют посредством пассивных ионных каналов мембраны, которые сформированы из каналообразующих белковых молекул, а иногда сквозь дефекты упаковки мембраны фосфолипидных молекул, которые возникают в клеточной мембране в результате тепловой флуктуации.

Пассивный транспорт через мембрану – процесс очень интересный. Если условия нормальные, то значительные количества вещества могут проникать сквозь бислой мембраны только в том случае, если они неполярные и имеют небольшой размер. В противном случае перенос происходит посредством белков-переносчиков. Подобные процессы с участием белка-переносчика называются не диффузией, а транспортом вещества сквозь мембрану.

Облегченная диффузия

Облегченная диффузия, подобно простой диффузии, происходит по градиенту концентрации вещества. Основное отличие состоит в том, что в процессе переноса вещества принимает участие специальная молекула белка, называемая переносчиком.

Облегченная диффузия является видом пассивного переноса молекул вещества сквозь биомембраны, осуществляемым по градиенту концентрации при помощи переносчика.

Состояния белка-переносчика

Белок-переносчик может находится в двух конформационных состояниях. К примеру, в состоянии А данный белок может обладать сродством с веществом, которое он переносит, его участки для связывания с веществом развернуты внутрь, за счет чего формируется пора, открытая к одной стороне мембраны.

После того, как белок связался с переносимым веществом, изменяется его конформация и происходит его переход в состояние Б. При таком превращении у переносчика теряется сродство с веществом. Из связи с переносчиком оно высвобождается и перемещается в пору уже по другую сторону мембраны. После того, как вещество перенесено, белок-переносчик снова изменяет свою конформацию, возвращаясь в состояние А. Подобный транспорт вещества сквозь мембрану называется унипортом.

Скорость при облегченной диффузии

Низкомолекулярные вещества вроде глюкозы могут транспортироваться сквозь мембрану посредством облегченной диффузии. Такой транспорт может происходить из крови в мозг, в клетки из интерстициальных пространств. Скорость переноса вещества при таком виде диффузии способна достигать до 108 частиц через канал за одну секунду.

Как мы уже знаем, скорость активного и пассивного транспорта веществ при простой диффузии пропорциональна разности концентраций вещества с двух сторон мембраны. В случае же облегченной диффузии эта скорость увеличивается пропорционально увеличивающей разности концентрации вещества до определенного максимального значения. Выше этого значения скорость не увеличивается, даже несмотря на то что разность концентраций с разных сторон мембраны продолжает увеличиваться. Достижение такой максимальной точки скорости в процессе осуществления облегченной диффузии можно объяснить тем, что максимальная скорость предполагает вовлечение в процесс переноса всех имеющихся белков-переносчиков.

Какое понятие еще включают в себя активный и пассивный транспорт через мембраны?

Обменная диффузия

Подобный вид транспорта молекул вещества сквозь клеточную мембрану характеризуется тем, что в обмене участвуют молекулы одного и того же вещества, которые находятся с разных сторон биологической мембраны. Стоит отметить, что при таком транспорте веществ концентрация молекул с обеих сторон мембраны абсолютно не изменяется.

Разновидность обменной диффузии

Одной из разновидностей обменной диффузии является обмен, при котором молекула одного вещества меняется на две и более молекул иного вещества. К примеру, один из путей, по которому происходит удаление положительных ионов кальция из гладкомышечных клеток бронхов и сосудов из сократительных миоцитов сердца – это обмен их на ионы натрия, расположенные вне клетки. Один ион натрия в этом случае обменивается на три иона кальция. Таким образом, происходит движение натрия и кальция сквозь мембрану, которое носит взаимообусловленный характер. Подобный вид пассивного транспорта сквозь клеточную мембрану называется антипортом. Именно таким образом клетка способна освободиться от ионов кальция, которые имеются в избытке. Этот процесс является необходимым для того, чтобы гладкие миоциты и кардиомиоциты расслаблялись.

В данной статье был рассмотрен активный и пассивный транспорт веществ через мембрану.

fb.ru

Транспорт веществ

3

Транспорт веществ:

Перенос веществ через биол. мембраны сопряжен с такими важнейшими биологическими явлениями, как внутриклеточный гомеостаз ионов, биоэлектрические потенциалы, возбуждение и проведение нервного импульса, запасание и трансформация энергии.

Различают несколько видов транспорта:

1. Юнипорт – это транспорт вещества через мембрану независимо от наличия и переноса других соединений.

2. Контранспорт – это перенос одного вещества сопряженного с транспортом другого: симпорт и антипорт

а) причем однонаправленный перенос называется симпортом – всасывание аминокислот через мембрану тонкого кишечника,

б) противоположно направленный — антипортом (натрий – калиевый насос).

Транспорт веществ может быть - пассивный и активный транспорт (перенос)

Пассивный транспорт не связан с затратами энергии, он осуществляется путем диффузии (направленного движения) по концентрационным (из maс в сторону min), электрическим или гидростатическим градиентам. Вода перемещается по градиенту водного потенциала. Осмос - это перемещение воды через полупроницаемую мембрану.

Активный транспорт осуществляется против градиентов (из min в сторону maс), связан с затратой энергии (преимущественно энергии гидролиза АТФ) и сопряжен с работой специализированных мембранных белков переносчиков (АТФ - синтетазы).

Пассивный перенос может осуществляться:

а. Путем простой диффузии через липидный бислои мембраны, а также через специализированные образования — каналы. Путем диффузии через мембрану проникают в клетку:

  • незаряженные молекулы, хорошо растворимые в липидах, в т.ч. многие яды и лекарственные средства,

  • газы - кислород и углекислый газ.

  • ионы – они поступают через пронизывающие каналы мембраны, представляющие собой липопротеиновые структуры, Они служат для переноса определенных ионов (например, катионов – Na, K, Ca, анионов Cl, P,) и могут находиться в открытом или закрытом состоянии. Проводимость канала зависит от мембранного потенциала, что играет важную роль в механизме генерации и проведения нервного импульса.

б. Облегчённой диффузии. В ряде случаев перенос вещества совпадает с направлением градиента, но существенно превосходит по скорости простую диффузию. Этот процесс называют облегченной диффузией; он происходит с участием белков-переносчиков. Процесс облегченной диффузии не нуждается в энергии. Этим способом транспортируются сахара, аминокислоты, азотистые основания. Такой процесс происходит, например, при всасывании сахаров из просвета кишечника клетками эпителия.

в. Осмоса – перемещения растворителя через мембрану

Активный транспорт

Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин, например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 106, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума — 104, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более 1/3 всей энергии метаболизма.

В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов например:

  • натрия и калия — натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса — Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ. На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия.

  • Существуют два типа Са2+-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая — аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция.

  • К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ.

  • В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.

  • Протонный насос в митохондриях и пластидах

  • секреция HCI в желудке,

  • поглощение ионов клетками корней растений

Нарушение транспортных функций мембран, в частности увеличение проницаемости мембран, — общеизвестный универсальный признак повреждения клетки. Нарушением транспортных функций (например, у человека) обусловлено более 20 так называемых транспортных болезней, среди которых:

  • почечная гликозурия,

  • цистинурия,

  • нарушение всасывания глюкозы, галактозы и витамина В12,

  • наследственный сфероцитоз (гемолитическая анемия, эритроциты имеют форму шара, при этом уменьшается поверхность мембраны, падает содержание липидов, увеличивается проницаемость мембраны для натрия. Сфероциты удаляются из кровяного русла быстрее, чем нормальные эритроциты).

В особую группу активного транспорта выделяют перенос веществ (крупных частиц) путем - и эндо- и экзоцитоза.

Эндоцитоз (от греч. эндо - внутри) поступление веществ в клетку, включает фагоцитоз и пиноцитоз.

Фагоцитоз (от греч. Phagos - пожирающий) – процесс захватывания твёрдых частиц, инородных живых объектов(бактерий, фрагменты клеток) одноклеточными организмами или клетками многоклеточных, последние называются фагоцитами, или клетками-пожирателями. Фагоцитоз открыт И. И. Мечниковым. Обычно при фагоцитозе клетка образует выпя­чивания, цитоплазмы — псевдоподии, которые обтекают захватываемые частицы.

Но о6разование псевдоподий не обязательно.

Фагоцитоз играет важную роль в питании одноклеточных и низших мно­гоклеточных животных, которым свойственно внутриклеточное пищева­рение, а также характерен для клеток, играющих важную роль в явлениях иммунитета и метаморфоза. Такая форма поглощения свойственна клеткам соединительной ткани – фагоцитам, выполняющим защитную функцию, активно фагоцитируют клетки плаценты, клетки выстилающие полость тела, пигментный эпителий глаз.

В процессе фагоцитоза можно выделить четыре последовательные фазы. В первой (факультативной) фазе фагоцит сближается с объектом погло­щения. Здесь существенное значение имеет положительная реакция фагоцита на химическое раздражение хемотаксис. Во второй фазе наблюдается адсорбция поглощаемой частицы на поверхности фаго­цита. В третьей фазе плазматическая мембрана в виде мешочка обвола­кивает частицу, края мешочка смыкаются и отрываются от остальной мембраны, а образовавшаяся вакуоль оказывается внутри клетки. В чет­вертой фазе заглоченные объекты разрушаются и перевариваются внутри фагоцита. Разумеется, эти стадии не отграничены, а незаметно переходят одна в другую.

Клетки могут аналогичным способом поглощать также жидкости и крупномолекулярные соединения. Это явление получило название п и н о ц и т о з а (греч. рупо — пить и суtоз — клетка). Пиноцитоз сопровожда­ется энергичным движением цитоплазмы в поверхностном слое, приводящим к образованию впячивания клеточной мембраны, идущей от поверхности в виде канальца внутрь клетки. На конце канальца образуются вакуоли, которые отрываются и переходят в цитоплазму. Пиноцитоз наиболее акти­вен в клетках с интенсивным обменом веществ, в частности в клетках лимфа­тической системы, злокачественных опухолей.

Путем пиноцитоза в клетки проникают высокомолекулярные соедине­ния: питательные вещества из кровяного русла, гормоны, ферменты и дру­гие вещества, в том числе лекарственные. Электронно-микроскопические исследования показали, что путем пиноцитоза происходит всасывание жира эпителиальными клетками кишечника, фагоцитируют клетки почечных канальцев и растущие ооциты.

Инородные тела, попавшие в клетку путем фагоцитоза или пиноцитоза, подвергаются воздействию лизирующих ферментов внутри пищеваритель­ных вакуолей либо непосредственно в цитоплазме. Внутриклеточными ре­зервуарами этих ферментов являются лизосомы.

Функции эндоцитоза

  1. Осуществляются, питание (яй­цеклетки поглощают таким способом желточные белки: фагосомами являются пищеварительные вакуоли простейших)

  2. Защитные и иммунные реакции (лейкоциты поглощают чужеродные частицы и иммуноглобули­ны)

  3. Транспорт (почечные канальцы всасывают бел­ки из первичной мочи).

  4. Избирательный эндоцитоз определен­ных веществ (желточных белков, иммуноглобулинов и т. п.) происходит при контакте этих веществ с субстрат-специфически­ми рецепторными участками на плазматической мембране.

Материалы, попадающие в клетку путем эндоцитоза, рас­щепляются («перевариваются»), накапливаются (напри­мер, желточные белки) или снова выводятся с противоположной стороны клетки путем экзоцитоза («цитопемпсис»).

Экзоцитоз (от греч. экзо – вне, снаружи)— процесс, противоположный эндоцитозу: например, из эндоплазматического ретикулума, аппарата Гольджи, различные эндоцитозные пузырьки, лизосомы сливаются с плазматической мембраной, освобождая своё содержимоё наружу.

studfiles.net

Пассивный и активный транспорт веществ

Поиск Лекций

Карагандинский государственный медицинский университет

Кафедра медицинской биофизики и информатики

CРC

Тема: «Механизмы проницаемости биологических мембран. Строение и функции ионных каналов и переносчиков».

Выполнил: ст.177 гр.

ОМФ Сулейменов М.Б.

Проверил: Пашев В.И.

Караганда 2012

 

ПЛАН

ВВЕДЕНИЕ.. 3

Транспорт веществ через биологические мембраны.. 4

Пассивный и активный транспорт веществ. 4

Виды пассивного транспорта. 5

Активный транспорт веществ через биологические мембраны. Опыт Усинга. 8

Вторичный активный транспорт ионов. 10

Строение и функции ионных каналов и переносчиков. 12

ЛИТЕРАТУРА.. 15

 

 

 

ВВЕДЕНИЕ

 

Живая клетка - это элементарная ячейка биологической организации, обеспечивающая все функции организма. Среди многообразных явлений, протекающих в клетке, важное место занимают активный и пассивный транспорт веществ, осмос, фильтрация и биоэлектрогенез. В настоящее время стало очевидно, что эти явления так или иначе определяются барьерными свойствами клеточных мембран. Клетка - открытая система, которая непрерывно обменивается с окружающей средой веществом и энергией. Во многих случаях биологического транспорта основой переноса веществ является их диффузия через клеточную или многоклеточную мембрану. Способы диффузионного переноса многообразны: диффузия жирорастворимых веществ через липидную часть мембраны, перенос гидрофильных веществ через поры, образуемые мембранными липидами и белками, облегченная диффузия с участием специальных молекул-переносчиков, избирательный транспорт ионов через ионные каналы. Однако в процессе эволюции живая клетка создала особый способ переноса, получивший название активного транспорта. В этом случае перенос вещества идет против перепада концентрации и поэтому сопряжен с использованием энергии, универсальным источником которой в клетке является молекула аденозинтрифосфорной кислоты.

 

Транспорт веществ через биологические мембраны

 

Живые системы на всех уровнях организации - открытые системы. Элементарная ячейка жизни - клетка и клеточные органеллы тоже открытые системы. Поэтому транспорт веществ через биологические мембраны - необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны.

 

Пассивный и активный транспорт веществ

 

Транспорт веществ через биологические мембраны можно разделить на два основных типа: пассивный и активный. Определения пассивного и активного транспорта связаны с понятием электрохимического потенциала. Известно, что движущей силой любого переноса является перепад энергии. Свободная энергия (энергия Гиббса) определяется при постоянном давлении, температуре и количестве переносимых частиц. Последнее обстоятельство удобно для описания переноса частиц вещества через мембрану с одной поверхности на другую.

Электрохимический потенциал - величина, численно равная энергии Гиббса на один моль данного вещества, помещенного в электрическое поле. Для разведенных растворов, где R = 8,31 Дж/(К " моль) - универсальная газовая постоянная, F = 96 500 Кл/моль (число Фарадея), Z - заряд иона электролита (в элементарных единицах заряда), j - потенциал электрического поля.

Пассивный транспорт идет в направлении перепада электрохимического потенциала вещества, происходит самопроизвольно и не требует свободной энергии АТФ.

 

Активный транспорт - это такой процесс, при котором перенос происходит из места с меньшим значением электрохимического потенциала к месту с большим его значением. Этот процесс, сопровождающийся ростом энергии, не может идти самопроизвольно, а только в сопряжении с процессом гидролиза АТФ, то есть за счет затраты энергии Гиббса, запасенной в макроэргических связях АТФ.

Плотность потока вещества jм - количество вещества в единицу времени через единицу площади - при пассивном транспорте подчиняется уравнению Теорелла где U - подвижность частиц, С - концентрация. Знак минус показывает, что перенос происходит в сторону убывания .

 

Подставив в выражение для электрохимического потенциала , получим для разбавленных растворов уравнение Нернста-Планка:

Итак, могут быть две причины переноса вещества при пассивном транспорте: градиент концентрации dC / dx и градиент электростатического потенциала dj / dx. В отдельных случаях вследствие сопряжения этих двух причин может происходить пассивный перенос вещества от мест с меньшей концентрацией к местам с большей концентрацией за счет энергии электрического поля.

В случае неэлектролитов (Z = 0) или постоянства электрического поля (dj / dx = 0) уравнение Теорелла переходит в уравнение

 

Согласно соотношению Эйнштейна, URT = D, где D - коэффициент диффузии, и, подставляя, получаем закон Фика

 

Рекомендуемые страницы:

poisk-ru.ru

Пассивный транспорт веществ через мембрану — КиберПедия

Пассивный транспорт происходит без затрат энергии путем диффузии, осмоса, облегченной диффузии.

Диффузия - транспорт молекул и ионов через мембрану из области с высокой в область с низкой их концентрацией, т. е. вещества поступают по градиенту концентрации.

Диффузия может быть простой и облегченной. Если вещества хорошо растворимы в жирах, то они проникают в клетку путем простой диффузии. Например, кислород, потребляемый клетками при дыхании и СО2 в растворе быстро диффундируют через мембраны. Диффузия воды через полупроницаемые мембраны называется осмосом. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ.

Вещества, нерастворимые в жирах и не проходящие через поры, транспортируются через ионные каналы, образованные в мембране белками, с помощью белков-переносчиков, также находящихся в мембране. Это облегченная диффузия. Например, поступление глюкозы в эритроциты происходит путем облегченной диффузии

Маленькие незаряженные полярные молекулы могут проходить через липидный бислой путем простой диффузии. Перенос других полярных молекул осуществляется со значительными скоростями белками-переносчиками или каналообразующими белками.

Активный транспорт веществ через мембрану

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный активный транспорт) или через слой клеток (трансцеллюлярный активный транспорт), протекающий из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма (АТФ)

Эндоцитоз — образование везикул путём впячивания плазматической мембраны при поглощении твёрдых частиц (фагоцитоз) или растворённых веществ (пиноцитоз). Возникающие при этом гладкие или окаймлённые пузырьки называются фагосомами или пиносомами. Путём эндоцитоза яйцеклетки поглощают желточные белки, лейкоциты поглащают чужеродные частицы и иммуноглобулины, почечные канальцы всасывают белки из первичной мочи

Экзоцитоз — процесс, противоположный эндоцитозу. Различные пузырьки из аппарата Гольджи, лизосом сливаются с плазматической мембраной, освобождая своё содержимое наружу. При этом мембрана пузырька может либо встраиваться в плазматическую мембрану, либо в форме пузырька возвращаться в цитоплазму.

Метоболизмклетки . Анаболизм.

Метаболи́зм или обме́нвеще́ств — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Анаболизм — это совокупность процессов биосинтеза органических веществ, компонентов клетки и других структур органов и тканей. Анаболизм обеспечивает рост, развитие, обновление биологических структур, а также непрерывный ресинтез макроэргических соединений и их накопление.Анаболизм включает три основных этапа, каждый из которых катализируется специализированным ферментом. На первом этапе синтезируются молекулы-предшественники, например, аминокислоты, моносахариды, терпеноиды и нуклеотиды. На втором этапе предшественники с затратой энергии АТФ преобразуются в активированные формы. На третьем этапе активированные мономеры объединяются в более сложные молекулы, например, белки, полисахариды, липиды и нуклеиновые кислоты.

Не все живые организмы могут синтезировать все биологически активные молекулы. Автотрофы (например, растения) могут синтезировать сложные органические молекулы из таких простых неорганических низкомолекулярных веществ, как углекислый газ и вода. Гетеротрофам необходим источник более сложных веществ, таких как моносахариды и аминокислоты, для создания более сложных молекул. Организмы классифицируют по их основным источникам энергии: фотоавтотрофы и фотогетеротрофы получают энергию из солнечного света, в то время как хемоавтотрофы и хемогетеротрофы получают энергию из неорганических реакций окисления.

 

Метоболизм. Катаболизм.

Метаболизм — совокупность химических реакций, протекающих в клетках организма с момента поступления пищевых веществ в организм до образования конечных продуктов обмена. Катаболизм — процесс расщепления сложных молекул до более простых, идущий с выделением энергии. Катаболические реакции лежат в основе диссимиляции: утраты сложными веществами своей специфичности для данного организма в результате распада до более простых. Примерами катаболизма являются превращение этанола через стадии ацетальдегида (этаналя) и уксусной кислоты (этановой кислоты) в углекислый газ и воду, или процесс гликолиза — превращение глюкозы в молочную кислоту либо пировиноградную кислоту и далее уже в дыхательном цикле — опять-таки в углекислый газ и воду. Катаболизм является противоположностью анаболизма — процессу синтеза или ресинтеза новых, более сложных, соединений из более простых, протекающему с расходованием, затратой энергии АТФ. Соотношение катаболических и анаболических процессов в клетке опять-таки регулируется гормонами. Например, адреналин или глюкокортикоиды сдвигают баланс обмена веществ в клетке в сторону преобладания катаболизма, а инсулин, соматотропин, тестостерон — в сторону преобладания анаболизма.

Автотропные организмы.

Автотрофные организмы (от авто... и греческого trophē — пища) организмы, синтезирующие из неорганических веществ необходимые для жизни органические вещества. Роль Автотрофов в природе огромна, т. к. они создают все органические вещества, которые не могут синтезировать человек и почти все животные . К Автотрофные организмы относятся высшие растения (кроме паразитных и сапрофитных), водоросли и некоторые бактерии. Высшие растения и водоросли, содержащие хлорофилл, являются фотосинтетиками; они синтезируют органическое вещество из простых соединений — углекислого газа и воды — за счёт солнечной энергии. Автотрофные бактерии — хемосинтетики — синтезируют органическое вещество из минеральных соединений за счёт энергии некоторых химических реакций. Например, почвенные бактерии Nitrosomonas и Nitrobacter окисляют аммиак до солей азотистой и азотной кислот и используют освобождающуюся энергию на построение тела; железобактерии используют энергию окисления закисных форм железа; серобактерии окисляют сероводород до солей серной кислоты (одни виды серобактерий бесцветны и являются типичными хемосинтетиками, другие, например пурпурные серобактерии, окрашены и способны к фоторедукции, т. е. фотосинтезу, при котором источником водорода для восстановления углекислого газа служит не вода, а сероводород). Исключительно велика роль Автотрофные организмы в круговороте веществ в природе.

Гетеротрофные организмы .

Гетеротрофы, организмы, использующие для своего питанияготовые органические соединения (в отличие от автотрофных организмов (См. Автотрофные организмы), способных первично синтезировать необходимые им органические вещества из неорганических соединенийуглерода, азота, серы и др.). К Г. о. относятся все животные и человек, а также некоторые растения (грибы, многие паразиты и сапрофиты покрытосеменных растений) и микроорганизмы. Однако разделение растений имикроорганизмов на гетеротрофные и автотрофные, несмотря на принципиальное различие в типе их обменавеществ, довольно условно. Даже типичные автотрофы — фотосинтезирующие зелёные растения — могутусваивать некоторое количество органических веществ из почвы через корни, но их рост и развитие лучшепротекают на минеральных источниках азота. Некоторые зелёные растения, обладая способностью кФотосинтезу, являются в то же время насекомоядными (росянка, пузырчатка и др.), т. е. используют восновном органический азот, а их углеродное питание осуществляется фотосинтетически. Некоторыеавтотрофы нуждаются в присутствии в среде витаминоподобных веществ, необходимых для автотрофногосинтеза, и т.д. В 1921 русский учёный А. Ф. Лебедев показал, а в 1933 с помощью изотопного методаамериканские учёные Г. Вуд и Ч. Веркман подтвердили, что даже ярко выраженные Г. о. (некоторые бактерии, грибы и др.) способны усваивать углерод CO2. Гетеротрофный синтез обеспечивает незначительноенакопление органического вещества (до 10% всего углерода организма). Возможность усвоения CO2 клеткой, не содержащей зелёного (или иного) пигмента, имеет принципиальное значение для понимания эволюцииХемосинтеза и фотосинтеза, Выявлена способность и животных тканей использовать CO2. В связи с этимвозникла тенденция к дифференциации организмов на автотрофы и гетеротрофы не по типу углеродногопитания, а по характеру источника жизненно необходимой энергии. В соответствии с этим к Г. о. относяторганизмы, для которых источником углерода служит окисление сложных органических соединений — углеводородов жиров, белков: к фотоавтотрофам — организмы, осуществляющие фотохимические реакции; кхемоавтотрофам — организмы, для которых источником энергии являются реакции окисления неорганическихвеществ Строго Г о — животные и человек, использующие органические соединения для покрытияэнергетического расхода построения и возобновления тканей тела и регуляции жизненных функций. Такие Г. о. различают по потребности в тех или иных органических соединениях (что зависит от степени их участия вобмене веществ организмов), а также по возможности синтезирования этих соединении самими организмами. К числу необходимых, но несинтезируемых Г. о. веществ относятся т. н. незаменимые аминокислоты, витамины и близкие к ним соединения Осуществляя разложение и минерализацию сложных органическихвеществ, Г. о. играют важную роль в круговороте веществ в природе.

cyberpedia.su

Активный и пассивный транспорт.

Пассивный транспорт - транспорт веществ по градиенту концентрации, не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой. Пассивно пропускают через себя вещества все белки-каналы и некоторые переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией.

Другие белки-переносчики (их иногда называют белки-насосы) переносят через мембрану вещества с затратами энергии, которая обычно поставляется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом.

Симпорт, антипорт и унипорт

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ:

1) Унипорт - транспорт одного вещества в одном направлении в зависимости от градиента

2) Симпорт - транспорт двух веществ в одном направлении через один переносчик.

3) Антипорт - перемещение двух веществ в разных направлениях через один переносчик.

Унипорт осуществляет, например, потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются ионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и ион натрия и, меняя конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередью создается за счет гидролиза АТФ натрий-калиевой АТФ-азой.

Антипорт осуществляет, например, натрий–калиевая АТФаза (или натрий–зависимая АТФаза). Она переносит в клетку ионы калия. а из клетки - ионы натрия.

Работа натрий-калиевой атФазы как пример антипорта и активного транспорта

Первоначально этот переносчик присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны.

Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na + и ион (фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na + отщепляются, а замещается на два иона K + . Затем конформация переносчика изменяется на первоначальную, и ионы K + оказываются на внутренней стороне мембраны. Здесь ионы K + отщепляются, и переносчик вновь готов к работе.

Более кратко действия АТФазы можно описать так:

  • 1) Она изнутри клетки "забирает" три иона Na + ,затем расщепляет молекулу АТФ и присоединяет к себе фосфат

  • 2) "Выбрасывает" ионы Na + и присоединяет два иона K + из внешней среды.

  • 3) Отсоединяет фосфат, два иона K + выбрасывает внутрь клетки

В итоге во внеклеточной среде создается высокая концентрация ионов Na + , а внутри клетки - высокая концентрация K + . Работа Na + , K + - АТФаза создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней - отрицательный.

studfiles.net

Разное / Всякое / Физика темы 1-52 расширенный курс / 11.Пассивный транспорт веществ через мембрану. Роль концентрационного, осмотического

11.Пассивный транспорт веществ через мембрану. Роль концентрационного, осмотического и электрического градиентов. Уравнение Фика. Проницаемость мембран. Механизм транспорта гидрофобных веществ.

Общие закономерности транспорта веществ через мембраны

Пассивный и активный транспорт.

Принято различать пассивный и активный . транспорт веществ через мембрану.  Пассивным называют транспорт в направлении  от области с более высокой крнцентрацией переносимого вещества к области с более низкой его концентрацией . Обычн это формулируют короче:  пассивным называется транспорт вещества  по градиенту концентрации (Напомним, что градиентом концентрации называют  изменение какого-то показателя  на единицу расстояния .:C 41  - C 42grad C = ----------- 4 )4LМожно сказать, что _ градиент концентрации является  основной движущей силой  пассивного транспорта.  .Однако, в ряде случаев необходимо учитывать и другие факторы. Например, при переносе воды важную роль играет  осмотический градиент , определяемый разностью осмотических давлений; на транспорт ионов сильно влияет электрический градиент .,создаваемый разностью потенциалов между цитоплазмой и межклеточной средой.В подобных случаях транспорт осуществляется несколькими сопряжёнными процессами .Пассивный транспорт всегда ведёт к  выравниванию концентраций Например, если повышается концентрация глюкозы в крови, то очень скоро за счёт пассивного транспорта глюкозы увеличивается и её концентрация в клетках. Однако, для нормальной жизнедеятельности организма необходимо, чтобы  концентрация многих веществ, в частности - ионов, существенно отличалась от их концентрации в межклеточной среде . Например, ионов калия  в цитоплазме  гораздо больше, чем снаружи , а ионов  натрия- наоборот. Чтобы постоянно поддерживать эту разность концентраций, надо обеспечить перенос вещества в направлении, обратном пассивному транспорту. Короче,  активный транспорт - это перенос веществ против градиента концентрации. .  Его механизм будет рассмотрен в последнем разделе.

Формула Фика. Проницаемость мембран

Скорость переноса . вещества при  пассивном  транспорте выражается формулой Фика:

dm C 41  - C 42

---- = D.S ----------- = D.S.grad C (1)

dt L

где S - площадь мембраны, L - её толщина; коэффициент D называется  коэффициент диффузии. . Он зависит от природы вещества, в частности от его растворимости в жирах (это связано с тем, что транспорт идёт через билипидный слой), поэтому часто пишут:

D =D". 7b ,

где  7b  -  коэффициент распределения . вещества между _ липидной и водной фазами . (отношение растворимости в жирах к растворимости в воде).На практике измерить по отдельности величины D и L очень трудно,да и не нужно, потому что они входят в формулу (1) всегда вместе.Поэтому обычно формулу для скорости переноса записывают короче:

dm

---- = p.S.(C e  - C i ) 

(2)

dt

D". 7b

Величина р =D/L = ------ называется  проницаемостью мембраны для данного вещества.

Понятие проницаемости, как и сама формула (2), применяется только по отношению к _ пассивному транспорту .. Из сказанного выше ясно, что  проницаемость для жирорастворимых веществ , как правило значительно выше, чем для водорастворимых  (велик коэффициент распределения  b).Мембраны клеток в ходе жизнедеятельности могут значительно менять свою структуру и функциональную активность, поэтому проницаемость мембраны даже в одной и той же клетке может за короткое время значительно изменяться. Далее мы увидим многочисленные примеры этого. В биофизике количество вещества часто выражают не в единицах массы, а в  числе молей . 7 n . В этом случае вместо (2) получим:

d 7n

---- = p.S.(C e  - C i ) 4

(2")

5dt

при этом концентрация выражается в числе молей на единицу объёма. Если нас интересует не скорость переноса, а  общее количество вещества, перенесенного за время t, . формулу (2) или (2") записываем в интегральной форме:

m 7  0(или 7 n 0) = p.S.(C e  - C i ) .t

(3)

  Механизмы пассивного транспорта

В полном смысле слова пассивно, то есть так, как в неживых системах, проникают в клетки только азот и инертные газы. Для транспорта остальных веществ в ходе эволюции выработались специальные механизмы. Транспорт жирорастворимых (гидрофобных) веществ Перенос этих веществ через мембрану происходит благодаря  латеральной диффузии .. Когда молекула вещества подходит вплотную к мембране клетки, то благодаря интенсивному перемещению фосфолипидных молекул скоро  около ней оказывается вакантное место.  Так как переносимое вещество  имеет сродство к липидам,  молекула легко  может занять это свободное место  внедрившись в фосфолипидный слой. Ещё через какое-то время (опять-таки небольшое) свободное место напротив неё окажется уже во втором  липидном слое; через этот свободный участок молекула легко может проникнуть в цитоплазму . Естественно, что точно так же молекулы жирорастворимых веществ могут проходить и из клеток наружу. Такой механизм транспорта иногда называют "способом скачков" (молекула как бы перескакивает с места на место). Если молекула вещества много больше молекул фосфолипидов, ей придётся ждать, пока  на одном участке не сойдутся две или даже три вакансии.  Скорость проникновения таких крупных молекул, естественно,меньше; однако, практически, даже вещества с крупными молекулами (с большой молекулярной массой) достаточно быстро проходят через мембрану, если они хорошо растворимы в жирах (у них большой коэффициент распределения 7 b, и проницаемость достаточно велика).Описанным способом проникают в клетки многие вещества: жирные кислоты, углеводороды, жирорастворимые витамины А и D, наркотизирующие вещества (эфир, хлороформ, пентотал и др.), а также многие яды и лекарственные препараты.

studfiles.net


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта