Закаливание у растений. 1.1 Сущность закаливания растений и его фазы

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Процесс закаливания растений. Закаливание у растений


Процесс закаливания растений

Физиологическая природа процесса закаливания была раскрыта благодаря работам И. И. Туманова и его школы.

Закаливание — это обратимое физиологическое приспособление к неблагоприятным воздействиям, происходящее под влиянием определенных внешних условий. В результате процесса закаливания морозоустойчивость организма резко повышается. Способностью к закаливанию обладают не все растительные организмы, она зависит от вида растения, его происхождения. Растения южного происхождения вообще к закаливанию не способны. У растений северных широт, переживающих значительное понижение температуры, процесс закаливания приурочен лишь к определенным этапам развития. Так, для приобретения способности к закаливанию древесине растения должны закончить процессы роста. Одновременно должен произойти отток различных веществ из надземных органов в корневые системы. Если в течение лета у древесных растений процессы роста не успели закончиться, то это может вызвать массовую гибель растений зимой. Так, часто зимняя гибель вызывается летней засухой. Засуха приостанавливает рост летом, не позволяет древесным культурам завершить ростовые процессы к осени. В результате растения оказываются не способны пройти процессы закаливания и гибнут даже при небольших морозах. Растения, выращенные при несоответствующем фотопериоде, не успевают завершить летний рост и не способны к закаливанию. Исследования показали, что яровые злаки по сравнению с озимыми растут при более пониженных плюсовых температурах, из-за этого в осенний период они почти не снижают темпов роста и не способны к закаливанию. Способность к закаливанию утрачивается весной в связи с началом ростовых процессов. Таким образом, устойчивость растений к морозу, способность пройти процессы закаливания тесно связаны с резким снижением темпов роста, с переходом растений в покоящееся состояние.

Показано, что к закаливанию способен лишь организм в целом, при обязательном наличии корневой системы. Всякое нарушение процессов оттока (кольцевание) препятствует закаливанию. Роль корней не сводится только к тому, что туда оттекают продукты обмена гормоны, способствующие ростовым процессам. Важное значение имеет то, что клетки корня вырабатывают вещества, повышающие устойчивость организма против мороза.

Собственно процесс закаливания требует определенного комплекса внешних условий и проходит в две фазы.

Первая фаза закаливания проходит на свету при несколько пониженных плюсовых температурах (днем около 10°С, ночью около 2°С) и умеренной влажности. В эту фазу продолжается дальнейшее замедление и даже полная остановка ростовых процессов. Особенное значение в развитии устойчивости растений к морозу в эту фазу имеет накопление сахарозы и некоторых других олигосахаров. Показано, что накапливающиеся в процессе закалывания сахара локализуются в разных частях клетки: в клеточном соке, цитоплазме, органеллах (особенно хлоропластах). Благодаря такому распределению часть сахаров прочно удерживается в клетках.

Влияние сахаров на повышение морозоустойчивости растений многосторонне. Накапливаясь в клетках, сахара повышают осмотическое давление. Чем выше концентрация раствора, тем ниже его точка замерзания, поэтому накопление сахаров предохраняет от замерзания большое количество воды, следовательно, заметно уменьшает количество образующегося льда. Накопление сахаров стабилизирует клеточные структуры, в частности хлоропласты, благодаря чему они продолжают функционировать.

Закаливание растенийФото: Thomas Tolkien

Имеются данные, что при накоплении сахаров процесс фотофос-форилирования продолжается даже при  отрицательных температурах. Особенное значение имеет защитное влияние сахаров на белки, сосредоточенные в поверхностных  мембранах  клетки. Условия,  необходимые для прохождения первой фазы закаливания, пониженная плюсован температура и достаточное количество света способствуют накоплению сахаров. В этих условиях  образование сахаров в  процессе фотосинтеза идет с достаточной интенсивностью. Вместе с тем пониженная температура сокращает их трату как в процессе дыхания, так и в процессах роста. Более морозостойкие виды и сорта характеризуются большей способностью к накоплению. сахаров именно при пониженной температуре. Защитное действие сахаров проявляется только в том случае, если оно происходит при одновременном понижении температуры и умеренной влажности. В первую фазу закаливания происходит  уменьшение   содержания свободной  воды. Именно поэтому излишняя   влажность почвы (дождливая  осень) препятствует прохождению процесса закаливания. Чем меньше  в клетках и тканях содержание воды, тем меньше образуется льда и тем меньше опасность повреждения. К концу первой фазы закаливания клетки растений переходят в покоящееся состояние. Происходит процесс обособления цитоплазмы, что, в свою очередь, снижает возможность ее повреждения образующимися в межклетниках кристаллами льда. В эту фазу начинается также перестройка процессов обмена веществ. Особенно интенсивно эта перестройка протекает в период второй фазы закаливания.

Вторая фаза закаливания протекает при дальнейшем понижении температуры (около 0°С) и не требует света. В связи с этим для травянистых растений она может протекать и под снегом. В течение второй фазы происходит перестройка белков цитоплазмы. Происходит новообразование специфических белков. В относительно больших количествах накапливаются водорастворимые белки, отличающиеся менее крупными молекулами, но большей устойчивостью к обезвоживанию.

Важное значение имеет изменение межмолекулярных связей белков цитоплазмы. При обезвоживании, происходящем под влиянием льдообразования, происходит сближение белковых молекул. Связи между ними рвутся и не восстанавливаются в прежнем виде из-за слишком сильного сближения в деформации белковых молекул.

В связи с этим большое значение имеет наличие сульфгидрильных и других гидрофильных группировок, которые способствуют удержанию воды препятствуют сближению молекул белка. Установлен параллелизм между содержанием сульфгидрильных групп и морозоустойчивостью.

В результате изменения свойств белков, межмолекулярных связен между ними постепенное обезвоживание приводит к тому, что в процессе закаливания цитоплазма переходит из состояния золя в гель. Перестройка цитоплазмы способствует увеличению ее проницаемости для воды. Благодаря более быстрому оттоку воды уменьшается опасность внутриклеточного льдообразования.

Не для всех растений необходимо протекание процессов закаливания в две фазы. У древесных растений, обладающих достаточным количеством сахаров, сразу протекают изменения, соответствующие второй фазе закаливания.

Таким образом, в процессе закаливания возникает морозоустойчивость, которая определяется рядом изменений. У закаленных растений благодаря высокой концентрации клеточного сока, уменьшению содержания воды кристаллы льда образуются не в клетке, а в межклетниках. Количество образовавшегося льда в межклетниках у закаленных растении также значительно меньше. Изменение свойств белков цитоплазмы приводит к тому, что они становятся более устойчивыми к обезвоживанию. Накопление сахаров оказывает дополнительное защитное влияние. Цитоплазма закаленных растений более устойчива и к механическому давлению. При закаливании происходят обратимые физиологические изменения. Повышение температуры весной сопровождается противоположными изменениями — происходит процесс закаливания растений. Поэтому весной растения часто гибнут даже от небольших заморозков.

Повышение морозоустойчивости растений имеет большое практическое значение. Для предохранения растений от повреждения морозом важно правильно организовать их питание в осенний период. Усиление фосфорного питания повышает устойчивость растений к морозу, тогда как азотные удобрения, способствуя процессам роста, делают растения более чувствительными.



biofile.ru

Закаливание растений

Гибель растений в результате воздействия температур ниже 0°С зависит от гене­тической природы организма и от тех условий, в которых он находился в пери­од, предшествующий морозам. Так, один и тот же растительный организм может погибнуть при температуре -5°С и перенести температуру до -40...-50°С и даже ниже.

Закаливание — это обратимое физиологическое приспособление к неблаго­приятным воздействиям, происходящее под влиянием определенных внешних условий. Физиологическая природа процесса закаливания к отрицательным температурам была раскрыта благодаря работам И.И. Туманова и его школы. В результате процесса закаливания морозоустойчивость организма резко повы­шается. Способностью к закаливанию обладают не все растительные организ­мы, она зависит от вида растения, его происхождения. Растения южного про­исхождения к закаливанию не способны. У растений северных широт процесс закаливания приурочен лишь к определенным этапам развития. Для приобретения способности к закаливанию растения должны закончить процессы роста. Сигналом к прекращению роста и стимулом для изменений в гормональной системе для растений является сокращение фотопериода и сни­жение температуры. Ослабляется синтез ИУК и гиббереллинов, усиливается об­разование АБК и этилена. Это и приводит к торможению ростовых процессов. Другим условием для приобретения способности к закаливанию является за­вершение оттока веществ. Если в течение лета у древесных растений процессы роста не успели закончиться, то это может вызвать массовую гибель растений зимой. Так, зимняя гибель часто вызывается летней засухой. Засуха приоста­навливает рост летом, не позволяет древесным культурам завершить ростовые процессы к осени. В результате растения оказываются неспособными пройти процессы закаливания и гибнут даже при небольших морозах. Аналогичная кар­тина характерна для растений, выращенных при несоответствующем фотопе­риоде, не успевших завершить летний рост и поэтому неспособных к закалива­нию. Исследования показали, что яровые злаки по сравнению с озимыми рас­тут при более пониженных пониженных температурах, из-за этого в осенний период они почти не снижают темпов роста и не способны к закаливанию. Спо­собность к закаливанию утрачивается весной в связи с началом ростовых про­цессов. Таким образом, устойчивость растений к морозу, способность пройти про­цессы закаливания тесно связаны с резким снижением темпов роста, с перехо­дом растений в покоящееся состояние. Показано, что к закаливанию способен лишь целостный организм, при обязательном наличии корневой системы. Вся­кое нарушение процессов оттока (кольцевание) препятствует закаливанию. Роль корней не сводится только к тому, что туда оттекают продукты обмена, гормо­ны, способствующие ростовым процессам. Важное значение имеет то, что клетки корня вырабатывают вещества, повышающие устойчивость организма против мороза. Собственно процесс закаливания требует комплекса внешних условий и проходит в две фазы.

Первая фаза закаливания проходит на свету при несколько пониженных плю­совых температурах (днем около КГС, ночью около 2°С) и умеренной влажно­сти. В эту фазу продолжается дальнейшее замедление, и даже полная остановка ростовых процессов. Особенное значение в развитии устойчивости растений к морозу в эту фа­зу имеет накопление веществ-криопротекторов, выполняющих защитную функцию: сахарозы, моносахаридов, растворимых белков и др. В этих условиях образование Сахаров в процессе фотосинтеза идет с достаточной интенсивно­стью. Вместе с тем пониженная температура сокращает их трату, как в процессе дыхания, так и в процессах роста. Более морозостойкие виды и сорта характери­зуются большей способностью к накоплению Сахаров именно при пониженной температуре. Показано, что накапливающиеся в процессе закаливания сахара локализуются в разных частях клетки: клеточном соке, цитоплазме, органеллах (особенно хлоропластах). Благодаря такому распределению часть Сахаров прочно удерживается в клетках.

Влияние Сахаров на повышение морозоустойчивости растений многосторон­не. Накапливаясь в клетках, сахара повышают концентрацию клеточного сока, снижают водный потенциал. Чем выше концентрация раствора, тем ниже его точка замерзания, поэтому накопление Сахаров стабилизирует клеточные струк­туры, в частности хлоропласты, благодаря чему они продолжают функциониро­вать. Процесс фотофосфорилирования продолжается даже при отрицательных температурах. Особенное значение имеет защитное влияние сахара на белки, сосредоточенные в поверхностных мембранах клетки. Защитное действие Саха­ров проявляется только в том случае, если происходит при одновременном по­нижении температуры. Имеются данные, что сахара повышают устойчивость именно специфических белков, образующихся при пониженной температуре. В первую фазу закаливания происходит также уменьшение содержания сво­бодной воды. Излишняя влажность почвы (дождливая осень) препятствует про­хождению процесса закаливания. Чем меньше в клетках и тканях содержание воды, тем меньше образуется льда и тем меньше опасность повреждения. В соста­ве мембран возрастает уровень и изменяется структура фосфолипидов.

Повыша­ется содержание ненасыщенных жирных кислот. Это позволяет поддерживать высокую проницаемость мембран, необходимую для транспорта воды. Проис­ходит перестройка ферментных систем процесса дыхания, возрастает альтерна­тивный путь дыхания, что усиливает рассеивание энергии в виде тепла. Влияние света в первую фазу закаливания не ограничивается увеличением накопления Сахаров, помимо этого свет оказывает регуляторное влияние. Это подтверждается тем, что этиолированные растения не способны к закаливанию даже при обогащении их сахарами. В восприятии изменений освещенности важ­ная роль принадлежит фитохрому. Фитохром оказывает влияние на генетиче­ский аппарат клетки и способствует активизации генов, участвующих в переходе в покоящееся состояние. Среди механизмов адаптации к действию пониженных температур — синтез ряда стрессовых белков, к которым относят десатуразы, дегидрины — LEA-белки, а также белки холодового шока — БХШ. Эти гидрофильные бел­ки синтезируются в цитоплазме под действием низких температур и выделя­ются в клеточную стенку. БХШ располагаются на поверхности кристаллов льда, препятствуют их росту, тормозят образование межклеточного льда. БХШ разобщают окислительное фосфорилирование, что позволяет использо­вать энергию окисления на повышение температуры органов растений на 4—7°С выше окружающего воздуха.

В последние годы были изолированы гены, ответственные за синтез БХШ, об­разование которых позволяет переносить низкие температуры. В арабидопсисе идентифицирован ген — гомолог «противоморозного» гена, от которого зависит способность адаптироваться к низким температурам. Показана роль АБК в обра­зовании этих белков. Так, мутанты арабидопсиса, не способные к синтезу АБК, не обладают устойчивостью к низким температурам. Значение АБК подтверждается тем, что при низких температурах возрастание содержания АБК в растении увели­чивает и устойчивость. Например, проростки люцерны переносят температуру до —10°С. Это свойство может быть увеличено путем предварительного выдерживания при 4°С или обработкой АБК, поскольку оба эти способа вызывают синтез БХШ. К концу первой фазы закаливания клетки растений переходят в покоящееся состояние. Происходит процесс обособления цитоплазмы, что, в свою очередь, снижает возможность ее повреждения образующимися в межклетниках кристал­лами льда. Особенно интенсивно перестройка обмена веществ протекает в пе­риод второй фазы закаливания.

Вторая фаза закаливания протекает при дальнейшем понижении температу­ры (около 0°С) и не требует света. В связи с этим для травянистых растений она может протекать и под снегом. В эту фазу происходит отток воды из клеток, а также перестройка структуры протопласта. Продолжается новообразование специфических, устойчивых к обезвоживанию белков. Опыты показали, что в присутствии ингибиторов синтеза белка процесс закаливания не происходит (Т.И. Трунова). Важное значение имеет изменение межмолекулярных связей бел­ков цитоплазмы. При обезвоживании, происходящем под влиянием льдообра­зования, происходит сближение белковых молекул. Связи между ними рвутся и не восстанавливаются в прежнем виде из-за слишком сильного сближения и деформации белковых молекул. В связи с этим большое значение имеет на­личие сульфгидрильных и других гидрофильных группировок, которые способст­вуют удержанию воды и препятствуют сближению молекул белка. Перестройка цитоплазмы способствует увеличению ее проницаемости для воды. Благодаря более быстрому оттоку воды уменьшается опасность внутриклеточного льдооб­разования. Не для всех растений необходимо протекание процессов закалива­ния в две фазы. У древесных растений, обладающих достаточным количеством Сахаров, сразу протекают изменения, соответствующие второй. Таким образом, в процессе закаливания возникает морозоустойчивость, ко­торая определяется рядом изменений. У закаленных растений благодаря высо­кой концентрации клеточного сока, уменьшению содержания воды кристаллы льда образуются не в клетке, а в межклетниках. Количество образовавшегося в межклетниках льда у закаленных растений также значительно меньше.

Изменение свойств белков цитоплазмы приводит к тому, что они становятся более устойчивыми к обезвоживанию. Накопление Сахаров оказывает дополни­тельное защитное влияние. Важное значение имеет повышение устойчивости мембран к обезвоживанию и механическому давлению. Имеются данные, что при закаливании увеличивается количество фосфолипидов и ненасыщенных жирных кислот. Важно отметить, что в клетках закаленных растений накапли­вается АТФ. Чем больше развитие указанных признаков у отдельных видов и сортов растений, тем выше их морозоустойчивость. Морозоустойчивость — ком­плексный признак, запрограммированный генетически, однако он проявляется в определенных условиях среды. Повышение температуры весной сопровожда­ется противоположными изменениями. Поэтому весной растения часто гибнут даже от небольших заморозков. Повышение морозоустойчивости растений имеет большое практическое зна­чение. Для предохранения растений от повреждения морозом важно правильно организовать их питание в осенний период. Усиление фосфорного питания повы­шает устойчивость растений к морозу, тогда как азотные удобрения, способст­вуя процессам роста, делают растения более чувствительными. Благоприятное влияние на морозоустойчивость оказывает обработка такими микроэлементами как цинк, молибден, кобальт. Очень большое значение имеет также выведение морозоустойчивых сортов растений. Делаются попытки создания морозо­устойчивых трансгенных растений путем введения генов, кодирующих ферменты синтеза веществ-криопротекторов, например, пролина и бетаина.

 

fizrast.ru

Закаливание растений - «Энциклопедия»

ЗАКАЛИВАНИЕ РАСТЕНИЙ, формирование у растений устойчивости к воздействию неблагоприятных абиотических факторов среды (низкой и высокой температуры, засухи, засоления почвы и др.). Обязательным условием закаливания растений является присутствие соответствующего фактора неповреждающего действия (например, околонулевой температуры при закаливании растений к морозу). При закаливании в растениях происходят изменения на различных уровнях организации - с молекулярного до организменного. Общие признаки закалённых растений: повышенное содержание белков стрессорного ответа, наличие высоких концентраций защитных веществ (сахаров, пролина и др.), повышение текучести мембран, частичное обезвоживание клеток, синтез специфических веществ (например, белков холодового шока при закаливании растений к морозу). Термин «закаливание растений» наиболее широко используется применительно к формированию устойчивости к низким температурам. У двулетних и многолетних растений закаливание начинается осенью с вхождения в покой. При снижении температуры до 0 °С происходит отклонение от нормы ряда физиологических параметров (например, функциональная и структурная перестройка клеток в результате экспрессии генов белков холодового шока). Если действие неблагоприятного фактора не достигает порогового уровня, при котором растение погибает, при слабых и умеренных морозах наступает следующая фаза закаливания, так называемая фаза адаптации - выход воды из клеток и образование льда в межклетниках, чему способствуют наличие в них так называемых нуклеаторов льда (соединений различной природы, способных инициировать льдообразование) и высокая водная проводимость мембран; в результате не происходит губительного для клеток образования внутриклеточного льда. В закалённом состоянии травянистые растения переносят морозы до -20 °С, древесные - до -60 °С, а при дополнительном лабораторном закаливании растений их ткани выдерживают длительное воздействие сверхнизких температур сжиженных азота и гелия. Процесс закаливания растений обратим. Оттаивая и трогаясь в рост, растения теряют приобретённую морозостойкость, поэтому деревья, выдерживающие зимой морозы до -60 °С (например, лиственница), летом погибают при температуре от -7 до -8 °С. Различные органы растений имеют различную способность к закаливанию. Так, например, надземная часть яблони переносит понижение температуры до -35...-45 °С, а корни начинают вымерзать при -7...-12 °С.

Реклама

Для повышения устойчивости сельскохозяйственных  растений к неблагоприятным факторам используют различные искусственные приёмы: воздействие стрессорными факторами неповреждающего характера, обработка антистрессорными и антиоксидантными препаратами.

Лит.: Туманов И. И. Физиология закаливания и морозостойкость растений. М., 1979; Кузнецов В. В., Дмитриева Г. А. Физиология растений. 2-е изд. М., 2006; Трунова Т. И. Растение и низкотемпературный стресс. М., 2007.

Т. И. Трунова, А. Ю. Куленкамп.

knowledge.su

Закаливание растений

Для того, чтобы растения смогли перенести действие высоких и низких температур, необходимо проводить их закаливание.

Путем закаливания прорастающих семян в течение ряда поколений выведены холодоустойчивые сорта томата (И. И. Туманов). Интересны исследования А. В. Благовещенского и В. П. Филатова, показавшие, что в живой ткани растения или животного организма в условиях низкой температуры (около 1°С) накапливаются особые вещества, названные ими биогенными стимуляторами, обладающие целебными свойствами. Вытяжка из листьев алоэ, выдержанных в течение 25 дней при 2—3°С, значительно ускоряет деление эмбриональных клеток листа сирени. При обработке семян ячменя такой вытяжкой ускоряется развитие растений, повышается урожайность зерна.

И. И. Туманов разработал теорию закаливания растений к действию низких температур. Сущность ее заключается в том, что у растений под влиянием низких положительных температур накапливаются сахара и другие соединения — первая фаза закаливания. Дальнейшее повышение морозоустойчивости проходит уже при отрицательных температурах, но не повреждающих клетки, — вторая фаза закаливания. Она проходит сразу же после первой при температуре немного ниже 0°С. В эту фазу наблюдается частичная потеря воды клетками. Под действием сахаров, накопившихся в клетках, изменяются биоколлоиды и возрастает относительное количество коллоидно-связанной воды. Эти изменения делают биоколлоиды устойчивыми к низким температурам.

Ингибиторы роста типа АБК сами по себе не влияют на морозоустойчивость, но, ослабляя и ингибируя ростовые процессы, обусловливают наступление периода покоя тканей и тем самым повышают способность у древесных растений к закаливанию.

Опыты показали, что стимуляторы роста (гиббереллины) не снижают способность к закаливанию у растений, находящихся в состоянии глубокого покоя. Вместе с тем они могут резко ухудшать эту способность у растений. Так, черенки черной смородины, обработанные гиббереллином после первой фазы закаливания и помещенные затем в благоприятные условия для прохождения второй фазы закаливания, выдерживали понижение температуры лишь до —5°С, в то время как контрольные растения — до —40°С.

Следует отметить, что переход растения из органического (глубокого) покоя в вынужденный сопровождается накоплением гиббереллинов в активной форме. Последнее может происходить в замерзших растениях при умеренных и небольших морозах. В конце зимы максимальное содержание гиббереллинов у древесных растений поддерживается длительное время (более месяца).

На морозоустойчивость растений оказывает влияние фотопериод. Установлено, например, что длинный день способствует образованию в листьях черной смородины стимуляторов роста, а короткий — накоплению ингибиторов. Фотопериод является мощным фактором для перехода растений в период покоя (белая акация, береза). У озимых злаков, не имеющих периода покоя, в первую фазу закаливания при относительно низкой температуре (до 10°С) и солнечной погоде накапливаются углеводы. Если осенью погода ясная и прохладная, озимые хлеба хорошо перезимовывают, так как первая фаза закаливания у них проходит в благоприятных условиях. Для закаливания озимых растений свет необходим не только для накопления в клетках защитных веществ в процессе фотосинтеза, но и для поддержания ультраструктуры протопласта и ростовых процессов. Растения озимой пшеницы можно закалить и в темноте при 2°С, если их корни или узлы кущения погрузить в раствор сахарозы. Такие растения выдерживают морозы до 20°С.

Обнаружено, что в период закаливания растений высокоморозоустойчивого сорта озимой пшеницы Ульяновка при температуре, близкой к 0°С, хлоропласты листьев обогащаются сахарами — количество их увеличивается в 2,5 раза. Вместе с тем в пересчете на белок в хлоропластах их накапливается меньше, чем в целом листе, так как значительная часть сахаров локализуется в клеточном соке, что, по-видимому, предотвращает образование льда в вакуолях. Однако наблюдения за динамикой накопления сахаров в хлоропластах показали, что во время закаливания содержание сахаров в хлоропластах в пересчете на белок возрастает в 3 раза, а в листьях — лишь в 1,5 раза. В хлоропластах содержатся те же формы сахаров, что и в листьях: фруктоза, глюкоза, сахароза, олигосахара типа полифруктозанов (Т. И. Трунова). Накопление сахаров в хлоропластах в значительной мере зависит от соотношения ряда физиологических процессов, протекающих при температуре, близкой к 0°С. Так, с понижением температуры при закаливании растений интенсивность дыхания снижается сильнее, чем фотосинтез, в результате чего наблюдается задержка ростовых процессов. Повышение содержания сахаров в хлоропластах коррелирует с морозоустойчивостью растений. Следовательно, сахара оказывают стабилизирующее действие на клеточные структуры. Для характеристики морозоустойчивости и жизнеспособности растений канадские ученые (Bolduc R., Rancourt L. и др.) предложили ввести показатель «индекс активности свободных фосфатаз» — отношение активности фермента в исходном растении к активности его в замороженном состоянии при данной температуре — как критерий морозоустойчивости растения. Установлено, что при замерзании растения кислая фосфатаза переходит в свободное состояние и диспергируется в цитоплазме. Исследования показали, что охлаждение до температур, близких к замерзанию, приводит к укреплению связи фермента в клетке; при дальнейшем охлаждении -происходит его освобождение и вымывание в наружный раствор. Предполагается, что переход кислых фосфатаз в свободное состояние является начальной фазой повреждения растения при его замерзании.

Холодоустойчивость зародыша и растения в целом повышается, если намоченные и набухшие семена в течение 5—10 дней закалять попеременно температурами выше и ниже 0°С. Холодоустойчивость повышается при намачивании семян кукурузы в растворе алюмокалиевых квасцов; проростки с 4—5 листьями, полученные из таких семян, выдерживают температуру —5°С в течение суток. По данным Д. Ф. Проценко, холодоустойчивые сорта и гибриды кукурузы отличаются более энергичным прорастанием семян и более быстрым развитием пластидного аппарата, более высоким уровнем содержания хлорофилла и желтых пигментов — каротиноидов.

Следовательно, зная природу холодоустойчивости и морозоустойчивости, можно адаптацией к внешним условиям в значительной мере повысить устойчивость растений против низких температур.

Установлено, что растения, перенесшие небольшую засуху, повторную переносят с меньшими потерями. Однако устраивать искусственную закалку взрослых растений в производственных условиях трудно. П. А. Генкель предложил подвергать закаливанию наклюнувшиеся семена. Опыт показал, что растения, выросшие из семян, подвергнутых предпосевной закалке, приобретают повышенную устойчивость к засухе.

Суть его метода закаливания растений заключается в том, что проростки, которые только наклюнулись, намачивают и подсушивают. В результате этого повышается засухоустойчивость растений и увеличивается их урожайность. Это объясняется реакцией и адаптацией ростков семян, а затем и взрослого растения к частичному обезвоживанию протопласта под действием засухи, последняя, влияя на взрослое растение, приводит к частичному разрушению коллоидной системы цитоплазмы, под влиянием закаливания в клетках проростков повышается гидрофильность коллоидов, осмотический потенциал. Все это приводит к повышению водоудерживающей силы биоколлоидов протопласта, усилению интенсивности обмена веществ, фотосинтеза, активности ферментов, транспирации. Под влиянием закаливания, по П. А. Генкелю, возрастает количество связанной воды и гидрофильность коллоидов протопласта, что в дальнейшем действует на направленность биохимических процессов и в результате приводит к повышению засухоустойчивости растений.

Закаленные растения приобретают анатомо-морфологическую структуру, свойственную засухоустойчивым растениям, и имеют более развитую корневую систему. Исследования митохондрий проростков кукурузы в возрасте 4, 8 и 11 дней показали, что окислительное фосфорилирование (Р/О) выше у закаленных, чем у незакаленных растений. Это свидетельствует о большей продуктивности дыхания закаленных растений, о взаимосвязи окисления и фосфорилирования. При действии на растения высокой температуры (45°С) и суховея происходят, по-видимому, глубокие структурные изменения митохондрий, повреждение или ингибирование ферментов фосфорилирующего механизма. В результате осуществляется лишь нефосфорилирующее окисление без аккумуляции энергии.



biofile.ru

Закаливание растений — Юнциклопедия

Закаливание растений — повышение их сопротивляемости к неблагоприятным факторам внешней среды.

У озимых и многолетних культур, например плодовых деревьев, закаливание — это естественный процесс, происходящий в поле или в саду осенью и зимой. Сначала у растений прекращается рост, они вступают в период покоя, накапливают много запасных питательных веществ — Сахаров, которые в дальнейшем приобретают защитные свойства. Затем под влиянием низкой температуры (около 0 °C) у растений изменяется физиологическое состояние клеток, они подготавливаются к перенесению начинающихся морозов. Это первая фаза закаливания.

В морозный период у растений перестраивается структура цитоплазмы клеток, она обезвоживается и становится выносливой к механическим деформациям. Из клеток вода поступает в межклетники. Это предохраняет клетки от образования в них льда и повреждений. Растения приобретают морозостойкость. Это вторая фаза закаливания. Во время оттепелей растения могут потерять это ценное свойство, но они способны к повторному закаливанию при наступлении морозов.

Закаливание проводят и в искусственных условиях. Для этого семена теплолюбивых культур намачивают в мешочках до появления первых наклюнувшихся семян (их должно быть не более 5%) и затем выдерживают ежедневно 12–18 ч при температуре от −1 до +5 °C и 6–12 ч при 18–20 °C, меняя температурный режим в течение суток. Семена томата закаливают 10–12 суток, огурца — 8–10 суток. Закаливают и семена холодостойких растений — капусты, моркови, лука. После намачивания их выдерживают при температуре от −2 до 0 °C в течение 10–15 суток.

Растения, выросшие из закаленных семян, лучше переносят понижение температуры весной и осенью, увеличивают урожайность.

Для повышения засухоустойчивости растений семена также закаливают: сначала намачивают, а затем подсушивают. Во время обезвоживания зародыш приспосабливается к засухе. Это передается и молодым растениям. У них цитоплазма более вязкая, эластичная, содержит больше связанной воды, что помогает уже всходам переносить засуху. Однако закаливать можно только те культуры, у которых засухоустойчивость связана с обезвоживанием цитоплазмы: пшеницу, ячмень, просо, кукурузу, морковь, томат, фасоль и некоторые другие (см. Зимостойкость растений, Засухоустойчивость растений).

Закаливают также рассаду сельскохозяйственных культур перед высадкой её в открытый грунт.

yunc.org

Закаливание растений - это... Что такое Закаливание растений?

 Закаливание растений         приобретение растениями устойчивости к неблагоприятным условиям — морозам, холоду, засухе, засолению и др. Возникающие при З. р. свойства обусловливаются изменениями обмена веществ. З. р. к морозу происходит только осенью, когда растения под влиянием короткого дня прекращают рост и переходят в состояние глубокого покоя, а также зимой при слабых и умеренных морозах. Поэтому деревья, выдерживающие зимой морозы до —60°С (лиственница, ель, сосна и др.), летом погибают при температуре от —7 до —8°С. Первая фаза З. р. проходит при температуре около 0°С в условиях освещения, когда в растениях накапливаются углеводы в результате снижения интенсивности дыхания. Вторая фаза З. р. протекает при слабых и умеренных морозах и сопровождается потерей клетками воды вследствие образования льда. При этом происходит обособление протопласта и образование на его поверхности липоидно-белковых слоев; плазмодесмы втягиваются внутрь клетки, и живое содержимое клетки становится нечувствительным к давлению льда в межклетниках. З. р. применяется и для повышения холодостойкости огурцов, томатов, хлопчатника, кукурузы и др. растений. Впервые русский огородник Е. А. Грачев применил (1875) З. р., выдерживая семена кукурузы перед их посевом при 0°С (на снегу) в течение двух недель; в результате он получал зрелые початки кукурузы в условиях Петербурга. Предложено также переменное воздействие на семена растений (томатов) низкими и повышенными температурами. Для З. р. против засухи (См. Засуха) применяют предпосевное намачивание и последующее подсушивание семян. Закаливание происходит и у вегетирующих растений под влиянием засухи в природной обстановке, но урожай их при этом снижается. Разработаны также методы закаливания к засолению почвы — хлоридному, сульфатному или карбонатному (содовому) — путём выдержки семян в соответствующих солевых растворах.

         Лит.: Туманов И. И., Современное состояние и очередные задачи физиологии зимостойкости растений, в сборнике: Физиология устойчивости растений, М., 1960; Генкель П. А., физиология устойчивости растительных организмов, в кн.: физиология сельскохозяйственных растений, т. З. М., 1967; Строгонов Б. П., Солеустойчивость растений, там же; Барская Е. И., Изменения хлоропластов и вызревание побегов в связи с морозоустойчивостью древесных растений, М., 1967; Физиология состояния покоя у растений, М., 1968.

         П. А. Генкель.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Закаливание организма
  • Закалка

Смотреть что такое "Закаливание растений" в других словарях:

  • ЗАКАЛИВАНИЕ РАСТЕНИЙ — постепенное формирование у растений способности успешно выдерживать различные температурные, климатически неблагоприятные воздействия продолжительного характера морозы, холода, засухи, засоления и т. д. Процесс протекает в два этапа:… …   Экологический словарь

  • закаливание растений — процесс естественного повышения зимостойкости растений, происходящий в результате физиологических и биохимических изменений внутри клеток растения, после прекращения роста и листопада при низких положительных и небольших отрицательных… …   Сельскохозяйственный словарь

  • ЗАКАЛИВАНИЕ РАСТЕНИЙ — приобретение растениями устойчивости к неблагоприятным условиям морозам, холоду, засухе, засолению и др. Возникающие при 3. р. свойства обусловливаются изменениями обмена веществ …   Словарь ботанических терминов

  • ЗАКАЛИВАНИЕ — воспитание, выработка у растений и приобретение ими устойчивости к перенесению неблагоприятных условий. Возникающие при 3. свойства обусловливаются определенными изменениями в обмене веществ и физико химических показателей клеток …   Словарь ботанических терминов

  • Зимостойкость растений —         способность растений переносить без повреждений неблагоприятные зимние условия. При сильных морозах в результате образования льда в клетках или межклетниках может произойти вымерзание растений. Появляющаяся на посевах при оттепелях… …   Большая советская энциклопедия

  • Жаровыносливость растений —         жароустойчивость растений, способность растений выносить перегрев. Некоторые бактерии, например, хорошо развиваются при 50 65°С и погибают лишь при 70 80°С. Из цветковых растений наиболее жароустойчивы Суккуленты; некоторые кактусы… …   Большая советская энциклопедия

  • Вымерзание растений —         гибель растений или их частей в результате образования льда в тканях под влиянием морозов. Вода в растительных клетках и межклетниках начинает замерзать при температуре ниже 1°С. Лёд разрушает невидимую (субмикроскопическую) структуру… …   Большая советская энциклопедия

  • Холодостойкость —         растений, способность растений длительное время переносить низкие положительные температуры (от 1 до 10 °С). Х. следует отличать от морозоустойчивости (См. Морозоустойчивость) растений, под которой обычно понимают устойчивость растений к… …   Большая советская энциклопедия

  • Засухоустойчивость —         растений, способность растений выносить значительное обезвоживание клеток тканей и органов, а также перегрев. Наиболее засухоустойчивы Ксерофиты, к которым по своей способности выносить обезвоживание приближаются обитающие в сухих… …   Большая советская энциклопедия

  • Морозоустойчивость —         растений, способность растений выживать в период кратковременных заморозков или длительных морозов. Один из видов зимостойкости растений (См. Зимостойкость растений). У зимующих растений М. развивается каждый год в результате длительной и …   Большая советская энциклопедия

dic.academic.ru

1.1 Сущность закаливания растений и его фазы. Закаливание растений

Похожие главы из других работ:

Астрономические основы календаря

4.2 Конфигурации и фазы Луны

Как известно, Луна, диаметр которой почти в 4, а масса - в 81 раз меньше, чем у Земли, обращается вокруг нашей планеты на среднем расстоянии в 384 000 км. Поверхность Луны холодна и светится она отраженным солнечным светом...

Биосфера и ее строение

1.1 Сущность биосферы

Существует два основных определения понятия «биосфера», одно из которых и дало начало применению данного термина. Это понимание биосферы как совокупности всех живых организмов на Земле. В.И. Вернадский...

Влияние физических факторов на фенотипические свойства микроорганизмов

2.2 Этапы и механизмы формирования биопленок и распада на поверхности раздела твердой и жидкой фазы, их регуляция

Погруженная в воду твердая поверхность немедленно покрывается так называемой первичной пленкой (conditioningfilm), изменяющей свойства этой поверхности . Формирование такого слоя молекул является первой стадией...

Возникновение жизни на Земле и ее разнообразие

Сущность жизни

Долгое время в науке господствовали два основных подхода к решению вопроса о сущности жизни: механицизм и витализм. Механистический материализм, характерный для классической науки Нового времени...

Закаливание растений

1.4 Реакция адаптации корневых систем, воздействуя на них температурами закаливания

Адаптация растений к разным неблагоприятным факторам, в том числе и к низким температурам, связана с их переходом в качественно новое состояние стресса . При переходе в это состояние растению свойственно сильное торможение роста. Тем самым...

Изучение ретровирусов

6. Фазы репликации

Репликативный цикл ретровирусов удобно разделить на пять фаз: 1. ранние события: адсорбция, проникновение и "раздевание"; 2. превращение вирусного РНК-генома в полноразмерную неинтегрированную линейную (свободную) ДНК; 3...

Инстинктивное поведение

4. Поисковая и завершающая фазы поведенческого акта

Ключевые раздражители действуют принудительно, что животное вынуждено в своем поведении всецело повиноваться пусковой ситуации. Но значит ли это, что у животных нет никакой возможности проявить собственную инициативу...

Клеточный цикл

2. Клеточный цикл: фазы

Клеточный цикл эукариот разделяют на четыре фазы. В стадии непосредственного деления клеток (митоза) конденсированные метафазные хромосомы поровну распределяются между дочерними клетками (M-фаза клеточного цикла - mitosis)...

Микрофлора молока

Фазы изменения микрофлоры парного молока

Первая фаза- бактерицидная, когда жизнедеятельность микроорганизмов в молоке подавляется. Микробы в этой фазе, как правило, не размножаются, иногда их количество даже уменьшается в результате бактерицидного действия лактеина I и II...

Особенности строения клетки

5. Понятие об углеродном питании растений. Физиологическая сущность углеродного питания

Из всех перечисленных типов питания углеродом фотосинтез зеленых растений, при котором построение органических соединений идет за счет простых неорганических веществ (С02 и Н20) с использованием энергии солнечного света...

Сущность и развитие гелиобиологии

1. Сущность гелиобиологии

...

Теория относительности

8. Сущность СТО

Следствием постулатов СТО являются преобразования Лоренца, заменяющие собой преобразования Галилея для нерелятивистского, «классического» движения. Эти преобразования связывают между собой координаты и времена одних и тех же событий...

Физиология клеточного возбуждения

2.6 Фазы ПД

При подробном рассмотрении ПД можно выделить 6 фаз его развития (рис. 5). 1. Медленная деполяризация - от МП до критического уровня деполяризации (КУД), по сути представляет собой локальный ответ на пороговый раздражитель. 2...

Цитология и гистология

4. Мейоз. Его фазы и биологический смысл

Мейоз (или редукционное деление клетки) - деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза)...

Человек как предмет естественнонаучного познания

2. Сущность проблемы антропогенеза

Антропогенез (от греч. anthropos - человек, genesis - развитие) - процесс эволюции предшественников современного человека, палеонтология человека. Также - наука, изучающая этот процесс...

bio.bobrodobro.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта