Напряжение клеточной стенки у растений. Функции, строение, химический состав и рост клеточной стенки.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Большая Энциклопедия Нефти и Газа. Напряжение клеточной стенки у растений


Функции, строение, химический состав и рост клеточной стенки.

Клеточная оболочка — типичный компонент растительной клетки, является продуктом жизнедеятельности протопласта.

Функции:

1. Прочные и жесткие клеточные оболочки, служат механической опорой для органов растения.

2. Оболочка ограничивает растяжение протопласта вакуолью, а размер и форма зрелой клетки перестают изменяться.

3. В наружных тканях клеточные оболочки, защищают лежащие глубже клетки от высыхания.

4. По клеточным стенкам, примыкающим к друг другу, могут передвигаться различные вещества и вода от клетки к клетке (путь через апопласт).

5. Они оказывают влияние на поглощение, транспирацию и секрецию.

Клеточные стенки, как правило, бесцветны и легко пропускают солнечный свет. Стенки соседних клеток скреплены пектиновой срединной пластинкой. Срединная пластинка — единый слой, общий для двух соседних клеток. Она представляет собой несколько видоизмененную клеточную пластинку, возникшую в процессе цитокинеза. Срединная пластинка менее обводнена, в ней могут присутствовать молекулы лигнина. Углы клеточных стенок в результате внутриклеточного давления могут округляться, и между соседними клетками образуются межклетники. Все стенки клеток растения, связанные одна с другой и примыкающие к заполненным водой межклетникам, обеспечивают существование сплошной обводненной среды, в которой свободно передвигаются водорастворимые вещества.

Строение и химический состав.

Первичная клеточная стенка.

Первоначально кнаружи от плазмалеммы возникает первичная клеточная стенка.

Состав: целлюлоза, гемицеллюлоза, пектин и вода.

Первичные клеточные стенки соседних клеток соединены протопектиновой срединной пластинкой. В клеточной стенке линейные очень длинные (несколько микрон) молекулы целлюлозы, состоящие из глюкозы, собраны в пучки - мицеллы, которые, в свою очередь, объединяются в микрофибриллы – тончайшие (1,5…4 нм) волоконца неопределенной длины, а затем в макрофибриллы. Целлюлоза образует многомерный каркас, который погружен в аморфный сильно обводненный матрикс из нецеллюлозных углеводов: пектинов, гемицеллюлоз и др. Именно целлюлоза обеспечивает прочность клеточной стенки. Микрофибриллы эластичны и по прочности на разрыв сходны со сталью. Полисахариды матрикса определяют такие свойства стенки, как высокая проницаемость для воды, растворенных мелких молекул и ионов, сильная набухаемость. Благодаря матриксу по стенкам, примыкающим к друг другу, могут передвигаться вода и вещества от клетки к клетке (путь через апопласт по «свободному пространству»). Некоторые гемицеллюлозы могут откладываться в стенках клеток семян в качестве запасных веществ.

Рост стенки.

При делении клеток создается заново лишь клеточная пластинка. На нее обе дочерние клетки откладывают собственные стенки, состоящие главным образом из гемицеллюлозы. При этом образование стенки происходит и на внутренней поверхности остальных стенок, принадлежащих материнской клетке. Клеточная пластинка преобразуется в срединную, она обычно тонка и почти неразличима. После деления клетка вступает в фазу растяжения за счет поглощения клеткой воды и роста центральной вакуоли. Тургорное давление растягивает стенку, в которую внедряются мицеллы целлюлозы и вещества матрикса. Такой способ роста носит название интуссусцепции, внедрения. Оболочки делящихся и растущих клеток называют первичными. Они содержат воды до 90 %, в сухом веществе преобладают полисахариды матрикса: у двудольных пектины и гемицеллюлозы в равном соотношении, у однодольных – в основном гемицеллюлозы; содержание целлюлозы не превышает 30 %. Толщина первичной стенки не более 0,1…0,5 мкм.

К моменту, когда рост клетки заканчивается, рост клеточной стенки может продолжаться, но уже в толщину. Этот процесс носит название вторичного утолщения. При этом на внутренней поверхности первичной клеточной стенки откладывается вторичная клеточная стенка. Рост вторичной клеточной стенки происходит в результате аппозиции, наложения новых мицелл целлюлозы на внутреннюю поверхность клеточной стенки. Таким образом, наиболее молодые слои клеточной стенки ближе всего к плазмаллеме.

Для некоторых типов клеток (многие волокна, трахеиды, членики сосудов) образование вторичной стенки – основная функция протопласта, после завершения вторичного утолщения он отмирает. Однако это не обязательно. Вторичная стенка выполняет главным образом механические, опорные функции. В ее составе значительно меньше воды и преобладают микрофибриллы целлюлозы (40…50 % сухого вещества). Во вторичных стенках волокон льна и волосков хлопчатника содержание целлюлозы может достигать 95 %.

Механизм построения клеточной стенки. Клеточная стенка образуется в результате деятельности протопласта. В соответствии с этим вещества поступают в стенку изнутри, со стороны протопласта. Строительные материалы – молекулы целлюлозы пектина, лигнина и других веществ — накапливаются и частично синтезируются в цистернах аппарата Гольджи. Упакованные в пузырьки аппарата Гольджи, они транспортируются к плазмалемме. Разорвав ее, пузырек лопается, и содержимое его оказывается снаружи плазмалеммы. Мембрана пузырька восстанавливает целостность плазмалеммы. Благодаря ферментной активности плазмалеммы идет сборка фибрилл целлюлозы строение клеточной стенки. Образуемые плазмалеммой фибриллы накладываются изнутри, не переплетаясь. В их ориентации большая роль принадлежит микротрубочкам, располагающимся под плазмалеммой параллельно формирующимся фибриллам.

2. Поры. Видоизменения клеточной стенки.

Поры. При образовании первичной клеточной стенки в ней выделяются более тонкие участки, где фибриллы целлюлозы лежат более рыхло. Канальцы эндоплазматической цепи проходят здесь через клеточные стенки, соединяя соседние клетки. Эти участки называются первичными поровыми полями, а канальцы эндоплазматической сети, проходящие в них, — плазмодесмами.

Рост в толщину происходит у клеточной стенки неравномерно, неутолщенными остаются небольшие участки первичной клеточной стенки в местах расположения первичных поровых полей (поровых каналов). Поровые каналы двух соседних клеток располагаются обычно друг против друга и разделяются замыкающей пленкой поры — двумя первичными клеточными стенками с межклеточным веществом между ними. В пленке сохраняются субмикроскопические отверстия, через которые проходят плазмодесмы. Таким образом, пора — это два поровых канала и замыкающая пленка между ними.

Плазмодесмы пронизывают замыкающие пленки пор. В каждой клетке имеется от нескольких сотен до десятков тысяч плазмодесм. Плазмодесмы встречаются только - в растительных клетках, там, где имеются твердые клеточные стенки. Плазмодесмы образуются из канальцев ЭР, которые остаются в клеточной пластинке между двумя дочерними клетками. При воссоздании ЭР обеих клеток они оказываются соединенными через плазмодесмы.

Плазмодесма проходит через плазмодесменный канал в замыкающей пленке поры. Плазмалемма, выстилающая канал, и гиалоплазма между ней и плазмодесмой непрерывны с плазмалеммами и гиалоплазмами смежных клеток. Таким образом, протопласты соседних клеток связаны между собой каналами плазмодесм и плазмодесмами. По ним происходит межклеточный транспорт ионов и молекул, а также гормонов. Объединенные плазмодесмами протопласты клеток в растении образуют единое целое — симпласт. Транспорт веществ через плазмодесмы получил название симпластического в отличие от апопластического транспорта по клеточным стенкам и межклетникам.

В процессе жизнедеятельности клетки целлюлозная клеточная стенка может претерпевать видоизменения.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Формирование - клеточная стенка - Большая Энциклопедия Нефти и Газа, статья, страница 1

Формирование - клеточная стенка

Cтраница 1

Формирование клеточной стенки у разных злаков занимает разное время: у риса - 9 дней после оплодотворения, у пшеницы - 20 дней, а у ячменя - 30 дней, причем клеточная стенка эндосперма у риса и кукурузы тоньше, чем у пшеницы и ячменя. Состав клеточных стенок в зерне одной культуры существенно варьирует. У ячменя клеточная стенка в алейроновом слое на 65 - 67 % состоит из пентозана и на 26 - 29 % - из глюкана, тогда как в эндосперме она состоит на 20 % из пентозана и на 70 % - из глюкана. У пшеницы, ячменя и риса клеточные стенки в алейроновом слое толще, чем в эндосперме, и состоят из двух разных слоев. Более тонкий внутренний слой в процессе прорастания практически не меняется, тогда как внешний слой, имеющий бороздчатое или пластинчатое строение, по мере развития зерна сильно сморщивается, в нем обнаруживаются щелочные экстракты и микрофибриллы целлюлозы. В клеточной стенке в алейроновом слое наблюдаются широкие межклеточные каналы, по которым, как полагают, осуществляется межклеточная коммуникация и которые могут способствовать перемещению ферментов.  [1]

В формировании клеточной стенки п о р о-с п о р, или п о р о к о н и д и и, принимают участие только внутренние слои клеточной стенки кони-диогенной клетки. Они образуются путем почкования через поры в стенках конидиеносцев. Пороспоры обычно толстостенные, развиваются по одной на вершине и по бокам конидиеносца.  [2]

Внутренняя организация клетки и ее цитоскелет играют важную роль в формировании клеточной стенки. Компоненты матрикса клеточной стенки вырабатываются и экспортируются аппаратом Гольджи, а целлюлозные микрофибриллы синтезируются на поверхности клетки.  [4]

Кальций прочно связывается в тканях органическими веществами, участвует в формировании клеточных стенок, осаждает щавелевую кислоту, препятствует накоплению крахмала в листьях.  [5]

К а л ь ц и и прочно связывается в тканях органическими веществами, участвует в формировании клеточных стенок, осаждает щавелевую кислоту, препятствует накоплению крахмала в листьях.  [6]

Функции аппарата Гольджи в клетке до конца не изучены. Есть предположение, что он участвует в синтезе материала для формирования клеточных стенок, в процессе спорообразования, почкования дрожжей, является местом образования лизосом.  [7]

В зерне содержатся гемицеллюлозы ( полуклетчатки), состоящие из гек-созанов ( маннана, галактана, глюкозана) и пентозанов ( ксилана, арабана), наряду с клетчаткой участвующие в формировании клеточных стенок.  [8]

Приведенные нами примеры дифференцированных растительных клеток показывают, что клеточная стенка-весьма сложная структура, форма и состав которой могут заметно изменяться в процессе роста и развития клетки. При этом возможно не только добавление нового материала, но и удаление в определенных местах материала, отложенного ранее ( как, например, при образовании пор в ситовидных трубках флоэмы или создании сложного рельефа на поверхности пыльцевых зерен), Все это означает, что в цитоплазме каждой дифференцирующейся клетки на стадии формирования клеточной стенки действуют какие-то тонкие механизмы пространственного и временного контроля.  [9]

Особенно интересны работы Шаркова и Цветковой244 по сравнительному исследованию отдельных микрослоев роста молодого годичного кольца сосны, ели, березы, осины методами химического и микроскопического анализов. Эти исследования показывают, что отмирание молодых трахеяд ( сосны, ели) начинается еще весной и прогрессирует к осени. Формирование клеточных стенок древесины происходит в зоне толщиной менее 1 мм. Остальная часть слоя молодой древесины состоит из клеток, закончивших свой рост. Таким образом, изучать изменение состава древесины в процессе ее роста следует на тонком слое живых клеток.  [10]

Основой представлений о твердом растворе является понимание того, что главным типом связи между компонентами древесного вещества является 0 - Н О водородная связь. Она образует бесконечную сетку, связывающую в единое целое целлюлозный каркас и лигноуглеводную матрицу клеточных стенок, а также посредством межклеточного вещества обеспечивает формирование структуры растительной ткани. По существу, единственным аргументом, дающим основание оспаривать концепцию твердого раствора явилась работа Эринша и др. [68], где показано, что лигнин и углеводы в твердом состоянии не совместимы. Авторы утверждают, что лигноуглевод & ая матрица микрогетерогенна. Однако при этом не учитывается, что она образована в основном не лигнином и гемицеллюлозами, а лигноугле-водным блокполимером - ЛУК, который именно потому и образуется, что при формировании клеточной стенки и межклеточного вещества должна быть обеспечена гомогенность лигноуглеводной матрицы. В противном случае она не могла бы выполнять функцию связующего в уникальном по физико-механическим свойствам композите, каковым является древесное вещество.  [11]

Расхождение гомологичных хромосом к противоположным полюсам соответствует окончанию мейоза I. Число хромосом уменьшилось вдвое, но они все еще состоят из двух хроматид каждая. Если произошел кроссинговер, то эти хроматиды генетически неидентичны и при втором мейотическом делении должны будут разойтись. Веретена и их нити обычно исчезают. У животных и у некоторых растений хроматиды обычно раскручиваются, на каждом полюсе вновь образуется ядерная оболочка и ядро вступает в интерфазу. Затем происходит дробление ( у животных) или формирование клеточной стенки ( у растений) как при митозе. У многих растений не наблюдается ни телофазы, ни образования клеточной стенки, ни интерфазы, и клетка из анафазы I прямо переходит в профазу второго мейотического деления.  [12]

Страницы:      1

www.ngpedia.ru

Растительные клетки утолщение стенки - Справочник химика 21

    А что произойдет, если деполимеризовать все микротрубочки кортикальной системьл, обработав растительную ткань колхицином (разд. 10.3.1) Влияние такой обработки на последующее отложение целлюлозы не столь однозначно, как можно было бы ожидать. Колхицин не подавляет образование новых целлюлозных мшсрофибрилл, и в некоторых случаях клетки могут продолжать откладывать микрофибриллы, ориентированные в прежнем направлении. Однако любые изменения в расположении микрофибрилл, связанные с индивидуальным развитием клетки, полностью блокируются. Например клетка ксилем1л, у которой в норме на определенной стадии развития должны возникать регулярно расположенные утолщения клеточной стенки, в присутствии колхицина образует лишь неупорядоченные отложения внеклеточного материала. Таким образом, ранее существовавшая ориентация микрофибрилл может сохраняться и без микротрубочек, но любая стадия клеточного развития, связанная с отложением микрофибрилл, ориентированных по-иному, требует наличия интактных микротрубочек, определяющих эту новую ориентацию (риа 19-45). [c.193]     Вторичная клеточная стенка обычно откладывается между плазматической мембраной и первичной клеточной стенкой, иногда слои откладываются последовательно один за другим (рис. 20-17). Однако в определенных слу чаях особые макромолекулы откладываются либо внутри первичной стенки (как, например, лигнин в клетках ксилемы), либо на наружной ее поверхности. Например, эпидермальные клетки, покрывающие наружную поверхность растения, обычно имеют утолщенную первичную клеточную стенку, внешняя часть которой покрыта толстой водонепроницаемой кутикулой, защищающей растения от инфекции, механического повреждения, потери воды и вредоносного ультрафиолетового излучения (см. схему 20-1). Кутикула секретируется по мере дифференцировки эпидермальных клеток Она состоит преимущественно из кутина (в коре из родственного ему вещества суберина), представлявшего собой полимер из жирных кислот с длинной цепью, который образует на поверхности растения обширную сеть с многочисленными поперечными сшивками. Слой кутина часто пропитывается смесью восков, которые, кроме того, и наслаиваются на него воски являются эфирами спиртов с длинной цепью и жирных кислот (рис. 20-18). Кутикула растительной клетки по состав)" сильно отличается от кутикулы насекомых и ракообразных, построенной из белков и полисахаридов. [c.395]

    Растительные клетки, подобно клеткам прокариот и грибов, заключены в сравнительно жесткую клеточную стенку, материал для построения которой секретирует сама находящаяся в ней живая клетка (протопласт). По своему химическому составу клеточные стенки растений отличаются от клеточных стенок прокариот и грибов (табл. 2.2). Клеточная стенка, отлагающаяся во время деления клеток растения, назьшается первичной клеточной стенкой. Позже в результате утолщения она может превратиться во вторичную клеточную стенку. На рис. 5.30 воспроизведена электронная микрофотофафия, на которой можно видеть одну из ранних стадий этого процесса. [c.204]

    Если в зрелом хлопковом волокне до очистки содержится 93—95% целлюлозы, то ее содержание в древесине не превышает 45—50%. Наличие большого количества других компонентов, в первую очередь лигнина (20—30% от веса древесины), значительно усложняет выделение целлюлозы из древесины. Морфологическая структура древесины сложнее, чем структура хлопкового волокна. Древесина представляет собой сочетание растительных клеток разнообразной формы, которая зависит от функций, выполняемых клетками в живом дереве. Снаружи ствол дерева покрыт мертвой пробковой тканью — корой. Под корой находится важнейшая часть ствола, обеспечивающая его рост, — состоящая из живых клеток ткань (камбий и прикам-бнальные слои клеток), в которых образуются новые клетки древесины. Часть этих клеток откладывается по направлению к центру ствола. В противоположном направлении откладываются клетки, из которых образуется луб, соприкасающийся с опробковевшимн клетками коры. Древесина имеет концентрические кольца роста — годичные кольца. Она состоит из волокон— удлиненных клеток (так называемых прозенхимных), имеющих утолщенную клеточную стенку. В древесине хвойных пород эти клетки называются трахеидами. В растущей древесине имеются и живые клетки, содержащие протоплазму и не похожие по форме на волокно (паренхимные клетки). Часть паренхимных клеток образует радиально расположенные сердцевинные лучи ствола. В стволе имеются также группы клеток, заполненных смолой, так называемые смоляные ходы. Следовательно, в стволах хвойных деревьев можно различать следующие виды клеток  [c.131]

    Тонус — латинский термин, означающий напряжение. В физиологии под тонусом подразумевается напряжение мышц, сосудов, тканей или клеток (одно из самых распространенных явлений, сопутствующих современной цивилизации,— пониженное кровяное давление, гипотония, от греческого гипо — ниже). Это понятие совершенно правомерно и по отношению к растительной клетке. Ведь у многих растений в отличие от животных нет опорной системы, будь то внешний скелет, такой, как хитиновый панцирь насекомых, или же внутренний, костный скелет, подобный таковому позвоночных животных и человека. Известной заменой служит, конечно, укрепление внешней оболочки растительных клеток — клеточной мембраны, как это имеет место у древесных растений. Такое укрепление достигается за счет утолщения клеточных стенок и отложения лигнина или пробки (еще один пример — сверхпрочная скорлупа ореха, состоящая из мертвых клеток). Однако этот способ имеет и свои недостатки толстые стенки затрудняют обмен веществ между клетками, и, кроме того, они поглощают свет. Но, скажем, для листьев, которые только на свету образуют из двуокиси углерода и воды сахар и крахмал, это ни в коем случае не подходит. [c.241]

chem21.info


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта