Органоиды клетки растений. 02. Структура типичной растительной клетки. Функции и строение органоидов

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

3. Структура и функции основных органоидов растительной клетки. Органоиды клетки растений


Функции и строение органоидов клетки

Строение клетокЛюбой человек знает ещё со школы, что все живые организмы, как растения, так и животные, состоят из клеток. Но вот из чего состоят они сами – это известно отнюдь не каждому, а если всё-таки и известно, то не всегда хорошо. В данной статье мы рассмотрим строение растительных и животных клеток, разберёмся в их отличиях и сходствах.

Но сначала давайте разберёмся, что же вообще такое органоид.

Органоид – это орган клетки, осуществляющий какую-либо свою, индивидуальную функцию в ней, обеспечивая при этом её жизнеспособность, ведь без исключения каждый процесс, происходящий в системе, очень для этой системы важен. А все органоиды составляют систему. Органоиды ещё называют органеллами.

Это интересно: вакуоль и её особенности.

Растительные органеллы

Итак, рассмотрим, какие же органоиды имеются в растениях и какие именно функции они выполняют.

Ядро и цитоплазма

Ядро и цитоплазмаЯдро (ядерный аппарат) – один из самых важных органоидов. Оно отвечает за передачу наследственной информации – ДНК (дезоксирибонуклеиновую кислоту). Ядро – органелла округлой формы. У него есть подобие скелета – ядерный матрикс. Именно матрикс отвечает за морфологию ядра, его форму и размеры. Внутри ядра содержится ядерный сок, или кариоплазма. Она представляет собой достаточно вязкую, густую жидкость, в которой находятся маленькое ядрышко, формирующее белки и ДНК, а также хроматин, который реализует накопленный генетический материал.

Сам ядерный аппарат вместе с другими органоидами находится в цитоплазме – жидкой среде. Цитоплазма состоит из белков, углеводов, нуклеиновых кислот и прочих веществ, являющихся результатами производства других органоидов. Главная функция цитоплазмы – передача веществ между органоидами для поддержания жизни. Так как цитоплазма – это жидкость, то внутри клетки происходит незначительное движение органелл.

Это интересно: органические вещества клетки, что входит в ее состав?

Мембранная оболочка

Мембранная оболочка, или плазмалемма, выполняет защитную функцию, оберегая органеллы от каких-либо повреждений. Мембранная оболочка представляет собой плёнку. Она не сплошная – оболочка имеет поры, через которые одни вещества входят в цитоплазму, а другие выходят. Складки и выросты мембраны обеспечивают прочное соединение клеток между собой. Защищена оболочка клеточной стенкой, это наружный скелет, придающий клетке особую форму.

Вакуоли

Вакуоли – это специальные резервуары для хранения клеточного сока. Он содержит в себе питательные вещества и продукты жизнедеятельности. Вакуоли накапливают его в процессе всей жизни клетки, подобные запасы необходимы в случае повреждений (редко) или же нехватки питательных веществ.

Аппарат, лизосомы и митохондрии

  • Органоиды клетки
    Аппарат, или комплекс Гольджи, – это органелла, предназначенная для выведения побочных, ненужных веществ за пределы мембранной оболочки.
  • Лизосома – органоид, окружённый специальной защитной мембраной. Внутри лизосомы всегда поддерживается кислотная среда. В её функции входит внутриклеточное переваривание макромолекул, превращение их в полезные вещества.
  • Митохондрии – своеобразные “энергостанции”, имеют сферическую или эллипсоидную форму. Они обеспечивают клетку энергией. Процесс, происходящий в митохондриях, иногда называют “внутриклеточным дыханием”. Эти органеллы, окисляя органические соединения, образуют АТФ (аденозинтрифосфат) – универсальный источник энергии для органоидов.

Хлоропласты, лейкопласты и хромопласты

Пластиды – двумембранные органоиды клетки, делящиеся на три вида – хлоропласты, лейкопласты и хромопласты:

  • Хлоропласты придают растениям зелёный цвет, они имеют округлую форму и содержат особое вещество – пигмент хлорофилл, участвующий в процессе фотосинтеза.
  • Лейкопласты – органеллы прозрачного цвета, отвечающие за переработку глюкозы в крахмал.
  • Хромопластами называют пластиды красного, оранжевого или жёлтого цвета. Они могут развиваться из хлоропластов, когда те теряют хлорофилл и крахмал. Мы можем наблюдать этот процесс, когда желтеют листья или созревают плоды. Хромопласты могут превратиться обратно в хлоропласты при определённых условиях.

Эндоплазматическая сеть

Эндоплазматическая сеть состоит из рибосом и полирибосом. Рибосомы синтезируются в ядрышке, они выполняют функцию биосинтеза белка. Рибосомные комплексы состоят из двух частей – большой и малой. Количество рибосом в пространстве цитоплазмы преобладающее.

Полирибосома – это множество рибосом, транслирующих одну большую молекулу вещества.

Органоиды животной клетки

Некоторые из органелл полностью совпадают с органоидами растительной, а некоторых растительных вообще нет в животных. Ниже приведена таблица сравнения особенностей строения.

Название органоида клетки В растительной В животной
Ядро и все его составляющие Имеется; отличий нет Имеется; отличий нет
Мембранная оболочка Имеется; защищена клеточной стенкой снаружи Имеется, клеточная стенка отсутствует
Цитоплазма Имеется; отличий нет Имеется; отличий нет
Вакуоли, пластиды Имеются Не имеются
Аппарат Гольджи, лизосомы и митохондрии Имеются; отличий нет Имеются; отличий нет
Пиноцитозный пузырёк Не имеется Имеется
Центриоли Не имеются Имеются

Разберёмся с последними двумя:

  • Строение растительной клеткиЦентриоли – не до конца изученная органелла. Её функции до сих пор остаются загадкой, предполагается, что они определяют полюс животной клетки при её делении (размножении).
  • Пиноцитозный пузырёк – временная органелла, образующаяся во время пиноцитоза, процесса захвата капельки жидкости клеточной поверхностью. Сначала образуется пиноцитозный канал, от которого отходят пиноцитозные пузырьки. Пиноцитозный пузырёк предназначен для транспортировки полученного извне вещества, он движется, “гуляет” по цитоплазме до последующей переработки.

Можно сказать, что строение животной и растительной клеток различно потому, что растения и животные имеют различные формы жизни. Так, органоиды растительной клетки лучше защищены, потому что растения недвижимы – они не могут убежать от опасности. Пластиды имеются в растительной клетке, обеспечивая растению ещё один вид питания – фотосинтез. Животным же в силу их особенностей питание посредством переработки солнечного света совершенно ни к чему. А потому и ни одного из трёх видов пластидов в животной клетке быть не может.

obrazovanie.guru

Органоиды клетки и их функции

Органоиды клетки

Содержание:

  • Что такое органоиды клетки
  • Какие органоиды входят в состав клетки
  • Двумембраные органоиды клетки
  • Функции органоидов клетки
  • Основные органоиды клетки, видео
  • Что такое органоиды клетки

    Органоиды клетки, они же органеллы, представляют собой специализированные структуры собственно клетки, отвечающие за различные важные и жизненно необходимые функции. Почему же все-таки «органоиды»? Просто тут эти компоненты клетки сопоставляются с органами многоклеточного организма.

    Какие органоиды входят в состав клетки

    Также порой под органоидами понимается исключительно лишь постоянные структуры клетки, которые находятся в ее цитоплазме. По этой же причине ядро клетки и ее ядрышко не называют органоидами, равно как и не являются органоидами клеточная мембрана, реснички и жгутики. А вот к органоидам, входящим в состав клетки относятся: хромосомы, митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, микротрубочки, микрофиламенты, лизосомы. По сути это и есть основные органоиды клетки.

    Если речь идет о животных клетках, то в число их органоидов также входят центриоли и микрофибриллы. А вот в число органоидов растительной клетки еще входят только свойственные растениям пластиды. В целом состав органоидов в клетках может существенно отличатся в зависимости от вида самой клетки.

    строение клетки

    Рисунок строения клетки, включая ее органоиды.

    Двумембраные органоиды клетки

    Также в биологии существует такое явление как двумембраные органоиды клетки, к ним относятся митохондрии и пластиды. Ниже мы опишем свойственные им функции, впрочем, как всех других основных органоидов.

    Функции органоидов клетки

    А теперь коротко опишем основные функции органоидов животной клетки. Итак:

    • Плазматическая мембрана – тонкая пленка вокруг клетки состоящая из липидов и белков. Очень важный органоид, который обеспечивает транспортировку в клетку воды, минеральных и органических веществ, удаляет вредные продукты жизнедеятельности и защищает клетку.
    • Цитоплазма – внутренняя полужидкая среда клетки. Обеспечивает связь между ядром и органоидами.
    • Эндоплазматическая сеть – она же сеть каналов в цитоплазме. Принимает активное участие в синтезе белков, углеводов и липидов, занимается транспортировкой полезных веществ.
    • Митохондрии – органоиды, в которых окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. По сути митохондрии это органоид клетки, синтезирующий энергию.
    • Пластиды (хлоропласты, лейкопласты, хромопласты) – как мы упоминали выше, встречаются исключительно у растительных клеток, в целом их наличие является главной особенностью растительного организма. Играют очень важную функцию, например, хлоропласты, содержащие зеленый пигмент хлорофилл, у растения отвечают за явление фотосинтеза.
    • Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Осуществляют синтез жиров и углеводов на мембране.
    • Лизосомы — тельца, отделенные от цитоплазмы мембраной. Имеющиеся в них особые ферменты ускоряют реакцию расщепления сложных молекул. Также лизосома является органоидом, обеспечивающим сборку белка в клетках.
    • Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ; они регулируют содержание воды в клетке.

    В целом все органоиды являются важными, ведь они регулируют жизнедеятельность клетки.

    Основные органоиды клетки, видео

    И в завершение тематическое видео про органоиды клетки.

    www.poznavayka.org

    Органоиды растительной клетки и их функции

    04.03.2018

    Клетки растений, как и клетки большинства живых организмов, состоят из клеточной оболочки, которая отмежевывает содержимое клетки (протопласт) от окружающей его среды. Клеточная оболочка включает в себя достаточно жесткую и прочную клеточную стенку (снаружи) и тонкую, эластичную цитоплазматическую мембрану (внутри). Наружный слой клеточной стенки, представляющий собой пористую целлюлозную оболочку с присутствующим в ней лигнином, состоит из пектинов. Такие составляющие определяют прочность и жесткость растительной клетки, обеспечивают её форму, способствуют лучшей защите внутриклеточного содержимого (протопласта) от неблагоприятных условий. Составляющие цитоплазматической мембраны – белки и липиды. Как клеточная стенка, так и мембрана обладают полупроницаемыми способностями и выполняют транспортную функцию, пропуская внутрь клетки воду и необходимые для жизнедеятельности элементы питания, а также регулируя обмен веществ между клетками и со средой. 

    Протопласт растительной клетки включает в себя внутреннюю полужидкую среду мелкозернистой структуры (цитоплазму), состоящую из воды, органических соединений и минеральных солей, в которой находятся ядро – главная часть клетки – и другие органоиды. Впервые описал жидкое содержимое клетки и назвал его протоплазмой (1825 – 1827 г.) чешский физиолог, микроскопист Ян Пуркине. Органоиды являются постоянными клеточными структурами, выполняющими специфические, предназначенные только им функции. Кроме того, они отличаются между собой строением и химическим составом. Различают немембранные органоиды (рибосомы, клеточный центр, микротрубочки, микрофиламенты), одномембранные (вакуоли, лизосомы, комплекс Гольджи, эндоплазматическая сеть) и двумембранные (пластиды, митохрондрии). 

    Органоиды

    Вакуоль (одна или несколько) – важнейшая составляющая протопласта, характерная только для растительных клеток. В молодых клетках присутствуют, как правило, несколько небольших вакуолей, но по мере роста и старения клетки, мелкие вакуоли сливаются в одну большую (центральную) вакуоль. Она представляет собой ограниченный мембраной (тонопластом) резервуар с находящимся внутри него клеточным соком. Основной компонент клеточного сока – это вода (70 – 95%), в которой растворены органические и неорганические соединения: соли, сахара (фруктоза, глюкоза, сахароза), органические кислоты (щавелевая, яблочная, лимонная, уксусная и пр.), белки, аминокислоты. Все эти продукты являются промежуточным результатом метаболизма и временно накапливаются в вакуолях как запасные питательные вещества, чтобы в дальнейшем вторично участвовать в обменных процессах клетки. Также в клеточном соке присутствуют танины (дубильные вещества), фенолы, алкалоиды, антоцианы и различные пигменты, которые выводятся в вакуоль, изолируясь при этом от цитоплазмы. В вакуоли поступают и ненужные продукты жизнедеятельности клетки (отходы), например, щавелевокислый калий. 

    Вакуоль

    Благодаря вакуолям клетка обеспечивается запасами воды и питательных веществ (белков, жиров, витаминов, минеральных солей), а также в ней поддерживается осмотическое внутриклеточное давление (тургор). В вакуолях происходит расщепление старых белков и органелл. 

    Вторая отличительная особенность растительной клетки – присутствие в ней двумембранных органоидов – пластид. Открытие этих органоидов, их описание и классификация (1880 - 1883 г.) принадлежат немецким ученым – естествоиспытателю А. Шимперу и ботанику В. Мейеру. Пластиды представляют собой вязкие белковые тельца и разделяются на три основных типа: лейкопласты, хромопласты и хлоропласты. Все они под влиянием действия определенных факторов среды способны переходить из одного вида в другой. 

    Пластиды

    Среди всех типов пластид наиболее важную роль выполняют хлоропласты: в них осуществляется процесс фотосинтеза. Эти органоиды отличаются зеленой окраской, что связано с наличием в их составе значительного количества хлорофилла – зеленого пигмента, поглощающего энергию солнечного света и синтезирующего органические вещества из воды и углекислого газа. Хлоропласты отмежевываются от цитоплазмы клетки двумя мембранами (внешней и внутренней) и имеют линзообразную овальную форму (длина составляет около 5 – 10 мкм, а ширина колеблется от 2 до 4 мкм). Кроме хлорофилла в хлоропластах присутствуют каротиноиды (вспомогательные пигменты оранжевого цвета). Количество хлоропластов в растительной клетке может варьироваться от 1 – 2-х (простейшие водоросли) до 15 – 20 штук (клетка листка высших растений). 

    Мелкие бесцветные пластиды лейкопласты встречаются в клетках тех органов растения, которые скрыты от действия солнечного света (корни или корневища, клубни, луковицы, семена). Форма их очень разнообразна (шаровидные, эллипсоидные, чашевидные, гантелевидные). Они осуществляют синтез питательных веществ (главным образом, крахмала, реже – жиров и белков) из моно- и дисахаридов. Под воздействием солнечных лучей лейкопласты имеют свойство превращаться в хлоропласты. 

    Хромопласты образуются в результате накопления каротиноидов и содержат значительное количество пигментов желтого, оранжевого, красного, бурого цвета. Они присутствуют в клетках плодов и лепестков, определяя их яркую окраску. Хромопласты бывают дисковидные, серповидные, зубчатые, шарообразные, ромбовидные, треугольные и пр. Участвовать в процессе фотосинтеза они не могут по причине отсутствия в них хлорофилла. 

    Органоиды

          Двумембранные органоиды митохондрии представлены небольшими (несколько микронов в длину) образованиями чаще цилиндрической, но также гранулоподобной, нитевидной или округлой формы. Впервые обнаружены с помощью специального окрашивания и описаны немецким биологом Р. Альтманом как биопласты (1890 г.). Название митохондрий им дал немецкий патолог К. Бенда (1897 г.). Наружная мембрана митохондрии состоит из липидов и вдвое меньшего количества белковых соединений, она имеет гладкую поверхность. В составе внутренней мембраны преобладают белковые комплексы, а количество липидов не превышает третьей части от них. Внутренняя мембрана имеет складчатую поверхность, она образует гребневидные складки (кристы), за счет которых поверхность ее значительно увеличивается. Пространство внутри митохондрии заполнено более плотным, чем цитоплазма вязким веществом белкового происхождения - матриксом. Митохондрии очень чувствительны к условиям окружающей среды, и под ее влиянием могут разрушаться или менять форму. 

    Митохондрия

    Они выполняют очень сложную физиологическую роль в процессах обмена веществ клетки. Именно в митохондриях происходит ферментативное расщепление органических соединений (жирных кислот, углеводов, аминокислот), и, опять-таки под воздействием ферментов синтезируются молекулы аденозинтрифосфорной кислоты (АТФ), являющейся универсальным источником энергии для всех живых организмов. Митохондрии синтезируют энергию и являются, в сущности, «энергетической станцией» клетки. Количество этих органоидов в одной клетке непостоянно и колеблется в пределах от нескольких десятков до нескольких тысяч. Чем активнее жизнедеятельность клетки, тем большее количество митохондрий она содержит. В процессе деления клетки митохондрии также способны делиться путем образования перетяжки. Кроме того, они могут сливаться между собой, образуя одну митохондрию. 

    Гольджи

    Аппарат Гольджи назван так по имени его первооткрывателя, итальянского ученого К. Гольджи (1897 г.). Органоид расположен вблизи ядра и представляет собой мембранную структуру, имеющую вид многоярусных плоских дисковидных полостей, расположенных одна над другой, от которых ответвляются многочисленные трубчатые образования, завершающиеся пузырьками. Основная функция аппарата Гольджи – это удаление из клетки продуктов ее жизнедеятельности. Аппарат имеет свойство накапливать внутри полостей секреторные вещества, включающие пектины, ксилозу, глюкозу, рибозу, галактозу. Система мелких пузырьков (везикул), расположенная на периферии этого органоида, выполняет внутриклеточную транспортную роль, перемещая синтезируемые внутри полостей полисахариды к периферии. Достигнув клеточной стенки или вакуоли, везикулы, разрушаясь, отдают им свое внутреннее содержимое. В аппарате Гольджи происходит также образование первичных лизосом. 

    Лизосомы

    Лизосомы были открыты бельгийским биохимиком Кристианом де Дювом (1955 г.). Они представляют собой небольшие тельца, ограниченные одной защитной мембраной и являются одной из форм везикул. Содержат более 40 различных гидролитических ферментов (гликозидаз, протеиназ, фосфатаз, нуклеаз, липаз и пр.), расщепляющих белки, жиры, нуклеиновые кислоты, углеводы, в связи с чем участвуют в процессах разрушения отдельных органоидов или участков цитоплазмы. Лизосомы выполняют важную роль в защитных реакциях и внутриклеточном питании. 

    Рибосомы – это очень мелкие немембранные органоиды близкой к шаровидной или эллипсоидной формы. Формируются в ядре клетки. Из-за маленьких размеров они воспринимаются как «зернистость» цитоплазмы. Некоторая часть их находится в свободном состоянии во внутренней среде клетки (цитоплазме, ядре, митохондриях, пластидах), остальные же прикреплены к наружным поверхностям мембран эндоплазматической сети. Количество рибосом в растительной клетке относительно невелико и составляет в среднем около 30000 шт. Рибосомы располагаются поодиночке, но иногда могут образовывать и группы – полирибосомы (полисомы). Этот органоид состоит из двух различных по величине частей, которые могут существовать порознь, но в момент функционирования органоида объединяются в одну структуру. Основная функция рибосом – синтез молекул белка из аминокислот. 

    Рибосома

    Цитоплазму растительной клетки пронизывает огромное множество ультрамикроскопических жгутов, разветвленных трубочек, пузырьков, каналов и полостей, ограниченных трехслойными мембранами и образующих систему, известную как эндоплазматическая сеть (ЭПС). Открытие этой системы принадлежит английскому ученому К. Портеру (1945 г.). ЭПС находится в контакте со всеми органоидами клетки и составляет вместе с ними единую внутриклеточную систему, осуществляющую обмен веществ и энергии, а также обеспечивающую внутриклеточный транспорт. Мембраны ЭПС с одной стороны связаны с наружной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны. 

    Эндоплазматическая сеть

    По своему строению ЭПС неоднородна, различают два её типа: гранулярную, на мембранах которой расположены рибосомы и агранулярную (гладкую) – без рибосом. В рибосомах гранулярной сети происходит синтез белка, который затем поступает внутрь каналов ЭПС, а на мембранах агранулярной сети синтезируются углеводы и липиды, также поступающие затем в каналы ЭПС. Таким образом, в каналах и полостях ЭПС происходит накопление продуктов биосинтеза, которые затем транспортируются к органоидам клетки. Кроме того, эндоплазматическая сеть разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым отдельную среду для различных реакций.

    Ядро представляет собой самый крупный клеточный органоид, ограниченный от цитоплазмы чрезвычайно тонкой и эластичной двумембранной ядерной оболочкой и является наиважнейшей частью живой клетки. Открытие ядра растительной клетки принадлежит шотландскому ботанику Р. Брауну (1831 г.). В молодых клетках ядро размещено ближе к центру, в старых - смещается к периферии, что связано с образованием одной большой вакуоли, занимающей значительную часть протопласта. Как правило, в растительных клетках имеется лишь одно ядро, хотя случаются двухъядерные и многоядерные клетки. Химический состав ядра представлен белками и нуклеиновыми кислотами. 

    Клетка растения

    Ядро содержит значительное количество ДНК (дезоксирибонуклеиновой кислоты), выполняющей роль носителя наследственных свойств. Именно в ядре (в хромосомах) хранится и воспроизводится вся наследственная информация, которая определяет индивидуальность, особенности, функции, признаки клетки и всего организма вцелом. Кроме того, одним из наиболее важных предназначений ядра является управление обменом веществ и большинством процессов, происходящих в клетке. Информация, поступающая из ядра, определяет физиологическое и биохимическое развитие растительной клетки.   

    Внутри ядра находятся от одного до трех немембранных мелких телец округлой формы - ядрышек, погруженных в бесцветную, однородную, гелеобразную массу - ядерный сок (кариоплазму). Ядрышки состоят, главным образом, из белка; 5% их содержания составляет РНК (рибонуклеиновая кислота). Основная функция ядрышек - синтез РНК и формирование рибосом.

    agrostory.com

    Биология для студентов - 02. Структура типичной растительной клетки. Функции и строение органоидов

    Клетка представляет собой основную структурную и функциональную единицу всех живых существ и обладает всеми признаками живого: ростом, обменом веществ и энергией с окружающей средой, делением, раздражимо­стью, наследственностью и др. По степени сложности внутренней организации клетки можно разде­лить на 2 типа: прокариотические и эукариотические. У прокариотов, в от­личие от эукариотов, нет оформленного ядра, хромосом, пластид, митохонд­рий, эндоплазматического ретикулума, аппарата Гольджи, отсутствуют ми­тоз и типичный половой процесс. К эукариотическим организмам, наряду с животными и грибами, отно­сятся и растения. Они обладают сходным строением клеток, что связано с единым происхождением. В типичном случае растительная клетка состоит из:

    • протопласта (жи­вого содержимого),
    • окружающей его оболочки - клеточной стенки.

    Общий протопласт можно подразделить на цитоплазму и ядро.

    Цитоплазма состоит из гиалоплазмы и органелл. Гиалоплазма представляет собой непре­рывную водную коллоидную фазу клетки и обладает определенной вязко­стью. Она способна к активному движению за счет трансформации химиче­ской энергии в механическую. Гиалоплазма связывает все находящиеся в ней органеллы, обеспечивая их постоянное взаимодействие. Через нее идет транспорт аминокислот, жирных кислот, нуклеотидов, сахаров, неорганиче­ских ионов, перенос АТФ. Органеллы - это структурно-функциональные единицы цитоплазмы. В клетке выделяют три типа органелл: немембранные, одномембранные и дву­мембранные.

    Пластиды встречаются только в растительных клетках. Выделяют три типа пластид (хлоро-, лейко- и хромопласты), которые отличаются друг от друга составом пигментов (цветом), строением и выполняемыми функциями.

    Хлоропласты содержат зеленый пигмент хлорофилл, который находится в хлоропластах в нескольких фор­мах, имеют линзовидную форму и сложное строение. Снаружи они ограничены оболочкой, состоящей из двух мембран. Основная функция хлоропластов - фотосинтез. Кроме того, в них, как и в митохондри­ях, происходит процесс образования АТФ из АДФ, который называется фо­тофосфорилированием.

     Лейкопласты - бесцветные мелкие пластиды, встречающиеся в запа­сающих органах растений (клубнях, корневищах, семенах и т. д.). Для лей­копластов характерно слабое развитие внутренней системы мембран, пред­ставленной одиночными тилакоидами, иногда трубочками и пузырьками. Основная функция лейкопластов - синтез и накопление запасных питательных веществ, в пер­вую очередь крахмала, иногда белков.

    Пластиды, окрашенные в желтый, оранжевый, красный цвета, носят название хромопластов. Их можно встретить в лепестках (лютик, одуван­чик, тюльпан), корнеплодах (морковь), зрелых плодах (томат, роза, рябина, хурма) и осенних листьях. Яркий цвет хромопластов обусловлен наличием каротиноидов, растворенных в пластоглобулах. Внутренняя система мем­бран в данном типе пластид, как правило, отсутствует. Хромопласты имеют косвенное биологическое значение: яркая окраска лепестков и плодов при­влекает опылителей и распространителей плодов.

    Вакуоли содержатся почти во всех растительных клетках. Они пред­ставляют собой полости, заполненные клеточным соком и ограниченные от цитоплазмы мембраной - тонопластом. Для большинства зрелых клеток растений характерна центральная вакуоль. Она, как правило, настолько крупна (70-90 % объема клетки), что протопласт со всеми органеллами рас­полагается в виде очень тонкого постенного слоя. Клеточный сок, содержа­щийся в вакуоли, представляет собой водный раствор различных веществ, являющихся продуктами жизнедеятельности протопласта. Вакуоли в растительных клетках выполняют две основные функции: накопление запасных веществ, отходов и поддержание тургора.

    Клеточная оболочка - структурное образование на периферии клетки, придающее ей прочность, сохраняющее ее форму и защищающее прото­пласт. Оболочка, как правило, бесцветна и прозрачна, легко пропускает сол­нечный свет. По ней могут передвигаться вода и растворенные низкомолеку­лярные вещества. Оболочки соседних клеток соединены пектиновыми веще­ствами, образующими срединную пластинку.

    Скелетным веществом оболочки клеток высших растений является целлюлоза. Молекулы целлюлозы, представляющие собой очень длинные це­пи, собраны по нескольку десятков в группы - микрофибриллы. В них моле­кулы располагаются параллельно друг другу и «сшиты» многочисленными водородными связями. Они обладают эластичностью, высокой прочностью и создают структурный каркас оболочки, а также погружены в ее аморфный матрикс, состоящий в основном из гемицеллюлоз и пектиновых веществ.

    В образовании структурных элементов клеточной оболочки принима­ют участие:

    • плазмалемма,
    • аппарат Гольджи,
    • микротрубочки.

    На плазмалемме происходит синтез микрофибрилл целлюлозы, а микротрубочки способ­ствуют их ориентации. Аппарат Гольджи выполняет функцию образования веществ матрикса оболочки, в частности гемицеллюлоз и пектиновых ве­ществ.

    Различают первичную и вторичную клеточные оболочки. Меристематические и молодые растущие клетки, реже клетки постоянных тканей, име­ют первичную оболочку, тонкую, богатую пектином и гемицеллюлозой. Вторичная клеточная оболочка образуется по достижении клеткой оконча­тельного размера и накладывается слоями на первичную со стороны прото­пласта. Она обычно трехслойная, с большим содержанием целлюлозы.

    Включения - это локальная концентрация некоторых продуктов обме­на в определенных местах клетки.

    Крахмальные зерна образуются только в строме пластид живых кле­ток. В хлоропластах на свету откладываются зерна ассимиляционного (пер­вичного) крахмала. Значительно большего объема достигают зерна запасного (вторичного) крахмала, откладывающиеся в лейкопластах (амилопластах). Различают простые, полусложные и сложные зерна.

    Липидные капли накапливаются в гиалоплазме. Наиболее богаты ими семена и плоды, где они могут быть преобладающим по объему компонен­том протопласта.

    Запасные белки чаще всего откладываются в вакуолях в виде зерен ок­руглой или овальной формы, называемых алейроновыми. Бывают простыми и сложными (кристаллиты, глобоиды).

    Кристаллы оксалата кальция - конечные продукты обмена; откла­дываются обычно в вакуолях.

    Ядро представляет собой обязательный органоид живой клетки. Оно всегда располагается в цитоплазме. В молодой клетке ядро обычно занимает центральное положение. Иногда оно остается в центре клетки, и окружено цитоплазмой (т. н. ядерный кармашек), которая связана с постенным слоем тонкими тяжами. Ядро отделено от цитоплазмы двумембранной ядерной оболочкой, пронизанной многочисленными порами. Содержимое интерфазного (неде­лящегося) ядра составляют нуклеоплазма и погруженные в нее оформленные элементы - ядрышки и хроматин.

    Ядрышки - сферические, довольно плотные тельца, состоящие из ри- босомальной РНК, белков и небольшого количества ДНК. Их основная функция - синтез р-РНК и образование рибонуклеопротеидов (рРНК+белок), т. е. предшественников рибосом. Хроматин содержит почти всю ДНК ядра. В интерфазном ядре он имеет вид длинных тонких нитей, представляющих собой двойную спираль ДНК, закрученную в виде рыхлых спиралей более высокого порядка (супер­спиралей). ДНК связана с белками-гистонами, располагающимися подобно бусинкам на ее нити. Хроматин, будучи местом синтеза различных РНК (транскрипции), представляет собой особое состояние хромосом, выявляю­щихся при делении ядра. Можно сказать, что хроматин - это функциони­рующая, активная форма хромосом. Хромосомы присутствуют в ядре всегда, но в интерфаз­ной клетке не видны, потому что находятся в деконденсированном (разрых­ленном) состоянии.

    vseobiology.ru

    3. Структура и функции основных органоидов растительной клетки

    Структурные элементы клетки можно разделить на три большие функциональные группы:

    1) органеллы, которые катализируют превращение энергии, – митсхондрии и хлоропласта;2) органеллы, которые катализируют репликацию белков, – рибосомы, полирибосомы;3) клеточные гранулы и другие образования, которые принимают участие в синтетических реакциях, обмене веществ (сферосомы, цитосомы, элайопласты, транслосомы, осмиофильные гранулы, аппарат Гольджи и т.д.). Ядро – главный управляющий органоид клетки. Оно покрыто тонкой двухслойной мембраной с порами для соединения ядра с цитоплазмой. В ядре хорошо видна еще меньшая по размеру структура – ядрышко, в котором накапливается и, по-видимому, синтезируется РНК, которая затем переносится в цитоплазму, где она становится основной структурной единицей рибосом. Химическими компонентами ядра являются в основном белки и нуклеиновые кислоты.

    Ядрышко состоит из больших гранул, которые по размеру близки к рибосомам (диаметр 15 нм) и содержат большое количество РНК. Основное вещество ядра называется нуклеоплазмой. Ядро содержит хромосомы, которые являются носителями наследственности. Хромосомы имеют хроматиновые структуры, основным компонентом которых является ДНК, а также РНК.

    Цитоплазма – пронизана системой мембран, которые отходят от ядерной оболочки и соединяются с внешней мембраной клетки. Мембраны эндоплазматической сети пронизывают и объединяют в единое целое клетку, а также служат своеобразными путями перемещения ассимиляторов и передачи раздражения от клетки к клетке, которая осуществляется последовательной перезарядкой поверхности мембран..

    Митохондрии (от греч. митос – нить, хондрион – гранулы) – органеллы шарообразной формы, диаметром 0,5 мкм и длиной 2 мкм. Это нестойкие структуры, в липофильных жидкостях они разрушаются, а в воде набухают; имеют двойную оболочку, состоящую из внутренней и внешней мембран. Между мембранами есть просвет (10 нм), заполненный сывороткой. Внутренняя мембрана митохондрий образует кристы, или трубочки. Митохондрии состоят из белка и липидов, среди которых половина приходится на фосфолипиды.. Митохондрии, дыхательные центры клетки обладают следующими функциями:

    1) осуществляют окислительные реакции, являющиеся источником электронов;

    2) переносят электроны по цепи компонентов, синтезирующих АТФ;

    3) катализируют синтетические реакции, идущие с использованием энергии АТФ;

    4) регулируют биохимические процессы в цитоплазме.

    Пластиды – имеют двойную мембранную оболочку, внутри которой находится гранулярное вещество, называемое стромой. Рибосомы – это рибонуклеопротеидные частицы сферической формы, диаметром 15–35 мм. Они состоят приблизительно из одинакового количества структурного белка и высокополимерной РНК. Комплексы из пяти и более рибосом называются полирибосомами или полисомами. Каждая рибосома состоит из двух субъединиц с различными коэффициентами седиментации, которые агрегируют в рибосому с помощью ионов магния. Слипаясь по две, они образуют димеры.

    Рибосомы очень пористые и отличаются высокой степенью гидратации, выполняя чрезвычайно важные функции в обмене веществ – это центры биосинтеза белка в клетке. Функции рибосом в белковом синтезе заключаются в том, что они осуществляют процесс, в котором активированные аминокислоты конденсируются, образуя полипептидную цепь.

    Лизосомы по структуре и химическому составу близки к сферосомам, но богаче ферментами – в них найдены ферменты нуклеазы, фосфатазы, протеазы и т.д. Вполне вероятно, что лизосомы переваривают макромолекулярные продукты, поглощенные путем пиноцитоза. Они принимают участие и в автолизе клетки.

    Цитосомы – мелкие гранулы, которые находятся в тесном контакте с мембранами эндоплазматической сети, чем и отличаются от свободнолежащих сферосом и лизосом.тельца Гольджи, могут состоять из отдельных пластинок, палочек и чешуек, разбросанных по всей цитоплазме клетки. Возможно, что аппарат Гольджи принимает участие в управлении общим ходом физиологических процессов, в образовании вакуолей и клеточных оболочек.

    Клеточная оболочка состоит из клетчатки, или целлюлозы (С6Н10О6)n, – полисахарида, который гидролизуется до глюкозы; клетчатка является главным веществом хлорофиллоносных растений и по абсолютному количеству занимает первое место среди всех органических веществ на земной поверхности.

    Микрофибриллы – эластичный строительный элемент клеточной оболочки (стенки). Диаметр микрофибриллы составляет 10–30 нм, длина несколько микрометров.

    Основная функция вакуоли – поддержание гомеостаза клетки. В клеточном соке вакуоли в растворенном состоянии содержатся соли, сахаристые вещества, белки, аминокислоты, органические кислоты, липоиды, а также пигменты, которые относятся главным образом к группе флавоноидов. Так, пигменты антоцианы придают лепесткам цветков и другим частям растения красную, фиолетовую, синюю окраску. В корнях столовой свеклы красный цвет обусловливается присутствием в клеточном соке бетанина – гликозида β-цианина (азотсодержащего аналога антоцианина).

    studfiles.net

    Мембранные органоиды растительной клетки

    Клетка. Строение растительной клетки

    Клетка - это живая биологическая система, которая лежит в основе строения, развития и функционирования всех живых организмов. Это биологически автономная система, которой присущи все процессы жизнедеятельности: рост, развитие, питание, дыхание, ОВ, размножение и т.д. Клеточное строение растений и животных было открыто в 1665 г. английским ученым Робертом Гуком. Форма и строение клеток очень разнообразны. Различают:

    1) паренхимные клетки - у них длина равна ширине;

    2) прозенхимные клетки - длина этих клеток превышает ширину.

    Молодые клетки растений покрыты цитоплазматической мембраной (ЦПМ). Она состоит из двойного слоя липидов и белковых молекул. Одни из белков лежат мозаично по обе стороны мембраны, образуя ферментные системы. Другие белки пронизывают липидные слои, образуя поры. ЦПМ придают структуры всем органоидам клетки и ядру; ограничивают цитоплазму от клеточной оболочки и вакуоли; обладают избирательной проницаемостью; обеспечивают обмен веществ и энергии с внешней средой.

    Гиалоплазма - бесцветная, оптически прозрачная коллоидная система, объединяющая все клеточные структуры, выполняющие разнообразные функции. Цитоплазма - это субстрат жизни для всех органоидов клетки. Это живое содержимое клетки. Ей свойственны признаки: движение, рост, питание, дыхание и др.

    В состав цитоплазмы входят: вода 75-85 %, белки 10-20%, жиры 2-3%, неорганические вещества 1%.

     

    Мембранные органоиды растительной клетки

    Мембраны внутри цитоплазмы образуют эндоплазматическую сеть (ЭПС) – систему мелких вакуолей и канальцев, соединенных друг с другом. Гранулярная ЭПС несет рибосомы, гладкая ЭПС лишена их. ЭПС обеспечивает транспорт веществ в клетке и между соседними клетками. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную, четвертичную структуры, синтезируются жиры, транспортируется АТФ.

    Митохондрии- чаще всего эллиптические или округлые органоиды до 1 мкм. Покрыты двойной мембраной. Внутренняя мембрана образует выросты - кристы. В матриксе митохондрий находятся окислительно - восстановительные ферменты, рибосомы, РНК, кольцевая ДНК. Это дыхательный и энергетический центр клетки. В матриксе митохондрии происходит расщепление органических веществ с высвобождением энергии, которая идет на синтез АТФ (на кристах).

    Комплекс Гольджи – это система плоских, дугообразноизогнутых, параллельных друг другу цистерн, ограниченных ЦПМ. От краев цистерн отчленяются пузырьки, транспортирующие образовавшиеся в комплексе Гольджи полисахариды. Они участвуют в построении клеточной стенки. В цистернах накапливаются продукты синтеза, распада веществ, они используются клеткой или выводятся наружу.

    Пластиды - в зависимости от наличия тех или иных пигментов различают три типа пластид: хлоропласты, хромопласты, лейкопласты.

    Хлоропласты - овальные, размером 4-10 мкм двухмембранные органоиды всех зеленых частей растения. Внутренняя мембрана образует выросты – тилакоиды, группы которых образуют (наподобие стопки монет) граны. Тилакоиды лежат в строме и объединяют граны между собой. На внутренней поверхности тилакоидов находится пигмент зеленого цвета – хлорофилл. В строме хлоропластов содержатся ферменты, рибосомы, собственная ДНК. Основная функция хлоропластов - фотосинтез ( образование углеводов из СО2 и Н2О, минеральных веществ с использованием энергии солнца), а также синтез АТФ, АДФ, синтез ассимиляционного крахмала, собственных белков. Помимо хлорофилла в хлоропластах есть вспомогательные пигменты – каротиноиды.

    Хромопласты – цветные пластиды - форма разнообразная; окрашены в красный, желтый, оранжевый цвет. Содержат пигменты - каротин (оранжевого цвета), ксантофилл (желтого цвета). Придают лепесткам цветков окраску, привлекающую насекомых – опылителей; окрашивают плоды, способствуя их распространению животными. Ими богаты плоды шиповника, смородины, томата, корнеплоды моркови, лепестки ноготков и т.д.

    Лейкопласты - мелкие пластиды округлой формы, бесцветны. Служат местом отложения запасных питательных веществ: крахмала, белков, образуя крахмальные и алейроновые зерна. Содержатся в плодах, корнях, корневищах. Пластиды способны взаимопревращаться: лейкопласты на свету превращаются в хлоропласты (позеленение клубней картофеля), хромопласты превращаются в хлоропласты (позеленение корнеплодов моркови на свету в процессе роста).

    Похожие статьи:

    www.poznayka.org

    Мембранные органоиды растительной клетки

    Клетка. Строение растительной клетки

    Клетка - это живая биологическая система, которая лежит в основе строения, развития и функционирования всех живых организмов. Это биологически автономная система, которой присущи все процессы жизнедеятельности: рост, развитие, питание, дыхание, ОВ, размножение и т.д. Клеточное строение растений и животных было открыто в 1665 г. английским ученым Робертом Гуком. Форма и строение клеток очень разнообразны. Различают:

    1) паренхимные клетки - у них длина равна ширине;

    2) прозенхимные клетки - длина этих клеток превышает ширину.

    Молодые клетки растений покрыты цитоплазматической мембраной (ЦПМ). Она состоит из двойного слоя липидов и белковых молекул. Одни из белков лежат мозаично по обе стороны мембраны, образуя ферментные системы. Другие белки пронизывают липидные слои, образуя поры. ЦПМ придают структуры всем органоидам клетки и ядру; ограничивают цитоплазму от клеточной оболочки и вакуоли; обладают избирательной проницаемостью; обеспечивают обмен веществ и энергии с внешней средой.

    Гиалоплазма - бесцветная, оптически прозрачная коллоидная система, объединяющая все клеточные структуры, выполняющие разнообразные функции. Цитоплазма - это субстрат жизни для всех органоидов клетки. Это живое содержимое клетки. Ей свойственны признаки: движение, рост, питание, дыхание и др.

    В состав цитоплазмы входят: вода 75-85 %, белки 10-20%, жиры 2-3%, неорганические вещества 1%.

     

    Мембранные органоиды растительной клетки

    Мембраны внутри цитоплазмы образуют эндоплазматическую сеть (ЭПС) – систему мелких вакуолей и канальцев, соединенных друг с другом. Гранулярная ЭПС несет рибосомы, гладкая ЭПС лишена их. ЭПС обеспечивает транспорт веществ в клетке и между соседними клетками. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную, четвертичную структуры, синтезируются жиры, транспортируется АТФ.

    Митохондрии- чаще всего эллиптические или округлые органоиды до 1 мкм. Покрыты двойной мембраной. Внутренняя мембрана образует выросты - кристы. В матриксе митохондрий находятся окислительно - восстановительные ферменты, рибосомы, РНК, кольцевая ДНК. Это дыхательный и энергетический центр клетки. В матриксе митохондрии происходит расщепление органических веществ с высвобождением энергии, которая идет на синтез АТФ (на кристах).

    Комплекс Гольджи – это система плоских, дугообразноизогнутых, параллельных друг другу цистерн, ограниченных ЦПМ. От краев цистерн отчленяются пузырьки, транспортирующие образовавшиеся в комплексе Гольджи полисахариды. Они участвуют в построении клеточной стенки. В цистернах накапливаются продукты синтеза, распада веществ, они используются клеткой или выводятся наружу.

    Пластиды - в зависимости от наличия тех или иных пигментов различают три типа пластид: хлоропласты, хромопласты, лейкопласты.

    Хлоропласты - овальные, размером 4-10 мкм двухмембранные органоиды всех зеленых частей растения. Внутренняя мембрана образует выросты – тилакоиды, группы которых образуют (наподобие стопки монет) граны. Тилакоиды лежат в строме и объединяют граны между собой. На внутренней поверхности тилакоидов находится пигмент зеленого цвета – хлорофилл. В строме хлоропластов содержатся ферменты, рибосомы, собственная ДНК. Основная функция хлоропластов - фотосинтез ( образование углеводов из СО2 и Н2О, минеральных веществ с использованием энергии солнца), а также синтез АТФ, АДФ, синтез ассимиляционного крахмала, собственных белков. Помимо хлорофилла в хлоропластах есть вспомогательные пигменты – каротиноиды.

    Хромопласты – цветные пластиды - форма разнообразная; окрашены в красный, желтый, оранжевый цвет. Содержат пигменты - каротин (оранжевого цвета), ксантофилл (желтого цвета). Придают лепесткам цветков окраску, привлекающую насекомых – опылителей; окрашивают плоды, способствуя их распространению животными. Ими богаты плоды шиповника, смородины, томата, корнеплоды моркови, лепестки ноготков и т.д.

    Лейкопласты - мелкие пластиды округлой формы, бесцветны. Служат местом отложения запасных питательных веществ: крахмала, белков, образуя крахмальные и алейроновые зерна. Содержатся в плодах, корнях, корневищах. Пластиды способны взаимопревращаться: лейкопласты на свету превращаются в хлоропласты (позеленение клубней картофеля), хромопласты превращаются в хлоропласты (позеленение корнеплодов моркови на свету в процессе роста).

    Похожие статьи:

    poznayka.org


    Смотрите также

    Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта