Срез двудольного растения. Работа 3. Строение стебля двудольного древесного растения Липы сердцелистной (Tília cordáta Mill.) (рис. 32).

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Лист. Классификация листьев. Анатомическое строение листьев двудольных и однодольных растений. Срез двудольного растения


Анатомическое строение корневищ двудольных растений — КиберПедия

 

Корневище змеевика

 

На поперечном срезе видно, что корневище имеет пучковый тип строения. Снаружи оно покрыто тонким слоем тёмно-бурой пробки. Проводящие пучки расположены кольцом, овальной или веретеновидной формы, открытые, коллатеральные. С наружной (со стороны флоэмы) и внутренней (со стороны ксилемы) стороны к пучкам примыкают небольшие группы слабо утолщённых, слегка одревесневших склеренхимных волокон. Основная паренхима состоит из округлых клеток, образующих крупные, особенно в сердцевине, межклетники (аэренхима). В клетках паренхимы содержатся мелкие простые крахмальные зёрна и очень крупные друзы оксалата кальция.

 

 

Рис.. Корневище змеевика; поперечный срез: А – схема,

Б – фрагмент среза через проводящий пучок: 1 – клетки основной паренхимы; 2 – друза оксалата кальция; 3 – механические волокна; 4 – флоэма; 5 – камбий; 6 – ксилема; 7 – перидерма

Корневище солодки

 

 

 

А Б

 

Рис.. Корневище солодки; поперечный срез:

А – схема: 1 – перидерма; 2 – сердцевинный луч; 3 – флоэма;

4 – камбий; 5 – ксилема; 6 – сердцевина;

Б – часть поперечного среза: 1 – паренхима коры; 2 – лубяные

волокна; 3 – кристаллоносная обкладка; 4 – облитерированный луб; 5 – функционирующая флоэма; 6 – камбий; 7 – сосуды древесины; 8 – либриформ; 9 – сердцевинный луч

 

На поперечном срезе видно, что корневище имеет непучковое, лучистое строение. Снаружи корневище покрыто многослойной пробкой. Под пробкой находится первичная кора, состоящая из крупных тангентально вытянутых клеток. За первичной корой идет сильно развитая широкая вторичная кора. В ней хорошо заметны широкие, кнаружи иногда расширяющиеся сердцевинные лучи, чередующиеся с флоэмой, состоящей из ситовидных трубок, лубяных волокон и паренхимных клеток. Ситовидные трубки, кроме узкого слоя, прилегающего к камбию, сдавлены и представляют собой так называемый деформированный луб. Ксилема состоит из сосудов разного диаметра, склеренхимных волокон с кристаллоносной обкладкой и паренхимы, содержащей крахмал. Центральная часть корневища занята паренхимой сердцевины.

Подземные столоны и клубни

Клубни утолщения подземного побега как у картофеля, топинамбура. Клубневые утолщения начинают развиваться на концах подземных стеблей и столонов. Столоны недолговечны и разрушаются обычно в течение вегетационного периода, этим они и отличаются от корневищ.

В клубнях разрастаются преимущественно паренхимные клетки сердцевины. Проводящие ткани развиты очень слабо и заметны на границе сердцевины и коры. Снаружи клубень покрывается перидермой с толстым слоем пробки, помогающей переносить длительный зимний покой.

Листья на клубне очень рано опадают, но оставляют рубцы, в виде так называемых глазков клубня. В каждом глазке находится по 2-3 пазушных почки, из которых прорастает только одна. Почки при благоприятных условиях легко прорастают, питаясь запасными веществами клубня и вырастают в самостоятельное растение.

Таким образом, третья ведущая функция подземных побегов вегетативное возобновление и размножение.

Некоторые виды растений образуют весьма своеобразные листовые клубни (например, тонколистный сердечник). Это видоизмененные листовые пластинки, сидящие на черешках корневищ. Эти листовые клубни имеют лопасти, перистое жилкование и даже ткань мезофилма, но бесхлорофильны и приспособлены для откладывания запасного крахмала.

Клубнелуковицы и луковицы

Клубнелуковица гладиолуса похожа по внешнему виду на луковицу. Однако на продольном срезе видно, что ее стеблевая часть сильно развита и превращена в клубень, содержащий запасные вещества. Снизу клубнелуковицы возникают многочисленные придаточные корни, образующие мочковатую систему. Среди них имеются и контрактильные (втягивающиеся) корни.

Луковица представляет еще один вид сильно укороченного подземного побега. В противоположность клубню она имеет сравнительно небольшую стеблевую часть ? донце. К донцу прикреплены многочисленные сочные листья, налегающие друг на друга и получившие название луковичных чешуй.

У огородного лука, например, мясистые чешуи снаружи покрыты защитными пленчатыми сухими чешуями, поэтому вся луковица такого типа называется пленчатой туникатной или концентрической. У лилий мясистые чешуи налегают друг на друга черепитчато, соответственно, и луковица называется черепитчатой.

Сочные чешуи луковицы являются только низовыми питающими листьями побега. Верхние зеленые листья находятся в верхушечной почке донца.

Луковица Клубнелуковица

 

Все луковицы объединяются в две категории: с корневищами и без корневищ. Луковицы с корневищами обладают способностью размножаться откидышами: из донца луковицы отрастают корневища, которые удлиняются горизонтально в почве и на некотором расстоянии от материнской луковицы образуют новую луковицу ? откидыщ. Луковичка укореняется и через несколько лет может зацвести. К этой категории относятся некоторые тюльпаны и дикорастущие виды лука.

Луковицы без корневищ знакомы всем, потому что служат обычным посадочным материалом в овощеводстве и цветоводстве.

В пазухах сочных листьев закладываются дочерние луковицы (детки или зубки), которые развиваются до цветения. Много луковичек развивается, например, у чеснока.

Запасание воды в паренхимных клетках сочных чешуй обеспечивается благодаря выработке этими клетками особых слизистых веществ, сильно набухающих в воде и удерживающих воду.

В большинстве случаев луковичные ведут себя как эфемероиды. Их надземные побеги существуют весьма непродолжительное время: появляются рано весной и отмирают уже в начале лета. Растения как бы «убегают от засухи».

Суккуленты

Суккулентами называют растения, имеющие сочные, мясистые листья или стебли, которые служат своеобразными резервуарами для запасания влаги. Эту влагу суккуленты очень бережно и экономно расходуют на протяжении засушливого периода.

Суккуленты разделяются на две большие группы:

Стеблевые суккуленты – имеют мясистые стебли, листья же, как правило, превратились в колючки (для уменьшения транспирации). В качестве примеров стеблевых суккулентов можно назвать всем известные американские кактусы и очень похожие на них африканские молочаи.

 

Листовые суккуленты – имеют толстые, мясистые листья. К ним относятся толстянковые (Crassulaceae): очиток, золотой корень; лилейные, амариллисовые, агавы, алоэ, гастерии, гавортии.

 

Другие метаморфозы побегов

Особый интересный случай метаморфоза почки в суккулентный орган ? кочан наблюдается у обычной культурной капусты. Как известно, капуста является двулетним растением. В первый год появляются розеточные, слегка суккулентные листья, затем почка резко увеличивается в размерах и превращается в кочан. На второй год после перезимовки капуста, как типичный двулетник, дает удлиненный цветоносный побег.

У растений наблюдается большое разнообразие шипов и колючек, которые, к тому же, имеют разное происхождение. Например, у кактусов и барбарисов колючки представляют собой видоизмененные листья. Обычно такие колючки предназначены, в первую очередь, для уменьшения транспирации, защитная же функция в большинстве случаев является второстепенной.

Другие растения (боярышник, дикая яблоня) имеют колючки побегового происхождения – это видоизмененные укороченные побеги. Нередко они начинают развиваться как нормальные облиственные побеги, а затем одревесневают и утрачивают листья.

Дальнейший шаг в недоразвитии листьев и передачи их функций зеленым стеблям приводит к формированию таких метаморфизированных органов, как филлокладии и кладодии.

Филлокладии (греч. филлон – лист, кладос – ветвь) – это плоские листоподобные стебли и даже целые побеги. Наиболее изестным примером растений, имеющих метаморфозы подобного рода, являются иглицы (Ruscus). Эти растения произрастают в Крыму и на Кавказе; нередко они разводятся и в комнатных условиях. Весьма интересно, что на листопобобных побегах иглицы развиваются чешуевидные листья и соцветия, чего никогда не бывает на нормальных листьях. Кроме того, филлокладии как и листья имеют ограниченный рост.

 

Кладодиями же называют уплощенные стебли, которые в отличие от филлокладиев, сохранили способность к длительному росту. Это достаточно редкие видоизменения и встречаются, например, у австралийских мюленбекий.

 

У многих лазящих растений (горохи, чины, тыквы и пр.) наблюдается видоизменение листьев в усики, которые обладают способностью закручиваться вокруг опоры. Стебель у таких растений обычно тонкий и слабый, неспособный сохранять вертикальное положение.

Стелющиеся растения (земляника, костяника и др.) формируют особый тип побегов, служащих для вегетативного размножения, такие как плети и столоны. Их относят к категории надземно-ползучих растений.

 

cyberpedia.su

Работа 3. Строение стебля двудольного древесного растения Липы сердцелистной (Tília cordáta Mill.) (рис. 32).

Рис. 32. Строение стебля двудольных древесных растений (поперечный срез трехлетней ветки Липы сердцелистной - Tília cordáta Mill.).

Раскрасьте и обозначьте: 1 – первичная кора, 2 – вторичная древесина, 3 - остатки эпидермы, 4 - перидерма, 5 – колленхима, 6 - паренхима первичной коры, 7 - склеренхима перициклического происхождения, 8 - флоэмная часть первичного радиального луча, 9 - твердый луб (лубяные волокна), 10 - мягкий луб, 11 – камбий, 12 - весенняя древесина, 13 - осенняя древесина, 14 - ксилемная часть первичного радиального луча, 15 - годичные кольца древесины, 16 - первичная ксилема, 17 - паренхима сердцевины, 18 - сердцевина

39

Дата: «___» ____________ 201___

Работа 4. Рассеяннососудистая древесина стебля Яблони домашней - Málus doméstica Borkh. (рис. 33).

Рис. 33. Строение ствола двудольного древесного растения (поперечный срез двулетней ветки Яблони домашней - Málus doméstica Borkh.):

Раскрасьте и обозначьте: 1. перидерма, 2. колленхима, 3. паренхима первичной коры, 4. перициклические и лубяные волокна, 5. вторичная флоэма, 6. камбий, 7. радиальный луч, 8. вторичная ксилема второго года жизни, 9. вторичная ксилема первого года жизни, 10. первичная ксилема, 11. паренхима, 12. первичная кора, 13. вторичная кора, 14. рассеяннососудистая древесина, 15. сердцевина

40

Дата: «___» ____________ 201___

Работа 5. Строение стебля хвойного растения (рис. 34-36)

Рис.34. Строение стебля хвойного растения (поперечный срез четырехлетней ветки сосны обыкновенной -Pínus sylvéstris L.)

Раскрасьте и обозначьте: 1. годичные кольца древесины, 2. сердцевина, 3. перидерма, 4. паренхима первичной коры, 5. смоляной ход, 6. флоэма, 7. камбий, 8. весенние трахеиды, 9. осенние трахеиды, 10. ксилема (древесина)

41

Рис. 35. Древесина Сосны обыкновенной –

Pínus sylvéstris L. на поперечном срезе.

1. древесная паренхима, 2. смоляной ход, 3. радиальный луч,

4. широкопросветные весенние трахеиды с окаймленными порами 5. граница годичного прироста, 6. узкопросветные осенние трахеиды

Рис. 36. Продольный радиальный разрез древесины

Сосны обыкновенной Pínus sylvéstris L.

1. широкопросветные весенние трахеиды с окаймленными порами,

2. узкопросветные осенние трахеиды, 3. радиальный луч, 4. камбий и камбиальная зона, 5. флоэма, 6. паренхимные клетки, 7. радиальный луч

42

Дата: «___» ____________ 201___

Работа 6. Макроскопическое строение ствола дерева на спиле - поперечный срез (рис. 37).

Рис. 37. Спил дерева

Раскрасьте и обозначьте: 1 - заболонь, 2 – ядро, 3 – сердцевина, 4. сердцевинные лучи, 5 – пробковый слой, 6 - лубяной слой, 7 – камбий, 8 – годичные слои, 9 – спелая древесина, 10 – корка

43

Вопросы для самоконтроля и подготовки к коллоквиуму и зачету

  1. Что такое стебель и каковы его функции?

  2. Какая ткань в центре стебля? В центре корня?

  1. Какими тканями представлен перицикл стебля и корня? Каковы его функции в этих органах?

  2. В чем основные отличия анатомического строения стеблей однодольных и двудольных растений? Чем они обусловлены?

5. Что обуславливает возникновение пучкового, переходного и не пучкового - сплошного типа строения стебля двудольных растений?

  1. С чем связано образование годичных колец в древесине?

  2. Чем покрыты стебли однодольных растений? Двудольных травянистых растений? Древесных двудольных?

  3. Что такое ядро и заболонь в стебле древесного растения?

45

studfiles.net

Лист. Классификация листьев. Анатомическое строение листьев двудольных и однодольных растений

Лист - боковой орган побега, приспособленный для ассимиляции, испарения и газообмена.

Рис. 35. Части листа (схема):1 – черешковый лист; 2 – сидячий лист; 3 – лист с подушечкой в основании; 4 – влагалищные листья; 5 – лист со свободными прилистниками; 6 – лист с приросшими к черешку прилистниками; 7 – лист с пазушными прилистниками; Пл – пластинка; Ос – основание; Вл – влагалище; Пр – прилистники; Ч – черешок; ПП – пазушная почка; ИМ – интеркалярная (вставочная) меристема.

 

Главная часть ассимилирующего листа - его пластинка. Если у листа одна пластинка, его называют простым. У сложных листьев на одном черешке с общим основанием располагаются две, три или несколько обособленных пластинок, иногда с собственными черешочками. Отдельные пластинки носят название листочков сложного листа, а общую ось, несущую листочки, называют рахисом. В зависимости от расположения листочков на рахисе различают перисто- и пальчатосложные листья. У первых листочки располагаются двумя рядами по обе стороны рахиса, продолжающего черешок. У пальчатосложных листьев рахиса нет, и листочки отходят от верхушки черешка. Частный случай сложного листа – тройчатосложный (рис. 36).

Рис. 36. Сложные листья (схема): А – непарноперистосложный; Б – парноперистосложный; В – тройчатосложный; Г – пальчатосложный; Д – дважды парноперистосложный; Е – дважды непарноперистосложный; 1 – листочек; 2 – черешочек; 3 – рахис; 4 – черешок; 5 – прилистники; 6 – рахис второго порядка.

 

Процесс формирования сложного листа напоминает ветвление, которое может идти до второго-третьего порядка, и тогда образуются дважды и трижды перистосложные листья. Если рахис заканчивается непарным листочком, лист называется непарноперистосложным, если парой листочков – парноперистосложным.

Форма пластинок простых листьев и листочков сложных листьев очень разнообразна. По форме листьев можно различать виды и роды растений в природе.

Пластинка листа или листочка может быть цельной или расчлененной более или менее глубоко на лопасти, доли или сегменты, располагающиеся при этом перисто или пальчато. Различают перисто- и пальчатолопастные, перисто- и пальчатораздельные и перисто- и пальчаторассеченные листья (рис. 37). Встречаются дважды, трижды и многократно расчлененные листовые пластинки.

Рис. 37. Типы расчленения пластинки простого листа

Формы цельных листовых пластинок и расчлененных листьев в общем очертании выделяют в зависимости от двух параметров: соотношения между длиной и шириной и того, в какой части пластинки находится ее наибольшая ширина (рис. 38).

Рис. 38. Обобщенная схема форм листьев

 

В структуре листа преобладают анатомические элементы паренхимного типа. Главной тканью листа является мезофилл, в котором сосредоточены все хлоропласты и происходит фотосинтез. Эпидерма покрывает лист сплошным слоем, регулирует газообмен и транспирацию. Система разветвленных проводящих пучков снабжает лист водой, поддерживает в клетках мезофилла степень оводнения, необходимую для нормального хода фотосинтеза и осуществляет отток пластических веществ.

Арматурную функцию в листе выполняет колленхима и склеренхима. Они совместно с живыми тургесцентными клетками мезофилла и эпидермы образуют прочные механические конструкции.

Мезофилл занимает все пространство между верхней и нижней эпидермой листа, исключая проводящие пучки и арматурные ткани. Клетки мезофилла довольно однородны по форме и строению (округлые, слегка вытянутые, с отростками). Иногда стенки клеток образуют складки, вдающиеся внутрь (складчатый мезофилл), что увеличивает поверхность и позволяет разместить большое число хлоропластов в постенном слое цитоплазмы. Протопласт состоит из постенного слоя цитоплазмы с ядром и многочисленными хлоропластами. В центре клетки находится большая вакуоль. Мезофилл, чаще всего, дифференцирован на две ткани - палисадную (столбчатую) и губчатую (рис. 39). В палисадном мезофилле клетки вытянуты перпендикулярно поверхности листа, расположены в один или несколько слоев. Клетки губчатого мезофилла соединены более рыхло, и межклетные пространства в этой ткани могут быть очень большими по сравнению с объемом самих клеток. Выделяют несколько типов мезофилла:

- Дорсовентральный. Палисадная паренхима одно- или многорядная и расположена на верхней стороне листа, а губчатая - на нижней стороне.

- Изогубчатый. Весь мезофилл листа состоит из губчатых клеток.

- Изолатерально-палисадный. Мезофилл состоит из одного или нескольких рядов палисадных клеток, расположенных с обеих сторон губчатой паренхимы.

- Изопалисадный. Мезофилл образован только палисадными клетками.

- Центрический. Мезофилл с радиальной симметрией палисадной паренхимы и с центральной позицией главной жилки.

Проводящие пучки в листьях образуют непрерывную систему, связанную с проводящей системой стебля. В листьях обычно пучки закрытые (без камбия), коллатеральные, разветвленные в одной плоскости. Характерным признаком листа является то, что ксилема в нем повернута к морфологически верхней стороне, а флоэма - к морфологически нижней. При такой ориентации проводящие ткани листа естественно смыкаются с проводящими тканями стебля.

Мелкие проводящие пучки имеют упрощенное строение. Ксилема обычно включает один - два трахеальных элемента, а флоэма одну ситовидную трубку с сопровождающей клеткой. Проводящие элементы листа ограничены от клеток мезофилла плотно сомкнутыми обкладочными клетками. Проводящие пучки с окружающими их тканями называют жилками.

Арматурными тканями листа являются склеренхимные волокна, отдельные склереиды и тяжи колленхимы.

Волокна чаще всего сопровождают крупные проводящие пучки. Они окружают проводящие ткани со всех сторон или только сверху и снизу.

Колленхима часто присутствует в крупных жилках или по краю листа, предохраняя его от разрыва.

Рис. 39 Объемное изображение части листовой пластинки: В – волокна; ВЭ – верхняя эпидерма; ГМ – губчатый мезофилл; ЖВ – железистый волосок; КВ – кроющий волосок; Колл – колленхима; Кс – ксилема; НЭ – нижняя эпидерма; ОК – обкладочные клетки пучка; ПМ – палисадный мезофилл; У – устьице; Ф – флоэма.

Таблица 2- Клеточное строение листа

Часть листа клетки ткани функции
Кожица листа (эпидермис) Клетки прозрачные, плотно прилегают друг к другу Устьичный аппарат состоит из: А) парные замыкающие клетки бобовидной формы Б) устьичная щель между ними покровная Защита от физических воздействий Защита от бактерий и высыхания Пропускает солнечный свет Испарение Газообмен  
Мякоть листа 1)столбчатая (палисадная)ткань состоит из плотно прилегающих друг к другу зеленых клеток 2_ губчатая ткань состоит из рыхло расположенных клеток, между которыми есть межклетники Основная, фотосинтезирующая Фотосинтез   Фотосинтез Газообмен транспирация
Жилки листа - это проводящие пучки 1) Сосуды- это мертвые клетки 2) Ситовидные трубки- это живые клетки с отверстиями в виде сита 3) Волокна – это мертвые вытянутые клетки с острыми концами, с одревесневшими оболочками Проводящая   Проводящая   механическая Проводят воду и минеральные вещества снизу вверх   Проводят органические вещества сверху вниз   Придают листу гибкость и прочность, упругость

 

Задание 1

1. Изучить строение листа с дорсовентральным типом мезофилла с использованием постоянного микропрепарата Лист камелии (Camelia japonica) (рис. 40). Сделать рисунок.

Рис. 40. Строение листа камелии японской (Camelia japonica) с дорсовентральным типом мезофилла:

1 - верхняя эпидерма, 2 - столбчатая паренхима, 3 - губчатая паренхима, 4 - клетка с друзой, 5 - склереида,

6 - проводящий пучок, 7 - нижняя эпидерма, 8 - устьице.

 

Задание 2

1. На постоянном микропрепарате поперечного среза хвои сосны обыкновенной (Pinus sylvestris) изучить строение листа с центрическим типом мезофилла (рис. 41). Сделать рисунок.

Рис. 41. Строение листа (хвои) сосны обыкновенной ( Pinus sylvestris ) с центрическим типом мезофилла:

А - детальный рисунок; Б - схематичный.

1 - эпидерма, 2 - устьичный аппарат, 3 - гиподерма, 4 - складчатая паренхима, 5 - смоляной ход, 6 - эндодерма, 7 - ксилема,

8 - флоэма, 7-8 - проводящий пучок, 9 - склеренхима, 10 - паренхима.

 

Похожие статьи:

poznayka.org

Строение листа двудольных растений

Лист - это один из основных органов растения, занимающий боковое положение на стебле и выполняющий функции фотосинтеза, транспирации (испарения воды растением) и газообмена с окружающей средой.

Анатомия листа. Типичное анатомическое строение листовой пластинки отражает ее приспособленность к выполняемым функциям (рис. 1). С обеих сторон она покрыта эпидермисом, который регулирует газообмен и транспирацию. В клетках кожицы нет хлоропластов, поэтому они беспрепятственно пропускают свет к основным тканям листа. Наружные стенки клетки кожицы, особенно с верхней стороны листа, утолщены и покрыты слоем воска или воскоподобного вещества - кутина, что предохраняет лист от перегрева и излишнего испарения воды. Этому способствует также погружение устьиц вглубь листовой пластинки, формирование волосков, создающих разные виды опушения, и др.

Рис. 1 - Анатомическое строение листа георгины (поперечный срез): 1 - кутикула; 2 - эпидермис; 3 - колленхима; 4 - палисадная паренхима; 5-устьице; 6 - губчатая паренхима; 7 - флоэма; 8 - проводящий пучок; 9 - склеренхима; 10 – ксилема

Особенности внутреннего строения листа определяются его главной функцией - фотосинтезом. Поэтому важнейшей тканью листа является хлорофиллоносная паренхима (хлоренхима). Эта ткань образует мякоть листа, или мезофилл, в клетках которого сосредоточены хлоропласты и происходит фотосинтез. Остальные ткани обеспечивают нормальную работу мезофилла. Система разветвленных проводящих пучков, которые пронизывают листовую пластинку во всех направлениях, снабжает лист водой и обеспечивает постоянный отток органических веществ от листа к другим органам растения. Механические ткани (склеренхима, колленхима) совместно с живыми клетками паренхимы (мезофилла) и эпидермиса обеспечивают определенную структуру и высокую прочность листовой пластинки. Поэтому сравнительно тонкие и нежные листовые пластинки способны занимать в пространстве такое положение, при котором создаются наилучшие условия освещения и газообмена.

Мезофилл занимает все пространство между верхним и нижним эпидермисом листа, исключая проводящие пучки и механические ткани. Клетки мезофилла имеют округлую или слегка вытянутую форму, с тонкими и неодревесневшими стенками.

Мезофилл чаще всего дифференцирован на палисадную (столбчатую) и губчатую паренхиму. Обычно палисадная паренхима располагается под верхним эпидермисом, а губчатая прилегает к нижнему.

Клетки палисадной паренхимы вытянуты перпендикулярно к поверхности листа и расположены в один или несколько слоев. Они содержат примерно 75-80% всех хлоропластов листа и выполняют основную работу по ассимиляции углекислого газа. Поэтому палисадная ткань располагается в наилучших условиях освещения, непосредственно под верхней эпидермой. Благодаря тому что ее клетки вытянуты перпендикулярно к поверхности листа, у них имеется возможность регулировать направление и расположение хлоропластов таким образом, чтобы избежать повреждающего действия прямой солнечной радиации на фото синтезирующий аппарат, На сильном свету хлоропласты занимают в клетке пристенное положение и становятся ребром к направлению лучей, в результате чего большая часть светового потока проходит мимо хлоропластов или скользит по их поверхности, не разрушая хлорофилл. При слабом освещении, наоборот, хлоропласты распределяются в клетке диффузно или скапливаются в нижней ее части, что способствует лучшему освещению каждого из них. В округлых клетках, характерных для губчатой паренхимы, такое регулирование расположения хлоропластов при разной освещенности (особенно на сильном свету) практически невозможно.

Под столбчатой паренхимой находится рыхлая паренхима, клетки которой имеют округлую или продолговатую форму, содержат меньше хлоропластов и расположены рыхло, поскольку между ними развиваются крупные межклетники, заполненные воздухом.

В губчатой ткани интенсивность фотосинтеза ниже, чем в столбчатой, но зато здесь активно идут процессы транспирации и газообмена. Углекислый газ из воздуха через устьица, расположенные главным образом в нижнем эпидермисе, проникает в большие межклетники и по ним поступает ко всем ассимилирующим клеткам листа. Парообразная влага, кислород и углекислый газ, образующиеся при фотосинтезе и дыхании клеток мезофилла, передвигаются в обратном направлении и через устьица выделяются наружу. Таким образом, оба вида ассимиляционной ткан и (палисадной и рыхлой) тесно связаны между собой не только в структурном, но и в функциональном плане.

Расположение устьиц преимущественно на нижней стороне листа имеет важное экологическое значение. Во-первых, нижняя сторона листа меньше нагревается на свету, чем верхняя, поэтому потеря воды листом в процессе транспирации происходит медленнее через устьица, расположенные в нижнем, а не в верхнем эпидермисе. Во-вторых, главным источником углекислого газа в атмосфере является «почвенное дыхание», т. е. выделение его в результате жизнедеятельности почвенных микроорганизмов (бактерий, цианобактерий, грибов и др.) и дыхания корней высших растений. Поэтому припочвенный слой воздуха обычно обогащен углекислым газом, который по градиенту концентрации диффундирует вверх и легко проникает через устьица в ткани листьев.

В центре листа находится крупный проводящий пучок, а сбоку более мелкие пучки. В составе пучка ксилема повернута к верхней, а флоэма - к нижней стороне листа. Проводящие пучки с окружающими их тканями называют жилками. Они образуют в листе непрерывную систему, связанную с проводящей системой стебля.



biofile.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта