Микроклональное размножение растений. Технология микроклонального размножения

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Технология микроклонального размножения. Микроклональное размножение растений


Технология микроклонального размножения

Клональным микроразмножением называют неполовое размножение растений с помощью метода культуры тканей, позволяющее получать растения идентичные исходному. В основе получения таких растений лежит способность соматических клеток растений полностью реализовывать свой потенциал развития, т.е. свойство тотипотентности. Метод клонального микроразмножения получает все более широкое распространение во всем мире. В большинстве стран эта технология приобрела коммерческий характер.

В России первые работы по клональному микроразмножению были проведены в 60-х годах XX в. в лабораториях Института физиологии растений им. К. А. Тимирязева. В настоявшее время созданы и развиваются лаборатории клонального микроразмножения, связанные с нуждами селекции, размножением декоративных, лекарственных и других растений. Кроме того, технология используется для размножения лучших экземпляров взрослых лесных деревьев, особенно хвойных, для сохранения редких и исчезающих видов растений.

Свое название эта технология размножения получила от термина «клон» (от греч. clon — отпрыск), который предложил Веббер в 1903 г. Клональное микроразмножение имеет существенные преимущества перед традиционными способами размножения:

1. Высокий коэффициент размножения. Одно растение герберы за год при микроклональном размножении дает до 1 млн новых растений, тогда как при обычных способах размножения — только 50—100 растений. Большинство культивируемых в настоящее время сортов лилий размножается только вегетативно. Луковички (возникают на материнских луковицах или на побеге в небольших количествах. Технология микроклонального размножения позволяет получить из одной чешуи луковицы за 6 месяцев до 105 новых растений (сорт Red Caгрet).

2. Получение генетически однородного посадочного материала.

3. Возможность оздоровления растений, освобождения их от вирусов благодаря клонированию меристематических тканей.

4. Возможность размножения растений, которые в естественных условиях репродуцируются с большим трудом.

5. Воспроизведение посадочного материала круглый год, что значительно экономит площади, занимаемые маточными и размножаемыми растениями. 

6. Сокращение продолжительности селекционного периода, ускорение перехода растений от ювенильной фазы развития к репродуктивной.

Технология микроклонального размножения.

Обязательное условие клонального микроразмножения — использование объектов, полностью сохраняющих генетическую стабильность на всех этапах процесса, от экспланта до растений в поле. Такому требованию удовлетворяют апексы и пазушные почки органов стеблевого происхождения, т. е. меристематические ткани. Их устойчивость к генетическим изменениям, вероятно, связана с высокой активностью систем репарации ДНК, а также с негативной селекцией измененных клеток.

Процесс клонального микроразмножения можно подразделить на 3 этапа:

1. Получение хорошо растущей стерильной культуры. На этом этапе необходимо правильно выбрать растение-донор, получить свободную от инфекции культуру, добиться ее выживания и быстрого роста на питательной среде.

2. Собственно размножение, осуществляемое несколькими способами:

·    активизация пазушных меристем;

·    индукция образования адвентивных почек тканями листа, стебля, чешуйками и донцем луковиц, корневищем и зачатками соцветий без первоначального образования каллусной ткани;

·    микрочеренкование побега, сохраняющего апикальное доминирование;

·    стимуляция образования микроклубней и микролуковичек;

·    индукция соматического эмбриогенеза.

3. Подготовка к высадке в поле или к реализации. Это очень важный этап, во время которого в теплице укорененные растения, полученные in vitro, адаптируют к новым условиям внешней среды: проводят закаливание растений, повышают их устойчивость к патогенным микроорганизмам и различным неблагоприятным факторам внешней среды. Существует много различных способов адаптирования растений к пересадке in vivo. Это подбор почвенного субстрата, создание определенной влажности, обработка химическими веществами (глицерин, парафин) для предотвращения обезвоживания листьев. Некоторые древесные растения лучше приживаются, если их заразить in vitro микоризообразующими грибами. Упрощенный способ адаптации пробирочных растений винограда был разработан в Институте физиологии растений им. К. А. Тимирязева РАН. Адаптацию проводят прямо в пробирках, снимая с них пробки, когда растения винограда дорастают до верха пробирки. Через 1,5—2 недели, когда верхушки побега с двумя развитыми листьями появляются над пробиркой, растение готово к пересадке в почву. Для предотвращения механических повреждений корневой системы растение пересаживают в почву вместе с агаром, заглубляя его так, что над поверхностью почвы остаются только 2 развитых листа, которые выросли из пробирки и уже адаптировались к внешним условиям. Такая методика позволяет значительно упростить, ускорить и удешевить этап акклиматизации растений.

Клональное микроразмножение растений проводят разными способами. Первый и основной способ — активизация пазушных меристем. Он состоит в снятии апикального доминирования и активизации развития меристем, существующих в растении. Этот способ основной и в обычном вегетативном размножении. И на интактном растении, и в случае клонирования снятие апикального доминирования достигается или удалением апикальной меристемы побега, или благодаря действию цитокинина. При клонировании цитокинины (6-бензиламинопурин, 6-фурфуриламинопурин, зеатин) добавляют в питательную среду, что приводит к развитию многочисленных пазушных побегов. Эти побеги отделяют от первичного экспланта и культивируют на свежей питательной среде. Активизацию пазушных меристем широко используют в промышленном размножении овощных сельскохозяйственных культур (картофель, томаты, огурцы, сахарная свекла, топинамбур и др.), цветов (гвоздика, роза, гербера), плодовых и ягодных культур (яблоня, вишня, малина, крыжовник и др.), древесных растений (туя, можжевельник и др.). Однако бесконечно размножать таким способом растения нельзя, поскольку длительное воздействие цитокининов, входящих в состав питательных сред, вызывает аномалии в морфологии стебля, потерю способности побегов к укоренению, иногда — гибель растений. В опытах с размножением земляники было показано, что при микроклональном размножении необходимо чередовать 2—3 цикла получения побегов с их укоренением.

Второй способ — индукция развития адвентивных почек, т. е. почек, возникающих из растительных клеток и тканей, которые их обычно не образуют. Этот метод в значительной мере обусловлен тотипотентностью клеток. Почти любой орган или ткань растения, свободные от инфекции, могут быть использованы в качестве экспланта и в определенных условиях образуют адвентивные почки. Данный процесс вызывают внесением в питательную среду определенных концентраций цитокининов и ауксинов, причем цитокинина должно быть гораздо больше, чем ауксина. Это наиболее распространенный способ микроразмножения высших растений. Развивая адвентивные почки на апикальных и пазушных меристемах, размножают растения томата, лука, чеснока; на сегментах листовых пластинок — салат, глоксинию, фиалки; на тканях донца луковиц — лук, чеснок, гладиолусы, тюльпаны и другие луковичные растения.

Третий способ — микрочеренкование побега, сохраняющего апикальное доминирование. Растения-регенеранты, полученные любым другим способом, можно черенковать в стерильных условиях, высаживать на свежую питательную среду, укоренять, и адаптировать к полевым условиям либо снова подвергать микрочеренкованию для того, чтобы увеличить количество посадочного материала.

Четвертый способ — размножение в биореакторах микроклубнями. Это один из способов ускоренного размножения оздоровленного материала. О. Мелик-Саркисов сконструировал гидропонную установку, позволяющую получать около 7000 микроклубней с 1 м2 при массе одного клубня 5 г. Предусмотрена последующая механизированная посадка их в грунт. В отделе биологии клетки и биотехнологии Института физиологии растений им. К. А. Тимирязева РАН создана эффективная полупромышленная замкнутая система пневмоимпульсного биореактора для получения микроклубней картофеля, в которой предусмотрена возможность воздействия на направление и скорость процессов клубнеобразования. Технологии клонального микроразмножения в биореакторах разработаны не только для сельскохозяйственных, но и для декоративных растений (лилии, гладиолусы, гиацинты, филодендроны и т.д.). Однако созданные установки пока носят лабораторный, модельный характер.

Пятый способ размножения — образование соматических зародышей — основан на морфогенных изменениях — соматическом эмбриогенезе. Впервые это явление было отмечено в середине 50-х годов XX в. в культуре клеток моркови. Формирование эмбриоидов в культуре осуществляется в два этапа. На первом соматические клетки дифференцируются в эмбриональные в присутствии в питательной среде ауксинов, обычно это 2,4-D. На следующей стадии развиваются эмбриоиды. Этот процесс идет только при значительном снижении концентрации ауксина или полном отсутствии его в питательной среде. Соматический эмбриогенез может происходить в тканях первичного экспланта, в каллусной и суспензионной культурах.

Поскольку соматические зародыши представляют собой полностью сформированные растения, данный метод позволяет сократить затраты, связанные с подбором условий укоренения и адаптации растений-регенерантов. Кроме того, преимущество получения соматических эмбриоидов состоит в том, что при использовании соответствующей техники капсулирования из них можно получать искусственные семена.

Соматический эмбриогенез в настоящее время применяют для размножения пшеницы, ячменя, моркови, редиса, винограда, некоторых древесных растений (дуб, ель, эвкалипт).

Оздоровление посадочного материала

Оздоровление посадочного материала начинается с момента стерилизации экспланта в асептических условиях бокса, с обработки ткани антибиотиками. Однако таким образом удается освободиться главным образом от бактерий, грибных инфекций, нематод. Вирусы, вироиды, микоплазмы остаются в тканях инфицированных растений. Именно из-за вирусных болезней погибает от 10 до 50% урожая сельскохозяйственных культур, размножающихся вегетативно. Некоторые бобовые растения (соя) могут передавать вирусы даже при семенном размножении.

В 1949 г. было выяснено, что клетки меристематических тканей растений обычно не содержат вирусов. В 1952 г. Дж. Морель и Г. Мартин предложили, используя культивирование меристем, получать здоровые, избавленные от вирусной инфекции растения. Они обнаружили, что при выращивании верхушки побега, состоящей из конуса нарастания и 2—3 листовых зачатков, на ней образуются сферические образования — протокормы. Протокормы можно делить, и каждую часть культивировать до образования корней и листовых примордиев, получая в большом количестве генетически однородные безвирусные растения. В настоящий момент культивирование меристем побега — наиболее эффективный способ оздоровления растительного материала от вирусов, вироидов и микоплазм. Однако при этом способе требуется соблюдать определенные правила. Как уже говорилось, чем меньше размер меристематического экспланта, тем труднее вызвать в нем морфогенез. Чем больше размер экспланта, тем легче идет морфогенез, в результате которого получается целое растение, но тем больше вероятность присутствия вирусов в экспланте. У многих видов и сортов-растений зона, свободная от вирусных частиц, различна. Так, при клонировании апикальной меристемы картофеля размером 0,2 мм (конус нарастания с одним листовым зачатком) 70% полученных растений были свободны от Y-вируса картофеля, но только 10% — от Х-вируса. В некоторых случаях не удается найти оптимальное соотношение между размером меристематического экспланта и морфогенезом в нем, и при этом избавиться от вирусной инфекции. Приходится дополнять метод культуры меристем термо- или(и) химиотерапией. Так, предварительная термотерапия исходных растений позволяет получать свободные от вирусов растения-регенеранты из меристемных эксплантов размером от 0,3 мм до 0,8 мм. Вместе с тем этот прием может вызвать отставание растений в росте, деформацию органов, увеличение латентных (скрытых) инфекций.

Хорошие результаты дает совместное применение метода культуры тканей и химиотерапии. При внесении в питательную среду препарата «Вирозол» (1-рибофуранозил-1,2,4-триазолкарбоксамид) количество безвирусных растений увеличивается до 80—100 %.

В настоящее время для диагностики вирусных растений используют иммуноферментную технику, моноклональные антитела, метод молекулярной гибридизации меченых фрагментов РНК- и ДНК-вироидов и вирусов с вирусами тестируемого объекта. Эти методы очень чувствительны, но трудоемки и дорогостоящи.

После оздоровления с помощью вышеперечисленных технологий нормальные растения-регенеранты размножают обычными методами клонального микроразмножения. Для некоторых растений, например цитрусовых, получить морфогенез из меристем малого размера не удается, поэтому требуется разработка оригинальных методов. Лимоны и апельсины оздоровляют и размножают, используя прививки меристем размером 0,14— 0,18 мм на пробирочные подвои, полученные из семян. Достоинство такого подхода состоит и в том, что развивающиеся из меристем побеги не имеют ювенильных признаков, при этом цветение и плодоношение ускоряются.

Перспективы использования клонального микроразмножения растений.

Микроразмножение растений получило широкое распространение во второй половине ХХ века, а в последние десятилетия оформилось как мощное промышленное производство, быстро реагирующее на запросы рынка. К примеру, только за период с 1985 по 1990 год число растений, размножаемых in vitro, возросло с 130 млн. до 513 млн. Мировыми лидерами в этой области являются Нидерланды, США, Индия, Израиль, Италия, Польша и другие страны. В основном эта перспективная технология связана с ориентацией на производство декоративных, плодовых, лесных и овощных культур. Использование микроразмножения дает возможность быстро перейти на высокопродуктивные сорта.

Микроразмножение является весьма эффективным приемом быстрого распространения и оздоровления от инфекции новых сортов и гибридов картофеля, плодовых, ягодных, декоративных и лесных растений. Методы микроразмножения широко используются селекционерами для ускоренной репродукции ценного материала. Размножение растений in vitro может стать важным инструментом поддержания существующего биоразнообразия редких и исчезающих видов, занесенных в Красную книгу Беларуси.



biofile.ru

Технология микроклонального размножения

Технология микроклонального размножения состоит из нескольких этапов. На первом этапе введения экспланта в культуру необходимо обеспечить его стерильность и приживаемость на питательной среде, так как от получения первичной культуры ткани зависит дальнейший успех клонирования.При введении в культуру in vitro нужно стимулировать изолированный эксплант к дальнейшему развитию. Для этих целей чаще всего используют основные питательные среды – Мурашиге-Скуга (МС), Гамборга (В5) и их модификации, как правило, без внесения регуляторов роста. Добавление фитогормонов к средам для культивирования прежде всего зависит от вида растения, экспланта и сезона, в течение которого проводится изоляция. Требования к температуре и свету различны и определяются видом растения. Чаще всего используется интервал температур от 23 до 27°С, интенсивность освещения от 1000 до 3000 л к и 16- часовой фотопериод. Через 3-6 недель формируются единичные вторичные побеги или розетки почек, которые необходимо перенести на питательную среду для их дальнейшего размножения.Цель второго этапа технологии микроклонального размножения – максимально быстрое увеличение количества полученных протокормов, каллусной массы, побегов, эмбриоидов или других структур. При размножении микроклонов необходимо стимулировать активно протекающие процессы дифференцировки вновь образуемых морфогенных структур. Обычно на этой стадии используют питательные среды того же состава, что и для первого этапа, изменяя лишь фитогормональный баланс.Для достижения успеха на этом этапе технологии микроклонального размножения решающее значение имеет состав питательной среды, которая должна быть обогащена веществами, усиливающими процессы морфогенеза. Обычно используют среды Кнудсона, Мореля, МС, Андерсона, Линсмайера-Скуга (ЛС) с добавлением витаминов и регуляторов роста. Морфогенетическая реакция экспланта часто зависит от соотношения ауксинов и цитокининов в питательной среде. Высокие концентрации ауксинов способствуют образованию корней, но подавляют морфогенез побегов. Увеличение концентрации цитокининов активизирует появление побегов и угнетает корнеобразование. Сбалансированное соотношение этих веществ приводит к нормальному развитию растений.При культивировании изолированных тканей очень часто наблюдается витрификация растений, вызванная инфильтрацией растительными тканями воды из атмосферы культурального сосуда или питательной среды. При каплусогенезе, по мере развития “основного” каллуса, проявления витрификации могут уменьшаться, так как на его поверхности образуется ткань, сходная с эпидермисом, которая препятствует проникновению жидкости. Как известно из литературы, устьица у культивируемых в асептических условиях растений остаются широко открытыми. Результаты электронно-микроскопических исследований показали, что стенки замыкающих клеток выглядят водянистыми и деструктурированными. В клетках устьиц, а иногда и в других клетках витрифицированных побегов, зафиксировано повышенное количество крахмала и липидных капель. Это, возможно, связано с усиленным снабжением сахарозой из питательной среды (Коshuchowa, 1988).Полученные в культуре in vitro почки необходимо отделять друг от друга и по одной переносить на свежую питательную среду. Если каждая почка в продолжение 1 мес дает примерно 5 новых почек, то через год, в зависимости от вида растений, их количество может составить несколько сотен тысяч. В этой фазе возможны некоторые нежелательные изменения, связанные с поздним проявлением бактериального заражения исходного экспланта, что может неблагоприятно отразиться на конечном результате клонального размножения. Поэтому тестирование исходных эксплантов на наличие инфекции, а также обработка почек разными антибиотиками – необходимые и эффективные приемы.Условия третьего этапа технологии микроклонального размножения должны соответствовать специальным физиологическим потребностям размножаемых видов. Растения- регенеранты необходимо подготовить к пересадке в субстрат. Укоренение вновь образованных in vitro побегов связано с индуцированием адвентивных корней. К этой фазе переходят тогда, когда получено достаточное количество побегов. Степень укоренения зависит от вида и сорта клонируемых растений, а также от продолжительности пассивирования in vitro и длительности культивирования при последнем пассаже.При укоренении некоторых трудноукореняющихся видов растений эффективными могут быть такие фенольные соединения, как флороглюцин, хлорогеновая кислота, кверцетин, рутин и флоридзин.В отличие от культуральной среды, используемой для размножения, концентрация минеральных солей и сахарозы в среде для укоренения уменьшается вдвое, цитокинины отсутствуют, а концентрация ауксинов увеличивается. Обычно на этом этапе повышают интенсивность освещения до 5000-8000 лк и фотопериод до 14-16 ч. Температурный режим должен коррелировать с условиями естественного произрастания.Для укоренения используют как жидкие, так и твердые питательные среды. К недостаткам первых можно отнести необходимость использования подложки для удержания побега в вертикальном положении. Кроме того, в жидкой питательной среде образуются хрупкие корни, что усложняет процесс пересадки растений-ре генерантов.Для оптимальной стимуляции корнеобразования можно применять кратковременное субкультивирование на средах, содержащих ауксины, после чего растения пересаживаются на среды, не содержащие гормоны, или непосредственно в субстрат. Многие авторы рекомендуют проводить процесс инициации корнеобразования в темноте, объясняя это усилением поглощения регуляторов роста в подобных условиях.На этапе укоренения используют менее богатые среды, в том числе разбавленные. Иногда укоренение можно осуществить и в нестерильных условиях, однако в этом случае необходимо поддерживать высокую атмосферную влажность в теплице или камере, где происходит укоренение микроклонов.Приведенные выше данные свидетельствуют о том, что несмотря на зависимость интенсивности ризогенеза от комплекса различных факторов, процессом укоренения in vitro можно успешно управлять. Вместе с тем достаточно большое количество циклов размножения, по-видимому, не всегда благоприятно. У некоторых ягодных культур, например у земляники, через несколько циклов размножения возникают так называемые пассивные почки, не способные к дальнейшему производству боковых почек и корнеобразованию (Попов, Высоцкий, 1978). Оптимальным надо, по-видимому, считать чередование двух-трех циклов размножения с циклом укоренения.

Источник: Черевченко Т.М., Лаврентьева А.Н., Иванников Р.В. Биотехнология тропических и субтропических растений in vitro. – К.: Наук. думка, 2008. – 559 с.

bio-x.ru

1. Микроклональное размножение растений. Микроклональное размножение хризантемы сорта "Земба" методом органогенеза каллусной ткани

Похожие главы из других работ:

Биология ондатры

1.4 Размножение

Беременность у самки длится 25-30 дней; в помёте в среднем 7-8 детёнышей. В северных областях за год бывает 2 выводка и размножение ограничено тёплыми месяцами - с марта по август; в южных размножение почти не прерывается...

Биология перепела Благовещенского района

3.7 Размножение

Брачные крики перепелов в Приморье бывают слышны, начиная с апреля и вплоть до начала сентября. Весной птицы встречаются большей частью парами, и предполагается, что в естественных условиях этот вид гораздо более склонен к моногамии...

Биология соболя

6.Размножение

Прямые наблюдения за размножением этого хищника в природе отсутствуют. Летнее размножение соболей, длительный период беременности, латентный период впервые были описаны П.А. Мантейфелем (1934)...

Ботаника боярышника

2.1 Размножение

Боярышник размножают посевом семян, корневыми отпрысками, а культурные сорта -- прививкой. При семенном размножении требуется длительная -- до 7--8 месяцев -- стратификация...

Бурый медведь - Ursus arctos L.

3.4 Размножение

Самки приносят потомство раз в 2-4 года. Течка у них продолжается с мая по июль, 10-30 дней. В это время самцы, обычно молчаливые, начинают громко реветь, и между ними возникают жестокие схватки...

Ночные хищники - совы

Размножение

Некоторые виды сов образуют пару один раз и на всю жизнь, самцы же других каждый год подыскивают себе новую самку. Размножаются обычно один раз в году, но при обилии пищи могу размножаться чаще. Выбрав место для гнезда...

Образ жизни сусликов (Citellus)

Размножение

Реликтовый суслик. О размножении реликтового суслика в восточной части ареала сведения отрывочны (Строганов, 1961; Кыдырбаев, 1974). Лучше изучено его размножение в районах, расположенных в западных районах Тянь-Шаня (Петров, 1961; Токтосунов...

Особенности биологии большой синицы и обыкновенной лазоревки

3. Размножение

Моногамна или изредка полигамна, многие пары сохраняются несколько лет подряд. На большей части ареала сезон размножения продолжается с конца января по сентябрь, при этом кладка яиц часто коррелируется с доступностью корма. Так...

Особенности биологии и динамики численности тетеревиных

6. Размножение

Тетерев. Тетерев -- ярко, выраженный полигам. Самцы не принимают никакого участия в заботах о гнезде и выводке и в брачный сезон собираются на традиционных токовищах. Места расположения таких токовищ различны...

Питание выдры

6. Размножение

Первое потомство самка приносит на третьем году жизни. Спаривание у выдры происходит с конца февраля до середины июля. Продолжительность беременности от 51 до 78 дней, латентная стадия до 270 суток. В помете может быть от 1 до 5 детенышей, обычно 2-4...

Пластиды и их пигменты. Выделительные системы растений

VI. ПОНЯТИЕ О ВИДЕ РАСТЕНИЙ. СОСТАВЛЕНИЕ ВИДОВЫХ НАЗВАНИЙ РАСТЕНИЙ СОГЛАСНО БИНАРНОМУ МЕТОДУ К. ЛИННЕЯ. ВЫПИШЕТЕ ИЗ «СПИСКА ОСНОВНЫХ СЕМЕЙСТВ И ВИДОВ» 6 ВИДОВ (ИЗ НИХ 2 ОДНОГО РОДА) ИЗ РАЗНЫХ СЕМЕЙСТВ

Вид - совокупность популяций особей, способных к скрещиванию с образованием плодовитого потомства, населяющих определенную территорию...

Разнообразие змей

Размножение

Одни змеи при благоприятных условиях могут приносить потомство до нескольких раз за сезон, другие размножаются не каждый год (например, кавказская гадюка). Бамбуковая куфия, обитающая в Индии и Пакистане, может размножаться круглый год...

Разнообразие обитателей морей: улитки и ракушки

Размножение

Половая система обнаруживает у брюхоногих большие вариации (переднежаберные обычно раздельнополы, легочные и заднежаберные - гермафродиты). Низшие брюхоногие не имеют специальных половых протоков...

Род: Гранат

Размножение

Размножают гранат черенками, отводками, семенами и прививкой. Черенки нарезают с вызревших побегов деревца в феврале-марте, а летом - с полуодревесневших побегов (укореняются медленнее, чем весной). Лучше всего укоренять в субстрате...

Строение и физиология растений класса двудольных

2. Размножение двудольных растений

Если в зависимости от числа семядолей все цветковые растения делятся на два основных класса, то строение цветка служит ключом к формированию семейств. Некоторые цветки так замысловато устроены...

bio.bobrodobro.ru

Микроклональное размножение растений - Сияние

Как получают меристемный картофель?

Что мы делаем, если хотим посадить на своем участке то или иное растение? Обычно мы покупаем семена или готовую рассаду для выращивания трав и овощей, саженцы – для посадки кустарников и деревьев, рассаду или луковицы – для выращивания цветов. Часто ли мы задумываемся над тем, каким образом получена рассада? Оказывается, помимо традиционных черенкования, прививок, выращивания из семян, размножения корневищами, луковицами и т.д. в большинстве стран рассаду многих растений сегодня получают путем микроклонального размножения. Особенно широко этот способ применяется для выращивания растений, которые плохо поддаются размножению другими способами. Также этот метод незаменим, если необходимо постоянно получать в достаточно короткие сроки значительное количество качественной рассады.

С помощью микроклонального размножения (другое название метода – меристемное размножение) выращивают декоративные и плодово-ягодные растения, комнатные и срезочные цветы, картофель и прочие овощи.

Микроклональное размножение растений широко применяется в США, Голландии, Польше, Франции, Японии, Таиланде. В России также накоплен большой опыт по меристемному размножению важных для сельского хозяйства видов растений. Практически во всех российских научно-исследовательских институтах и селекционных центрах созданы лаборатории для микроклонального размножения и оздоровления селекционного материала. Относительно недавно меристемные технологии начали применяться крупными питомниками растений и сельхозпредприятиями. В России наиболее широкое применение меристемная технология пока нашла в получении здоровых семян картофеля.

О методе

Меристема (от греч. meristos — делимый) — это ткань растений, в течение всей жизни сохраняющая способность к образованию новых клеток. Именно за счет меристемы растения растут, образуют новые листья, стебли, корни, цветки.

В проwессе роста меристемная ткань в определенной степени сохраняется в некоторых частях растения: в узлах побега, в почках, в кончиках корней, в основаниях черешков листьев или цветоносах и т.д.

Меристемным методом растения размножают в 4 этапа:

1.  Введение: меристемные ткани отделяют от нужного экземпляра растения и помещают на специальные питательные среды в пробирки. Затем меристемные растения выдерживают в специальном шкафу в течение 20-40 дней при освещении до 14 ч. в сутки.

2. Размножение: через 1-1,5 месяца микрочеренки уже имеют размер горошины, у них образовались зачатки всех вегетативных органов растений. Подрощенные микрочеренки делят на пять-семь частей, а «кусочки» (вновь полученные меристемные черенки) снова проращивают в пробирках в течение 20-30 дней.

3. Укоренение и адаптация: когда меристемные микрочеренки образуют достаточную корневую систему, их извлекают из пробирок и пересаживают в горшочки, заполненные легким торфом. Затем горшочки устанавливают в защищенную среду — достаточно использовать небольшую пластиковую трубку. Через 4-6 недель микрочеренки привыкают к естественным условиям выращивания.

4. Подращивание: после укоренения и адаптации новые растения выращиваются при агротехнике, свойственной данной культуре, и могут быть высажены в теплицу, а затем и в открытый грунт.

На ранних стадиях вегетативного развития меристемные растения могут иметь некоторые различия во внешнем виде, но по мере роста они исчезают. Полученные микроклональным способом растения наследуют все признаки, присущие данному сорту и вполне могут в дальнейшем размножаться обычным вегетативным или семенным способом.

Преимущества растений, полученных  микроклональным размножением

1. Такие растения более здоровые. Они не поражаются вирусами, даже если меристемные ткани были взяты у зараженного растения, так как вирус не поражает меристемы на верхушках побегов.

2. Урожайность меристемных саженцев выше. Например, с обычного кустика клубники можно собрать 200–300 г ягод, а с меристемного – до 1 кг.

3. Микроклональное размножение дает возможность получения огромного количества однородных растений за время, при котором не даст того же результата не один другой метод (около 10 тысяч саженцев в год от одного маточного растения!).

4. Меристемное размножение становится единственно возможным в больших промышленных масштабах, если для размножения берутся растения, которые стерильны и не дают семенного потомства.

Безопасность метода

У многих, кто слышит об этом методе выращивания рассады впервые, возникают ассоциации с генно-модифицированными растениями. Однако это совершенно разные понятия. Если объяснять «на пальцах», то генно-модифицированные растения получают из обычных путем удаления из генной структуры клетки растения «вредных» генов или путем внедрения «полезных». При микроклональном размножении этого не происходит: исходная клетка не подвергается никаким изменениям, соответственно растение не приобретает новых свойств или новых сортовых качеств. Поэтому вы можете со спокойной душой покупать рассаду и саженцы, выращенные микро-клональным способом.

sianie37.ru

микроклональное размножение | АППЯПМ

ОЛЕГ СЕРДЮКк. с.-х. н., Киев, Украина

Микроклональное размножение плодовых и ягодных культур как основа ведения современного прибыльного садоводства

Представлены теоретические и практические аспекты ведения современного прибыльного садоводства, базируясь на использовании безвирусного посадочного материала полученного путём микроклонального размножения.

Ключевые слова: микроклональное размножение растений, садоводство, питомниководство

В настоящее время в отечественных садоводческих производственных кругах ведётся дискуссия относительно целесообразности использования безвирусного (сертифицированного) посадочного материала полученного путём микроклонального размножения in vitro в связи с его высокой стоимостью (рис. 1).

in_vitro_serduk_pr_01_1Процесс микроклонального размножения

Иной причиной, которая нивелируют целесообразность применение такого посадочного материала, являются неоднократные случаи пресечения карантинными службами попыток ввоза на территорию Российской Федерации и Украины импортного посадочного материала зараженного карантинными объектами. Также обнаружены уже существующие очаги таких объектов в промышленных насаждениях и ведётся работа по их локализации и устранению [1, 2]. Вследствие этого садоводческие предприятия несут большие убытки, от чего к такому посадочному материалу складывается недоверие. Необходимо отметить, что не все питомники Европейского Союза (в основном из них импортируется посадочный материал) работают с безвирусными растениями, полученными in vitro в качестве базисного материала, и не все ведут ответственный бизнес. Внутреннюю инфекцию в растениях часто трудно обнаружить или же вообще практически не возможно. Но при её наличии она всё равно проявляется и, как правило, уже на тех этапах роста и развития растений, когда нужно полностью выкорчёвывать молодой сад, неся колоссальные убытки и доказать на каком этапе инфекция попала в растения или же она там присутствовала с самого начала уже не возможно.

С другой стороны, производители как свежих плодов и ягод, так и посадочного материала, которые имели возможность работать с безвирусным материалом, почти все склонны к тому, что при умеренной стоимости, его применение есть более экономически выгодным, по сравнению с рядовым посадочным материалом.

Для логической цепочки необходимо напомнить, что процесс микроклонального размножения растений in vitro требует прохождения следующих этапов:

  1. инициация культуры, или введение меристемной ткани растения на подходящую питательную среду;
  2. пролиферация, или наращивание микростеблей;
  3. укоренение микростеблей;
  4. акклиматизация и высадка в полевые условия (in vivo).

Наиболее целесообразно применять безвирусные растения для закладки маточных насаждений, будь то ягодных, орехоплодных, или же семечковых и косточковых культур, а также подвоев к ним. Применяя его, таким образом, обязательным условием есть периодический контроль путём тестирования отсутствия патогенных организмов в маточных растениях (как правило, раз в два года), пространственная изоляция и агротехнический уход на высоком уровне. Хотя в садоводческих предприятиях, уже давно пришедших к выводу, что микроклональное размножение – путь к повышению продуктивности, урожайности и качеству плодов, есть целесообразность закладки товарных насаждений и таким, казалось бы, дорогостоящим посадочным материалом.

Экономически хорошо сбалансированный рынок производства продукции садоводства и умеренной стоимости посадочного материала, полученного данным способом в результате постановки его на промышленную коммерческую основу, даёт возможность масштабировать в соответствии со спросом, при сравнительно небольшой себестоимости по сравнению с выращиванием посадочного материала традиционными путями (первый есть более трудоёмкий). Поэтому закладка ягодников, первого поля питомника, или же насаждений фундука материалом непосредственно полученного in vitro часто практикуется.

in_vitro_serduk_pr_02_1Первое поле питомника, заложенное сертифицированным посадочным материалом подвоев косточковых культур, полученным in vitro

Насаждения голубики преимущественно закладываются посадочным материалом, выращенным в культуре in vitro, так как данная ягодная культура трудно размножается иными способами, чтобы нарастить её для промышленных масштабов. Да и цена на ягоды голубики относительно стабильно высокая, вследствие высокого спроса на них из-за их высоких вкусовых качеств и большого количества, ценных для человеческого организма питательных веществ.

in_vitro_serduk_pr_03_1Акклиматизированный посадочный материал голубики

Наиболее вредоносные вирусы способны приводить к потерям 20–70% урожая. По этому, анализ распространённости вирусных болезней, прогноз их развития, уничтожение очагов карантинных объектов и создание безвирусного питомниководства плодовых и ягодных культур являются актуальной задачей защиты растений [3].

В России и Украине есть лаборатории почти при всех профилирующих научных и образовательных учреждениях, где изучаются вопросы, связанные с проблемами микроклонального размножения растений и их оздоровления. Для большинства плодовых и ягодных культур, а также в сортовом разрезе, подобраны оптимальные питательные среды для культивирования их in vitro на различных этапах размножения, а также отработаны методики тестирование растений на наличие латентных патогенов. Но всё-таки узким местом в цепочке от меристемы до готового саженца является акклиматизация эксплантов in vivo (в условия внешней среды, вне пробирки). На данном этапе растения требуют определённых параметров микроклимата. Для возделывания посадочного материала в промышленных масштабах это делается в акклиматизационных комплексах оснащённых специальным оборудованием позволяющим регулировать параметры микроклимата в зависимости от этапа акклиматизации растений и климатических условий внешней среды.

in_vitro_serduk_pr_04_1Растения подвоя Colt для вишни и черешни

Как известно, приборы и оборудование для обустройства лаборатории микроклонального размножения растений, компоненты для приготовления питательных сред, обустройство акклиматизационных комплексов и оплата труда квалифицированного персонала требуют значительных капиталовложений. Поэтому, в странах, где микроклональное размножение плодовых и декоративных культур поставлено на коммерческую основу, этот очень необходимый сегмент садоводческой отрасли обслуживается частными компаниями.

Причина преимущества применения безвирусного посадочного материала полученного in vitro кроется в том, что растения, проходя путь от меристемастических клеток до взрослых растений, проходят процесс “реювенилизации” (омолаживания) в результате чего лишаются действия накопившейся в растениях “усталости” вызванной стрессовыми факторами.

in_vitro_serduk_pr_05_1Растения подвоя Gizela 5 для вишни и черешни

Поэтому, применяя оздоровленный посадочный материал в комплексе с высокой агротехникой, можно получить более высокую отдачу урожая и более раннее вступление растений в период товарного плодоношения, таким образом обеспечить быстрое возвращение вложенных инвестиций и получить более высокий доход по сравнению с использованием обычного посадочного материала.

in_vitro_serduk_pr_06_1Плодоносящие насаждения ежевики сорта Loch Ness, заложенные сертифицированным посадочным материалом

С научно-производственной позиции к недостаткам микроклонального размножения относят иногда проявляющуюся генетическую нестабильность материала in vitro. То есть, проходя через in vitro условия, геном растительного материала способный поддаваться мутациям в результате действия разнообразных факторов, а в последнее время широкого применения ферментов, и на выходе может отличаться от материнских растений. Как показывает практика, вероятность возникновения таких отклонений небольшая, и при выращивании в промышленных масштабах особого опасения не вызывает. К тому же, в процессе акклиматизации и доработки посадочного материала до стандартных кондиций, он проходит тщательный визуальный контроль и при выявлении растений с явно выраженными отклонениями, они выбраковываются. Базисные клоны, с которых берут экспланты для размножения in vitro во избежание возникновения генетических отклонений, наиболее целесообразно тестировать с помощью молекулярных маркеров.

Применяя безвирусный посадочный материал для закладки садов в комплексе с оптимальным научно обоснованным районированием культур и сортов, а также научно обоснованными схемами размещения растений в насаждениях, системами формирования и придерживаясь высокого уровня агротехники, можно добиться наивысшей урожайности плодовых, ягодных и орехоплодных культур.

in_vitro_serduk_pr_07_1Закладка плодовых почек на однолетних саженцах яблони сорта Golden Delicious

Работая в тесном сотрудничестве с государственными органами управления, научными учреждениями и микроклональными лабораториями садоводческие предприятия могут решить проблему наличия качественного посадочного материала в достаточных количествах для закладки промышленных насаждений. Как следствие, они значительно смогут повысить доходность и таким образом улучшить инвестиционную привлекательность садоводческой отрасли. Несомненно, в России и

Украине есть своё собственное богатейшее селекционное наследие: отличные сорта плодовых, ягодных и орехоплодных культур, а также, подвои к ним [4, 5]. Разработаны методические указания по производству и сертификации посадочного материала плодовых, ягодных культур и винограда, а также контроля его качества [6] За информацией Ю.В. Трунова и соавторов [7] в России, в среднем, ежегодно употребляется 47 кг продукции садоводства на человека, из которых 27 кг

импортного происхождения, в то время, как научно-обоснованная годичная норма составляет 75 кг/чел, схожая картина наблюдается и в Украине. Смотря на благоприятные почвенные и климатические условия садоводческих регионов Российской Федерации и Украины, применяя комплексный подход по ведению садоводства, базируясь на выращивании безвирусного посадочного материала, можно значительно увеличить долю рынка фруктов отечественной продукцией по традиционным культурам.

in_vitro_serduk_pr_08_1Подвой для персика и нектарина GF 677

Таким образом, безвирусный посадочный материал ягодных культур, полученный in vitro целесообразно применять как для закладки маточных, так и плодоносных насаждений. Вегетативные подвои для косточковых культур (вишня, черешня, абрикос, слива, алыча, персик, нектарин), полученные таким же образом, экономически обосновано применять как для высадки в первое поле питомника, для непосредственного выращивания саженцев, так и для закладки маточных насаждений.

in_vitro_serduk_pr_09_1Саженцы Фундука (Лесного ореха)

Насаждения фундука (лесного ореха) наиболее выгодно закладывать материалом, непосредственно полученным in vitro, так как при этом получается очень выровненные саженцы, которые отлично приживаются.

in_vitro_serduk_pr_10_1Однолетние саженцы груши, выращенные на безвирусной основе

Касательно подвоев для семечковых культур (яблоня, груша, айва) экономически целесообразно сертифицированный посадочный материал применять для закладки маточников клоновых подвоев и возделывать по традиционным схемам. При этом растения необходимо тестировать на отсутствие латентных патогенов минимум один раз в два года, соблюдать пространственную изоляцию между насаждениями и применять высокого уровня агротехнику.

in_vitro_serduk_pr_11_1Паспортизированный маточно-черенковый сад черешни

Маточно-черенковые сады необходимо закладывать саженцами, подвойная и привойная части которых были получены непосредственно in vitro и прошли тестирование на отсутствие патогенов, при этом также необходима пространственная изоляция и соответственный агротехнический уход, с периодическим тестированием на отсутствие патогенных организмов.

Как правило, насаждения будь то маточники ягодников, клоновых подвоев или же маточно-черенковые сады, которые были заложены безвирусным посадочным материалом, полученным in vitro в сертифицированных лабораториях, и за которыми ведётся уход в соответствии с необходимыми нормами и требованиями,

паспортизируются, и ведётся их учёт государственными отраслевыми органами управления.

in_vitro_serduk_pr_12_1Сертифицированные растения персика во втором поле питомника

Это впоследствии служит основой для получения сертификата, что посадочный материал, полученный с их использованием, является безвирусным.

Поэтому, для ведения прибыльного садоводческого бизнеса, будь то возделывание свежих плодов или ягод, посадочного материала, или в комплексе, что является наиболее выгодным, необходимо применять сертифицированный безвирусный посадочный материал.

in_vitro_serduk_pr_14_1Безвирусный посадочный материал плодовых и ягодных культур

Литература

  1. Опасное заболевание плодовых – бактериальный ожог [Электронный ресурс]. www.rshn-kbr.ru/index.php
  2. Бактеріальний опік плодових Erwinia amylovora Burill [Електронний ресурс]. www.zakarpatkarantin.com.ua/bak_opik_plodovyh.doc
  3. Упадышев М.Т. Вирусные болезни и современные методы оздоровления плодовых и ягодных культур: автореф. дис. на соискание научн. степени доктора с.-х. наук. – Москва, 2011. – 46 с.
  4. Государственный реестр селекционных достижений, допущенных к использованию в 2011 г [Электронный ресурс]. http://www.gossort.com/ree_cont.html
  5. Державний реєстр сортів рослин придатних для поширення в Україні у 2011 році [Електронний ресурс]. http://sops.gov.ua/index.php?page=error404
  6. Куликов И.М. Производство и сертификация посадочного материала плодовых, ягодных культур и винограда в России. Контроль качества. Часть 1. Ягодные культуры / [под общ. ред. акад. РАСХН И.М. Куликова]. – М.: ВСТИСП, 2009. – 164 с.
  7. Trunov Yu. V., Nikitin A. V., Solopov V.A.. La frutticoltura in Russia: importanza del settore e situazione della ricerca // Rivista di FRUTTICOLTURA e di ortofloricoltura. – Vol. 6 (LXXIII), 2011. pp. 52–59.

asprus.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта