Размеры клеток растений. Основное отличие животной клетки от растительной: таблица + подробное описание

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Разнообразие формы растительных клеток. Отличие растительной и живой клетки. Размеры клеток растений


Формы и размеры растительных клеток

Форма и размеры клеток очень различны и зависят от их положения в теле растения и от функций, которые они выполняют.

Наиболее простая форма — шаровидная — встречается довольно редко у свободных клеток, не граничащих с другими клетками. Многие клетки имеют форму многогранников, определяемую главным образом их взаимным давлением. Если клетка разрастается равномерно по всем направлениям, то она обычно принимает форму многогранника с 14 гранями, из которых 8 представляют собой шестиугольники, а 6 — четырехугольники. Клетки, диаметр которых по всем направлениям приблизительно одинаков, называются паренхимными. Однако очень часто разрастание клеток идет преимущественно в одном направлении, в результате чего образуются очень вытянутые с заостренными концами прозенхимные клетки (например, клетки волокон). У таких клеток длина может в сотни и даже в тысячи раз превышать толщину. Взрослые клетки растений, в отличие от клеток животных, почти всегда имеют постоянную форму, что объясняется наличием у них довольно прочной оболочки. Более подробно разнообразие клеток по форме будет рассмотрено ниже, при описании тканей.

Обычно клетки настолько мелки, что видимы только в микроскоп. Так, у высших растений диаметр клеток колеблется в среднем между 10 и 100 мк. Более крупными обычно бывают клетки, которые служат для запаса воды и питательных веществ (например, паренхимные клетки клубня картофеля, клетки сочных плодов). Мякоть плодов арбуза, лимона, апельсина состоит из столь крупных (несколько миллиметров) клеток, что их можно видеть невооруженным глазом. Но особенно большой величины достигают некоторые прозенхимные клетки. Так, например, лубяные волокна льна имеют длину около 40 мм, а крапивы — даже до 80 мм, в то время как величина их поперечного сечения микроскопически мала. Хотя размер клеток сильно колеблется, эти колебания лежат в определенных границах, которые характерны для вида растений и типа ткани.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Средние размеры клеток животных и растений

 

Происхождение клетки Диаметр (в мкм) Объем (в мкм3)
Клетка печени человека
Малая клетка тимуса
Клетка меристемы (корешок лука)
Клетка паренхимы плода растения 1 х 108

 

1. Мембранная система.

2. Цитоплазматический мат-рикс (основное вещество клеток).

3. Клеточные органеллы (внутриклеточные компартменты).

4. Клеточные включения.

Мембранная система. Эта система представлена клеточной плазматической (цитоплазматической) мембраной, цитоплазматической (эндоплазматической) сетью (рети-кулом) и пластинчатым комплексом Гольджи.

а) Плазматическая (цитоплаз-матическая) мембрана имеет толщину 8-12 нм и состоит из трех слоев, два из которых являются белковыми слоями толщиной по 3 нм каждый, а третий (внутренний) — двойным фосфолипидным слоем толщиной 6 нм (рис. 47). Плазматическая мембрана является полупроницаемой структурой. Через нее в клетку входят питательные вещества и выходят все «отходы» (продукты секреции). Она создает барьер проницаемости. В результате этого плазматическая мембрана регулирует обмен различными веществами между клеткой и внешней средой. В плазматической

мембране содержатся многие важные ферменты, системы активного транспорта ионов натрия и калия при помощи АТФазы, а также системы транспорта аминокислот.

На поверхности плазматической мембраны обнаруживают ряд специальных образований в виде микроворсинок и ресничек. Микроворсинки очень часты в эпителии кишечника и почек. Реснички — это своеобразные выросты цитоплазмы. У эритроцитов мембрана является гладкой (элементарная мембрана). У некоторых одноклеточных организмов-эукариотов плазматическая мембрана также содержит реснички (микроворсинки), различные выпячивания, впячивания и выросты, переходящие в пузырьки. На внешней поверхности клеток животных обнаружены гликопротеиды как компоненты плазматической мембраны.

Предполагают, что поверхностные гликопротеиды обеспечивают адгезионную способность клеток в тканях, и, следовательно, слипание однотипных клеток. В мембранах эритроцитов содержится гликопротеид, получивший название гликофорина (м. м. 30 000). Этот гликопротеид состоит из 130 аминокислотных остатков и большого количества (60% всей молекулы) остатков сахара. Кроме того, в эритроцитарной мембране содержится белок спектрин, молекулы которого формируют скелет мембраны.

У клеток растений наружной структурой служит жесткая клеточная стенка, построенная из молекул целлюлозы, создающих очень прочные волокна, погруженные в матрикс из других поли-сахаридов и полимерного вещества лигнина. Клетки наружних слоев растений иногда покрыты очень тонким слоем восковидно-го вещества. На поверхности плазматических мембран имеются электрически заряженные группы, из-за которых поддерживается разность электрических потенциалов на мембранах. На поверхности плазматических мембран имеются также специфические рецепторы (участки распознания) для гормонов и других соединений. Кроме того, здесь же локализованы особые рецепторы, ответственные за индивидуальную тканевую совместимость. Считают, что рецепторные участки формируются гликопротеидами и ганглиозидами.

б) Цитоплазматическая (эндоплазматическая) сеть (рети-кулум) представлена пронизывающими однослойными мембранными полостями (трубочками, цистернами, вакуолями) разных размеров, заполненными белковыми гранулами (рис. 48).

Открыта К. Портером в 1945 г. Толщина трубочек и других структур этой сети равна 5-6 нм.

Различают гранулярный (шероховатый) эндоплазматический ретикулум, который выстлан множеством рибосом диаметром порядка 21-25 нм и молекулярной массой 4 х 106, служащих центрами синтеза молекул белков, и агранулярный (гладкий) эндоплазматический ретикулум, на котором нет рибосом, но на котором синтезируются липиды и углеводы. Степень насыщенности гранулярной эндоплазмати-ческой сети рибосомами определяет степень интенсивности синтеза белков. У человека и животных агранулярной сетью богаты клетки коры надпочечников, яичников и семенников, печени, скелетных мышц.

Цитоплазматическая сеть без перерыва соединена с цитоплаз-матической мембраной, ядерной мембраной и пластинчатым комплексом Гольджи. Это позволяет синтезируемым белкам проходить в комплекс Гольджи, откуда после специальной обработки они выводятся из клетки или идут на построение лизосом.

Плазматическая мембрана, мембрана эндоплазматической сети, а также ядер, митохондрий и хлоропластов (см. ниже) представляют собой чрезвычайно сложные структуры, обладающие рядом важ-.нейших биологических свойств. Многие мембраны содержат ферменты, транспортные системы, с помощью которых осуществляется перенос молекул питательных веществ и неорганических ионов внутрь клеток и внутри клеток, а также вывод из клеток продуктов жизнедеятельности. Мембранные структуры способны к самовосстановлению, если в них по каким-то причинам возникают повреждения.

В процессе искусственного растирания или гомогенизации клеток с экспериментальными целями образуются мелкие частицы диаметром 50—150 нм, состоящие из фрагментов эндоплазматическо-го ретикулума и плазматической мембраны. Эти структуры получили название микросом и их широко используют в лабораторной работе для решения тех или иных вопросов молекулярной организации клеток.

в) Комплекс Гольджи. Этот комплекс, называемый еще пластинчатым, был открыт итальянцем Камилло Гольджи еще в 1898 г. Он присутствует во всех клетках, кроме эритроцитов и сперматозоидов, и представляет собой систему дискообразных однослойных мембран (мембранных пузырьков или цистерн), локализующихся рядом с гладким эндоплазмати-ческим ретикулом и ядром (рис. 49). Часто в клетках обнаруживают несколько таких комплексов (диктиосом), размеры которых составляют 30-60 нм. Структурными молекулами, поддерживающими структуру цистерн, являются ферменты, вовлеченные в процессинг оли-госахаридов, белки, являющиеся аутоантителами, а также белки, являющиеся компонентами цитоскелета. Основная функция комплекса Гольджи заключается в том, что он является местом упаковки (уплотнения) белков, поступающих с рибосом, а также присоединения к белкам углеводов (образования гликопротеидов), а к полисахаридам — сульфатных групп с последующим транспортом их к другим клеточным структурам или за пределы клетки (экзоцитоз). В клетках печени этот комплекс участвует в выделении в кровь липопротеидов. Как отмечено выше, он участвует также и в формировании лизосом.

Цитоплазматический матрикс. Этот структурный компонент является основным веществом (цитоплазмой, гиалоплазмой) клетки. Первые электронномикроскопические изображения цитоплазмы были получены шведским ученым Ф. Шестрандом еще в 1955 г. Различают эктоплазму — вещество, располагающееся ближе к цитоплазматической мембране (твердое тело) и эндоплазму, отстоящую к центру клетки от эктоплазмы (более жидкое состояние) и представляющую собой цитозоль. Консистенция цитозоля приближается к гелю, В нем растворены многие ферменты и белки, обеспечивающие связывание и транспорт питательных веществ, микроэлементов и кислорода. Здесь же находятся аминокислоты и нуклеотиды, а также различные метаболиты (промежуточные продукты биосинтеза и распада макромолекул). Наконец, в цитозоле присутствуют различные коферменты, а также АТФ, АДФ, ионы ряда неорганических солей (K+, Mg2+, Са2+, C1-, НСО-2 3, НРО4-2), тРНК.

В цитоплазме содержатся микрофиламенты (нити) толщиной 4-5 нм и микротрубочки, представляющие собой полые цилиндрические структуры диаметром 25 нм, а также филаменты промежуточных размеров. Эти структуры составляют жесткую конструкцию (каркас) в клетке, называемую цитоскелетом и определяющую внешний вид и форму клеток. Микрофиламенты состоят из белка, сходного с сократительным белком актином.

Объединяясь, микрофиламенты формируют пучки, в которые входят дополнительные белки (анкерин, спектрин и другие). Основная функция микрофиламентов заключается в обеспечении сократительных процессов клеток, в упрочении мембран. Микротрубочки построены из белков a- и b-тубулина, а также g-тубулина. Для микротрубочек характерен ряд функций. Формирование микротрубочек происходит в интерфазе клеток в так называемых центрах организации микротрубочек (ЦОМ), которые «окружают» центриоли, в результате чего предполагают, что центриоли являются ЦОМ (рис. 50). В каждом ЦСУ содержится по 10-13 молекул g-тубулина и примерно по 7 молекул других белков, включая ди-мер a/b-тубулина. Эти белки формируют структуру, которая образует микротрубочный «ансамбль». Их значение до конца не выяснено, но предположительно заключается в том, что они обеспечивают перемещение клеточных органелл, включая хромосомы, внутри клеток.

В составе цитоплазмы обнаруживают ферменты, полисахариды, АТФ, тРНК, ионы Са, Na, К и других химических элементов.

Основная функция цитоплазматиче-ского матрикса заключается в том, что он является внутренней средой клетки, поддерживающей мембранные системы, орга-неллы и включения. В нем осуществляются гликолиз, активация аминокислот и другие реакции. Цитоскелет выполняет опорную функцию. Микрофиламенты способствуют упрочению мембранной системы, а микротрубочки, как отмечено выше, обеспечивают перемещение клеточных органелл и транспорт химических соединений из одних отсеков клетки в другие. Цитоскелет имеет значение также в делении клетки.

Клеточные органеллы. Эти структуры представлены ядром, хромосомами, ядрышком, центриолями, митохондриями, рибо-сомами, лизосомами. Они характерны за некоторыми исключениями как для клеток животных, так и для клеток растений.

а) Ядро в клетке имеет форму и размеры, зависящие от формы, размеров и функций клетки. В клетках эукариотических организмов содержится, как правило, по одному ядру, реже по два и более. В зрелом состоянии эритроциты млекопитающих и клетки ситовидных трубочек покрытосеменных растений лишены ядер, тогда как клетки скелетных мышц позвоночных и млечных сосудов растений являются многоядерными. Для инфузорий характерно наличие двух ядер — одно небольшое (микронуклеус) и одно крупное политенное (макронуклеус).

Обычно ядро имеет округлую, палочковидную, четковидную вытянутую и другие формы. Размеры его колеблются от 2 до 100 мкм, а объем составляет около 65 мкм3. Особенно крупные ядра характерны для половых клеток (размером до 500 мкм). Отношение объема ядра к объему цитоплазмы называют ядерно-плазменным отношением, которое у клеток всех типов обычно постоянно.

Строение ядра характеризуется чрезвычайной сложностью, хотя принципиально одинаково в клетках всех эукариотических организмов. В случае животных клеток ядро располагается в центре клетки. Напротив, в клетках растений оно имеет пристеночную локализацию. Однако положение, форма и размеры ядра могут меняться в зависимости от интенсивности метаболизма. В ядре содержатся хромосомы и ядрышки (см. ниже). Благодаря им ядро плотно заполнено ДНК, РНК и белками. Содержимое ядра иногда называют нуклеоплазмой или кариоплазмой. Она отделена от цитоплазмы ядерной мембраной, построенной из двух слоев (наружного и внутреннего) толщиной по 7 нм каждый и имеющей поры диаметром 40—100 нм. Поры занимают около 5% площади ядра. Через ядерные поры синтезируемая в ядре РНК выходит в цитоплазму, где она участвует в трансляции генетической информации (синтезе белков).

Ядерная мембрана и ядерные поры объединены с мембранной системой клетки, в результате чего клетка, по существу, канализирована различными проходами, обеспечивающими двухстороннее движение веществ в клетке, начиная от плазматической мембраны. В порах обнаружены глобулярные и фибриллярные белковые структуры. Количество пор зависит от вида клеток и обычно увеличивается в 8-периоде. Между мембранными слоями имеется так называемое перинуклеарное пространство шириной 20—60 нм. Наружная ядерная мембрана часто переходит в эндоплазматическую сеть. Когда клетки делятся, ядерная оболочка исчезает, а после деления восстанавливается. Ядерное вещество (кариоплазма) — плотный коллоид.

Таблица 4

Похожие статьи:

www.poznayka.org

Разнообразие формы растительных клеток. Отличие растительной и живой клетки.

Разнообразие формы растительных клеток. Отличие растительной и живой клетки.

Форма и размеры клеток очень различны и зависят от их положения в теле растения и от функций, которые они выполняют.

Наиболее простая форма — шаровидная — встречается довольно редко у свободных клеток, не граничащих с другими клетками. Многие клетки имеют форму многогранников, определяемую главным образом их взаимным давлением. Если клетка разрастается равномерно по всем направлениям, то она обычно принимает форму многогранника с 14 гранями, из которых 8 представляют собой шестиугольники, а 6 — четырехугольники. Клетки, диаметр которых по всем направлениям приблизительно одинаков, называются паренхимными. Однако очень часто разрастание клеток идет преимущественно в одном направлении, в результате чего образуются очень вытянутые с заостренными концами прозенхимные клетки (например, клетки волокон). У таких клеток длина может в сотни и даже в тысячи раз превышать толщину. Взрослые клетки растений, в отличие от клеток животных, почти всегда имеют постоянную форму, что объясняется наличием у них довольно прочной оболочки. Более подробно разнообразие клеток по форме будет рассмотрено ниже, при описании тканей.

Обычно клетки настолько мелки, что видимы только в микроскоп. Так, у высших растений диаметр клеток колеблется в среднем между 10 и 100 мк. Более крупными обычно бывают клетки, которые служат для запаса воды и питательных веществ (например, паренхимные клетки клубня картофеля, клетки сочных плодов). Мякоть плодов арбуза, лимона, апельсина состоит из столь крупных (несколько миллиметров) клеток, что их можно видеть невооруженным глазом. Но особенно большой величины достигают некоторые прозенхимные клетки. Так, например, лубяные волокна льна имеют длину около 40 мм, а крапивы — даже до 80 мм, в то время как величина их поперечного сечения микроскопически мала. Хотя размер клеток сильно колеблется, эти колебания лежат в определенных границах, которые характерны для вида растений и типа ткани.

Типы пластид. Хлоропласты. Строение и специфические функции.

Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова «plastos», что в переводе означает «вылепленный».

Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.

Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.

Хлоропласты – это зеленые пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца округлой формы размерами от 4 до 10 мкм. Химический состав хлоропласта: примерно 50% белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК. У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна зернистая структура пластид – это граны. Под электронным микроскопом наблюдаются небольшие прозрачные уплощенные мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причем некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.

Первичные покровные ткани

Эпидерма образуется из поверхностного слоя апикальной меристемы - протодермы. Она покрывает листья, плоды, части цветка и молодые стебли. Кроме защитной функции, эпидерма регулирует процессы транспирации и газообмена, принимает участие в синтезе различных веществ и др. В состав эпидермы входит несколько морфологически различных клеток: основные клетки эпидермы, замыкающие и побочные клетки устьиц, трихомы (выросты эпидермы). Клетки эпидермы живые, имеют ядра, лейкопласты, вакуоли, хлоропласты (только в замыкающих клетках устьиц). Эпидерма у большинства растений однослойная, реже многослойная. Клетки первичной покровной ткани плотно примыкают друг к другу, и не имеют межклетников. С наружной стороны вся эпидерма покрыта сплошным слоем кутикулы (прерывается только над устьичными щелями).

Ризодерма (эпиблема) образована апикальной меристемой корня. Она покрывает молодые корневые окончания и именно через ризодерму происходит поглощение воды и минеральных солей из почвы. Кроме того, она взаимодействует с микроорганизмами почвы, из корня в почву выделяются вещества, помогающие почвенному питанию. Клетки ризодермы имеют очень тонкие оболочки. У первичной покровной ткани корня нет кутикулы, вследствие чего эти клетки имеют оболочки легко проницаемые для воды. На небольшом расстоянии от кончика корня образуются корневые волоски - выросты ризодермы.

Веламен, как и ризодерма, происходит из поверхностного слоя апикальной меристемы корня. Эта своеобразная ткань покрывает корни эпифитов и некоторых других растений, приспособленных к жизни на периодически пересыхающих почвах (аспидистра, аспарагус, алоэ, кливия). Веламен от ризодермы отличается многослойностью. Протопласт веламена отмирает и поэтому всасывает воду не осмотическим, а капиллярным путем.

Вторичная покровная ткань

Перидерма возникает при заложении феллогена в эпидерме, субэпидермальном слое (под эпидермой) или в более глубоких слоях первичной коры. Она замещает эпидерму в тех стеблях и корнях, которые разрастаются в толщину путем вторичного роста. Перидерма состоит из трех основных компонентов: феллогена (пробковый камбий), за счет которого перидерма длительное время нарастает в толщину, производя к поверхности феллему (пробку), выполняющую защитную функцию, а внутрь феллодерму (подпитывающую ткань).

Живые ткани, расположенные под пробкой испытывают потребность в газообмене. Для этого в перидерме с самого начала ее образования формируются чечевички - проходные отверстия.

Третичная покровная ткань

Корка (ритидом) приходит на смену перидермы. У большинства древесных растений она образуется в результате многократного заложения новых прослоек перидермы во все более глубокие ткани первичной коры. Живые клетки, заключенные между этими прослойками отмирают. Таким образом, корка состоит из чередующихся слоев пробки и заключенных между ними отмерших прочих тканей первичной коры.

ОСОБЕННОСТИ СТРОЕНИЯ ПОКРОВНОЙ ТКАНИ. ОБЩАЯ ИНФОРМАЦИЯ

Особенности строения покровной ткани обусловлены ее предназначением. Хотя существует и много разновидностей данного типа ткани, все они похожи.

В ней всегда большое количество клеток и мало межклеточного вещества. Структурные частицы расположены близко друг к другу. Строение покровной ткани также всегда предусматривает четкую ориентацию клеток в пространстве. Последние имеют верхнюю и нижнюю часть и всегда располагаются верхней частью ближе к поверхности органа. Еще одна особенность, которой характеризуется строение покровной ткани, заключается в том, что она хорошо регенерируется. Ее клетки живут недолго. Они способны быстро делиться, за счет чего ткань постоянно обновляется.

ФУНКЦИИ ПОКРОВНЫХ ТКАНЕЙ

Прежде всего они играют защитную роль, отделяя внутреннюю среду организма от внешнего мира.

Также они выполняют обменную и выделительную функции. Часто покровная ткань снабжена порами для обеспечения этого. Последняя основная функция – рецепторная.

Один из видов покровной ткани у животных – железистый эпителий – выполняет секреторную функцию.

 

Разнообразие формы растительных клеток. Отличие растительной и живой клетки.

Форма и размеры клеток очень различны и зависят от их положения в теле растения и от функций, которые они выполняют.

Наиболее простая форма — шаровидная — встречается довольно редко у свободных клеток, не граничащих с другими клетками. Многие клетки имеют форму многогранников, определяемую главным образом их взаимным давлением. Если клетка разрастается равномерно по всем направлениям, то она обычно принимает форму многогранника с 14 гранями, из которых 8 представляют собой шестиугольники, а 6 — четырехугольники. Клетки, диаме

cyberpedia.su

Средние размеры клеток животных и растений

Количество просмотров публикации Средние размеры клеток животных и растений - 3

 

Происхождение клетки Диаметр (в мкм) Объем (в мкм3)
Клетка печени человека
Малая клетка тимуса
Клетка меристемы (корешок лука)
Клетка паренхимы плода растения 1 х 108

 

1. Мембранная система.

2. Цитоплазматический мат-рикс (основное вещество клеток).

3. Клеточные органеллы (внутриклеточные компартменты).

4. Клеточные включения.

Мембранная система. Эта система представлена клеточнои̌ плазматической (цитоплазматической) мембранои̌, цитоплазматической (эндоплазматической) сетью (рети-кулом) и пластинчатым комплексом Гольджи.

а) Плазматическая (цитоплаз-матическая) мембрана имеет толщину 8-12 нм и состоит из трех слоев, два из которых являются белковыми слоями толщинои̌ по 3 нм каждый, а третий (внутренний) — двойным фосфолипидным слоем толщинои̌ 6 нм (рис. 47). Плазматическая мембрана является полупроницаемой структурой. Через нее в клетку входят питательные вещества и выходят все ʼʼотходыʼʼ (продукты секреции). Она создает барьер проницаемости. В результате ϶того плазматическая мембрана регулирует обмен различными веществами между клеткой и внешней средой. В плазматической мембране содержатся многие важные ферменты, системы активного транспорта ионов натрия и калия при помощи АТФазы, а аналогичным образом системы транспорта аминокислот.

На поверхности плазматической мембраны обнаруживают ряд специальных образований в виде микроворсинок и ресничек. Микроворсинки очень часты в эпителии кишечника и почек. Реснички — ϶то своеобразные выросты цитоплазмы. У эритроцитов мембрана является гладкой (элементарная мембрана). У некоторых одноклеточных организмов-эукариотов плазматическая мембрана аналогичным образом содержит реснички (микроворсинки), различные выпячивания, впячивания и выросты, переходящие в пузырьки. На внешней поверхности клеток животных обнаружены гликопротеиды как компоненты плазматической мембраны.

Предполагают, что поверхностные гликопротеиды обеспечивают адгезионную способность клеток в тканях, и, следовательно, слипание однотипных клеток. В мембранах эритроцитов содержится гликопротеид, получивший название гликофорина (м. м. 30 000). Данный гликопротеид состоит из 130 аминокислотных остатков и большого количества (60% всей молекулы) остатков сахара. Кроме того, в эритроцитарнои̌ мембране содержится белок спектрин, молекулы которого формируют скелет мембраны.

У клеток растений наружнои̌ структурой служит жесткая клеточная стенка, построенная из молекул целлюлозы, создающих очень прочные волокна, погруженные в матрикс из других поли-сахаридов и полимерного вещества лигнина. Клетки наружних слоев растений иногда покрыты очень тонким слоем восковидно-го вещества. На поверхности плазматических мембран имеются электрически заряженные группы, из-за которых поддерживается разность электрических потенциалов на мембранах. На поверхности плазматических мембран имеются аналогичным образом специфические рецепторы (участки распознания) для гормонов и других соединений. Кроме того, здесь же локализованы особые рецепторы, ответственные за индивидуальную тканевую совместимость. Считают, что рецепторные участки формируются гликопротеидами и ганглиозидами.

б) Цитоплазматическая (эндоплазматическая) сеть (рети-кулум) представлена пронизывающими однослойными мембранными полостями (трубочками, цистернами, вакуолями) разных размеров, заполненными белковыми гранулами (рис. 48).

Открыта К. Портером в 1945 г. Толщина трубочек и других структур ϶той сети равна 5-6 нм.

Различают гранулярный (шероховатый) эндоплазматический ретикулум, который выстлан множеством рибосом диаметром порядка 21-25 нм и молекулярнои̌ массой 4 х 106, служащих центрами синтеза молекул белков, и агранулярный (гладкий) эндоплазматический ретикулум, на котором нет рибосом, но на котором синтезируются липиды и углеводы. Степень насыщенности гранулярнои̌ эндоплазмати-ческой сети рибосомами определяет степень интенсивности синтеза белков. У человека и животных агранулярнои̌ сетью богаты клетки коры надпочечников, яичников и семенников, печени, скелетных мышц.

Цитоплазматическая сеть без перерыва соединена с цитоплаз-матической мембранои̌, ядернои̌ мембранои̌ и пластинчатым комплексом Гольджи. Это позволяет синтезируемым белкам проходить в комплекс Гольджи, откуда после специальнои̌ обработки они выводятся из клетки или идут на построение лизосом. Понятие и виды, 2018.

Плазматическая мембрана, мембрана эндоплазматической сети, а аналогичным образом ядер, митохондрий и хлоропластов (см. ниже) представляют из себячрезвычайно сложные структуры, обладающие рядом важ-.нейших биологических свойств. Многие мембраны содержат ферменты, транспортные системы, с помощью которых осуществляется перенос молекул питательных веществ и неорганических ионов внутрь клеток и внутри клеток, а аналогичным образом вывод из клеток продуктов жизнедеятельности. Мембранные структуры способны к самовосстановлению, в случае если в них по каким-то причинам возникают повреждения.

В процессе искусственного растирания или гомогенизации клеток с экспериментальными целями образуются мелкие частицы диаметром 50—150 нм, состоящие из фрагментов эндоплазматическо-го ретикулума и плазматической мембраны. Данные структуры получили название микросом и их широко используют в лабораторнои̌ работе для решения тех или иных вопросов молекулярнои̌ организации клеток.

в) Комплекс Гольджи. Данный комплекс, называемый ещё пластинчатым, был открыт итальянцем Камилло Гольджи ещё в 1898 г. Он присутствует во всех клетках, кроме эритроцитов и сперматозоидов, и представляет собой систему дискообразных однослойных мембран (мембранных пузырьков или цистерн), локализующихся рядом с гладким эндоплазмати-ческим ретикулом и ядром (рис. 49). Часто в клетках обнаруживают несколько таких комплексов (диктиосом), размеры которых составляют 30-60 нм. Структурными молекулами, поддерживающими структуру цистерн, являются ферменты, вовлеченные в процессинг оли-госахаридов, белки, являющиеся аутоантителами, а аналогичным образом белки, являющиеся компонентами цитоскелета. Основная функция комплекса Гольджи состоит в том, что он является местом упаковки (уплотнения) белков, поступающих с рибосом, а аналогичным образом присоединения к белкам углеводов (образования гликопротеидов), а к полисахаридам — сульфатных групп с последующим транспортом их к другим клеточным структурам или за пределы клетки (экзоцитоз). В клетках печени ϶тот комплекс участвует в выделении в кровь липопротеидов. Как отмечено выше, он участвует аналогичным образом и в формировании лизосом. Понятие и виды, 2018.

Цитоплазматический матрикс. Данный структурный компонент является основным веществом (цитоплазмой, гиалоплазмой) клетки. Первые электронномикроскопические изображения цитоплазмы были получены шведским ученым Ф. Шестрандом ещё в 1955 г. Различают эктоплазму — вещество, располагающееся ближе к цитоплазматической мембране (твердое тело) и эндоплазму, отстоящую к центру клетки от эктоплазмы (более жидкое состояние) и представляющую собой цитозоль. Консистенция цитозоля приближается к гелю, В нем растворены многие ферменты и белки, обеспечивающие связывание и транспорт питательных веществ, микроэлементов и кислорода. Здесь же находятся аминокислоты и нуклеотиды, а аналогичным образом различные метаболиты (промежуточные продукты биосинтеза и распада макромолекул). Наконец, в цитозоле присутствуют различные коферменты, а аналогичным образом АТФ, АДФ, ионы ряда неорганических солей (K+, Mg2+, Са2+, C1-, НСО-2 3, НРО4-2), тРНК.

В цитоплазме содержатся микрофиламенты (нити) толщинои̌ 4-5 нм и микротрубочки, представляющие собой полые цилиндрические структуры диаметром 25 нм, а аналогичным образом филаменты промежуточных размеров. Данные структуры составляют жесткую конструкцию (каркас) в клетке, называемую цитоскелетом и определяющую внешний вид и форму клеток. Микрофиламенты состоят из белка, сходного с сократительным белком актином. Понятие и виды, 2018.

Объединяясь, микрофиламенты формируют пучки, в которые входят дополнительные белки (анкерин, спектрин и другие). Основная функция микрофиламентов состоит в обеспечении сократительных процессов клеток, в упрочении мембран. Микротрубочки построены из белков a- и b-тубулина, а аналогичным образом g-тубулина. Для микротрубочек характерен ряд функций. Формирование микротрубочек происходит в интерфазе клеток в так называемых центрах организации микротрубочек (ЦОМ), которые ʼʼокружаютʼʼ центриоли, благодаря чему предполагают, что центриоли являются ЦОМ (рис. 50). В каждом ЦСУ содержится по 10-13 молекул g-тубулина и примерно по 7 молекул других белков, включая ди-мер a/b-тубулина. Данные белки формируют структуру, которая образует микротрубочный ʼʼансамбльʼʼ. Их значение до конца не выяснено, но предположительно состоит в том, что они обеспечивают перемещение клеточных органелл, включая хромосомы, внутри клеток.

В составе цитоплазмы обнаруживают ферменты, полисахариды, АТФ, тРНК, ионы Са, Na, К и других химических элементов.

Основная функция цитоплазматиче-ского матрикса состоит в том, что он является внутренней средой клетки, поддерживающей мембранные системы, орга-неллы и включения. В нем осуществляются гликолиз, активация аминокислот и другие реакции. Цитоскелет выполняет опорную функцию. Микрофиламенты способствуют упрочению мембраннои̌ системы, а микротрубочки, как отмечено выше, обеспечивают перемещение клеточных органелл и транспорт химических соединений из одних отсеков клетки в другие. Цитоскелет имеет значение аналогичным образом в делении клетки.

Клеточные органеллы. Данные структуры представлены ядром, хромосомами, ядрышком, центриолями, митохондриями, рибо-сомами, лизосомами. Они характерны за некоторыми исключениями как для клеток животных, так и для клеток растений.

а) Ядро в клетке имеет форму и размеры, зависящие от формы, размеров и функций клетки. В клетках эукариотических организмов содержится, как правило, по одному ядру, реже по два и более. В зрелом состоянии эритроциты млекопитающих и клетки ситовидных трубочек покрытосеменных растений лишены ядер, тогда как клетки скелетных мышц позвоночных и млечных сосудов растений являются многоядерными. Для инфузорий характерно наличие двух ядер — одно небольшое (микронуклеус) и одно крупное политенное (макронуклеус).

Обычно ядро имеет округлую, палочковидную, четковидную вытянутую и другие формы. Размеры ᴇᴦο колеблются от 2 до 100 мкм, а объём составляет около 65 мкм3. Особенно крупные ядра характерны для половых клеток (размером до 500 мкм). Отношение объёма ядра к объёму цитоплазмы называют ядерно-плазменным отношением, которое у клеток всех типов обычно постоянно.

Строение ядра характеризуется чрезвычайнои̌ сложностью, хотя принципиально одинаково в клетках всех эукариотических организмов. В случае животных клеток ядро располагается в центре клетки. Напротив, в клетках растений оно имеет пристеночную локализацию. Однако положение, форма и размеры ядра могут меняться исходя из интенсивности метаболизма. В ядре содержатся хромосомы и ядрышки (см. ниже). Благодаря им ядро плотно заполнено ДНК, РНК и белками. Содержимое ядра иногда называют нуклеоплазмой или кариоплазмой. Она отделена от цитоплазмы ядернои̌ мембранои̌, построеннои̌ из двух слоев (наружного и внутреннего) толщинои̌ по 7 нм каждый и имеющей поры диаметром 40—100 нм. Поры занимают около 5% площади ядра. Через ядерные поры синтезируемая в ядре РНК выходит в цитоплазму, где она участвует в трансляции генетической информации (синтезе белков).

Ядерная мембрана и ядерные поры объединены с мембраннои̌ системой клетки, благодаря чему клетка, по существу, канализирована различными проходами, обеспечивающими двухстороннее движение веществ в клетке, начиная от плазматической мембраны. В порах обнаружены глобулярные и фибриллярные белковые структуры. Количество пор зависит от вида клеток и обычно увеличивается в 8-периоде. Между мембранными слоями имеется так называемое перинуклеарное пространство ширинои̌ 20—60 нм. Наружная ядерная мембрана часто переходит в эндоплазматическую сеть. Когда клетки делятся, ядерная оболочка исчезает, а после деления восстанавливается. Ядерное вещество (кариоплазма) — плотный коллоид.

Таблица 4

referatwork.ru

Средние размеры клеток животных и растений

 

Происхождение клетки Диаметр (в мкм) Объем (в мкм3)
Клетка печени человека
Малая клетка тимуса
Клетка меристемы (корешок лука)
Клетка паренхимы плода растения 1 х 108

 

1. Мембранная система.

2. Цитоплазматический мат-рикс (основное вещество клеток).

3. Клеточные органеллы (внутриклеточные компартменты).

4. Клеточные включения.

Мембранная система. Эта система представлена клеточной плазматической (цитоплазматической) мембраной, цитоплазматической (эндоплазматической) сетью (рети-кулом) и пластинчатым комплексом Гольджи.

а) Плазматическая (цитоплаз-матическая) мембрана имеет толщину 8-12 нм и состоит из трех слоев, два из которых являются белковыми слоями толщиной по 3 нм каждый, а третий (внутренний) — двойным фосфолипидным слоем толщиной 6 нм (рис. 47). Плазматическая мембрана является полупроницаемой структурой. Через нее в клетку входят питательные вещества и выходят все «отходы» (продукты секреции). Она создает барьер проницаемости. В результате этого плазматическая мембрана регулирует обмен различными веществами между клеткой и внешней средой. В плазматической мембране содержатся многие важные ферменты, системы активного транспорта ионов натрия и калия при помощи АТФазы, а также системы транспорта аминокислот.

На поверхности плазматической мембраны обнаруживают ряд специальных образований в виде микроворсинок и ресничек. Микроворсинки очень часты в эпителии кишечника и почек. Реснички — это своеобразные выросты цитоплазмы. У эритроцитов мембрана является гладкой (элементарная мембрана). У некоторых одноклеточных организмов-эукариотов плазматическая мембрана также содержит реснички (микроворсинки), различные выпячивания, впячивания и выросты, переходящие в пузырьки. На внешней поверхности клеток животных обнаружены гликопротеиды как компоненты плазматической мембраны.

Предполагают, что поверхностные гликопротеиды обеспечивают адгезионную способность клеток в тканях, и, следовательно, слипание однотипных клеток. В мембранах эритроцитов содержится гликопротеид, получивший название гликофорина (м. м. 30 000). Этот гликопротеид состоит из 130 аминокислотных остатков и большого количества (60% всей молекулы) остатков сахара. Кроме того, в эритроцитарной мембране содержится белок спектрин, молекулы которого формируют скелет мембраны.

У клеток растений наружной структурой служит жесткая клеточная стенка, построенная из молекул целлюлозы, создающих очень прочные волокна, погруженные в матрикс из других поли-сахаридов и полимерного вещества лигнина. Клетки наружних слоев растений иногда покрыты очень тонким слоем восковидно-го вещества. На поверхности плазматических мембран имеются электрически заряженные группы, из-за которых поддерживается разность электрических потенциалов на мембранах. На поверхности плазматических мембран имеются также специфические рецепторы (участки распознания) для гормонов и других соединений. Кроме того, здесь же локализованы особые рецепторы, ответственные за индивидуальную тканевую совместимость. Считают, что рецепторные участки формируются гликопротеидами и ганглиозидами.

б) Цитоплазматическая (эндоплазматическая) сеть (рети-кулум) представлена пронизывающими однослойными мембранными полостями (трубочками, цистернами, вакуолями) разных размеров, заполненными белковыми гранулами (рис. 48).

Открыта К. Портером в 1945 г. Толщина трубочек и других структур этой сети равна 5-6 нм.

Различают гранулярный (шероховатый) эндоплазматический ретикулум, который выстлан множеством рибосом диаметром порядка 21-25 нм и молекулярной массой 4 х 106, служащих центрами синтеза молекул белков, и агранулярный (гладкий) эндоплазматический ретикулум, на котором нет рибосом, но на котором синтезируются липиды и углеводы. Степень насыщенности гранулярной эндоплазмати-ческой сети рибосомами определяет степень интенсивности синтеза белков. У человека и животных агранулярной сетью богаты клетки коры надпочечников, яичников и семенников, печени, скелетных мышц.

Цитоплазматическая сеть без перерыва соединена с цитоплаз-матической мембраной, ядерной мембраной и пластинчатым комплексом Гольджи. Это позволяет синтезируемым белкам проходить в комплекс Гольджи, откуда после специальной обработки они выводятся из клетки или идут на построение лизосом.

Плазматическая мембрана, мембрана эндоплазматической сети, а также ядер, митохондрий и хлоропластов (см. ниже) представляют собой чрезвычайно сложные структуры, обладающие рядом важ-.нейших биологических свойств. Многие мембраны содержат ферменты, транспортные системы, с помощью которых осуществляется перенос молекул питательных веществ и неорганических ионов внутрь клеток и внутри клеток, а также вывод из клеток продуктов жизнедеятельности. Мембранные структуры способны к самовосстановлению, если в них по каким-то причинам возникают повреждения.

В процессе искусственного растирания или гомогенизации клеток с экспериментальными целями образуются мелкие частицы диаметром 50—150 нм, состоящие из фрагментов эндоплазматическо-го ретикулума и плазматической мембраны. Эти структуры получили название микросом и их широко используют в лабораторной работе для решения тех или иных вопросов молекулярной организации клеток.

в) Комплекс Гольджи. Этот комплекс, называемый еще пластинчатым, был открыт итальянцем Камилло Гольджи еще в 1898 г. Он присутствует во всех клетках, кроме эритроцитов и сперматозоидов, и представляет собой систему дискообразных однослойных мембран (мембранных пузырьков или цистерн), локализующихся рядом с гладким эндоплазмати-ческим ретикулом и ядром (рис. 49). Часто в клетках обнаруживают несколько таких комплексов (диктиосом), размеры которых составляют 30-60 нм. Структурными молекулами, поддерживающими структуру цистерн, являются ферменты, вовлеченные в процессинг оли-госахаридов, белки, являющиеся аутоантителами, а также белки, являющиеся компонентами цитоскелета. Основная функция комплекса Гольджи заключается в том, что он является местом упаковки (уплотнения) белков, поступающих с рибосом, а также присоединения к белкам углеводов (образования гликопротеидов), а к полисахаридам — сульфатных групп с последующим транспортом их к другим клеточным структурам или за пределы клетки (экзоцитоз). В клетках печени этот комплекс участвует в выделении в кровь липопротеидов. Как отмечено выше, он участвует также и в формировании лизосом.

Цитоплазматический матрикс. Этот структурный компонент является основным веществом (цитоплазмой, гиалоплазмой) клетки. Первые электронномикроскопические изображения цитоплазмы были получены шведским ученым Ф. Шестрандом еще в 1955 г. Различают эктоплазму — вещество, располагающееся ближе к цитоплазматической мембране (твердое тело) и эндоплазму, отстоящую к центру клетки от эктоплазмы (более жидкое состояние) и представляющую собой цитозоль. Консистенция цитозоля приближается к гелю, В нем растворены многие ферменты и белки, обеспечивающие связывание и транспорт питательных веществ, микроэлементов и кислорода. Здесь же находятся аминокислоты и нуклеотиды, а также различные метаболиты (промежуточные продукты биосинтеза и распада макромолекул). Наконец, в цитозоле присутствуют различные коферменты, а также АТФ, АДФ, ионы ряда неорганических солей (K+, Mg2+, Са2+, C1-, НСО-2 3, НРО4-2), тРНК.

В цитоплазме содержатся микрофиламенты (нити) толщиной 4-5 нм и микротрубочки, представляющие собой полые цилиндрические структуры диаметром 25 нм, а также филаменты промежуточных размеров. Эти структуры составляют жесткую конструкцию (каркас) в клетке, называемую цитоскелетом и определяющую внешний вид и форму клеток. Микрофиламенты состоят из белка, сходного с сократительным белком актином.

Объединяясь, микрофиламенты формируют пучки, в которые входят дополнительные белки (анкерин, спектрин и другие). Основная функция микрофиламентов заключается в обеспечении сократительных процессов клеток, в упрочении мембран. Микротрубочки построены из белков a- и b-тубулина, а также g-тубулина. Для микротрубочек характерен ряд функций. Формирование микротрубочек происходит в интерфазе клеток в так называемых центрах организации микротрубочек (ЦОМ), которые «окружают» центриоли, в результате чего предполагают, что центриоли являются ЦОМ (рис. 50). В каждом ЦСУ содержится по 10-13 молекул g-тубулина и примерно по 7 молекул других белков, включая ди-мер a/b-тубулина. Эти белки формируют структуру, которая образует микротрубочный «ансамбль». Их значение до конца не выяснено, но предположительно заключается в том, что они обеспечивают перемещение клеточных органелл, включая хромосомы, внутри клеток.

В составе цитоплазмы обнаруживают ферменты, полисахариды, АТФ, тРНК, ионы Са, Na, К и других химических элементов.

Основная функция цитоплазматиче-ского матрикса заключается в том, что он является внутренней средой клетки, поддерживающей мембранные системы, орга-неллы и включения. В нем осуществляются гликолиз, активация аминокислот и другие реакции. Цитоскелет выполняет опорную функцию. Микрофиламенты способствуют упрочению мембранной системы, а микротрубочки, как отмечено выше, обеспечивают перемещение клеточных органелл и транспорт химических соединений из одних отсеков клетки в другие. Цитоскелет имеет значение также в делении клетки.

Клеточные органеллы. Эти структуры представлены ядром, хромосомами, ядрышком, центриолями, митохондриями, рибо-сомами, лизосомами. Они характерны за некоторыми исключениями как для клеток животных, так и для клеток растений.

а) Ядро в клетке имеет форму и размеры, зависящие от формы, размеров и функций клетки. В клетках эукариотических организмов содержится, как правило, по одному ядру, реже по два и более. В зрелом состоянии эритроциты млекопитающих и клетки ситовидных трубочек покрытосеменных растений лишены ядер, тогда как клетки скелетных мышц позвоночных и млечных сосудов растений являются многоядерными. Для инфузорий характерно наличие двух ядер — одно небольшое (микронуклеус) и одно крупное политенное (макронуклеус).

Обычно ядро имеет округлую, палочковидную, четковидную вытянутую и другие формы. Размеры его колеблются от 2 до 100 мкм, а объем составляет около 65 мкм3. Особенно крупные ядра характерны для половых клеток (размером до 500 мкм). Отношение объема ядра к объему цитоплазмы называют ядерно-плазменным отношением, которое у клеток всех типов обычно постоянно.

Строение ядра характеризуется чрезвычайной сложностью, хотя принципиально одинаково в клетках всех эукариотических организмов. В случае животных клеток ядро располагается в центре клетки. Напротив, в клетках растений оно имеет пристеночную локализацию. Однако положение, форма и размеры ядра могут меняться в зависимости от интенсивности метаболизма. В ядре содержатся хромосомы и ядрышки (см. ниже). Благодаря им ядро плотно заполнено ДНК, РНК и белками. Содержимое ядра иногда называют нуклеоплазмой или кариоплазмой. Она отделена от цитоплазмы ядерной мембраной, построенной из двух слоев (наружного и внутреннего) толщиной по 7 нм каждый и имеющей поры диаметром 40—100 нм. Поры занимают около 5% площади ядра. Через ядерные поры синтезируемая в ядре РНК выходит в цитоплазму, где она участвует в трансляции генетической информации (синтезе белков).

Ядерная мембрана и ядерные поры объединены с мембранной системой клетки, в результате чего клетка, по существу, канализирована различными проходами, обеспечивающими двухстороннее движение веществ в клетке, начиная от плазматической мембраны. В порах обнаружены глобулярные и фибриллярные белковые структуры. Количество пор зависит от вида клеток и обычно увеличивается в 8-периоде. Между мембранными слоями имеется так называемое перинуклеарное пространство шириной 20—60 нм. Наружная ядерная мембрана часто переходит в эндоплазматическую сеть. Когда клетки делятся, ядерная оболочка исчезает, а после деления восстанавливается. Ядерное вещество (кариоплазма) — плотный коллоид.

Таблица 4

Похожие статьи:

poznayka.org

Размеры и форма клеток | Земная флора

Размеры различных клеток варьируют чрезвычайно сильно— диаметр ряда бактерий не достигает и одного микрометра (мкм), длина же некоторых вытянутых клеток измеряется миллиметрами (мм). Даже в сравнительно небольшой бактериальной клетке содержится около 1012 молекул. Эта чудовищная сложность основной биологической единицы позволяет понять, почему биологические исследования и по методам, и по точности результатов столь существенно отличаются обычно от экспериментов физических и химических, где исследователи часто» имеют дело с такими элементарными единицами, как отдельный протон или квант.

Если растительная клетка выращивается изолированно, та форма ее обычно приближается к сферической, на если она растет в окружении других клеток, то они сдавливают ее, и тогда она принимает форму многогранника. Клетка из зоны растяжения стебля или корня по форме напоминает коробочку длиной около 50 мкм, шириной 20 мкм и высотой 10 мкм. Объем ее равен приблизительно 10 000 мкм3. В одном кубическом сантиметре (1 см3) при плотной упаковке помещается да 100-106 таких клеток. Структура растительной клетки сложна и высокодифференцированна, но в первом приближении мы можем вычленить в ней три главные зоны: 1) клеточную стенку — сравнительно жесткое образование, по всей вероятности неживое, представляющее собой высокоструктурированную и в химическом отношении сложную смесь веществ, выделяемых протопластом; 2) протопласт — живую часть клетки, в которой заключены все клеточные органеллы, суспендированные здесь в сложном растворе, и 3) вакуоли — неживые образования, как бы мембранные мешки, служащие резервуарами или хранилищами клетки; они заполнены водным раствором поглощенных клеткой неорганических солей и органических веществ, представляющих собой продукты метаболической активности клетки. Клеточные стенки у растения играют роль скелета, т. е. обеспечивают должную жесткость и способствуют сохранению формы организма. Вакуоли также участвуют в выполненииэтой функции — за счет давления, оказываемого их содержимым на цитоплазму и стенку клетки.Кроме того, вакуоли служат своеобразной секреторной системой, так как попадающий в них мате-териал тем самым эффективно выводится из сферы активных химических превращений, совершающихся в клетке. Остается, таким образом, протопласт, и именно в нем следует вам видеть арену той непрерывной активности, которая характеризует высокоорганизованное и динамическое состояние, именуемое

жизнью.

geo-plant.ru

Основное отличие животной клетки от растительной: таблица + подробное описание

Многие ключевые различия между растениями и животными берут начало в структурных различиях на клеточном уровне. У одних есть некоторые детали, которые есть у других, и наоборот. Прежде, чем мы найдем главное отличие животной клетки от растительной (таблица далее в статье), давайте выясним, что они имеют общего, а затем исследуем то, что делает их разными.

отличие животной клетки от растительной таблица

Животные и растения

Вы, сгорбившись в кресле, читаете эту статью? Старайтесь сидеть прямо, вытяните руки к небу и потянитесь. Чувствуете себя хорошо, верно? Нравится вам это или нет, но вы – животное. Ваши клетки – это мягкие сгустки цитоплазмы, но вы можете использовать ваши мышцы и кости, чтобы стоять на ногах и передвигаться. Геторотрофы, как и все животные, должны получать питание из других источников. Если вы чувствуете голод или жажду, вам нужно просто встать и дойти до холодильника.

Теперь подумайте о растениях. Представьте себе высокий дуб или крохотные травинки. Они стоят в вертикальном положении, не имея мышц или костей, но они не могут позволить себе ходить куда-то, чтобы получить еду и питье. Растения, автотрофы, создают свои собственные продукты, используя энергию Солнца. Отличие животной клетки от растительной в таблице №1 (смотри далее) очевидно, но есть также и много общего.

отличие растительной клетки от животной таблица

Общая характеристика

Растительная и животная клетки являются эукариотическими, а это уже большое сходство. Они имеют мембранно-связанное ядро, которое содержит генетический материал (ДНК). Полупроницаемая плазматическая мембрана окружает оба типа ячеек. Их цитоплазма содержит многие из тех же частей и органелл, в том числе рибосомы, комплексы Гольджи, эндоплазматический ретикулум, митохондрии и пероксисомы и другие. В то время как растительные и животные клетки являются эукариотическими и имеют много общего, они также отличаются по нескольким параметрам.

отличия между растительной и животной клеткой таблица

Особенности растительных клеток

Теперь давайте рассмотрим особенности клеток растений. Как большинство из них могут стоять вертикально? Эта способность имеется благодаря клеточной стенке, которая окружает оболочки всех растительных клеток, обеспечивает поддержку и жесткость и часто дает им прямоугольный или даже шестиугольной внешний вид при наблюдении в микроскоп. Все эти структурные единицы имеют жесткую правильную форму и содержат много хлоропластов. Стенки могут быть толщиной в несколько микрометров. Их состав варьируется в зависимости от групп растений, но они обычно состоят из волокон углеводной целлюлозы, погруженных в матрицу из белков и прочих углеводов.

отличия между растительной и животной клеткой таблица

Клеточные стенки помогают сохранить прочность. Давление, создаваемое поглощением воды, способствует их жесткости и дает возможность для вертикального роста. Растения не способны передвигаться с места на место, поэтому они нуждаются в том, чтобы делать свои собственные продукты питания. Органелла, называемая хлоропластом, отвечает за фотосинтез. Растительные клетки могут содержать несколько таких органелл, иногда сотни.

Хлоропласты окружены двойной мембраной и содержат стеки мембраносвязанных дисков, в которых специальными пигментами поглощается солнечный свет, и эта энергия используется для питания растения. Одной из самых известных структур является крупная центральная вакуоль. Эта органелла занимает большую часть объема и окружена мембраной, называемой тонопласт. В ней хранится вода, а также ионы калия и хлорида. По мере того, как клетка растет, вакуоль поглощает воду и помогает удлинить ячейки.

таблица отличие животной клетки от растительной

Отличия животной клетки от растительной (таблица №1)

Растительные и животные структурные единицы имеют некоторые отличия и сходства. Например, у первых нет клеточной стенки и хлоропластов, они круглые и неправильной формы, в то время как растительные имеют фиксированную прямоугольную форму. И те и те являются эукариотическими, поэтому они имеют ряд общих особенностей, таких как наличие мембраны и органелл (ядро, митохондрии и эндоплазматический ретикулум). Итак, рассмотрим сходства и отличия между растительной и животной клетки в таблице №1:

Животная клеткаРастительная клетка
Клеточная стенкаотсутствуетприсутствует (формируется из целлюлозы)
Формакруглая (неправильная)прямоугольная (неподвижная)
Вакуольодна или несколько мелких (гораздо меньше, чем в растительных клетках)Одна большая центральная вакуоль занимает до 90% объема клетки
Центриолиприсутствуют во всех клетках животныхприсутствуют в более низких растительных формах
ХлоропластынетРастительные клетки имеют хлоропласты, потому что они создают свои собственные продукты питания
Цитоплазмаестьесть
Рибосомыприсутствуютприсутствуют
Митохондрииимеютсяимеются
Пластидыотсутствуютприсутствуют
Эндоплазматический ретикулум (гладкий и шершавый)естьесть
Аппарат Гольджиимеетсяимеется
Плазматическая мембранаприсутствуетприсутствует
Жгутикимогут быть найдены в некоторых клеткахмогут быть найдены в некоторых клетках
Лизосомыесть в цитоплазмеобычно не видны
Ядраприсутствуютприсутствуют
Ресничкиприсутствуют в большом количестверастительные клетки не содержат реснички

Животные против растений

Какой позволяет сделать таблица «Отличие животной клетки от растительной» вывод? Обе являются эукариотическими. Они имеют настоящие ядра, где находится ДНК и отделены от других структур ядерной мембраной. Оба типа имеют сходные процессы по воспроизводству, включая митоз и мейоз. Животные и растения нуждаются в энергии, они должны расти и поддерживать нормальную клеточную функцию в процессе дыхания.

отличия между растительной и животной клеткой таблица

И там и там есть структуры, известные как органеллы, которые являются специализированными для выполнения функций, необходимых для нормального функционирования. Представленные отличия животной клетки от растительной в таблице №1 дополняются некоторыми общими чертами. Оказывается, они имеют много общего. И те и те имеют некоторые из тех же компонентов, в том числе ядра, комплекс Гольджи, эндоплазматический ретикулум, рибосомы, митохондрии и так далее.

отличия между растительной и животной клеткой таблица

В чем отличие растительной клетки от животной?

В таблице №1 сходства и отличия представлены достаточно кратко. Рассмотрим эти и другие моменты более подробно.

  • Размер. Животные клетки обычно имеют меньшие размеры, чем клетки растений. Первые составляют от 10 до 30 микрометров в длину, в то время как растительные клетки имеют диапазон длины от 10 до 100 микрометров.
  • Форма. Животные клетки бывают различных размеров и, как правило, имеют круглую или неправильную форму. Растительные больше похожи по размеру и, как правило, имеют прямоугольную или кубическую форму.
  • Хранение энергии. Животные клетки запасают энергию в виде сложных углеводов (гликогена). Растительные запасают энергию в виде крахмала.
  • Дифференцировка. В клетках животных только стволовые клетки способны переходить в другие типы клеток. Большинство видов растительной клетки не способно к дифференциации.
  • Рост. Животные клетки увеличиваются в размерах за счет числа клеток. Растительные же поглощают больше воды в центральной вакуоли.
  • Центриоли. Клетки животных содержат цилиндрические структуры, которые организуют сборку микротрубочек во время деления клетки. Растительные, как правило, не содержат центриолей.
  • Реснички. Они встречаются в клетках животных, но не являются обычным явлением в растительных клетках.
  • Лизосомы. Эти органеллы содержат ферменты, которые переваривают макромолекулы. Клетки растений редко содержат лизосомы, эту функцию выполняет вакуоль.
  • Пластиды. Животные клетки не имеют пластид. Клетки растений содержат пластиды, такие как хлоропласты, которые необходимы для фотосинтеза.
  • Вакуоль. Животные клетки могут иметь много мелких вакуолей. Растительные клетки имеют большую центральную вакуоль, которая может занимать до 90% объема клетки.

отличия между растительной и животной клеткой таблица

Структурно растительные и животные клетки очень похожи, они содержат мембраносвязанные органеллы, такие как ядро, митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы и пероксисомы. Оба также содержат аналогичные мембраны, цитозоль и цитоскелетные элементы. Функции этих органелл также очень похожи. Однако то небольшое отличие растительной клетки от животной (таблица №1), которое существуют между ними, является весьма существенным и отражает разницу в функциях каждой клетки.

отличия между растительной и животной клеткой таблица

Итак, мы провели сравнение растительной и животной клеток, выяснив, в чем их сходство и отличия. Общими являются план строения, химические процессы и состав, деление и генетический код.

отличия между растительной и животной клеткой таблица

В то же время эти мельчайшие единицы принципиально отличаются способом питания.

fb.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта