Урок Роль зеленых растений на планете и в жизни человека. Роль растений на планете
Роль растений в жизни планеты
Оглавление:
1. Растительный покров Земли……………………………………………...3
2. Зеленые растения и жизнь на Планете…………………………………..3
3. Значение и роль фотосинтеза…………………………………………….4
4. История открытия фотосинтеза………………………………………….5
5. Лимитирующие факторы………………………………………………....9
6. Световые и темновые реакции…………………………………………..11
7. Структурная и биохимическая организация аппарата фотосинтеза….12
8. Заключение……………………………………………………………….15
9. Список литературы……………………………………………………....16Растительный покров Земли
Зленные растения покрывают почти всю поверхность Земли. Они неспособны существовать лишь в крайне неблагоприятных (экстремальных) условиях. Например, в соляных или песчаных пустынях растительность очень бедна или полностью отсутствует. Но в тех участках песчаных пустынь, где имеется вода, развивается пышная растительность оазисов. Следовательно, теплые засушливые местности часто можно превратить в плодородные земли путем орошения. Лишь в вечных льдах полярных областей или высокогорий невозможна жизнь растений.
В зависимости от общеклиматических и почвенно-грунтовых условий местообитания в различных местностях развиваются вполне определенные растительные сообщества, резко различающиеся по видовому составу: леса, луга, степи и др.Зеленые растения и жизнь на Планете
Для питания растение использует самые простые вещества. Все, что требуется растению для поддержания жизни, - это вода, воздух (кислород и углекислый газ), некоторые минеральные вещества и солнечный свет.
Кислород необходим каждому дышащему организму. Все животные и растения и большинство микроорганизмов ведут аэробный образ жизни, то есть потребляют для дыхания кислород, который они используют для сжигания питательных веществ (дыхательных субстратов).
Выделение кислорода зелеными растениями имело поистине глобальные последствия для эволюции планеты Земли. Исходно восстановительная атмосфера Земли, первичная атмосфера, благодаря деятельности многих миллионов растений постепенно превратилась в кислородсодержащую, окислительную воздушную оболочку нашей планеты. Лишь вследствие этого стала возможна жизнь животных. Ведь и животные, и человек должны дышать, чтобы жить, и лишь сравнительно немногочисленны виды микроорганизмов способны обходиться без кислорода. Имеются факультативные анаэробы, которые хотя и могут жить в присутствии кислорода, но не нуждаются в нем. Существуют и облигатные анаэробы, для которых кислород – клеточный яд и у которых выработались защитные механизмы для устранения агрессивного действия кислорода.
Таким образом, жизнь животных и человека двояким образом зависит от жизни растений. Фотоавтотрофные растения продуцируют органическую массу, являясь крупнейшими производителями углеводов на Земле, они же выделяют и необходимый для жизни кислород как побочный продукт фотосинтеза. Они выделяют, подобно животным организмам, углекислый газ в процессе дыхания, но вновь используют его для фотосинтеза. Благодаря способности к фотосинтезу и ассимиляции неорганических соединений азота и серы растения занимают определяющее место в круговороте веществ в природе.
Значение и роль фотосинтеза Слово «фотосинтез» означает буквально создание или сборку чего-то под действием света. Обычно, говоря о фотосинтезе, имеют в виду процесс, посредством которого растения на солнечном свету синтезируют органические соединения из неорганического сырья. Все формы жизни во Вселенной нуждаются в энергии для роста и поддержания жизни. Водоросли, высшие растения и некоторые типы бактерий улавливают непосредственно энергию солнечного излучения и используют ее для синтеза основных пищевых веществ. Животные не умеют использовать солнечный свет непосредственно в качестве источника энергии, они получают энергию, поедая растения или других животных, питающихся растениями. Итак, в конечном счете источником энергии для всех метаболических процессов на нашей планете, служит Солнце, а процесс фотосинтеза необходим для поддержания всех форм жизни на Земле.
Мы пользуемся ископаемым топливом - углем, природным газом, нефтью и т. д. Все эти виды топлива - не что иное, как продукты разложения наземных и морских растений или животных, и запасенная в них энергия была миллионы лет назад получена из солнечного света. Ветер и дождь тоже обязаны своим возникновением солнечной энергии, а следовательно, энергия ветряных мельниц и гидроэлектростанций в конечном счете также обусловлена солнечным излучением.
Важнейший путь химических реакций при фотосинтезе - это превращение углекислоты и воды в углероды и кислород. Суммарную реакцию можно описать уравнением СО2+Н20 – [СН20]+02
Углеводы, образующиеся в этой реакции, содержат больше энергии, чем исходные вещества, т. е. СО2 и Н20. Таким образом, за счет энергии Солнца энергетические вещества (СО2 и Н20) превращаются в богатые энергией продукты - углеводы и кислород. Энергетические уровни различных реакций, описанных суммарным уравнением, можно охарактеризовать величинами окислительно-восстановительных потенциалов, измеряемых в вольтах. Значения потенциалов показывают, сколько энергии запасается или растрачивается в каждой реакции. Итак, фотосинтез можно рассматривать как процесс образования лучистой энергии Солнца в химическую энергию растительных тканей.
Содержание СО2 в атмосфере остается почти полным, несмотря на то, что углекислый газ расходуется в процессе фотосинтеза. Дело в том, что все растения и животные дышат. В процессе дыхания в митохондриях кислород, поглощаемый из атмосферы живыми тканями, используется для окисления углеводов и других компонентов тканей с образованием в конечном счете двуокиси углерода и воды и с сопутствующим выделением энергии. Высвобождающаяся энергия запасается в высокоэнергетические соединения - аденозинтрифосфат (АТФ), который и используется организмом для выполнения всех жизненных функций. Таким образом дыхание приводит к расходованию органических веществ и кислорода и увеличивает содержание СО2 на н планете. На процессы дыхания во всех живых организмах и на сжигание всех видов топлива, содержащих углерод, в совокупности расходуется в масштабах Земли в среднем около 10000 тонн 02 в секунду. При такой скорости .потребления весь кислород в атмосфере должен бы иссякнуть примерно, через 3000 лет. К счастью для нас, расход органических веществ и атомного кислорода уравновешивается созданием углеводов и кислорода в результате фотосинтеза. В идеальных условиях скорость фотосинтеза в зеленых тканях растений примерно в 30 раз превышает скорость дыхания в тех же тканях, таким образом, фотосинтез служит важным фактором, регулирующим содержание 02 на Земле.
История открытия фотосинтезаВ начале XVII в. фламандский врач Ван Гельмонт вырастил в кадке с землей дерево, которое он поливал только дождевой водой. Он заметил, что спустя пять лет, дерево выросло до больших размеров, хотя количество земли в кадке практически не уменьшилось. Ван Гельмонт, естественно, сделал вывод, что материал, из которого образовалось дерево произошел из воды, использованной для полива. В 1777 английский ботаник Стивен Хейлс опубликовал книгу, в которой сообщалось, что в качестве питательного вещества, необходимого для роста, растения используют главным образом воздух. В тот же период знаменитый английский химик Джозеф Пристли (он был одним из первооткрывателей кислорода) провел серию опытов по горению и дыханию и пришел к выводу о том, что зелёные растения способны совершать все те дыхательные процессы, которые были обнаружены в тканях животных. Пристли сжигал свечу в замкнутом объеме воздуха, и обнаруживал, что получавшийся при этом воздух уже не может поддерживать горение. Мышь, помещенная в такой сосуд, умирала. Однако веточка мяты продолжала жить в воздухе неделями. В заключение Пристли обнаружил, что в воздухе, восстановленном веточкой мяты, вновь стала гореть свеча, могла дышать мышь. Теперь мы знаем, что свеча, сгорая, потребляла кислород из замкнутого объема воздуха, но затем воздух снова насыщался кислородом благодаря фотосинтезу, происходившему в оставленной веточке мяты. Спустя несколько лет голландский врач Ингенхауз обнаружил, что растения окисляют кислород лишь на солнечном свету и что только их зеленые части обеспечивают выделение кислорода. Жан Сенебье, занимавший пост министра, подтвердил данные Ингенхауза и продолжил исследование, показав, что в качестве питательного вещества растения используют двуокись углерода, растворенную в воде. В начале XIX века другой швейцарский исследователь де Соседи изучал количественные взаимосвязи между поглощенной растением углекислотой, с одной стороны, и синтезированными органическими веществами и кислородом - с другой. В результате своих опытов он пришел к выводу, что вода также потребляется растением при ассимиляции СО2. В 1817 г. два французских химика, Пельтье и Каванту, выделили из листьев зеленое вещество и назвали его хлорофиллом. Следующей важной вехой в истории изучения фотосинтеза было сделанное в 1845 г. немецким физиком Робертом Майером утверждение о том, что зеленые растения преобразуют энергию, солнечного света в химическую энергию. Представления о фотосинтезе, сложившиеся к середине прошлого века, можно выразить следующим соотношением:
Зеленое растение
СО2+ Н2 О + Свет – О2 + орг. вещества +химическая энергия
Отношение количества С02, поглощенного при фотосинтезе, к количеству выделенного 02, точно измерил французский физиолог растений Бусэнго. В 1864 г. он обнаружил, что фотосинтетическое отношение, т.е. отношение объема выделенного 02 к объему поглощенного С02, почти равно единице. В том же году немецкий ботаник Закс (открывший также у растений дыхание) продемонстрировал образование зерен крахмала при фотосинтезе. Закс помещал зеленые листья на несколько часов в темноту для того, чтобы они израсходовали накопленный в них крахмал. Затем он выносил листья на свет, но при этом освещал лишь половину каждого листа, оставляя другую половину листа в темноте. Спустя некоторое время весь лист целиком обрабатывали парами йода. В результате освещенная часть листа становилась темно-фиолетовой, что свидетельствовало об образовании комплекса крахмала с йодом, тогда как цвет другой половины листа не изменялся. Прямую связь между выделением кислорода и хлоропластами в зеленых листьях, а также соответствие спектра действия фотосинтеза спектру поглощеных хлоропластами установил в 1880 г. Энгельман. Он поместил нитевидную зеленую водоросль имеющую спирально извитые хлоропласты, на предметное стекло, освещая его узким и широким пучком белого света. Вместе с водорослью на предметное стекло наносилась суспензия клеток подвижных бактерий, чувствительных к концентрации кислорода. Предметное стекло помещали в камеру без воздуха и освещали. В этих условиях подвижные бактерии должны были перемещаться в ту часть, где концентрация 02 была выше. После прошествия некоторого времени образец рассматривали под микроскопом и подсчитывали распределение бактериопопуляции. Оказалось, что бактерии концентрировались вокруг зеленых полосок в нитевидной водоросли. В другой серии опытов Энгельман освещал водоросли лучами разного спектрального состава, установив призму между источником света и предметным столиком микроскопа. Наибольшее число бактерий в этом случае скапливалось вокруг тех участков водоросли, которые освещались синим и красным областями спектра. Находящиеся в водорослях хлорофиллы поглощали синий и красный свет. Поскольку к тому времени было уже известно, что для фотосинтеза необходимо поглощение света, Энгельман заключил, что хлорофиллы участвуют в синтезе в качестве пигментов, являющихся активными фоторецепторами. Уровень знаний о фотосинтезе в начале нашего века можно представить следующим образом.
СО2 + Н2О + Свет – О2 + Крахмал + Химическая энергия
Итак, к начал у нашего века суммарная реакция фотосинтеза была уже известна. Однако биохимия находилась не на таком высоком уровне, чтобы полно раскрыть механизмы восстановления двуокиси углерода до углеводов. К сожалению, следует признать, что и теперь еще некоторые аспекты фотосинтеза изучены довольно плохо. Издавна делались попытки исследовать влияние интенсивности света, температуры, концентрации углекислоты и т..п. на общий выход фотосинтеза. И хотя в этих работах исследовались растения самых разных видов, большинство измерений было выполнено на одноклеточных зеленых водорослях и на одноклеточной жгутиковой водоросли Эвглена. Одноклеточные организмы удобнее для качественного исследования, поскольку их можно выращивать во всех лабораториях при вполне стандартных условиях. Они могут быть равномерно суспензированы, т. е. взвешены в водных буферных растворах, и нужный объем такой суспензии, или взвеси, можно брать такой дозировки, точно так же, как при работе с обычными растениями. Хлоропласты для опытов лучше всего выделять из листьев высших растений. Чаще всего используют шпинат, потому что его легко выращивать и свежие листья удобны для проведения исследований; иногда используются листья гороха и салата-латука.
Поскольку СО2 хорошо растворяется в воде, а О2 относительно нерастворим в воде, то при фотосинтезе в замкнутой системе давление газа в этой системе может изменяться. Поэтому влияние света на фотосинтетические системы часто исследуют с помощью респиратора Варбурга, позволяющего регистрировать пороговые изменения объема 02 в системе. Впервые респиратор Варбурга был использован применительно к фотосинтезу в 1920г. Для измерения потребления или выделения кислорода в ходе реакции удобнее пользоваться другим прибором - кислородным электродом. В основе этого устройства лежит использование полярографического метода. Кислородный электрод обладает достаточной чувствительностью для того, чтобы обнаружить в таких низких концентрациях как 0,01 ммоль в 1 л. Прибор состоит из катода достаточно тонкой платиновой проволоки, герметично впрессованной в пластину анода, представляющего собой кольцо из серебряной проволоки, погруженной в насыщенный раствор. Электроды отделены от смеси, в которой протекает реакция, мембраной, проницаемой для 02. Реакционная система находится в пластмассовом или стеклянном сосуде и постоянно перемешивается вращающимся стержневым магнитом. Когда к электродам приложено напряжение, платиновый электрод становится отрицательным по отношению к стандартному электроду, кислород в растворе электролитически восстанавливается. При напряжении от 0,5 до 0,8 В величина электрического тока линейно зависит от парциального давления кислорода в растворе. Обычно с кислородным электродом работают при напряжении около 0,6 В. Электрический ток измеряют, присоединив электрод к подходящей регистрирующей системе. Электрод вместе с реакционной смесью орошают потоком воды от термостата. С помощью кислородного электрода измеряют действие света и различных химических веществ на фотосинтез. Преимущество кислородного электрода перед аппаратом Варбурга состоит в том, что кислородный электрод позволяет быстро и непрерывно регистрировать изменения содержания О2 в системе. С другой стороны, в приборе Варбурга можно одновременно исследовать до 20 образцов с различными реакционными смесями, тогда как при работе с кислородным электродом образцы приходится анализировать поочередно.
Примерно до начала 1930-х годов многие исследователи в этой области полагали, что первичная реакция фотосинтеза заключается в расщеплении двуокиси углерода под действием света на углерод и кислород с последующим восстановлением углерода до углеводов с участием воды в ходе нескольких последовательных реакций. Точка зрения изменилась в 1930-х годах в результате двух важных открытий. Во-первых, были описаны разновидности бактерий, способных ассимилировать и синтезировать углеводы, не используя для этого энергию света. Затем, голландский микробиолог Ван Нил сравнил процессы фотосинтеза у бактерий и показал, что некоторые бактерии могут ассимилировать С02 на свету, не выделяя при этом кислорода. Такие бактерии способны к фотосинтезу лишь при наличии подходящего субстрата-донора водорода. Ван Нил предполагал, что фотосинтез зеленых растений и водорослей является частным случаем, когда кислород в фотосинтезе происходит из воды, а не из углекислоты.
Второе важное открытие сделал в 1937 г. Р. Хил в Кембриджском университете. С помощью дифференциального центрифугирования гомогената тканей листа он отделил фотосинтезирующие частицы (хлоропласты) от дыхательных частиц. Полученные Xиллом хлоропласты при освещении сами по себе не выделяли кислорода (возможно, из-за того, что они были повреждены при разделении). Однако они начинали выделять кислород на свету, если в суспензию вносили подходящие акцепторы электрона (окислители), например ферриоксалат калия или феррицианид калия. При выделении одной молекулы 02 фотохимически восстанавливались четыре эквивалента окислителя. Позднее было обнаружено, что многие хиноны и красители восстанавливаются хлоропластами на свету. Однако хлоропласты не могли восстановить СО2, природный акцептор электронов при фотосинтезе. Это явление, известное теперь как реакция Хилла, представляет собой индуцируемый светом перенос электронов от воды к нефизиологическим окислителям (реагентам Хилла) против градиента химического потенциала. Значение реакции Хилла состоит в том, что она продемонстрировала возможность разделения двух процессов - фотохимического выделения кислорода и восстановления углекислоты при фотосинтезе.
Разложение воды, приводящее к выделению свободного кислорода при фотосинтезе, было установлено Рубеном и Каменом, в Калифорнии в 1941 г. Они поместили фотосинтезирующие клетки в воду, обогащенную изотопом кислорода, имеющим массу 18 атомных единиц 180. Изотопный состав кислорода, выделенного клетками, соответствовал составу воды, но не С02. Кроме того, Камен и Рубен открыли радиоактивный изотоп 18О, который впоследствии успешно использовали Бассэт, Бенсон Вин, изучавшие путь превращения углекислоты при фотосинтезе. Кальвин и его сотрудник установили, что восстановление углекислоты до сахаров происходит в результате темновых ферментативных процессов, причем для восстановления одной молекулы углекислоты требуются две молекулы восстановленного АДФ и три молекулы АТФ. К тому времени роль АТФ и пиридиннуклеотидов в дыхании тканей была установлена. Возможность фотосинтетического восстановления АДФ до АТФ выделенными хлорофиллами была доказана в 1951 г. в трех разных лабораториях. В 1954 г. Арнон, Аллен продемонстрировали фотосинтез - они наблюдали ассимиляцию С02 и 02 выделенными хлоропластами шпината. В течение следующего десятилетия из хлоропластов удалось выделить белки, участвующие в переносе электронов в синтезе -ферредоксин, пластоцианин, ферроАТФ-редуктазу, цитохромы и т. д.
Таким образом, в здоровых зеленых листьях, под действием света образуются АДФ и АТФ и энергия гидросвязей используются для восстановления С02 до углеводов в присутствии ферментов, причем активность ферментов регулируется светом.
Лимитирующие факторыИнтенсивность, или скорость процесса фотосинтеза в растении зависит от ряда внутренних и внешних факторов. Из внутренних факторов наиболее важное значение имеют структура листа и содержание в нем хлорофилла, скорость накопления продуктов фотосинтеза в хлоропластах, влияние ферментов, а также наличие малых концентраций необходимых неорганических веществ. Внешние параметры - это количество и качество света, попадающего на листья, температура окружающей среды, концентрация углекислоты и кислорода в атмосфере вблизи растения.
Скорость фотосинтеза возрастает линейно, или прямо пропорционально увеличению интенсивности света. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, прекращается, когда освещенность достигает определенного уровня 10000 люкс. Дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. Область стабильной скорости фотосинтеза называется областью светонасыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 100000 люкс. Следовательно, растениям, за исключением тех, которые растут в густых лесах и в тени, падающего солнечного света бывает достаточно для насыщения их фотосинтетической активности (энергия квантов, соответствующих крайним участкам видимого диапазона – фиолетового и красного, различается всего лишь в два раза, и все фотоны этого диапазона в принципе способны осуществить запуск фотосинтеза).
В случае низких интенсивностей света скорость фотосинтеза при 15 и 25°С одинакова. Реакции, протекающие при таких интенсивностях света, которые соответствуют области лимитирования света, подобно истинным фотохимическим реакциям, не чувствительны к температурам. Однако при более высоких интенсивностях скорость фотосинтеза при 25°С гораздо выше, чем при 15°С. Следовательно, в области светового насыщения уровень фотосинтеза зависит не только от поглощения фотонов, но и от других факторов. Большинство растений в умеренном климате хорошо функционируют в интервале температур от 10 до 35°С, наиболее благоприятные условия - это температура около 25°С.
В области лимитирования светом скорость фотосинтеза не изменяется при уменьшении концентрации СО2 . Отсюда можно сделать вывод, что С02 участвует непосредственно в фотохимической реакции. В то же время при более высоких интенсивностях освещения, лежащих за пределами области лимитирования, фотосинтез существенно возрастает при увеличении концентрации СО2. У некоторых зерновых культур фотосинтез линейно возрастал при увеличении концентрации СО2 до 0,5%. (эти измерения проводили в кратковременных опытах, поскольку длительное воздействие высоких концентраций СО2 повреждает листы). Высоких значений скорость фотосинтеза достигает при содержании С02 около 0,1%. Средняя концентрация углекислоты в атмосфере составляет от 0,03%. Поэтому в обычных условиях растениям не хватает СО2 для того, чтобы с максимальной эффективностью использовать попадающий на них солнечный свет. Если помещенное в замкнутый объем растение освещать светом насыщающей интенсивности, то концентрация СО2 в объеме воздуха будет постепенно уменьшаться и достигнет постоянного уровня, известного под названием «С02 компенсационного пункта». В этой точке появление СО2 при фотосинтезе уравновешивается выделением О2 в результате дыхания (темнового и светового). У растений разных видов положения компенсационных пунктов различны.
www.coolreferat.com
"Роль зелёных растений в обеспечении энергией живых организмов на нашей планете".
Роль зелёных растений в обеспечении энергией живых организмов на нашей планете.
Основным источником энергии на земле является солнце. Но люди и животные не способны напрямую использовать солнечную энергию, потому что в их организмах отсутствуют системы, с помощью которых энергия потреблялась бы в такой форме, как она есть. Поэтому солнечная энергия попадает в организм человека или животного в качестве полезной энергии только через вещества, производимые растениями. Растения способны создавать из неорганических органические вещества, используя световую энергию. Этот процесс называется фотосинтезом (от греческих слов «фотос» —свет, «синтез» — соединение). Способность к фотосинтезу — важнейшее свойство зелёных растений. Это единственный на нашей планете процесс, связанный с превращением энергии солнечного света в энергию химических связей, заключенную в органических веществах.
Поэтому фотосинтез — важнейший процесс, благодаря которому возможна жизнь на Земле. Выдающийся русский ученый конца ХIХ – начала ХХ в. Климент Аркадьевич Тимирязев роль зеленых растений на Земле назвал космической. К.А. Тимирязев писал: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического».Кроме этого растения насыщают атмосферу Земли кислородом, который служит для окисления органических веществ и извлечения этим способом запасенной в них химической энергии аэробными клетками. Ежегодно зелёные растения синтезируют большое количество органического вещества, поглощают около 600 млрд т углекислоты, выделяют в атмосферу 400 млрд т свободного кислорода. Благодаря фотосинтезу ежегодно запасается огромное количество преобразованной солнечной энергии. Накопление энергии – очень важное для живой природы явление, обусловленное фотосинтезом зеленых растений. Органические вещества – отличный энергоноситель. Созданные с участием хлорофилла и солнечного
света углеводы, а также образованные в растениях белки и жиры содержат в себе много энергии. Особенно много ее в крахмале и различных сахарах. Многие растения, такие как сахарный тростник, сахарная свекла, лук, горох, кукуруза, виноград, финик, запасают сахара в стеблях, корнях, луковицах, плодах и семенах. Именно сахара служат главным источником энергии для всех живых существ, так как легко могут стать одним из наиболее активных соединений в любой живой клетке. Постоянно поглощая энергию в виде солнечного излучения, растения ее накапливают. Из-за огромного количества зеленых растений на Земле энергии в биосфере становится все больше. Человек широко пользуется газом, нефтью, углем, дровами – все эго органические вещества, которые выделяют при сгорании энергию, некогда занесенную в зеленых растениях. Можно сделать вывод, что существование растений играет очень важную и необходимую роль для выживания живых существ на земле. Поступившая из космоса энергия солнечных лучей, запасенная зелеными растениями в углеводах, жирах и белках, обеспечивает жизнедеятельность всего живого мира – от бактерий до человека.
infourok.ru
Значение фотосинтеза для существования жизни на Земле
Значение фотосинтеза в природе долгое время оценивалось не совсем точно. На первоначальном этапе изучения многие ученые считали, что растения выделяют столько же кислорода, сколько поглощают. На самом деле тщательные исследования показали, что работа, проделываемая растениями, носит грандиозный размах. При своих относительно небольших размерах зеленые насаждения выполняют ряд полезных функций, которые направлены на поддержание жизни на Земле.
Самое главное значение фотосинтеза – это обеспечение энергией всех живых существ на планете, включая человека. В процессе фотосинтеза в зеленых частях растений под воздействием солнечных лучей начинает образовываться кислород и огромное количество энергии. Данная энергия используется растениями для собственных нужд только частично, а неизрасходованный потенциал накапливается. Потом растения идут на корм травоядным животным, получающим за счет этого необходимые питательные вещества, без которых их развитие будет невозможным. Затем травоядные животные становятся пищей для хищников, им также необходима энергия, без которой жизнь просто остановится.
Немного в стороне от этой пищевой цепочки находится человек, поэтому для него истинное значение фотосинтеза проявляется не сразу. Просто многие люди пытаются доказать себе, что они не являются частью животного мира нашей планеты. К сожалению, подобное отрицание ни к чему не приведет, так как все живые организмы зависят в той или иной мере друг от друга. Стоит исчезнуть нескольким видам животных или растений – и равновесие в природе сильно нарушится. Чтобы приспособиться к новым условиям жизни, другие живые организмы будут вынуждены искать альтернативные источники питания. Правда, бывают случаи, когда исчезновение одних видов приводит к вымиранию других.
Значение фотосинтеза кроется не только в производстве энергии, но и в защите озонового слоя от разрушения. Ученые долго пытались выяснить, как зародилась жизнь на нашей планете – и создали довольно правдоподобную теорию. Оказалось, что разнообразие живых организмов стало возможным только благодаря наличию защитной атмосферы, которая сформировалась за счет интенсивной работы огромного количества растений. Конечно, при размерах современных лесов и отдельных растений не верится в такое чудо, но древние растения были гигантской величины.
Старые гиганты растительного мира погибли, но даже после гибели они приносят пользу всему человечеству. Энергия, которая в них накопилась, теперь поступает в наши дома в виде угля. Сегодня роль данного вида топлива значительно снизилась, но долгое время человечество спасалось от холодов именно с его помощью.
Также не стоит забывать о том, что древние растения передали свою эстафету современным деревьям и цветам, которые поддерживают сохранность атмосферы. Чем больше зеленых насаждений на нашей планете, тем чище воздух, которым мы дышим. Уничтожение тропических лесов и увеличение вредных выбросов в атмосферу привело к тому, что в озоновом слое появились дыры. Если человечество не осознает истинную роль фотосинтеза, оно приведет себя к самоуничтожению. Просто без кислорода и защиты мы не выживем, а количество тропических лесов продолжает стремительно уменьшаться.
Если люди действительно хотят сохранить жизнь на своей планете, они должны полностью понять значение фотосинтеза. Когда каждый отдельный человек признает важность растений, когда мы перестанем бездумно вырубать леса, тогда жизнь на Земле станет лучше и чище. В противном случае людям придется научиться выдерживать палящие лучи солнца, дышать смогом, вредными выбросами и получать энергию из альтернативных источников.
Только от нас завит то, каким будет наше будущее – и хочется верить, что люди сделают правильный выбор.
fb.ru
Роль зеленых растений на планете и в жизни человека.docx - Интегрированный урок по природоведению и ...
2. Актуализация знаний.Учитель биологии:
ФильмНад желтой нивой – купол голубойПлывет, как лебедь, парус у причала.К огромной нашей Родине любовьБерет от малой Родины начало.Щедра земля наша. И произрастают на ней тысячи разнообразных растений. Её леса, горы истепи таят в себе огромные природные богатства. Нет ничего краше и привлекательнеенашего леса! Леса – это величайшее творение природы, краса и гордость нашей планеты, "Леса учат человека понимать прекрасное” – эти замечательные слова принадлежат Антону Павловичу Чехову. И действительно, именно в лесах с необычайной силой и выразительностью представлены могущество и величественная красота природы Учитель математики: Но лес – это не только украшение земли. Это ценнейшее сокровище нашей природы. Лес необходим для строительства сел и городов, фабрик и заводов, гидроэлектростанций. Производство бумаги и кинопленки, искусственного волокна и мебели, музыкальных инструментов и спортивного инвентаря не может обойтись без древесины. Древесина служит сырьем для получения массыценных химических продуктов: спирта, кислот, канифоли. Высококачественный русский лес охотно покупают многие страны. Сегодня мы остановимся на производстве бумаги. 3.Решение экологических задач.Учитель математики: Проведем маленькое исследование и сделаем вычисления к следующей задачеЗадача 1.Вычислить, сколько нужно вырубить леса для того, чтобы издать один учебник "Математика” авт. Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков,С.И. Шварцбурд, М: "Мнемозина”, 2005, и сколько, чтобы издать тираж учебника?Этапы работы над задачей:1. Вычислить площадь одной страницы учебника (измерить на уроке)2. Умножить площадь одной страницы на количество страниц в учебнике (посмотреть количество страниц, разделить на два)
Слайд 3 Решение.Размеры одной страницы учебника 14см на 21 см, т.е. площадь равна 14*21=294 см2В учебнике 284страницы или 142 листа,значит площадь всех страниц учебника 294*142 = 41748 см2 = 4 м2 1748 см2 .На 1000 м2 нужно вырубить ¼ га = 2500 м2 деревьев, т.е. в 2,5 раза больше. Значит на производство одного учебника требуется 10 м2 4370 см22
znanio.ru
Реферат Роль растений в жизни планеты
Оглавление:
1. Растительный покров Земли……………………………………………...3
2. Зеленые растения и жизнь на Планете…………………………………..3
3. Значение и роль фотосинтеза…………………………………………….4
4. История открытия фотосинтеза………………………………………….5
5. Лимитирующие факторы………………………………………………....9
6. Световые и темновые реакции…………………………………………..11
7. Структурная и биохимическая организация аппарата фотосинтеза….12
8. Заключение……………………………………………………………….15
9. Список литературы……………………………………………………....16Растительный покров Земли
Зленные растения покрывают почти всю поверхность Земли. Они неспособны существовать лишь в крайне неблагоприятных (экстремальных) условиях. Например, в соляных или песчаных пустынях растительность очень бедна или полностью отсутствует. Но в тех участках песчаных пустынь, где имеется вода, развивается пышная растительность оазисов. Следовательно, теплые засушливые местности часто можно превратить в плодородные земли путем орошения. Лишь в вечных льдах полярных областей или высокогорий невозможна жизнь растений.
В зависимости от общеклиматических и почвенно-грунтовых условий местообитания в различных местностях развиваются вполне определенные растительные сообщества, резко различающиеся по видовому составу: леса, луга, степи и др.Зеленые растения и жизнь на Планете
Для питания растение использует самые простые вещества. Все, что требуется растению для поддержания жизни, - это вода, воздух (кислород и углекислый газ), некоторые минеральные вещества и солнечный свет.
Кислород необходим каждому дышащему организму. Все животные и растения и большинство микроорганизмов ведут аэробный образ жизни, то есть потребляют для дыхания кислород, который они используют для сжигания питательных веществ (дыхательных субстратов).
Выделение кислорода зелеными растениями имело поистине глобальные последствия для эволюции планеты Земли. Исходно восстановительная атмосфера Земли, первичная атмосфера, благодаря деятельности многих миллионов растений постепенно превратилась в кислородсодержащую, окислительную воздушную оболочку нашей планеты. Лишь вследствие этого стала возможна жизнь животных. Ведь и животные, и человек должны дышать, чтобы жить, и лишь сравнительно немногочисленны виды микроорганизмов способны обходиться без кислорода. Имеются факультативные анаэробы, которые хотя и могут жить в присутствии кислорода, но не нуждаются в нем. Существуют и облигатные анаэробы, для которых кислород – клеточный яд и у которых выработались защитные механизмы для устранения агрессивного действия кислорода.
Таким образом, жизнь животных и человека двояким образом зависит от жизни растений. Фотоавтотрофные растения продуцируют органическую массу, являясь крупнейшими производителями углеводов на Земле, они же выделяют и необходимый для жизни кислород как побочный продукт фотосинтеза. Они выделяют, подобно животным организмам, углекислый газ в процессе дыхания, но вновь используют его для фотосинтеза. Благодаря способности к фотосинтезу и ассимиляции неорганических соединений азота и серы растения занимают определяющее место в круговороте веществ в природе.
Значение и роль фотосинтеза Слово «фотосинтез» означает буквально создание или сборку чего-то под действием света. Обычно, говоря о фотосинтезе, имеют в виду процесс, посредством которого растения на солнечном свету синтезируют органические соединения из неорганического сырья. Все формы жизни во Вселенной нуждаются в энергии для роста и поддержания жизни. Водоросли, высшие растения и некоторые типы бактерий улавливают непосредственно энергию солнечного излучения и используют ее для синтеза основных пищевых веществ. Животные не умеют использовать солнечный свет непосредственно в качестве источника энергии, они получают энергию, поедая растения или других животных, питающихся растениями. Итак, в конечном счете источником энергии для всех метаболических процессов на нашей планете, служит Солнце, а процесс фотосинтеза необходим для поддержания всех форм жизни на Земле.
Мы пользуемся ископаемым топливом - углем, природным газом, нефтью и т. д. Все эти виды топлива - не что иное, как продукты разложения наземных и морских растений или животных, и запасенная в них энергия была миллионы лет назад получена из солнечного света. Ветер и дождь тоже обязаны своим возникновением солнечной энергии, а следовательно, энергия ветряных мельниц и гидроэлектростанций в конечном счете также обусловлена солнечным излучением.
Важнейший путь химических реакций при фотосинтезе - это превращение углекислоты и воды в углероды и кислород. Суммарную реакцию можно описать уравнением СО2+Н20 – [СН20]+02
Углеводы, образующиеся в этой реакции, содержат больше энергии, чем исходные вещества, т. е. СО2 и Н20. Таким образом, за счет энергии Солнца энергетические вещества (СО2 и Н20) превращаются в богатые энергией продукты - углеводы и кислород. Энергетические уровни различных реакций, описанных суммарным уравнением, можно охарактеризовать величинами окислительно-восстановительных потенциалов, измеряемых в вольтах. Значения потенциалов показывают, сколько энергии запасается или растрачивается в каждой реакции. Итак, фотосинтез можно рассматривать как процесс образования лучистой энергии Солнца в химическую энергию растительных тканей.
Содержание СО2 в атмосфере остается почти полным, несмотря на то, что углекислый газ расходуется в процессе фотосинтеза. Дело в том, что все растения и животные дышат. В процессе дыхания в митохондриях кислород, поглощаемый из атмосферы живыми тканями, используется для окисления углеводов и других компонентов тканей с образованием в конечном счете двуокиси углерода и воды и с сопутствующим выделением энергии. Высвобождающаяся энергия запасается в высокоэнергетические соединения - аденозинтрифосфат (АТФ), который и используется организмом для выполнения всех жизненных функций. Таким образом дыхание приводит к расходованию органических веществ и кислорода и увеличивает содержание СО2 на н планете. На процессы дыхания во всех живых организмах и на сжигание всех видов топлива, содержащих углерод, в совокупности расходуется в масштабах Земли в среднем около 10000 тонн 02 в секунду. При такой скорости .потребления весь кислород в атмосфере должен бы иссякнуть примерно, через 3000 лет. К счастью для нас, расход органических веществ и атомного кислорода уравновешивается созданием углеводов и кислорода в результате фотосинтеза. В идеальных условиях скорость фотосинтеза в зеленых тканях растений примерно в 30 раз превышает скорость дыхания в тех же тканях, таким образом, фотосинтез служит важным фактором, регулирующим содержание 02 на Земле.
История открытия фотосинтезаВ начале XVII в. фламандский врач Ван Гельмонт вырастил в кадке с землей дерево, которое он поливал только дождевой водой. Он заметил, что спустя пять лет, дерево выросло до больших размеров, хотя количество земли в кадке практически не уменьшилось. Ван Гельмонт, естественно, сделал вывод, что материал, из которого образовалось дерево произошел из воды, использованной для полива. В 1777 английский ботаник Стивен Хейлс опубликовал книгу, в которой сообщалось, что в качестве питательного вещества, необходимого для роста, растения используют главным образом воздух. В тот же период знаменитый английский химик Джозеф Пристли (он был одним из первооткрывателей кислорода) провел серию опытов по горению и дыханию и пришел к выводу о том, что зелёные растения способны совершать все те дыхательные процессы, которые были обнаружены в тканях животных. Пристли сжигал свечу в замкнутом объеме воздуха, и обнаруживал, что получавшийся при этом воздух уже не может поддерживать горение. Мышь, помещенная в такой сосуд, умирала. Однако веточка мяты продолжала жить в воздухе неделями. В заключение Пристли обнаружил, что в воздухе, восстановленном веточкой мяты, вновь стала гореть свеча, могла дышать мышь. Теперь мы знаем, что свеча, сгорая, потребляла кислород из замкнутого объема воздуха, но затем воздух снова насыщался кислородом благодаря фотосинтезу, происходившему в оставленной веточке мяты. Спустя несколько лет голландский врач Ингенхауз обнаружил, что растения окисляют кислород лишь на солнечном свету и что только их зеленые части обеспечивают выделение кислорода. Жан Сенебье, занимавший пост министра, подтвердил данные Ингенхауза и продолжил исследование, показав, что в качестве питательного вещества растения используют двуокись углерода, растворенную в воде. В начале XIX века другой швейцарский исследователь де Соседи изучал количественные взаимосвязи между поглощенной растением углекислотой, с одной стороны, и синтезированными органическими веществами и кислородом - с другой. В результате своих опытов он пришел к выводу, что вода также потребляется растением при ассимиляции СО2. В 1817 г. два французских химика, Пельтье и Каванту, выделили из листьев зеленое вещество и назвали его хлорофиллом. Следующей важной вехой в истории изучения фотосинтеза было сделанное в 1845 г. немецким физиком Робертом Майером утверждение о том, что зеленые растения преобразуют энергию, солнечного света в химическую энергию. Представления о фотосинтезе, сложившиеся к середине прошлого века, можно выразить следующим соотношением:
Зеленое растение
СО2+ Н2 О + Свет – О2 + орг. вещества +химическая энергия
Отношение количества С02, поглощенного при фотосинтезе, к количеству выделенного 02, точно измерил французский физиолог растений Бусэнго. В 1864 г. он обнаружил, что фотосинтетическое отношение, т.е. отношение объема выделенного 02 к объему поглощенного С02, почти равно единице. В том же году немецкий ботаник Закс (открывший также у растений дыхание) продемонстрировал образование зерен крахмала при фотосинтезе. Закс помещал зеленые листья на несколько часов в темноту для того, чтобы они израсходовали накопленный в них крахмал. Затем он выносил листья на свет, но при этом освещал лишь половину каждого листа, оставляя другую половину листа в темноте. Спустя некоторое время весь лист целиком обрабатывали парами йода. В результате освещенная часть листа становилась темно-фиолетовой, что свидетельствовало об образовании комплекса крахмала с йодом, тогда как цвет другой половины листа не изменялся. Прямую связь между выделением кислорода и хлоропластами в зеленых листьях, а также соответствие спектра действия фотосинтеза спектру поглощеных хлоропластами установил в 1880 г. Энгельман. Он поместил нитевидную зеленую водоросль имеющую спирально извитые хлоропласты, на предметное стекло, освещая его узким и широким пучком белого света. Вместе с водорослью на предметное стекло наносилась суспензия клеток подвижных бактерий, чувствительных к концентрации кислорода. Предметное стекло помещали в камеру без воздуха и освещали. В этих условиях подвижные бактерии должны были перемещаться в ту часть, где концентрация 02 была выше. После прошествия некоторого времени образец рассматривали под микроскопом и подсчитывали распределение бактериопопуляции. Оказалось, что бактерии концентрировались вокруг зеленых полосок в нитевидной водоросли. В другой серии опытов Энгельман освещал водоросли лучами разного спектрального состава, установив призму между источником света и предметным столиком микроскопа. Наибольшее число бактерий в этом случае скапливалось вокруг тех участков водоросли, которые освещались синим и красным областями спектра. Находящиеся в водорослях хлорофиллы поглощали синий и красный свет. Поскольку к тому времени было уже известно, что для фотосинтеза необходимо поглощение света, Энгельман заключил, что хлорофиллы участвуют в синтезе в качестве пигментов, являющихся активными фоторецепторами. Уровень знаний о фотосинтезе в начале нашего века можно представить следующим образом.
СО2 + Н2О + Свет – О2 + Крахмал + Химическая энергия
Итак, к начал у нашего века суммарная реакция фотосинтеза была уже известна. Однако биохимия находилась не на таком высоком уровне, чтобы полно раскрыть механизмы восстановления двуокиси углерода до углеводов. К сожалению, следует признать, что и теперь еще некоторые аспекты фотосинтеза изучены довольно плохо. Издавна делались попытки исследовать влияние интенсивности света, температуры, концентрации углекислоты и т..п. на общий выход фотосинтеза. И хотя в этих работах исследовались растения самых разных видов, большинство измерений было выполнено на одноклеточных зеленых водорослях и на одноклеточной жгутиковой водоросли Эвглена. Одноклеточные организмы удобнее для качественного исследования, поскольку их можно выращивать во всех лабораториях при вполне стандартных условиях. Они могут быть равномерно суспензированы, т. е. взвешены в водных буферных растворах, и нужный объем такой суспензии, или взвеси, можно брать такой дозировки, точно так же, как при работе с обычными растениями. Хлоропласты для опытов лучше всего выделять из листьев высших растений. Чаще всего используют шпинат, потому что его легко выращивать и свежие листья удобны для проведения исследований; иногда используются листья гороха и салата-латука.
Поскольку СО2 хорошо растворяется в воде, а О2 относительно нерастворим в воде, то при фотосинтезе в замкнутой системе давление газа в этой системе может изменяться. Поэтому влияние света на фотосинтетические системы часто исследуют с помощью респиратора Варбурга, позволяющего регистрировать пороговые изменения объема 02 в системе. Впервые респиратор Варбурга был использован применительно к фотосинтезу в 1920г. Для измерения потребления или выделения кислорода в ходе реакции удобнее пользоваться другим прибором - кислородным электродом. В основе этого устройства лежит использование полярографического метода. Кислородный электрод обладает достаточной чувствительностью для того, чтобы обнаружить в таких низких концентрациях как 0,01 ммоль в 1 л. Прибор состоит из катода достаточно тонкой платиновой проволоки, герметично впрессованной в пластину анода, представляющего собой кольцо из серебряной проволоки, погруженной в насыщенный раствор. Электроды отделены от смеси, в которой протекает реакция, мембраной, проницаемой для 02. Реакционная система находится в пластмассовом или стеклянном сосуде и постоянно перемешивается вращающимся стержневым магнитом. Когда к электродам приложено напряжение, платиновый электрод становится отрицательным по отношению к стандартному электроду, кислород в растворе электролитически восстанавливается. При напряжении от 0,5 до 0,8 В величина электрического тока линейно зависит от парциального давления кислорода в растворе. Обычно с кислородным электродом работают при напряжении около 0,6 В. Электрический ток измеряют, присоединив электрод к подходящей регистрирующей системе. Электрод вместе с реакционной смесью орошают потоком воды от термостата. С помощью кислородного электрода измеряют действие света и различных химических веществ на фотосинтез. Преимущество кислородного электрода перед аппаратом Варбурга состоит в том, что кислородный электрод позволяет быстро и непрерывно регистрировать изменения содержания О2 в системе. С другой стороны, в приборе Варбурга можно одновременно исследовать до 20 образцов с различными реакционными смесями, тогда как при работе с кислородным электродом образцы приходится анализировать поочередно.
Примерно до начала 1930-х годов многие исследователи в этой области полагали, что первичная реакция фотосинтеза заключается в расщеплении двуокиси углерода под действием света на углерод и кислород с последующим восстановлением углерода до углеводов с участием воды в ходе нескольких последовательных реакций. Точка зрения изменилась в 1930-х годах в результате двух важных открытий. Во-первых, были описаны разновидности бактерий, способных ассимилировать и синтезировать углеводы, не используя для этого энергию света. Затем, голландский микробиолог Ван Нил сравнил процессы фотосинтеза у бактерий и показал, что некоторые бактерии могут ассимилировать С02 на свету, не выделяя при этом кислорода. Такие бактерии способны к фотосинтезу лишь при наличии подходящего субстрата-донора водорода. Ван Нил предполагал, что фотосинтез зеленых растений и водорослей является частным случаем, когда кислород в фотосинтезе происходит из воды, а не из углекислоты.
Второе важное открытие сделал в 1937 г. Р. Хил в Кембриджском университете. С помощью дифференциального центрифугирования гомогената тканей листа он отделил фотосинтезирующие частицы (хлоропласты) от дыхательных частиц. Полученные Xиллом хлоропласты при освещении сами по себе не выделяли кислорода (возможно, из-за того, что они были повреждены при разделении). Однако они начинали выделять кислород на свету, если в суспензию вносили подходящие акцепторы электрона (окислители), например ферриоксалат калия или феррицианид калия. При выделении одной молекулы 02 фотохимически восстанавливались четыре эквивалента окислителя. Позднее было обнаружено, что многие хиноны и красители восстанавливаются хлоропластами на свету. Однако хлоропласты не могли восстановить СО2, природный акцептор электронов при фотосинтезе. Это явление, известное теперь как реакция Хилла, представляет собой индуцируемый светом перенос электронов от воды к нефизиологическим окислителям (реагентам Хилла) против градиента химического потенциала. Значение реакции Хилла состоит в том, что она продемонстрировала возможность разделения двух процессов - фотохимического выделения кислорода и восстановления углекислоты при фотосинтезе.
Разложение воды, приводящее к выделению свободного кислорода при фотосинтезе, было установлено Рубеном и Каменом, в Калифорнии в 1941 г. Они поместили фотосинтезирующие клетки в воду, обогащенную изотопом кислорода, имеющим массу 18 атомных единиц 180. Изотопный состав кислорода, выделенного клетками, соответствовал составу воды, но не С02. Кроме того, Камен и Рубен открыли радиоактивный изотоп 18О, который впоследствии успешно использовали Бассэт, Бенсон Вин, изучавшие путь превращения углекислоты при фотосинтезе. Кальвин и его сотрудник установили, что восстановление углекислоты до сахаров происходит в результате темновых ферментативных процессов, причем для восстановления одной молекулы углекислоты требуются две молекулы восстановленного АДФ и три молекулы АТФ. К тому времени роль АТФ и пиридиннуклеотидов в дыхании тканей была установлена. Возможность фотосинтетического восстановления АДФ до АТФ выделенными хлорофиллами была доказана в 1951 г. в трех разных лабораториях. В 1954 г. Арнон, Аллен продемонстрировали фотосинтез - они наблюдали ассимиляцию С02 и 02 выделенными хлоропластами шпината. В течение следующего десятилетия из хлоропластов удалось выделить белки, участвующие в переносе электронов в синтезе -ферредоксин, пластоцианин, ферроАТФ-редуктазу, цитохромы и т. д.
Таким образом, в здоровых зеленых листьях, под действием света образуются АДФ и АТФ и энергия гидросвязей используются для восстановления С02 до углеводов в присутствии ферментов, причем активность ферментов регулируется светом.
Лимитирующие факторыИнтенсивность, или скорость процесса фотосинтеза в растении зависит от ряда внутренних и внешних факторов. Из внутренних факторов наиболее важное значение имеют структура листа и содержание в нем хлорофилла, скорость накопления продуктов фотосинтеза в хлоропластах, влияние ферментов, а также наличие малых концентраций необходимых неорганических веществ. Внешние параметры - это количество и качество света, попадающего на листья, температура окружающей среды, концентрация углекислоты и кислорода в атмосфере вблизи растения.
Скорость фотосинтеза возрастает линейно, или прямо пропорционально увеличению интенсивности света. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, прекращается, когда освещенность достигает определенного уровня 10000 люкс. Дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. Область стабильной скорости фотосинтеза называется областью светонасыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 100000 люкс. Следовательно, растениям, за исключением тех, которые растут в густых лесах и в тени, падающего солнечного света бывает достаточно для насыщения их фотосинтетической активности (энергия квантов, соответствующих крайним участкам видимого диапазона – фиолетового и красного, различается всего лишь в два раза, и все фотоны этого диапазона в принципе способны осуществить запуск фотосинтеза).
В случае низких интенсивностей света скорость фотосинтеза при 15 и 25°С одинакова. Реакции, протекающие при таких интенсивностях света, которые соответствуют области лимитирования света, подобно истинным фотохимическим реакциям, не чувствительны к температурам. Однако при более высоких интенсивностях скорость фотосинтеза при 25°С гораздо выше, чем при 15°С. Следовательно, в области светового насыщения уровень фотосинтеза зависит не только от поглощения фотонов, но и от других факторов. Большинство растений в умеренном климате хорошо функционируют в интервале температур от 10 до 35°С, наиболее благоприятные условия - это температура около 25°С.
В области лимитирования светом скорость фотосинтеза не изменяется при уменьшении концентрации СО2 . Отсюда можно сделать вывод, что С02 участвует непосредственно в фотохимической реакции. В то же время при более высоких интенсивностях освещения, лежащих за пределами области лимитирования, фотосинтез существенно возрастает при увеличении концентрации СО2. У некоторых зерновых культур фотосинтез линейно возрастал при увеличении концентрации СО2 до 0,5%. (эти измерения проводили в кратковременных опытах, поскольку длительное воздействие высоких концентраций СО2 повреждает листы). Высоких значений скорость фотосинтеза достигает при содержании С02 около 0,1%. Средняя концентрация углекислоты в атмосфере составляет от 0,03%. Поэтому в обычных условиях растениям не хватает СО2 для того, чтобы с максимальной эффективностью использовать попадающий на них солнечный свет. Если помещенное в замкнутый объем растение освещать светом насыщающей интенсивности, то концентрация СО2 в объеме воздуха будет постепенно уменьшаться и достигнет постоянного уровня, известного под названием «С02 компенсационного пункта». В этой точке появление СО2 при фотосинтезе уравновешивается выделением О2 в результате дыхания (темнового и светового). У растений разных видов положения компенсационных пунктов различны.
Световые и темновые реакции.Еще в 1905 г. английский физиолог растений Ф. Ф. Блекмэн, интерпретируя форму кривой светового насыщения фотосинтеза, высказал предположение, что фотосинтез представляет собой двухстадийный процесс, включающий фотохимическую, т.е. светочувствительную реакцию и нефотохимическую, т. е. темновую, реакцию. Темновая реакция, будучи ферментативной, протекает медленнее, чем световая реакция, и поэтому при высоких интенсивностях света скорость фотосинтеза полностью определяется скоростью темновой реакции. Световая реакция либо вообще не зависит от температуры, либо зависимость эта выражена очень слабо, тогда темновая реакция, как и все ферментативные процессы, зависит от температуры в довольно значительно и степени. Следует ясно представлять себе, что реакция, называемая темновой, может протекать как в темноте, так и на свету. Световую и темновую реакции можно разделить, используя вспышки света, длящиеся краткие доли секунды. Вспышки света длительностью меньше одной миллисекунды (10-3 с) можно получить либо с помощью механического приспособления, поставив на пути пучка постоянного света вращающийся диск со щелью, либо электрически, заряжая конденсатор и разряжая его через вакуумную или газоразрядную лампу. В качестве источников света пользуются также рубиновыми лазерами с длиной волны излучения 694 нм. В 1932 г. Эмерсон и Арнольд освещали суспензию клеток вспышками света от газоразрядной лампы с длительностью около 10-3с. Они измеряли скорость выделения кислорода в зависимости от энергии вспышек, длительности темнового промежутка между вспышками и температуры суспензии клеток. При увеличении интенсивности вспышек насыщение фотосинтеза в нормальных клетках наступало, когда выделялась одна молекула 02 на 2500 молекул хлорофилла. Эмерсон и Арнольд сделали вывод, что максимальный выход фотосинтеза определяется не числом молекул хлорофилла, поглощающих свет, а числом молекул фермента, катализирующего темновую реакцию. Они также обнаружили, что при увеличении темновых интервалов между последовательными вспышками за пределы 0,06 с выход кислорода в расчете на одну вспышку уже не зависел от длительности темнового интервала, тогда как при более коротких промежутках он возрастал с увеличением длительности темнового интервала (от 0 до 0,06 с). Таким образом, темновая реакция, которая определяет уровень насыщения фотосинтеза, завершается примерно за 0,06 с. На основе этих данных было рассчитано, что среднее время, характеризующее скорость реакции, составило около 0,02 с при 25°С.
Структурная и биохимическая организация аппарата фотосинтезаСовременные представления о структурной и функциональной организации фотосинтетического аппарата включают широкий круг вопросов, связанных с характеристикой химического состава пластид, спецификой их структурной организации, физиолого-генетическими закономерностями биогенеза этих органоидов и их взаимоотношениями с другими функциональными структурами клетки. У наземных растений специальным органом фотосинтетической деятельности служит лист, где локализованы специализированные структуры клетки - хлоропласты, содержащие пигменты и другие компоненты, необходимые для процессов поглощения и преобразования энергии света в химический потенциал. Кроме листа функционально активные хлоропласты присутствуют в стеблях растений, черешках, остях и чешуях колоса и даже в освещаемых корнях ряда растений. Однако именно лист был сформирован в ходе длительной эволюции как специальный орган для выполнения основной функции зеленого растения – фотосинтеза, поэтому анатомия листа, расположение хлорофиллсодержащих клеток и тканей, их соотношение с другими элементами морфемной структуры листа подчинены наиболее эффективному течению процесса фотосинтеза, и они в наибольшей степени подвергаются интенсивным изменениям в условиях экологического стресса.
В связи с этим проблему структурно - функциональной организации фотосинтетического аппарата целесообразно рассмотреть в двух основных уровнях - на уровне листа как органа фотосинтеза и хлоропластов, где целиком сосредоточен весь механизм фотосинтеза.
Организация фотосинтетического аппарата на уровне листа может быть рассмотрена на основе анализа его мезоструктуры. Понятие «мезоструктура» было предложено в 1975 году. По представлениям о структурной и функциональной особенностях фотоситнетического аппарата с характеристикой химического состава, структурной организации, физиолого-генетическими особенностями биогенеза этих органоидов и их взаимоотношениями с другими функциональными структурами специальным органом фотосинтетического процесса является лист, где локализованы специализированные образования - хлоропласты, содержащие пигменты, необходимые для процессов поглощения и преобразования света в химический потенциал. Кроме того, активные хлоропласты присутствуют в стеблях, остях и чешуях колоса и даже в освещенных частях корней некоторых растений. Однако именно лист был сформирован всем ходом эволюции как специальный орган для выполнения основной функции зеленого растения - фотосинтеза.
Мезоструктура включает систему морфофизиологических характеристик фотосинтетического аппарата листа, хлоренхимы и клезофилла. Основные показатели мезоструктуры фотосинтетического аппарата (по А. Т. Мокроносову) включают: площадь, число клеток, хлорофилл, белок, объем клетки, количество хлоропластов в клетке, объем хлоропласта, площадь сечения хлоропласта и его поверхность. Анализ мезоструктуры и функциональной активности фотосинтетического аппарата у многих видов растений помогают определить наиболее часто встречающиеся значения исследуемых показателей и пределы варьирования отдельных характеристик. Согласно этим данным, основные показатели мезоструктуры фотосинтетического аппарата (Мокроносов, 19В1):
I - площадь листа;
II - число клеток на 1 см2,
III - хлорофилл на 1 дм2, ключевые ферменты на 1 дм2, объем клетки, тыс. мкм2 , число хлоропластов в клетке;
IV - объем хлоропластов, площадь проекции хлоропласта, мкм2, поверхность хлоропласта, мкм2.
Среднее число хлоропластов у закончившего рост листа обычно достигает 10-30, у некоторых видов оно превышает 400. Это соответствует млн. хлоропластов в расчете на 1 см2площади листа. Хлоропласты сосредоточены в клетках различных тканей в количестве 15 – 80 штук на клетку. Средний объем хлоропласта - один мкм2. У большинства растений суммарный объем всех хлоропластов составляет 10-20%, у древесных растений - до 35% объема клетки. Отношение общей поверхности хлоропластов к площади листа находится в пределах 3-8. В одном хлоропласте содержится разное количество молекул хлорофилла, у тенелюбивых видов их число возрастает. Приведенные выше показатели могут значительно варьировать в зависимости от физиологического состояния и экологических условий роста растений. По данным А. Т. Мокроносова, в молодом листе активизация фотосинтеза при удалении 50-80% листа обеспечивается увеличением числа хлоропластов в клетке без изменения их индивидуальной активности, в то время как в листе, окончившем рост, усиление фотосинтеза после дефолиации происходит за счет повышения активности каждого хлоропласта без изменения их числа. Анализ мезоструктуры показал, что адаптация к условиям освещения вызывает перестройку, которая оптимизирует светопоглошающие свойства листа.
Хлоропласты имеют наиболее высокую степень организации внутренних мембранных структур по сравнению с другими органоидами клетки. По степени упорядоченности структур хлоропласты можно сравнить только с рецепторными клетками сетчатки глаза, также выполняющими функцию преобразования световой энергии. Высокая степень организации внутренней структуры хлоропласта определяется рядом моментов:
1) необходимостью пространственного разделения восстановленных и окисленных фотопродуктов, возникающих в результате первичных актов разделения заряда в реакционном центре;
2) необходимостью строгой упорядоченности компонентов реакционного центра, где сопряжёны быстропротекающие фотофизиологические и более медленные энзиматические реакции: преобразование энергии фотовозбужденной молекулы пигмента требует ее определенной ориентации по отношению к химическому акцептору энергии, что предполагает наличие определенных структур, где пигмент и акцептор жестко ориентированы друг относительно друга;
3) пространственная организация электронно-транспортной цепи требует последовательной и строго ориентированной организации переносчиков в мембране, обеспечивающей возможность быстрого и регулируемого транспорта электронов и протонов;
4) для сопряжения транспорта электронов и синтеза АТФ требуется определенным образом организованная система хлоропластов.
Липопротеидные мембраны как структурная основа энергетических процессов возникают на самых ранних этапах эволюции, предполагают, что основные липидные компоненты мембран - фосфолипиды - образовались в определенных биологических условиях. Формирование липидных комплексов обусловило возможность включения в них различных соединений, что по-видимому, явилось основой первичных каталитических функций данных структур.
Проведенные в последние годы электронномикроскопические исследования обнаружили организованные мембранные структуры у организмов, стоящих на самой низкой ступени эволюции. У некоторых бактерий мембранные фотосинтезирующие структуры клеток тесно упакованных органелл расположены по периферии клетки и связаны с цитоплазматическими мембранами; кроме того, в клетках зеленых водорослей процесс фотосинтеза связан с системой двойных замкнутых мембран - тилакоидов, локализованных в периферической части клетки. У данной группы фотосинтетических организмов впервые появляется хлорофилл, а образование специализированных органелл – хлоропластов встречается у криптофитовых водорослей. В них находятся по два хлоропласта, содержащих от одного до нескольких тилакоидов. Сходное строение фотосинтетического аппарата имеет место и у других групп водорослей: красных, бурых, и др. В процессе эволюции мембранная структура фотосинтетического процесса усложняется.
Микроскопические исследования хлоропласта, техника криоскопии позволили сформулировать пространственную модель объемной организация хлоропластов. Наиболее известна гранулярно-решетчатая модель Дж. Хеслоп-Харрисона (1964).
Таким образом, фотосинтез – это сложный процесс преобразования световой энергии в энергию химических связей органических веществ, необходимых для жизнедеятельности как самих фотосинтезирующих организмов, так и других организмов, не способных к самостоятельному синтезу органических веществ.
Изучение проблем фотосинтеза, помимо общебиологических, имеет и прикладное значение. В частности, проблемы питания, создания систем жизнеобеспечения при космических исследованиях, использования фотосинтезирующих организмов для создания различных биотехнических устройств непосредственно связаны с фотосинтезом.ЗаключениеПодытоживая, следует еще раз напомнить о глобальном значении растительного покрова, которое выражается: в создании живого органического вещества, являющегося основой для жизни и питания всех живых организмов на нашей планете, и в том числе человека; в непрерывном пополнении в атмосфере запасов свободного кислорода; в регулировании водообмена в приземных слоях атмосферы и почвенной толще и в ведущей роли растений в процессе почвообразования.
К этому следует добавить еще одно значение растительного покрова – его роль при создании полезных ископаемых. Как подарок из давно минувших эпох становления земли человечество получило огромные запасы горючих полезных ископаемых – залежи каменного угля, горючих сланцев и торфа, состоящих из органических веществ давно вымерших растений. Они хранят в своей массе тепловую лучистую энергию солнца, преобразованную миллионы лет тому назад в процессе фотосинтеза и сохранившуюся до наших дней в виде твердых осадочных горных пород. При их образовании (угли и торф) основную массу составили отмершие остатки высших растений и мхов. Все это еще раз доказывает глобальную роль растительного мира, являющегося основной частью всей биосферы, ее ведущим и определяющим компонентом. Список литературы1. Раинботе Х. «Тайна растений» Пер. с нем. Т. Власовой. М., «Знание»
2. Семенова – Тян – Шанская А. М. «Мир растений и люди » Л.: Наука
3. Ньюмен А. «Легкие нашей планеты»»
4. Д.Халл, К.Рао «Фотосинтез». М.,1983
5. Мокроносов А.Г. «Фотосинтетическая реакция и целостность растительного организма». М.,1983
6. Мокроносов А.Г., Гавриленко В.Ф. «Фотосинтез: физиолого – экологические и биохимические аспекты» М.,1992
7. «Физиология фотосинтеза» под ред. Ничипоровича А.А., М.,1982
8. Вечер А.С. «Пластиды растнеий»
9. Виноградов А.П. «Изотопы кислорода и фотосинтез»
bukvasha.ru
Роль растений в жизни планеты
Оглавление:
1. Растительный покров Земли……………………………………………...3
2. Зеленые растения и жизнь на Планете…………………………………..3
3. Значение и роль фотосинтеза…………………………………………….4
4. История открытия фотосинтеза………………………………………….5
5. Лимитирующие факторы………………………………………………....9
6. Световые и темновые реакции…………………………………………..11
7. Структурная и биохимическая организация аппарата фотосинтеза….12
8. Заключение……………………………………………………………….15
9. Список литературы……………………………………………………....16Растительный покров Земли
Зленные растения покрывают почти всю поверхность Земли. Они неспособны существовать лишь в крайне неблагоприятных (экстремальных) условиях. Например, в соляных или песчаных пустынях растительность очень бедна или полностью отсутствует. Но в тех участках песчаных пустынь, где имеется вода, развивается пышная растительность оазисов. Следовательно, теплые засушливые местности часто можно превратить в плодородные земли путем орошения. Лишь в вечных льдах полярных областей или высокогорий невозможна жизнь растений.
В зависимости от общеклиматических и почвенно-грунтовых условий местообитания в различных местностях развиваются вполне определенные растительные сообщества, резко различающиеся по видовому составу: леса, луга, степи и др.Зеленые растения и жизнь на Планете
Для питания растение использует самые простые вещества. Все, что требуется растению для поддержания жизни, - это вода, воздух (кислород и углекислый газ), некоторые минеральные вещества и солнечный свет.
Кислород необходим каждому дышащему организму. Все животные и растения и большинство микроорганизмов ведут аэробный образ жизни, то есть потребляют для дыхания кислород, который они используют для сжигания питательных веществ (дыхательных субстратов).
Выделение кислорода зелеными растениями имело поистине глобальные последствия для эволюции планеты Земли. Исходно восстановительная атмосфера Земли, первичная атмосфера, благодаря деятельности многих миллионов растений постепенно превратилась в кислородсодержащую, окислительную воздушную оболочку нашей планеты. Лишь вследствие этого стала возможна жизнь животных. Ведь и животные, и человек должны дышать, чтобы жить, и лишь сравнительно немногочисленны виды микроорганизмов способны обходиться без кислорода. Имеются факультативные анаэробы, которые хотя и могут жить в присутствии кислорода, но не нуждаются в нем. Существуют и облигатные анаэробы, для которых кислород – клеточный яд и у которых выработались защитные механизмы для устранения агрессивного действия кислорода.
Таким образом, жизнь животных и человека двояким образом зависит от жизни растений. Фотоавтотрофные растения продуцируют органическую массу, являясь крупнейшими производителями углеводов на Земле, они же выделяют и необходимый для жизни кислород как побочный продукт фотосинтеза. Они выделяют, подобно животным организмам, углекислый газ в процессе дыхания, но вновь используют его для фотосинтеза. Благодаря способности к фотосинтезу и ассимиляции неорганических соединений азота и серы растения занимают определяющее место в круговороте веществ в природе.
Значение и роль фотосинтеза Слово «фотосинтез» означает буквально создание или сборку чего-то под действием света. Обычно, говоря о фотосинтезе, имеют в виду процесс, посредством которого растения на солнечном свету синтезируют органические соединения из неорганического сырья. Все формы жизни во Вселенной нуждаются в энергии для роста и поддержания жизни. Водоросли, высшие растения и некоторые типы бактерий улавливают непосредственно энергию солнечного излучения и используют ее для синтеза основных пищевых веществ. Животные не умеют использовать солнечный свет непосредственно в качестве источника энергии, они получают энергию, поедая растения или других животных, питающихся растениями. Итак, в конечном счете источником энергии для всех метаболических процессов на нашей планете, служит Солнце, а процесс фотосинтеза необходим для поддержания всех форм жизни на Земле.
Мы пользуемся ископаемым топливом - углем, природным газом, нефтью и т. д. Все эти виды топлива - не что иное, как продукты разложения наземных и морских растений или животных, и запасенная в них энергия была миллионы лет назад получена из солнечного света. Ветер и дождь тоже обязаны своим возникновением солнечной энергии, а следовательно, энергия ветряных мельниц и гидроэлектростанций в конечном счете также обусловлена солнечным излучением.
Важнейший путь химических реакций при фотосинтезе - это превращение углекислоты и воды в углероды и кислород. Суммарную реакцию можно описать уравнением СО2+Н20 – [СН20]+02
Углеводы, образующиеся в этой реакции, содержат больше энергии, чем исходные вещества, т. е. СО2 и Н20. Таким образом, за счет энергии Солнца энергетические вещества (СО2 и Н20) превращаются в богатые энергией продукты - углеводы и кислород. Энергетические уровни различных реакций, описанных суммарным уравнением, можно охарактеризовать величинами окислительно-восстановительных потенциалов, измеряемых в вольтах. Значения потенциалов показывают, сколько энергии запасается или растрачивается в каждой реакции. Итак, фотосинтез можно рассматривать как процесс образования лучистой энергии Солнца в химическую энергию растительных тканей.
Содержание СО2 в атмосфере остается почти полным, несмотря на то, что углекислый газ расходуется в процессе фотосинтеза. Дело в том, что все растения и животные дышат. В процессе дыхания в митохондриях кислород, поглощаемый из атмосферы живыми тканями, используется для окисления углеводов и других компонентов тканей с образованием в конечном счете двуокиси углерода и воды и с сопутствующим выделением энергии. Высвобождающаяся энергия запасается в высокоэнергетические соединения - аденозинтрифосфат (АТФ), который и используется организмом для выполнения всех жизненных функций. Таким образом дыхание приводит к расходованию органических веществ и кислорода и увеличивает содержание СО2 на н планете. На процессы дыхания во всех живых организмах и на сжигание всех видов топлива, содержащих углерод, в совокупности расходуется в масштабах Земли в среднем около 10000 тонн 02 в секунду. При такой скорости .потребления весь кислород в атмосфере должен бы иссякнуть примерно, через 3000 лет. К счастью для нас, расход органических веществ и атомного кислорода уравновешивается созданием углеводов и кислорода в результате фотосинтеза. В идеальных условиях скорость фотосинтеза в зеленых тканях растений примерно в 30 раз превышает скорость дыхания в тех же тканях, таким образом, фотосинтез служит важным фактором, регулирующим содержание 02 на Земле.
История открытия фотосинтезаВ начале XVII в. фламандский врач Ван Гельмонт вырастил в кадке с землей дерево, которое он поливал только дождевой водой. Он заметил, что спустя пять лет, дерево выросло до больших размеров, хотя количество земли в кадке практически не уменьшилось. Ван Гельмонт, естественно, сделал вывод, что материал, из которого образовалось дерево произошел из воды, использованной для полива. В 1777 английский ботаник Стивен Хейлс опубликовал книгу, в которой сообщалось, что в качестве питательного вещества, необходимого для роста, растения используют главным образом воздух. В тот же период знаменитый английский химик Джозеф Пристли (он был одним из первооткрывателей кислорода) провел серию опытов по горению и дыханию и пришел к выводу о том, что зелёные растения способны совершать все те дыхательные процессы, которые были обнаружены в тканях животных. Пристли сжигал свечу в замкнутом объеме воздуха, и обнаруживал, что получавшийся при этом воздух уже не может поддерживать горение. Мышь, помещенная в такой сосуд, умирала. Однако веточка мяты продолжала жить в воздухе неделями. В заключение Пристли обнаружил, что в воздухе, восстановленном веточкой мяты, вновь стала гореть свеча, могла дышать мышь. Теперь мы знаем, что свеча, сгорая, потребляла кислород из замкнутого объема воздуха, но затем воздух снова насыщался кислородом благодаря фотосинтезу, происходившему в оставленной веточке мяты. Спустя несколько лет голландский врач Ингенхауз обнаружил, что растения окисляют кислород лишь на солнечном свету и что только их зеленые части обеспечивают выделение кислорода. Жан Сенебье, занимавший пост министра, подтвердил данные Ингенхауза и продолжил исследование, показав, что в качестве питательного вещества растения используют двуокись углерода, растворенную в воде. В начале XIX века другой швейцарский исследователь де Соседи изучал количественные взаимосвязи между поглощенной растением углекислотой, с одной стороны, и синтезированными органическими веществами и кислородом - с другой. В результате своих опытов он пришел к выводу, что вода также потребляется растением при ассимиляции СО2. В 1817 г. два французских химика, Пельтье и Каванту, выделили из листьев зеленое вещество и назвали его хлорофиллом. Следующей важной вехой в истории изучения фотосинтеза было сделанное в 1845 г. немецким физиком Робертом Майером утверждение о том, что зеленые растения преобразуют энергию, солнечного света в химическую энергию. Представления о фотосинтезе, сложившиеся к середине прошлого века, можно выразить следующим соотношением:
Зеленое растение
СО2+ Н2 О + Свет – О2 + орг. вещества +химическая энергия
Отношение количества С02, поглощенного при фотосинтезе, к количеству выделенного 02, точно измерил французский физиолог растений Бусэнго. В 1864 г. он обнаружил, что фотосинтетическое отношение, т.е. отношение объема выделенного 02 к объему поглощенного С02, почти равно единице. В том же году немецкий ботаник Закс (открывший также у растений дыхание) продемонстрировал образование зерен крахмала при фотосинтезе. Закс помещал зеленые листья на несколько часов в темноту для того, чтобы они израсходовали накопленный в них крахмал. Затем он выносил листья на свет, но при этом освещал лишь половину каждого листа, оставляя другую половину листа в темноте. Спустя некоторое время весь лист целиком обрабатывали парами йода. В результате освещенная часть листа становилась темно-фиолетовой, что свидетельствовало об образовании комплекса крахмала с йодом, тогда как цвет другой половины листа не изменялся. Прямую связь между выделением кислорода и хлоропластами в зеленых листьях, а также соответствие спектра действия фотосинтеза спектру поглощеных хлоропластами установил в 1880 г. Энгельман. Он поместил нитевидную зеленую водоросль имеющую спирально извитые хлоропласты, на предметное стекло, освещая его узким и широким пучком белого света. Вместе с водорослью на предметное стекло наносилась суспензия клеток подвижных бактерий, чувствительных к концентрации кислорода. Предметное стекло помещали в камеру без воздуха и освещали. В этих условиях подвижные бактерии должны были перемещаться в ту часть, где концентрация 02 была выше. После прошествия некоторого времени образец рассматривали под микроскопом и подсчитывали распределение бактериопопуляции. Оказалось, что бактерии концентрировались вокруг зеленых полосок в нитевидной водоросли. В другой серии опытов Энгельман освещал водоросли лучами разного спектрального состава, установив призму между источником света и предметным столиком микроскопа. Наибольшее число бактерий в этом случае скапливалось вокруг тех участков водоросли, которые освещались синим и красным областями спектра. Находящиеся в водорослях хлорофиллы поглощали синий и красный свет. Поскольку к тому времени было уже известно, что для фотосинтеза необходимо поглощение света, Энгельман заключил, что хлорофиллы участвуют в синтезе в качестве пигментов, являющихся активными фоторецепторами. Уровень знаний о фотосинтезе в начале нашего века можно представить следующим образом.
СО2 + Н2О + Свет – О2 + Крахмал + Химическая энергия
Итак, к начал у нашего века суммарная реакция фотосинтеза была уже известна. Однако биохимия находилась не на таком высоком уровне, чтобы полно раскрыть механизмы восстановления двуокиси углерода до углеводов. К сожалению, следует признать, что и теперь еще некоторые аспекты фотосинтеза изучены довольно плохо. Издавна делались попытки исследовать влияние интенсивности света, температуры, концентрации углекислоты и т..п. на общий выход фотосинтеза. И хотя в этих работах исследовались растения самых разных видов, большинство измерений было выполнено на одноклеточных зеленых водорослях и на одноклеточной жгутиковой водоросли Эвглена. Одноклеточные организмы удобнее для качественного исследования, поскольку их можно выращивать во всех лабораториях при вполне стандартных условиях. Они могут быть равномерно суспензированы, т. е. взвешены в водных буферных растворах, и нужный объем такой суспензии, или взвеси, можно брать такой дозировки, точно так же, как при работе с обычными растениями. Хлоропласты для опытов лучше всего выделять из листьев высших растений. Чаще всего используют шпинат, потому что его легко выращивать и свежие листья удобны для проведения исследований; иногда используются листья гороха и салата-латука.
Поскольку СО2 хорошо растворяется в воде, а О2 относительно нерастворим в воде, то при фотосинтезе в замкнутой системе давление газа в этой системе может изменяться. Поэтому влияние света на фотосинтетические системы часто исследуют с помощью респиратора Варбурга, позволяющего регистрировать пороговые изменения объема 02 в системе. Впервые респиратор Варбурга был использован применительно к фотосинтезу в 1920г. Для измерения потребления или выделения кислорода в ходе реакции удобнее пользоваться другим прибором - кислородным электродом. В основе этого устройства лежит использование полярографического метода. Кислородный электрод обладает достаточной чувствительностью для того, чтобы обнаружить в таких низких концентрациях как 0,01 ммоль в 1 л. Прибор состоит из катода достаточно тонкой платиновой проволоки, герметично впрессованной в пластину анода, представляющего собой кольцо из серебряной проволоки, погруженной в насыщенный раствор. Электроды отделены от смеси, в которой протекает реакция, мембраной, проницаемой для 02. Реакционная система находится в пластмассовом или стеклянном сосуде и постоянно перемешивается вращающимся стержневым магнитом. Когда к электродам приложено напряжение, платиновый электрод становится отрицательным по отношению к стандартному электроду, кислород в растворе электролитически восстанавливается. При напряжении от 0,5 до 0,8 В величина электрического тока линейно зависит от парциального давления кислорода в растворе. Обычно с кислородным электродом работают при напряжении около 0,6 В. Электрический ток измеряют, присоединив электрод к подходящей регистрирующей системе. Электрод вместе с реакционной смесью орошают потоком воды от термостата. С помощью кислородного электрода измеряют действие света и различных химических веществ на фотосинтез. Преимущество кислородного электрода перед аппаратом Варбурга состоит в том, что кислородный электрод позволяет быстро и непрерывно регистрировать изменения содержания О2 в системе. С другой стороны, в приборе Варбурга можно одновременно исследовать до 20 образцов с различными реакционными смесями, тогда как при работе с кислородным электродом образцы приходится анализировать поочередно.
Примерно до начала 1930-х годов многие исследователи в этой области полагали, что первичная реакция фотосинтеза заключается в расщеплении двуокиси углерода под действием света на углерод и кислород с последующим восстановлением углерода до углеводов с участием воды в ходе нескольких последовательных реакций. Точка зрения изменилась в 1930-х годах в результате двух важных открытий. Во-первых, были описаны разновидности бактерий, способных ассимилировать и синтезировать углеводы, не используя для этого энергию света. Затем, голландский микробиолог Ван Нил сравнил процессы фотосинтеза у бактерий и показал, что некоторые бактерии могут ассимилировать С02 на свету, не выделяя при этом кислорода. Такие бактерии способны к фотосинтезу лишь при наличии подходящего субстрата-донора водорода. Ван Нил предполагал, что фотосинтез зеленых растений и водорослей является частным случаем, когда кислород в фотосинтезе происходит из воды, а не из углекислоты.
Второе важное открытие сделал в 1937 г. Р. Хил в Кембриджском университете. С помощью дифференциального центрифугирования гомогената тканей листа он отделил фотосинтезирующие частицы (хлоропласты) от дыхательных частиц. Полученные Xиллом хлоропласты при освещении сами по себе не выделяли кислорода (возможно, из-за того, что они были повреждены при разделении). Однако они начинали выделять кислород на свету, если в суспензию вносили подходящие акцепторы электрона (окислители), например ферриоксалат калия или феррицианид калия. При выделении одной молекулы 02 фотохимически восстанавливались четыре эквивалента окислителя. Позднее было обнаружено, что многие хиноны и красители восстанавливаются хлоропластами на свету. Однако хлоропласты не могли восстановить СО2, природный акцептор электронов при фотосинтезе. Это явление, известное теперь как реакция Хилла, представляет собой индуцируемый светом перенос электронов от воды к нефизиологическим окислителям (реагентам Хилла) против градиента химического потенциала. Значение реакции Хилла состоит в том, что она продемонстрировала возможность разделения двух процессов - фотохимического выделения кислорода и восстановления углекислоты при фотосинтезе.
Разложение воды, приводящее к выделению свободного кислорода при фотосинтезе, было установлено Рубеном и Каменом, в Калифорнии в 1941 г. Они поместили фотосинтезирующие клетки в воду, обогащенную изотопом кислорода, имеющим массу 18 атомных единиц 180. Изотопный состав кислорода, выделенного клетками, соответствовал составу воды, но не С02. Кроме того, Камен и Рубен открыли радиоактивный изотоп 18О, который впоследствии успешно использовали Бассэт, Бенсон Вин, изучавшие путь превращения углекислоты при фотосинтезе. Кальвин и его сотрудник установили, что восстановление углекислоты до сахаров происходит в результате темновых ферментативных процессов, причем для восстановления одной молекулы углекислоты требуются две молекулы восстановленного АДФ и три молекулы АТФ. К тому времени роль АТФ и пиридиннуклеотидов в дыхании тканей была установлена. Возможность фотосинтетического восстановления АДФ до АТФ выделенными хлорофиллами была доказана в 1951 г. в трех разных лабораториях. В 1954 г. Арнон, Аллен продемонстрировали фотосинтез - они наблюдали ассимиляцию С02 и 02 выделенными хлоропластами шпината. В течение следующего десятилетия из хлоропластов удалось выделить белки, участвующие в переносе электронов в синтезе -ферредоксин, пластоцианин, ферроАТФ-редуктазу, цитохромы и т. д.
Таким образом, в здоровых зеленых листьях, под действием света образуются АДФ и АТФ и энергия гидросвязей используются для восстановления С02 до углеводов в присутствии ферментов, причем активность ферментов регулируется светом.
Лимитирующие факторыИнтенсивность, или скорость процесса фотосинтеза в растении зависит от ряда внутренних и внешних факторов. Из внутренних факторов наиболее важное значение имеют структура листа и содержание в нем хлорофилла, скорость накопления продуктов фотосинтеза в хлоропластах, влияние ферментов, а также наличие малых концентраций необходимых неорганических веществ. Внешние параметры - это количество и качество света, попадающего на листья, температура окружающей среды, концентрация углекислоты и кислорода в атмосфере вблизи растения.
Скорость фотосинтеза возрастает линейно, или прямо пропорционально увеличению интенсивности света. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, прекращается, когда освещенность достигает определенного уровня 10000 люкс. Дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. Область стабильной скорости фотосинтеза называется областью светонасыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 100000 люкс. Следовательно, растениям, за исключением тех, которые растут в густых лесах и в тени, падающего солнечного света бывает достаточно для насыщения их фотосинтетической активности (энергия квантов, соответствующих крайним участкам видимого диапазона – фиолетового и красного, различается всего лишь в два раза, и все фотоны этого диапазона в принципе способны осуществить запуск фотосинтеза).
В случае низких интенсивностей света скорость фотосинтеза при 15 и 25°С одинакова. Реакции, протекающие при таких интенсивностях света, которые соответствуют области лимитирования света, подобно истинным фотохимическим реакциям, не чувствительны к температурам. Однако при более высоких интенсивностях скорость фотосинтеза при 25°С гораздо выше, чем при 15°С. Следовательно, в области светового насыщения уровень фотосинтеза зависит не только от поглощения фотонов, но и от других факторов. Большинство растений в умеренном климате хорошо функционируют в интервале температур от 10 до 35°С, наиболее благоприятные условия - это температура около 25°С.
В области лимитирования светом скорость фотосинтеза не изменяется при уменьшении концентрации СО2 . Отсюда можно сделать вывод, что С02 участвует непосредственно в фотохимической реакции. В то же время при более высоких интенсивностях освещения, лежащих за пределами области лимитирования, фотосинтез существенно возрастает при увеличении концентрации СО2. У некоторых зерновых культур фотосинтез линейно возрастал при увеличении концентрации СО2 до 0,5%. (эти измерения проводили в кратковременных опытах, поскольку длительное воздействие высоких концентраций СО2 повреждает листы). Высоких значений скорость фотосинтеза достигает при содержании С02 около 0,1%. Средняя концентрация углекислоты в атмосфере составляет от 0,03%. Поэтому в обычных условиях растениям не хватает СО2 для того, чтобы с максимальной эффективностью использовать попадающий на них солнечный свет. Если помещенное в замкнутый объем растение освещать светом насыщающей интенсивности, то концентрация СО2 в объеме воздуха будет постепенно уменьшаться и достигнет постоянного уровня, известного под названием «С02 компенсационного пункта». В этой точке появление СО2 при фотосинтезе уравновешивается выделением О2 в результате дыхания (темнового и светового). У растений разных видов положения компенсационных пунктов различны.
ua.coolreferat.com
Урок Роль зеленых растений на планете и в жизни человека
Интегрированный урок
по природоведению и математике в 5 классе
на тему: «Роль зеленых насаждений на планете и в жизни человека»
Жаркова Любовь Викторовна, учитель биологии
Метапредметные цели урока:
- развивать у учащихся биологические и математические компетенции для объяснения процессов и явлений охраны растений на Земле;
- научить учащихся применять математические знания на практике и действовать в нестандартных ситуациях;
- научить учащихся видеть и понимать экологические проблемы Волгоградской области и находить пути их решения.
Задачи урока:
1.Образовательная:
- повторить все действия с натуральными числами, единицы измерения площади и массы;
- расширить знания учащихся о роли зеленых растений в природе и жизни человека.
2. Развивающая:
- применять математические знания при решении практических задач;
- применить биологические знания при решении задач экологического содержания;
-продолжить формирование навыков работы с компьютером, умения анализировать, размышлять, делать выводы;
- развивать познавательный интерес к различным методам изучения окружающей среды.
3. Воспитательная:
- воспитывать у учащихся новое экологическое мышление, экологическую культуру, прививать любовь к малой Родине;
- воспитывать позитивное ценностное отношение к живой природе, чувство патриотизма, эстетические чувства.
Тип урока: интегрированный.
Форма урока: урок-исследование.
Оборудование:.
Ход урока:
1. Организационный момент.
Учитель: Ребята! Сегодня на уроке мы с вами:
- расширим знания о роли зеленых растений в природе и жизни человека;
-повторим все действия с натуральными числами, единицы измерения площади и массы;
- научимся видеть и понимать экологические проблемы Волгоградской области и находить пути их решения.
Слайд 1: «Тема урока»
Слайд 2: «Цели урока»
2. Актуализация знаний.
Учитель биологии:
Над желтой нивой – купол голубой
Плывет, как лебедь, парус у причала.
К огромной нашей Родине любовь
Берет от малой Родины начало.
Щедра земля наша. И произрастают на ней тысячи разнообразных растений. Её леса, горы и степи таят в себе огромные природные богатства. Нет ничего краше и привлекательнее нашего леса! Леса – это величайшее творение природы, краса и гордость нашей планеты, "Леса учат человека понимать прекрасное” – эти замечательные слова принадлежат Антону Павловичу Чехову. И действительно, именно в лесах с необычайной силой и выразительностью представлены могущество и величественная красота природы
Учитель математики: Но лес – это не только украшение земли. Это ценнейшее сокровище нашей природы. Лес необходим для строительства сел и городов, фабрик и заводов, гидроэлектростанций. Производство бумаги и кинопленки, искусственного волокна и мебели, музыкальных инструментов и спортивного инвентаря не может обойтись без древесины. Древесина служит сырьем для получения массы ценных химических продуктов: спирта, кислот, канифоли. Высококачественный русский лес охотно покупают многие страны.
Сегодня мы остановимся на производстве бумаги.
Фильм
3.Решение экологических задач.
Учитель математики: Проведем маленькое исследование и сделаем вычисления к следующей задаче
Задача 1.
Вычислить, сколько нужно вырубить леса для того, чтобы издать один учебник "Математика” авт. Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд, М: "Мнемозина”, 2005, и сколько, чтобы издать тираж учебника?
Этапы работы над задачей:
1. Вычислить площадь одной страницы учебника (измерить на уроке)
2. Умножить площадь одной страницы на количество страниц в учебнике (посмотреть количество страниц, разделить на два)
3. Умножить на тираж учебника (посмотреть тираж)
3. Выразить результат в квадратных метрах.
4. Сколько вырубили леса, чтобы создать тираж учебника?
Слайд 3
Решение.
Размеры одной страницы учебника 14см на 21 см,
т.е. площадь равна
14*21=294 см2
В учебнике 284страницы или 142 листа,
значит площадь всех страниц учебника
294*142 = 41748 см2 = 4 м2 1748 см2 .
На 1000 м2нужно вырубить ¼ га = 2500 м2деревьев, т.е. в 2,5 раза больше.
Значит на производство одного учебника требуется 10 м2 4370 см2
На весь тираж в 120 000 экземпляров требуется
104370*120000 = 12524400000 см2 = 1252440 м2 леса = 125 га
Учитель биологии: Какой вывод для себя вы сделали, решая эту задачу?
Вывод: Прежде чем портить учебник, подумай, сколько погибнет деревьев для издательства нового.
Учитель биологии: Тополя поглощают углекислого газа больше чем ель, в 5 раз больше чем лиственница, в 3,5 раза больше дуба и в 2,5 раза больше чем липа.
Своими листьями тополя задерживают пыли в 15-25 раз больше чем белая акация и вяз перисто-ветвистый.
Один гектар тополей за год продуцирует 200-300 тонн кислорода.
Учитель биологии: Растения стоят на страже нашего здоровья. Они поглощают из атмосферы вредные для жизни человека газы, задерживают пыль на поверхности листьев. А вспомните, как легко дышится в знойный летний день в лесу. Гулять в лесу полезно для здоровья. Часовая прогулка среди сосен даст заряд бодрости, укрепит иммунитет и повысит работоспособность даже совершенно здоровых людей. Деревья обогащают атмосферу кислородом и выделяют ароматные смолистые вещества, которые губительно действуют на болезнетворные микробы.
Деревья не только поглощают углекислый газ и выделяют кислород. Они "работают” как фильтры, очищая воздух от сажи и пыли.
Учитель математики:
Группа учеников класса в качестве домашнего задания должна была ответить на такие вопросы:
1. Какова площадь школьного участка?
2. Какую площадь занимают деревья?
3. Сколько детей обучается в школе?
Продолжим их исследование.
Задача 2
Сколько квадратных метров зеленых насаждений приходится на одного ученика?
Учитель биологии: Лес – дитя Земли. Нельзя забывать, что лес это не только универсальное сырьё, но и важнейший компонент природы. Наш век – век техники. За последние 100 лет углекислоты в атмосфере добавилось 360 млрд. тонн и концентрация её выросла на 13%. Процесс этот продолжается. Автомашина за тысячи километров пробега съедает кислорода равную годовой норме человека. Воздушный лайнер, перелетев океан, выбрасывает в атмосферу 100 тонн углекислоты.
Леса регенерируют, очищают воздух планеты. Дерево средней величины за 25 часов восстанавливает столько кислорода, сколько необходимо для дыхания 3 человек. За один тёплый солнечный день гектар леса поглощает из воздуха 220 – 280 кг углекислого газа и выделяет 180 – 200кг кислорода
Учитель математики:
Задача3. Мы предлагаем посчитать, сколько деревьев сможет выделить кислород необходимый для дыхания 30 человек. Один человек потребляет в сутки 350г кислорода, а одно дерево за 1час вырабатывает 43 ¾ г кислорода.
Вывд -
Слайд 4
Слайд 5
Решение.
Общая площадь участка 150 ар (соток) = 15000м2. Деревьями и кустарниками засажено 50 ар = 5000 м2. В нашей школе обучается 450 человек, значит, на одного ученика приходится 5000 : 450 примерно 11,1 м2 насаждений
Слайды (6 -13) Презентация Бердниковой Маши
Слайд 14
Решение: 1.350*30=10500г (потребляет 30 человек)
2.43 ¾*24=1050г (выделяет 1 дерево в сутки)
3.10500:1050=10(деревьев)
Ответ:10 деревьев
Слайды ( 15-19) Серебренникова Алина
Учитель биологии: Трудно переоценить роль леса в очистке воздуха от пыли и вредных газов, а воду – от загрязнения.
Летом деревья улавливают на свои кроны 50% пыли, содержащейся в воздухе. Способность их в этом просто удивительная: на деревьях оседает пыли больше, чем на оконном стекле в 30 – 60 раз и в 10 раз больше, чем на лужайках. Один гектар деревьев хвойных пород задерживает за год до 40 т пыли (сосна - до 36 т, ель – 30 т, бук – 65 т), а лиственные до 100 тонн.
Учитель математики: Мы предлагаем вам задачу4, подтверждающую эту уникальную способность зелёных насаждений. На 50км² леса в воздухе находится около 40 т пыли, а над такой же площадью безлесного пространства в 12 раз больше. Сколько тонн пыли находится над 1га безлесного пространства.
Учитель биологии. Ребята, трудно представить, что произойдёт с нашей планетой, если этот уникальный природный дар будет утрачен. А ведь произойти это может, и поводов для опасений более чем достаточно. В Англии уничтожено 95% лесов, тропические леса Африки уменьшились на 70%, Южной Америки – 60%, в Китае лишь 8% территории покрыто лесом.
Учитель математики. Я хочу предложить вам решить задачу5.
Общая площадь лесов Волгоградской области 699 тыс. га. Ежегодно на планете леса уменьшаются на 2%. На сколько уменьшится площадь лесов Волгоградской области за 2 года?
Учитель биология: Кроны деревьев существенно влияют на температуру воздуха. Разница температуры в лесу и на открытом воздухе достигает 11-17 градусов. Леса умеряют как сильные морозы, ветер, так и летнюю жару.
Учитель математики: Примером этого послужит следующая задача 6: в жаркую погоду в сквере температура воздуха на 2,2ºС ниже, чем на городской площади и на 1,5ºС выше чем в лесу. Какая температура воздуха в лесу, если на городской площади она 29ºС?
Учитель биологии. Человек всегда стремится в лес, в горы, на берег моря. Санатории, дома отдыха строят в самых красивых уголках. Случайность ли это?
Нет, не случайность. Созерцание красот природы стимулирует жизненный тонус и успокаивает нервную систему. Хвойные выделяют в окружающий воздух большое количество фитонцидов, активных даже против туберкулезной палочки, поэтому воздух в лесу не только стерилен, но и оказывает противомикробное действие. Не случайно противотуберкулезные санатории размещают в сосновых лесах. Вдыхать аромат сосны полезно при насморке и кашле. Сосна оздоравливает воздух и летом и зимой (лиственные деревья только летом).Сосновый лес, занимающий площадь 1 га, продуцирует в сутки 5 кг фитонцидов (лиственный лес – 2 кг, а можжевеловый – 30 кг)
Учитель математики: Несколько граммов фитонцидов обеззараживают сотни кубометров атмосферы. Предлагаем решить задачу7.
В 1 м³ воздуха лесного массива содержится около 420 микробов. Сколько микробов содержится в классе размером 7*6.5*3, если в городском воздухе их в 11 раз больше, чем в лесу?
Учитель математики. Один из способов охраны леса я могу вам предложить прямо сейчас. Задача 8.
1тонна макулатуры сохраняет 5м³ леса. В школе 800 учеников. Сколько можно сохранить кубометров леса, если каждый ученик нашей школы соберёт10кг макулатуры? Сколько учебников можно сделать из этой макулатуры, если выход бумаги 60%? Вес учебника ½ кг
Учитель биологии.
Озеленность Волгограда значительно меньше той величины, которая принимается за оптимальную. На одного жителя города площадь зеленых насаждений в среднем составляет около 10 кв. м при норме 25 кв. м. Уже сегодня город потребляет кислорода больше, чем его производят городские насаждения. Пока проблему решает циркуляция воздушных масс - воздух, насыщенный кислородом, поступает в город извне, но, тем не менее, уже сейчас при определенных погодных условиях горожане с ослабленным здоровьем ощущают недостаток кислорода.
Город Волгоград - большой город, он протянулся больше чем на 80 км вдоль реки Волга, в городе 8 районов.
В Волгограде много промышленных предприятий, особенно в нашем Красноармейском районе. Волгоград относится к 150 городам России с наиболее неблагополучной экологической обстановкой.
В атмосферу города от производств поступает около 100 тысяч тонн вредных выбросов 200 наименований. 59 % из них составляют выбросы в Красноармейском районе.
270 тысяч тонн в год – выбросы от автотранспорта в атмосферу города.
Мы все любим отдыхать на «природе». Присутствие даже одного человека не проходит для леса бесследно. Сбор грибов, цветов и ягод подрывает самовозобновление ряда видов растений.
Костёр на 5-7 лет полностью выводит из строя клочок земли, на котором он был разложен.
Шум отпугивает различных птиц и млекопитающих, мешает им нормально растить потомство.
Обламывание ветвей, зарубки на стволах и другие механические повреждения деревьев способствуют заражению их насекомыми- вредителями.
Но в настоящее время растения безжалостно уничтожаются человеком. Например, за последние 10 тыс. лет на Земле уничтожено 2/3 лесов.
Да что далеко ходить, посмотрите как интенсивно вырубаются и обрезаются деревья в нашем городе (демонстрация фотографий). Да и многие из вас, я думаю, ломали деревья, срывали редкие растения. А может наше отношение к растениям оправданно и мы можем прожить и без них?
Выводы по результатам исследования
Испокон веков лес был и остается верным другом и защитником человека. Ведь лес и кормит, и лечит, и одевает, и согревает людей.
Лекарственные растения, ягоды, грибы, плоды дарит лес людям, а взамен требует только одного – бережного обращения с ним. Во многих странах приняты законы об охране природы, в том числе и растений, создаются охраняемые природные территории: заповедники, заказники и национальные парки. Составлены специальные списки охраняемых видов животных и растений, так называемые Красные книги.
Сберечь и сохранить растительный мир Земли для потомков – важнейшая задача человечества.
Любить лес, охранять его – это долг каждого российского человека.
Следует ещё раз напомнить: лес – наш друг, бескорыстный и могучий. Но он, словно человек, у которого открыта настежь душа, требует и внимания, и заботы от нерадивого, бездумного к нему отношения. Жизнь без леса немыслима, и мы все в ответе за его благополучие, в ответе сегодня, в ответе всегда
Поэтому, необходимо беречь те деревья,
которые уже растут, но и сажать новые, и чем больше, тем лучше.
Хочется сказать: «Люди, думайте о будущем! Берегите то, что имеем».
4. Итог урока:
Итак, мы считаем, что сегодняшний урок стал поьм и полезным
Слайды (20-24) – Голов Андрей
Слайд 21
Слайд 26.
Решение: 1.40000:5000=8(кг пыли над 1га леса)
2.8*12=96(кг над безлесным пространством)
Ответ: 96кг
Слайд 27
Слайд 28
1.2000000*0.02=40000га
2.2000000-40000=1960000га
3.1960000*0.02=39200га
4.40000+39200=79200га
Ответ: 79200га)
Слайд 29
Слайд 30 – Пенкина Катя
Слайд 31.
Решение: 1.29º-2.2º=26.8º(в сквере)
2.26.8-1.5=25.3º(в лесу)
Ответ: 25.3º
Слайд 32
Слайд 33
Решение: 1.420*11=4620(микробов в городском воздухе)
2.7*6.5*3=136.5м³(объём класса)
3.4620*136.5=630630(микробов)
Ответ: 630630 микробов в классе
Слайд 34
Решение: 1.10*800=8000(кг макулатуры или т)
2.5*8=40(м³ леса)
3.60% от 8000кг
0.6*8000=4800(кг бумаги)
4.4800 : ½=9600(учебников
Ответ: сохраним 40м³, 9600 учебников
Исследование Барабанова Влада и Елисеевой Вики
Слайд 35
Слайд 36
Слайд 37
15. ВЫВОД:
Итак, наш урок-исследование завершается. Интересно ли вам было на уроке?
- Что вы сегодня вспомнили?
- Какие новые знания прибавились?
- Что захотелось узнать еще нового по этой теме?
Оценка и самооценка деятельности обучающихся на уроке.
Домашнее задание:
Биология: 1. Провести наблюдение «Как люди заботятся о зеленых насаждениях в своем дворе» и оформить его в виде фоторепортажа.
2. Составить кроссворд «Растительный мир России»
Математика: составить задачу экологического содержания, используя материал СМИ, средства Интернет
6. Выставление оценок за работу на уроке и за выполнение творческих заданий.
infourok.ru