Роль фосфора в жизни растений. 5. Роль фосфора в жизни растений. Фосфорные удобрения, их свойства и применение

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Какую роль играет фосфор в жизни растений? Роль фосфора в жизни растений


Какую роль играет фосфор в жизни растений?

 Сегодня мы поговорим о таком жизненно важном элементе для растений, как фосфор.

 Фосфор, наряду с Азотом и Калием является незаменимым элементом, однако для успешного роста и развития, а также плодоношения, важен правильный баланс этих веществ.

 Какую роль выполняет фосфор в растении?

  • В первую очередь, это поддержание обменных процессов и сил у растущего растения.
  • Фосфор – это неотъемлемая часть ДНК и РНК.
  • Поддерживает процесс фотосинтеза,
  • Участвует в регуляции дыхания растений,
  • Фосфорные удобрения ускоряют прорастание семян,
  • Фосфор – важный элемент для формирования корневой системы,
  • Незаменимый элемент для формирования бутонов и семян.

 Можно сделать вывод, что своевременная подкормка растений фосфором - это залог будущего урожая.

 В зависимости от типа почвы, содержание фосфора будет варьироваться. Фосфор в почве встречается 2-х видов:

  • Труднодоступный (в виде минералов и фосфатов металлов)
  • Легкодоступный, в виде органических соединений (нуклеиновые кислоты, фитин, глицерофосфаты).

 Признаки недостатка фосфора в почве:

  1. Окраска листьев меняется с темно-зеленого, на багряный цвет.
  2. Преждевременное опадение листьев.
  3. Темные пятна на листьях.
  4. Растение не вырастает на привычную для него высоту.
  5. Корневая система не развивается.

 Однако, важно разобраться в причинах недостатка элемента в почве:

  1. Переход фосфора в труднодоступные соединения. Особенно на кислых почвах, поэтому заблаговременно, перед внесением суперфосфата, следует вносить гашеную известь.
  2. Фосфорные удобрения были внесены не правильно. Фосфор – это малоподвижный элемент и поверхностное внесение фосфорных удобрений не удовлетворит потребность растущих растений.
  3. Не соблюдение рекомендаций по внесению.
  4. Бедная микрофлора почвы. Микроорганизмы многих видов мобилизуют фосфор из труднодоступных соединений и переводят его в доступную для растений форму.

 Важно отметить, что максимальное действие фосфорных подкормок в полной мере отразится на урожае не раньше 3-4 лет. Наибольшая потребность в фосфоре – во время завязывания бутонов и образования плодов.

 Под плодовые и ягодные культуры подкормку рекомендовано вносить на глубину не менее 50 см.

 Какие виды фосфорных удобрений можно использовать на вашем дачном участке?

  1. Двойной суперфосфат (45-50% действующего вещества)

 Доза основного внесения: от 40 до 60 гр. на кв. м., дозу подкормки сокращают вдвое.

 Это удобрение следует растворить в теплой воде. Для лучшего усвоения необходимо смешать с известью и перепревшей органикой.

  1. Фосфоритная мука (до 30% действующего вещества)

 Это удобрение применимо только на участках с кислыми почвами. При выборе удобрения обратите внимание на степень помола: чем он мельче, тем быстрее фосфор поступит к корням.

  1. Преципитат (38% действующего вещества)

 Применяется осенью, при перекопке почвы.

 Вовремя применяя минеральные удобрения, содержащие фосфор, вы сможете добиться высокого урожая без хлопот!

garden-zoo.ru

5. Роль фосфора в жизни растений. Фосфорные удобрения, их свойства и применение. Формы воды в почве: значение для питания растений

Похожие главы из других работ:

Агропочвоведение

3. Аэробные анаэробные процессы в почве. Их роль в плодородии и жизни растений?

Почва служит средой обитания для большого числа различных животных - от простейших до млекопитающих. И деятельность эти организмов - одни из важнейших факторов разложения и превращения органических остатков в почве...

Значение и функции удобрений

Фосфорные удобрения

Из всех минеральных удобрений, изготовляемых промышленностью, первыми появились фосфорные. Исторически это было неизбежно, если принять во внимание безусловную необходимость фосфора для всех растений...

Изучение системы удобрения полевого севооборота в ЗАО "Усть-Абаканское"

4.2 Фосфорные удобрения

Растения наиболее чувствительны к недостатку фосфора в самом раннем возрасте, когда их слаборазвитая корневая система обладает низкой усвояющей способностью...

Минеральные удобрения и их применение

3. Фосфорные удобрения

Хлористый калий (KCl) - основное калийное удобрение во всем мире. Содержание оксида калия составляет: в химически чистой соли - 63,2%, в технической соли, в том числе идущей на удобрения - 52,4 - 61,9%. Он отличается повышенной гигроскопичностью...

Научные исследования в агрономии

2. Условия жизни растений и основные способы их регулирования

...

Научные исследования в агрономии

2.3 Основные способы регулирования условий жизни растений

Для регулирования условия жизни растений ученные разработали Законы земледелия. 1. Закон прогрессивного роста. Сущность заключается в том...

Проект комплексной мелиорации и использования участка

1. Факторы жизни растений

Незаменимыми факторами жизни растений являются: свет, тепло, воздух, вода, питательные вещества, реакция среды. В земледелии они получили название земных и космических факторов жизни растений. К космическим факторам относятся свет и тепло...

Проект комплексной мелиорации и использования участка

2. Природная обеспеченность почв факторами жизни растений

По природным условиям, и в частности по количеству осадков и теплу, районы нашей страны далеко не одинаковы. В зависимости от баланса влаги и тепла территорию России условно делят на пять зон: тундру, лесную, лесостепь, степь, пустыню...

Проект комплексной мелиорации и использования участка

3. Мелиорация как фактор регулирования факторов жизни растений

Мелиорация - это коренное улучшение земель путем проведения гидротехнических, культуртехнических, химических, противоэрозионных, агролесомелиоративных, агротехнических и других мероприятий. Мелиорация...

Система удобрения полевого севооборота в ЗАО "Усть-Абаканское"

4.2 ФОСФОРНЫЕ УДОБРЕНИЯ

Растения наиболее чувствительны к недостатку фосфора в самом раннем возрасте, когда их слаборазвитая корневая система обладает низкой усвояющей способностью...

Система удобрения полевого севооборота в ЗАО "Усть-Абаканское"

4.2 Фосфорные удобрения

Растения наиболее чувствительны к недостатку фосфора в самом раннем возрасте, когда их слаборазвитая корневая система обладает низкой усвояющей способностью...

Создание схемы рассадника декоративных культур

4.3 Удобрения и их применение в рассадниках

Одним из основных агротехнических приемов выращивания посадочного материала является внесение удобрений. Из органических удобрений применяется навоз, торф, компост, птичий помет, навозная жижа и зеленые (сидеральные) удобрения...

Уход за плодоносящим садом

2.1 Роль отдельных элементов питания в жизни плодовых растений

Макроэлементы - азот, фосфор, калий, кальций, железо, магний, сера - потребляются плодовыми растениями в больших количествах, микроэлементы --бор, марганец, медь, молибден, кобальт, цинк - в небольших. Азот входит в состав аминокислот...

Уход за плодоносящим садом

2.2.2 Фосфорные удобрения

Суперфосфат двойной гранулированный содержит 42-49% фосфора. Гранулированный суперфосфат значительно медленнее переходит в почве в труднорастворимые соединения, больше доступен растениям. Хорошо растворяется в воде. Менее гигроскопичен...

Характеристика почв. Значение минеральных удобрений. Выращивание гороха

2. Значение бора, меди и цинка в жизни растений. Виды и применение борных, медных и цинковых микроудобрений

Опытным путем установлено, что жизненно важными для растений являются 15 элементов, из которых 7 - азот, фосфор, калий, кальций, магний, сера и железо - нужны в относительно больших количествах, а 8 элементов - бор, марганец, медь, цинк, молибден...

agro.bobrodobro.ru

Фосфор и его роль в питании растений

АрхеологияАрхитектураАстрономияАудитБиологияБотаникаБухгалтерский учётВойное делоГенетикаГеографияГеологияДизайнИскусствоИсторияКиноКулинарияКультураЛитератураМатематикаМедицинаМеталлургияМифологияМузыкаПсихологияРелигияСпортСтроительствоТехникаТранспортТуризмУсадьбаФизикаФотографияХимияЭкологияЭлектричествоЭлектроникаЭнергетика

Глава 6. Фосфорные удобрения

 

Фосфор – один из трех главных элементов питания растений. По объемам использования в качестве удобрительного элемента он идет вслед за азотом. Это важнейший биогенный элемент, необходимый для жизнедеятельности всех организмов. Соединения фосфора с кислородом (фосфорные кислоты и фосфаты), являясь самыми распространенными в природе, имеют исключительно важное значение для существования и развития растительного и животного мира. Без фосфорной кислоты не может существовать ни одна живая клетка. В связи с этим фосфор назвали «ключом жизни».

По некоторым литературным данным, способ получения фосфорной кислоты был известен арабским алхимикам уже в XII в. Но общепризнанной датой открытия фосфора считается 1669 г., когда немецкий аптекарь X. Брандт, как и другие алхимики Западной Европы, искал заветный «философский камень» и при прокаливании с песком сухого остатка от выпаривания мочи и последующей перегонке его без доступа воздуха получил «удивительное» светящееся в темноте вещество, свет которого не обжигал. В 1777 г. французский химик А. Лавуазье установил, что открытое X. Брандтом вещество представляет собой новый элемент, названный позже фосфором (от греческого phos – «свет», phoros – «несу» – несущий свет, «светоносец»).

Фосфор образует несколько аллотропных форм: белый, красный и черный фосфор. При определенных условиях все три формы могут переходить друг в друга. Наибольшей химической активностью обладает белый фосфор. Красный фосфор используется в спичечном производстве. Однако красный элементарный фосфор перспективен в качестве удобрения. При добавлении к нему солей меди он окисляется в почве и переходит в доступное состояние.

Фосфор содержится в растениях в органических (обычно до 90% общего количества) и минеральных соединениях. Соотношение органических и минеральных соединений фосфора зависит от возраста растений и общей обеспеченности их фосфором. В молодых растениях доля органического фосфора всегда значительно больше, чем в старых. Однако при обильном обеспечении почв фосфором доля неорганических фосфатов в более старых листьях может оказаться даже выше. В репродуктивных органах фосфора концентрируется в 3–6 раз больше, чем в вегетативных. Семена должны иметь запас фосфора, достаточный на период формирования корней, которые начнут поглощать его из почвы.

Фосфор играет исключительно важную роль в жизнедеятельности растений. Он содержится в клеточной протоплазме, входит в состав хромосом, нуклеиновых кислот, фосфопротеидов, некоторых витаминов, ферментов, эфиров, фитина, других органических веществ и принимает активное участие в образовании белковых веществ. В процессах дыхания и брожения одну из центральных функций выполняет фосфорная кислота, являющаяся буфером при регуляции обмена углеводов.

Частично в живых клетках фосфор присутствует в виде орто- и пирофосфорных кислот и их производных. Фосфатная группа обладает важными связывающими свойствами и способна принимать участие в сильных (электростатических) связывающих взаимодействиях с катионами металлов и аминов. Фосфор легко образует ряд ковалентных соединений – от простых эфиров (триметил- или триэтилфосфат) до сложных макромолекул дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) кислот, которые являются составной частью биологических регуляторных молекул. Фосфор является обязательным компонентом ряда коферментных систем, катализирующих ряд реакций азотного обмена.

Важными органическими фосфорсодержащими соединениями в растениях являются нуклеиновые кислоты, играющие большую роль в наследственной функции организма. Это сложные высокомолекулярные вещества, состоящие из азотистых оснований, молекулы углеводов (рибозы или дезоксирибозы) и фосфорной кислоты. В растениях на долю нуклеиновых кислот приходится от 0,1 до 1 %, а на долю фосфора в нуклеиновых кислотах (в пересчете на Р2О5) около 20 %. Высоким содержанием нуклеиновых кислот отличаются зародыши семян, пыльца, кончики корней.

Нуклеиновые кислоты участвуют в синтезе белков, процессах роста и размножения, передаче наследственных свойств, влияют на процессы дыхания, образования ряда ферментов. РНК играет роль «матрицы», на которую последовательно укладываются молекулы аминокислот, образующие специфический для данного организма белок. ДНК, входящая в состав хромосомного аппарата ядра, ответственна за передачу наследственных свойств и накопленной биологической информации, благодаря которой в определенном порядке и последовательности соединяются аминокислоты, образующие различные белки.

Огромную роль в обмене веществ играют макроэргические соединения, содержащие богатые энергией связи. Известно множество макроэргических соединений и в большинство из них входит фосфор. Среди них особое место занимает аденозинтрифосфорная кислота (АТФ) – своеобразный хранитель и носитель энергии во многих синтетических процессах. При гидролизе АТФ, входящей в состав РНК, высвобождается около 55 кДж/моль, в то время как гидролиз обычных связей дает 8–12 кДж/моль. Макроэргические фосфатные связи принимают участие в процессах фотосинтеза, дыхания, биосинтеза белков, жиров, крахмала, сахарозы, ряда аминокислот, других соединений.

Соединения фосфора с белковыми веществами – фосфоропротеиды – катализируют течение биохимических реакций.

Сахарофосфаты-эфиры – производные простых сахаров и фосфорной кислоты – вследствие своей мобильности играют большую роль в процессах фотосинтеза, дыхания. Их содержание изменяется в зависимости от возраста растений, условий питания и других факторов от 0,1 до 1% от сухой массы.

При участии фосфора происходит углеводный обмен в растениях. Превращение углеводов начинается с присоединения фосфорной кислоты к молекулам углеводов или с ее отщепления, т.е. с процессов фосфорилирования и де- фосфорилирования. Самый распространенный фосфорный эфир – глюкозо-6-фосфат. Он синтезируется в растениях путем переноса фосфорной кислоты с АТФ на глюкозу. Одновременно при этом образуется АДФ.

Фосфорилированные сахара играют важную роль в процессах дыхания и гликолиза (окисления углеводов до пировиноградной кислоты). Фосфорилирование происходит уже в самом начале фотосинтеза, как только на листья попадает свет. Принципиальное значение имеет перевод световой энергии в химическую путем образования АТФ в световой реакции фотосинтеза.

Фосфорная кислота принимает активное участие в биосинтезе сахарозы, в ферментативных превращениях форм углеводов, передвижений углеводов (в клубни картофеля, корни сахарной свеклы и т.д.). В связи с этим фосфорные удобрения положительно влияют на накопление в растениях крахмала, сахаров, других углеводов. Фосфор также благоприятствует накоплению в плодах красящих и ароматических веществ, улучшает их лежкость.

Важную биологическую роль выполняют в растениях фосфатиды, или фосфолипиды. Это сложные эфиры глицерина, жирных кислот и фосфорной кислоты. Они входят в состав фосфолипидных мембран, которые регулируют проницаемость клеток органелл и плазмолеммы для различных веществ. Более богаты фосфатидами семена бобовых и масличных культур.

Представителем группы жироподобных веществ фосфатидов является лецитин – производное диглицеридфосфорной кислоты. Лецитин встречается в цитоплазме всех деятельных клеток, но накапливается преимущественно в семенах.

Фитин – производная циклического соединения шестиатомного спирта инозита – является кальциевомагниевой солью инозитфосфорной кислоты. Он содержится во всех частях и тканях растений, но откладывается главным образом в семенах и используется как источник фосфора при прорастании семени. По данным Т. Н. Кулаковской, в зерне пшеницы и сене клевера преобладают органические соединения фосфора, прежде всего фитин (табл. 6.1).

 

6.1. Содержание фосфорнокислых соединений в пшенице и клевере,

% Р2О5 к сухому веществу

 

Соединения Пшеница (зерно) Клевер (сено)
Органические 0,711 0,484
В том числе:    
лецитин 0,032 0,050
фитин 0,609 0,300
нуклеопротеиды 0,130 0,050
прочие - 0,084
Минеральные 0,089 0,070
Общее содержание фосфора 0,860 0,554
Удельный вес в общем количестве:    
фосфора органических соединений 89,6 87,0
фосфора минеральных соединений 10,4 13,0

 

Особенно чувствительны растения к недостатку фосфора в начальных фазах роста и развития, когда корневая система еще недостаточно развилась. Большие запасы фосфора в семенах способствуют хорошему росту растений в первый период жизни за счет распада веществ семени и передвижению продуктов распада в растущие части. Оптимальное фосфорное питание способствует развитию корневой системы: корни глубже проникают в почву и больше ветвятся, благодаря чему улучшается снабжение растений влагой и питательными веществами. Фосфор способствует более экономному расходованию влаги, что особенно важно в засушливые периоды. Хорошее фосфорное питание улучшает перезимовку озимых культур, благодаря достаточному накоплению сахаров в узлах кущения с осени.

Отрицательные последствия недостатка фосфора в ранний период не могут быть исправлены впоследствии даже при обильном фосфорном питании. Растения остаются низкорослыми, замедляется их развитие, они позднее цветут и созревают. Это связано с тем, что клетки не могут делиться, если фосфора или других элементов недостаточно для образования дополнительного ядра. Таким образом, в отличие от растений, испытывающих недостаток азота и имеющих поэтому «сокращенный» цикл развития, растения при недостатке фосфора «физиологически более молоды».

Во время образования и, особенно, созревания репродуктивных органов у всех культур происходит передвижение фосфора из вегетативных органов в репродуктивные. Достаточное снабжение растений фосфором в период формирования репродуктивных органов ускоряет образование и созревание последних. Так, при достаточном обеспечении фосфором на протяжении вегетационного периода зерновые созревали на 5–6 дней раньше, чем испытывавшие его дефицит. При нормальном фосфорном питании изменяется структура урожая в сторону увеличения наиболее ценной репродуктивной части: у зерновых культур возрастает доля зерна в массе биологического урожая, у корнеплодов – корнеплодов и т.д.

Большую роль в жизни растений играют минеральные соединения фосфора: кальциевые, магниевые, калийные, аммониевые и другие соли ортофосфорной кислоты. Минеральный фосфор является не только резервом для синтеза органических фосфорсодержащих соединений, но и повышает буферность клеточного сока, поддерживает тургор и другие жизненно важные процессы в клетке. Усиливая способность растительных клеток удерживать воду, фосфор тем самым повышает устойчивость растений к засухам и низким температурам.

Уровень снабжения растения фосфором зависит не только от его содержания в почве, но и от обеспеченности почвы другими элементами. Так, при недостатке цинка снижается поступление и использование растениями фосфора; высокое содержание в почве меди, наоборот, снижает потребность растений в фосфоре.

Фосфор ослабляет вредное влияние на растения подвижного алюминия на кислых почвах. Подвижные формы алюминия отрицательно влияют на обмен веществ, подавляют образование фосфатидов, тормозят превращение моносахаридов в сахарозу и более сложные органические соединения, задерживают образование белков. Фосфор, связывая подвижный алюминий почвы, фиксирует его в корневой системе, тем самым улучшается углеводный и азотистый обмен в растениях.

Фосфор легко передвигается внутри растения и из более старых листьев и тканей может поступать к зонам роста, т.е. реутилизироваться (использоваться повторно). Внешними признаками недостатка фосфора являются скручивание краев листьев, их более темная, грязно-зеленая окраска. Это связано с тем, что рост листьев при недостатке хлорофилла задерживается сильнее, чем образование хлорофилла. Однако при избытке азота растения также имеют темно-зеленую окраску из-за большого содержания хлорофилла. При недостатке фосфора, кроме того, вследствие образования антоциана нередко появляются красноватые и фиолетовые тона, прежде всего на основных стеблях, влагалищах листьев и черенках. Сильнее признаки недостатка фосфора проявляются у старых и нижних листьев.

Избыток фосфора также неблагоприятен для растений. В этом случае они содержат много фосфора в минеральной форме, особенно в вегетативных органах, преждевременно созревают и не успевают синтезировать хороший урожай. При избытке фосфора ухудшается питание цинком, что приводит к заболеванию плодовых культур розеточностью.

Существует тесная связь между азотным и фосфорным питанием. Фосфор выступает в роли спутника азота и белковых соединений, в растениях его содержится в два-три раза меньше, чем азота. При недостатке фосфора замедляется синтез белков, накапливается больше нитратов. Поэтому дозы азотных и фосфорных удобрений должны быть сбалансированными, особенно при внесении высоких доз азота.

Большое значение имеет фосфор в жизни человека и для сельскохозяйственных животных. Он входит в состав костной ткани и незаменим в процессах, от которых зависят основные жизненные функции (обмен веществ, размножение и т.д.). При недостатке фосфора у человека и животных развивается остеопороз и другие заболевания костей. Суточная потребность человека в фосфоре – 1–1,5 г.

Существует достоверная связь между содержанием фосфора в кормах и продуктивностью животных. Причем введение в рацион скота кормовых фосфатов не может полностью компенсировать дефицит фосфора. Он должен в достатке содержаться в натуральных кормах, а значит, и в почве под посевами кормовых культур. Оптимальное содержание фосфора в кормах – 0,35–0,5 % сухого вещества.

 

studopedya.ru

Роль фосфора в питании растений

Фосфор — необходимый элемент питания. Без него невозможна жизнь не только высших растений, но и простейших организмов. Он входит в состав многих веществ, которые играют важнейшую роль в жизненных явлениях. Кроме того, подавляющее большинство процессов обмена веществ, особенно синтетических, проходят лишь при участии фосфорной кислоты.[ ...]

Фосфор в растениях содержится в минеральных и органических веществах. В минеральной форме он чаще всего находится в растениях в виде кальциевых, калиевых, магниевых солей ортофосфорной кислоты.[ ...]

Наиболее важную роль в растениях играет фосфор, входящий в органические соединения. Среди них на первое место следует поставить нуклеиновые кислоты. Это сложные высокомолекулярные вещества, которые участвуют в самых важных процессах жизнедеятельности: синтез белков, рост и размножение, передача наследственных свойств.[ ...]

Нуклеиновые кислоты состоят из веществ трех типов: азотистых оснований — пуриновых и пиримидиновых, сахаров (рибозы или дезоксирибозы) и фосфорной кислоты. В растениях содержатся два основных вида нуклеиновых кислот — рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК).[ ...]

Нуклеотиды представляют собой элементарные звенья, из которых построены сложные молекулы нуклеиновых кислот. В состав одной молекулы нуклеиновой кислоты могут входить многие тысячи нуклеотидов. Отдельные нуклеотиды в молекулах нуклеиновых кислот соединены в цепи при помощи фосфорной кислоты. Молекулярный вес РНК составляет от нескольких десятков тысяч до нескольких миллионов, молекулярный вес ДНК достигает 6—8 миллионов. Основная роль ДНК — передача наследственных свойств и перенос биологической информации; РНК принимает непосредственное участие в биосинтезе специфических белков. В растениях нуклеиновые кислоты часто образуют комплексы с белками, так называемые нуклеопротеиды.[ ...]

Нуклеиновые кислоты содержатся во всех органах и тканях растений, в любой растительной клетке. В листьях и стеблях большинства растений они составляют ОД—1,0% веса сухой массы, в молодых листьях или в точках роста побегов их больше, чем в старых листьях или стеблях. Особенно высоким содержанием нуклеиновых кислот отличаются зародыши семян, пыльца, кончики корней и т. д..[ ...]

Очень важной группой органических соединений фосфора в растениях являются так называемые фосфопротеиды — соединения белковых веществ с фосфорной кислотой. К этой группе относятся многочисленные белки-ферменты, которые катализируют течение ряда биохимических реакций в растениях.[ ...]

В зависимости от химической природы вещества X, входящего в состав фосфатидов, все фосфатиды подразделяют на несколько групп. Холинфосфа-тиды, или лецитины, содержат холин, коламинфосфатиды, или кефалины, — коламин, серинфосфатиды — аминокислоту, серии и т. д.[ ...]

Фосфатиды играют очень важную биологическую роль, так как они образуют белково-липидные молекулы, которые регулируют проницаемость клеточных оболочек для различных веществ.[ ...]

Фитина много в молодых органах и тканях растений, особенно в семенах. В семенах бобовых и масличных культур он составляет 1—2% веса сухой массы, в семенах злаков —0,5—1,0%. Фитин в семенах служит запасным веществом, и фосфор, входящий в его состав, используется при прорастании развивающимся зародышем.[ ...]

Вернуться к оглавлению

ru-ecology.info


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта