Какую роль играет испарение в жизни растений. Испарение и конденсация. Роль испарения в природе, в жизни человека и животных

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Сообщения учащихся о роли испарения в жизни растений и животных. Какую роль играет испарение в жизни растений


Каково значение испарения воды в жизни растения?

Значение воды в жизни растенияВода поступает в растение из почвы через корневые волоски и молодые части корней и по сосудам разносится по всей его надземной части. В вакуолях растительных клеток растворены различные вещества. Молекулы этих веществ, растворенные в клеточном соке, оказывают давление на цитоплазму, которая хорошо пропускает воду, но препятствует прохождению через нее растворенных в воде частиц. Давление растворенных в воде веществ на цитоплазму называется осмотическим давлением. Вода, поглощенная растворенными в клеточном соке веществами, также оказывает давление на цитоплазму и растягивает до известного предела эластичную оболочку клетки. Клеточный сок с растворенными в нем веществами постоянно поддерживает растительную ткань в напряженном состоянии, и лишь при большой потере воды, при завядании, это напряжение (тургор) в растении исчезает. Когда осмотическое давление уравновешено растянувшейся оболочкой, вода не может поступать в клетку. Но стоит клетке потерять часть воды, как оболочка спадается, находящийся в клетке клеточный сок становится более концентрированным и начинает насасывать воду в клетку, пока оболочка снова не растянется и не уравновесится осмотическое давление. Чем больше воды потеряло растение, тем с большей силой вода поступает в клетки. Сила, с которой растение всасывает воду, — сосущая сила — представляет собой разность между осмотическим и тургорным давлением. Растение непрерывно испаряет воду через устьица. Этим создается возможность нового притока воды к листьям. Присасывающее действие испарения играет большую роль в передвижении воды по растению. Устьица могут раскрываться и закрываться, образовывать то широкую, то узкую щель. На свету устьица раскрываются, а в темноте и при слишком большой потере воды закрываются. В зависимости от этого испарение воды то идет интенсивно, то сильно сокращается. Часть воды все время испаряется через кутикулу, однако это испарение идет гораздо слабее, чем через устьица. Если срезать стебель растения около самого корня, из пенька начинает сочиться сок. Это показывает, что корень и сам нагнетает воду в стебель. Следовательно, поступление воды в растение зависит не только от испарения воды через листья, но и от корневого давления. Оно перегоняет воду из живых клеток корня в полые трубки омертвевших сосудов. Так как в клетках этих сосудов нет цитоплазмы, вода беспрепятственно движется по ним к листьям, где испаряется через устьица. Испарение очень важно для растения. С передвигающейся водой разносятся по растению поглощенные корнем минеральные вещества. Испарение снижает температуру растения и тем самым предохраняет его от перегрева. Из каждой тысячи частей поглощенной из почвы воды растение усваивает лишь 2—3 части, а остальные 997—998 частей испаряются. Чтобы образовать 1 г сухого вещества, растение в нашем климате испаряет от 300 г до 1 кг воды. Пока в почве есть влага, растение растет и развивается нормально. Но вот перестали выпадать дожди, наступает засуха, и растение испытывает недостаток воды и растворимых в ней минеральных веществ; в нем перестает образовываться новое вещество, рост и развитие прекращаются. Кроме того, растение начинает повреждаться от перегрева: на листьях и стебле появляются пятна ожогов. Особенно сильно повреждается растение от ожогов при суховее — сухом горячем ветре. Растение увядает и, если погода не изменится к лучшему, гибнет. Глубокая вспашка, сохранение влаги в почве, своевременное уничтожение сорняков, севообороты, применение минеральных удобрений и другие агротехнические мероприятия помогают бороться с засухой. Не менее важны правильное семеноводство и создание более устойчивых к засухе сортов, а также использование засухоустойчивых культур. Но основная мера борьбы с засухой (там, где это возможно) — орошение полей.

Оцени ответ

shkolniku.com

Испарение и конденсация. Роль испарения в природе, в жизни человека и животных

Разделы: Физика

И наконец, на морском берегу, разбивающем волны, Платье сыреет всегда, а на солнце вися, оно сохнет. Видеть, однако нельзя, как влага на нем оседает, Да и не видно того, как она исчезает от зноя. Значит, дробится вода на такие мельчайшие части, Что недоступны они совершенно для нашего глаза.Поэт Тит Лукреций Кар, поэма “ О природе вещей” I век до нашей эры.

(Приложение. Слайд 2)

Интеграция предметов: физика биология

Цель урока:

  • Раскрыть основу научных положений изучаемой темы во взаимосвязи с природой и жизнедеятельностью человека;
  • Показать связь физики с биологией, литературой.

Задачи урока:

  • Ознакомление учащихся с элементами экспериментального исследования явления;
  • Раскрытие роли испарения в жизнедеятельности человека и в природе;
  • Активизация познавательной деятельности учащихся;

Ход урока

Учитель: На уроках природоведения вы изучали круговорот воды в природе .

Давайте вспомним (Слайд 3). С поверхности океанов, морей, рек и суши вода под действием солнечного тепла испаряется и поднимается вверх в виде невидимого пара. Так что называется испарением?

Ученики: переход вещества из жидкого состояния в газообразное. (Слайд 4)

Учитель: в воздухе водяной пар охлаждается , превращается в мельчайшие капельки воды. Что называется конденсацией?

Ученики: Переход вещества из парообразного состояния в жидкое. (Слайд 5).

Учитель: вытирая мокрой тряпкой школьную доску, доска быстро высыхает – вода превращается в пар. Точно так же после мятья высыхают полы, выстиранное белье, лужи на улице., скошенная трава. Каков же механизм испарения? Почему жидкости испаряются?

Молекулы жидкости непрерывно движутся с разными скоростями. Если какая-нибудь молекула, которая оказалась на поверхности жидкости имеет кинетическую энергию большую, чем потенциальная энергия взаимодействия с соседними молекулами, то она может преодолеть притяжение соседних молекул и вылететь из жидкости. Вылетевшие , в с поверхности из жидкости молекулы образуют над поверхностью пар. Пар – газообразное состояние вещества.

Жидкости испаряются постепенно: в первую очередь в пар переходят быстрые молекулы, у оставшихся молекул жидкости при соударении с другими молекулами меняется скорость. Некоторые молекулы приобретают при этом скорость достаточную для того, чтобы оказаться у поверхности и вылететь из жидкости.

На что идет затраченная энергия? Ответ почти очевидный– на преодоление силы притяжения, которая действует со стороны жидкости на вылетевшую молекулу. Каждая молекула взаимодействует с окружающими ее другими молекулами. Сила взаимодействия на малых расстояниях (r < r0 ) имеет характер отталкивания, а при больших (r > r0) – притяжения. В толще жидкости каждая молекула окружена другими такими же молекулами со всех сторон, и средняя результирующая сила равна нулю. Молекула, которая пытается покинуть поверхность жидкости и улететь в свободное пространство, притягивается к молекулам, расположенным на поверхности, и на них больше не действуют никакие силы притяжения других молекул. Поэтому , чтобы покинуть поверхность жидкости , молекула должна обладать большой кинетической энергий., поэтому покинуть поверхность жидкости могут не все молекулы, находящиеся на поверхности жидкости.

Жидкости могут испаряться при любой температуре. Наблюдения за природой подтверждает это. Например лужи, образовавшиеся после дождя, высыхают летом в жару, и осенью, когда уже холодно. Почему? Потому что при любой температуре в жидкости есть быстрые молекулы.

Зависит ли испарение от температуры жидкости и как?

Опыт № 1. На стекле две капли воды. Стекло подогревается снизу под одной из капель.

Учитель: почему подогреваемая капля испаряется быстрее?

Ученики: с увеличением температуры испарение жидкости увеличивается, так как выше чем температура , тем большее число молекул, способны покинуть жидкость (Слайд  6)

Опыт № 2. На доску кисточкой наносится мазки различных жидкостей: эфира, спирта, воды, масла.

Учитель: почему эфир испаряется быстрее?

Ученики: Силы взаимного притяжения между молекулами эфира меньше, чем между молекулами других жидкостей. (Слайд  7)

Опыт № 3. Пипеткой капаю эфир на стекло и на лист промокательной бумаги. Наблюдаем процесс испарения.

Учитель: почему с промокашки бумаги эфир испаряется быстрее?

Ученики: чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетают с ее поверхности в воздух.. (Слайд  8)

Учитель: одновременно с переходом молекул из жидкости в пар, происходит обратный процесс. Часть молекул , покинувших жидкость, снова в нее возвращаются. Если испарение происходит в закрытом сосуде, то число молекул вылетевших их жидкости, становится равным числу молекул пара, возвращающихся в жидкость. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться. Если сосуд открыт, то объем жидкости со временем уменьшится.

Физический фокус: На чашах весов уравновешены стаканы с холодной и горячей водой. Почему весы быстро выходят из равновесия?

Опыт № 4. На две пластинки капнуть по капле спирта. Одну из капель обдувать веером.

Учитель: Почему капля, которую обмахивали веером высохла быстрее?

Ученики: Так веер создает потоки воздуха, то они уносят молекулы пара.

Учитель: сделаем вывод, от чего зависит скорость испарения жидкости. (Слайд  9)

В тетрадях зарисовывается схема – Слайд 10.

Учитель: Как вы думаете испаряются ли твердые тела?

Учащиеся: Испаряются не только жидкости , но и твердые тела. Испарение некоторых твердых тел обнаруживается по запаху. Например испарение нафталина, камфары. Испаряется и лед. Например: на морозе сохнет белье, которое из обледенелого становится сухим.

Опыт № 5. Испарение кристаллов йода. Если подогреть на спиртовке пробирку с небольшим количеством кристалликов йода на слабом пламени, то кристаллики начнут испаряться. Пары имеют густой фиолетовый цвет, поэтому их хорошо видно. При охлаждении из паров сразу образуются кристаллики йода.

Учитель: вернемся к жидкостям. (Слайд 11) Так как при испарении жидкость покидают самые быстрые молекулы, то и средняя скорость оставшихся молекул становится меньше. Следовательно, средняя кинетическая энергия молекул уменьшается. Это означает, что внутренняя энергия (И) испаряющейся жидкости уменьшается. Поэтому, если нет притока энергии к жидкости извне, испаряющаяся жидкость охлаждается.

Опыт № 6. Шарик термометра обворачиваем ваткой , смоченной в одеколоне.

Учитель: Почему столбик термометра опускается?

Ученики: Быстро испаряющаяся жидкость отнимает часть внутренней энергии от спирта термометра, в следствие чего температура понижается.

Учитель: Почему мы не замечаем значительного понижения температуры при испарении воды из стакана?

Ученики: Испарение происходит медленно, а вода постоянно получает некоторое количество теплоты от окружающей среды..

Учитель: Поглощение энергии при испарении жидкости можно наблюдать еще на одном опыте.

Опыт № 7. Опрокинутую колбу соединяют резиновой трубкой с жидкостным манометром. Сверху на колбу кладем лоскут ткани, которую смачиваем в спирте.

Учитель: почему в коленце манометра, присоединенного к в колбе, уровень жидкости повышается

Ученики: Испаряясь, спирт поглощает энергию из воздуха, воздух в колбе охлаждается, давление в колбе уменьшается, об этом можно судить по повышению уровня жидкости в колене манометра, присоединенного к колбе.

Учитель: Мы говорили, что может происходить и обратный процесс: переход молекул из пара в жидкость – конденсация. Конденсация пара сопровождается выделением энергия.

При конденсации: .

Конденсацией пара объясняется образование облаков (мельчайших капелек воды).

Таким образом, испарение и конденсация – это наиболее легко регулируемые способы изменения внутренней энергии вещества. Поэтому испарение и конденсация должны играть в жизнедеятельности человека и животных большую роль. Ребята, вы хорошо знаете, что когда жарко, человек потеет, и наоборот, выходя из воды, даже в жаркий день, вы чувствуете холод. Почему? (Ответы учащихся.)

Учитель: ребята, вы правы, когда жарко – человек потеет. Это хорошо. Для терморегуляции для организма человека важную роль играет потоотделение. Влага, содержащаяся в организме человека, во время жары через поры в эпителии выходят наружу. Потоотделение обеспечивает постоянство температуры тела человека. За счет испарения пота уменьшается внутренняя энергия тела, благодаря этому организм охлаждается. Получается, потея, мы спасаем себя от перегрева организма. Но испарение будет зависеть от окружающей среды, то есть от влажности окружающего воздуха. Нормальной считается влажность 40–60 %.

Когда температура среды имеет большую температуру, чем температура тела человека, то происходит усиленное потоотделение. Обильное выделение пота ведет к охлаждению организма, что помогает работать в условиях высокой температуры. Если влажность окружающего воздуха высока – более 70% , то жить и работать становится тяжело (влажные тропики, красильные цеха заводов). Если влажность меньше 40% при нормальной температуре воздуха, это приводит к усиленной потере влаги организмом, что ведет к его обезвоживанию(пустыни. Металлургические заводы).

Сообщения учащихся

  • Зеленый лист растений. Слайд  13

Улавливая лучи солнца, тонкая и нежная пластинка листа подвергается сильному нагреванию. Сованный с деревьев лист на солнце очень быстро высыхает, а листья на дереве свежие, сочные. Клетки листа всегда наполнены водой, поступающей по сосудам жилок, черешка веток, ствола, корня.

В листьях ели – 66,2% воды, а в листьях березы – 63,7%, а листьях салата – 94,3%. Вода из почвы, поступая в корень, непрерывно по тонким сосудам ствола поднимается вверх к листьям. В листьях вода не только наполняет клетки, и соединившись на свету с углекислым газом, входит в состав сахара, но и распыляясь в межклетниках, испаряется через устьица в воздух.

Испарение воды в солнечный день охлаждает листья. Приложите листок к щеке – вы почувствуете , что он холодит.

Листья испаряют воду в большом количестве. Так, береза испаряет 6 ведер, а дуб – 5 ведер воды в день.

Леса различных пород деревьев испаряют в течение лета с 1 га разное количество воды: еловый лес – 2240 т, буковый лес – 2070 т, дубовый лес – 1200 т, сосновый лес – 470 т. Испарение воды лесом оказывает большое влияние на климат. Над лесом скорее образуются облака. В лесу влажно и оттого в жаркие дни прохладно. Наиболее сильное испарение бывает в вернем ярусе леса, где листья больше нагреваются солнцем и продуваются ветром. Под пологом крон деревьев сумрачно, влажно и прохладно, поэтому и испарение у растений замедленное. В тропических лесах, где особенно влажно, тепло м темно, некоторые имеют оригинальные приспособления увеличивающие испарение..

У одних растений вода собирается каплями по кроям листьев, у других красный цвет листьев способствует большему нагреванию их. Бывает, что листья и стебель покрыты ростами, увеличивающими испаряющую поверхность.

  • “Роль процесса испарения у животных и птиц”

Известно, что верблюды могут не пить 2 недели. Верблюд почти не потеет даже в сорокоградусную жару. Его тело покрыто густой шерстью – шерсть спасает от перегрева и препятствует испарению влаги в организме. Верблюд никогда, даже в самый зной, не открывает рта: ведь со слизистой оболочки ротовой полости. Если открыт рот испаряется много воды. Частота дыхания верблюда очень мала – 8 раз в секунду. За счет этого меньше уходит воды с воздухом. Кроме того температура тела верблюда понижается ночью до 34градусов, а днем в жару повышено до 410С. Это очень важно для экономии воды. У верблюдов есть очень важное приспособление для сохранения воды впрок. Известно, из жира, когда он “ сгорает” в организме, получается много воды – 107 г из жира массой 100 г. Таким образом, из своих горбов верблюд может извлечь воду массой до 50 кг.

Для уравновешивания неизбежной потери воды за счет испарения многие животные всасывают ее через покровы тела в жидком или газообразном состоянии (амфибии, насекомые, клещи). В теплорегуляции птиц большую роль играют воздушные мешки. В жаркое время с поверхности воздушных мешков испаряется влага, что способствует охлаждению организма. В связи с этим вв жаркую погоду птицы открывают клюв.

Учитель: изучав тему “ Испарение” мы выяснили физическую природу явления испарения и конденсации, узнали какую большую роль испарение играет в жизнедеятельности человека , растений и животных, птиц.

Закрепление: качественные задачи и вопросы.

  1. При выходе из реки мы ощущаем холод? Почему? (С поверхности тела вода испаряется, и при этом температура тела уменьшается. Именно потому мы ощущаем холод.)
  2. Почему скошенная трава быстрее высыхает в ветреную погоду, чем в тихую? (В ветреную погоду процесс испарения происходит быстрее.)
  3. В тарелку и стакан налили воду одинаковой массы. Из какого сосуда она испарится быстрее? (Из тарелки так, как площадь поверхности воды больше.)
  4. Почему канистру с бензином нельзя отставлять открытой? (Бензин из канистры без крышки будет испаряться. Чтобы этого не происходило, необходимо канистру закрывать крышкой.)
  5. Когда белье открытой форточкой высыхает быстрее: при открытой или закрытой форточке? (Однозначно ответить на этот вопрос нельзя. Необходимо знать о влажности воздуха на улице. О разности температур на улице и в квартире. Только зная эти данные, можно ответить на вопрос.).
  6. В холодильниках камера для охлаждения используют быстро испаряющие жидкости – фреон, аммиак. Почему не используют воду? (Используют жидкости, которые быстро испаряются. Вода испаряется достаточно медленно.)

Домашнее задание группам учащихся:

  • Практические работы по теме “ Испарение”

Задание на дом, для учащихся увлеченных биологией

  1. Какая сторона листа испаряет большее количество воды? Чтобы ответить на этот вопрос, возьмите три свежесрезанных листа пеларгонии. Один поставьте в воду, налитую в пробирку, у второго листа смажьте вазелином верхнюю часть и также поставьте в пробирку с водой, а у третьего листа смажьте нижнюю строну и поставьте в третью пробирку с водой. Уровень воды в пробирках должен быть одинаковым, а сверху нужно налить немного растительного масла, чтобы вода не испарялась с поверхности. Поставьте пробирки на освещенное окно (поместите их, перед тем как заполнить водой, в баночку из-под майонеза и закрепите вертикально ватой.). Через 5–6 дней запишите ответ на вопрос , поставленный в начале задания. Это и будет вывод по проведенному опыту.
  2. Хорошо рассмотрите схематические рисунки результатов опытов и подготовьте рассказ и выводы по каждому опыту. Обратите внимание на то, что на схеме 3 отмечены стороны листа: н – нижняя, в – верхняя. Сделайте общий вывод по всем этим опытам, отметив значение изучаемого явления в жизни растения и в природе. (Рисунок 1).
  3. Поставьте один из опытов по рис .1.
  4. Проведите следующий опыт. В два прозрачных сосуда(модно в баночки из-под майонеза) налейте одинаковое количество воды, в один поместите побеги пеларгонии, бальзамина, колеуса (можно свежесорванны лист пеларгонии). Отметьте уровень воды (можно взвесить), налейте немного растительного масла (чтобы предохранить воду с поверхности ), поставьте один сосуд в теплое место (на освещенное окно), а другой – в холодное место(можно между рамами). Наблюдайте , что происходит, а через неделю оформите свои наблюдения в виде таблицы в тетрадях.

Дневник наблюдений за испарением воды растениями

Варианты опытов Высота воды в пробирке Высота испарившейся воды
В начале опыта В конце опыта
Опыт проведен в тепле (+ 200С )
Опыт проведен на холоде (+2 – 0 0 С).

Выводы по опыту

Задачи на испарение, с биологическим содержанием.

Известно , что кукуруза испаряет в сутки 800 г воды, капуста – на 200 г больше, береза – в 80 раз больше, чем капуста, подсолнечник – столько же , сколько кукуруза, а – дуб – в 50 раз больше, чем капуста. Подсчитайте, сколько граммов воды испаряют за сутки капуста, береза, подсолнечник, кукуруза и дуб

Овес на площади 1 га за вегетационный период испаряет 2.277 760 л воды. Сколько образовалось за этот период сухого вещества растений, если известно, что на образование 1 г у овса затрачивается 597 г воды? Куда девалась остальная вода? Какое значение для растений она имела?

  • Логический практикум “ Испарение”

Задание на дом для учащихся, увлеченных физикой и математикой.

Существенные признаки понятия “ испарение”

  1. Все жидкости при любой температуре испаряются.
  2. При испарении жидкость охлаждается.
  3. Скорость испарения зависит от: 1) температуры; 2) рода жидкости; 3) площади поверхности; 4) скорости движения окружающего воздуха.

Проведите следующие опыты, ответьте на вопросы и определите, какой существенный признак понятия “ испарение” отражает данный ответ, присвоив им соответствующие номера: 1; 2; 3; – 1), 2), 3, 4).

Опыт № 1. Приготовьте в стакане насыщенный раствор соли в горячей воде и дайте постоять несколько дней. Стакан покроется снаружи и изнутри солью. Как соль попала снаружи стакана? Насыщенный раствор соли в горячей воде налейте в блюдце и дайте постоять. По мере испарения соль откладывается кольцами на блюдце. Почему? В каком случае испарение происходит быстрее, в стакане или на блюдце? Где в природе наблюдаются подобные явления?

1; 2; 3 – 1), 2), 3), 4).

Опыт № 2. При помощи термометра и мокрой тряпочки, проверить опытом, что скорость испарения жидкости с поверхности зависит:

а) температуры; б) от движения воздуха над испаряющейся жидкостью;

Объяснить наблюдаемое явление с молекулярной точки зрения.

1; 2; 3 – 1), 2), 3), 4).

Опыт № 3. В два широких сосуда налить поровну горячей воды одной и той же температуры. На поверхность воды одного из них поместить 3-4 капли масла. Проверить с помощью термометра, одинаковая ли будет температура воды в этих сосудах через некоторое время.

1; 2; 3 – 1), 2), 3), 4).

Опыт № 4. Если на холодную и нагретую металлическую пластинки поместить по 3-4 капли воды, то с какой из них вода испаряется быстрее? Объяснить, почему и проверить на опыте.

1; 2; 3 – 1), 2), 3), 4).

Опыт № 5. Имеются две пробирки (пузырьки из-под пенициллина) с одинаковым количеством воды. Одна обернута марлей, смоченная водой, вторая одеколоном. Проверить с помощью термометров, одинакова ли температура воды в обеих пробирках. Ответ объясните.

1; 2; 3 – 1), 2), 3), 4).

  • Фантастический проект. (Для желающих.)

Все-таки замечательная наша планета. Ее уникальное отличие от других планет – наличие сравнительно большого количества воды. Это ограничивает колебания температуры на планете в пределах, позволяющих существовать жизни на основе углерода (нам с вами). На Марсе если и есть вода, то крайне мало, чтобы она могла служить регулятором температуры. И атмосфера такая редкая и прозрачная. На Венере – плотнейшая атмосфера из СО2. Атмосферное давление в триста раз больше, чем на Земле. Планета-парник. Температура – около 350 0С и днем и ночью. Настоящая сковородка для нас. Там мало воды , она существует в виде пара в верхних слоях атмосферы и в очень малых количествах. А ведь можно подумать о преобразовании этой планеты. Давайте дерзать преобразование Венеры, пока в виде фантастического проекта!

Задание на дом:§ 16 № 1096–1100.

25.05.2011

xn--i1abbnckbmcl9fb.xn--p1ai

какое значение имеет испарение для растений

1. Охлаждение 2. Поддержание притока свежих соков с минеральными солями 3)испарение помогает растениям регулировать свою температуру Очень часто представляют себе, будто без испарения невозможно было бы питание растения. Растения, говорят, всасывают корнями пищу из почвы, а для того, чтобы всасывать ее, они должны испарять воду с другого конца. Но эти рассуждения грешат с двоякой точки зрения: во-первых, испарение и вызываемое им движение воды – не единственный нам известный механизм, доставляющий растению минеральные вещества из почвы; а во-вторых, для снабжения растения необходимым количеством минеральных веществ нет надобности в таких громадных количествах воды как те, которые испаряются растением.

Воззрение на испарение, как на процесс, обеспечивающий растение питательными веществами, было возможно, когда полагали, что растение всасывает питательные вещества, приблизительно как светильня масло. Но несостоятельность такого элементарного представления была доказана в начале столетия Соссюром, а позднее, благодаря успехам физики в исследовании явлений так называемого осмоса* и диффузии** стало возможно и более удовлетворительное понимание процесса принятия питательных веществ.

Всякое вещество, растворенное в воде, стремится равномерно рассеяться, диффундировать во всей массе доступной ему воды.

…Таким образом растение, приходящее своими корнями в прикосновение с почвенной жидкостью, должно проникаться, насыщаться растворенными в жидкости веществами, даже если бы самая жидкость не всасывалась. Конечно, это движение очень медленно, но мы могли бы его ускорить, слегка взбалтывая раствор от времени до времени. Такое взбалтывание, как справедливо указал голландский ученый де Фриз, действительно происходит в живых клетках вследствие движущейся в них протоплазмы. Следовательно, в явлении диффузии, в связи с движением протоплазмы мы имеем уже механизм для доставления питательных веществ из почвы.

Но этого мало. Корни растений, помимо всякого испарения, способны всасывать воду из почвы и гнать ее в стебли и листья. По примеру немецких ботаников мы называем это явление корневым давлением или напором корня. Вот как обнаруживается это явление. Срежем стебель какого-нибудь растения почти вровень с почвой и на оставшийся отрезок стебля надвинем стеклянную трубочку, наполнив ее предварительно водой. Скоро мы заметим, что из трубочки начнет вытекать вода, и убедимся, что вытечет воды значительно более того, что могло заключаться в обрубке стебля и корня. Значит, эта вода не выжимается только из корня, а всасывается им из почвы и гонится в стебель. Мы можем измерить силу этого напора воды через корень. В крапиве, например, этого напора было бы достаточно, чтобы поднять воду на высоту более 4 метров.

По классическим определениям Тельза, в виноградной лозе этот напор вытекающего сока мог бы поднять воду более чем на 12 метров. Нет даже надобности калечить растение для того, чтобы обнаружить это явление. Стоит любое растение, например молодые всходы овса или кукурузы, накрыть колпаком, и через несколько времени на верхушке былинок появятся капельки, которые будут скатываться и вновь появляться, указывая на выталкивание воды из тканей.

Итак, ионы солей могут проникать сквозь клеточные стенки корневых волосков осмотически* (с помощью осмоса) . Для транспортировки их по всему организму используется движение воды по проводящим тканям. Давление для этого создают, опять-таки, сами корни.

Следовательно, растения и без испарения могли бы быть обеспечены притоком воды из почвы. Таким образом, вполне допустимо, что растение во многих случаях могло бы покрыть свою потребность в воде для питания без содействия испарения.

otvet.mail.ru

Роль испарения и конденсации в жизни человека и животных

[ссылка заблокирована по решению администрации проекта] 1.Организационный момент.

Ребята, сегодня мы продолжим разговор об агрегатных состояниях веществ и их взаимных превращениях. Какие явления мы уже рассмотрели? (Плавление, отвердевание) .

Совсем недавно ушли жаркие и душные летние дни, когда нас спасали напитки из холодильника. Приятно утолить жажду любимой холодненькой кока-колой. Прохладительные напитки всегда должны быть холодными. Хорошо, если рядом холодильник. А если в походе? Да еще в пустыне? Как тогда быть?

Наверное, всем известно, что африканский слон имеет огромные уши. Удивительная величина их не случайна. К концу этого урока мы сможем ответить на эти и подобные вопросы.

( Во время рассказа демонстрирую рисунки из энциклопедии “Живой мир”)2. Изучение нового материала.

Изменением агрегатного состояния вещества является также процесс перехода жидкости в газ (пар) . Как этот процесс будет называться? Кто попробует записать это определение на доске?

Обратный же процесс называется конденсацией.

Парообразование может происходить как в виде испарения, которое происходит с поверхности жидкости, так и в виде кипения. (Запись на доске)

Наша задача – разобраться, как происходит процесс испарения, и научиться объяснять происходящее с точки зрения молекулярно-кинетической теории.

Рассмотрим, каким образом происходит процесс испарения. (Рассказ учителя и беседа с учащимися по схеме на графопроекторе о молекулах внутри жидкости и молекулах поверхностного слоя) .

Далее по схеме на графопроекторе рассказ о том, как происходит испарение и конденсация на основе МКТ.

Более подробно мы сегодня рассмотрим испарение и найдем ответы на следующие вопросы: что же именно происходит с жидкостью (и ее молекулами) во время испарения; от чего зависит скорость испарения; какую роль играет этот процесс в жизни человека, животных, растений.

Для этого мы будем работать в группах, поставим ряд опытов и сделаем определенные выводы.3. Работа в группах (5 минут) . (Смотри карточки для работы в группах. )4. Выступление “спикеров”.

1) уменьшение температуры жидкости при испарении

Беседа, в результате которой делаются выводы и запись в тетради:

“Энергичные молекулы улетают, следовательно, внутренняя энергия уменьшается, и уменьшается температура тела, с поверхности которого идет испарение”.

2) зависимость от температуры

3) зависимость от площади

4) зависимость от рода жидкости

5) зависимость от ветра

6) испарение в жизни растений

После выступления этой группы можно использовать дополнительный материал, например такого содержания:

“Толстые и колючие кусты не похожи на другие растения. Семейство этих колючих уродцев живет в основном в пустынях, там, где мало влаги, и если у всех развивается пластинка листа, то у кактуса развивается основание. Здесь и накапливается сокровище – вода. Отсутствие листьев – это приспособление к засушливому климату. Чтобы меньше испарять влаги, кактусы покрылись толстой кожицей, поверх которой находится слой воска, или густой волосяной покров. Самые крупные кактусы накапливают до двух тысяч литров воды.

Бегонии с большими красивой формы листьями обитают в тропиках Южной Америки, Азии, в Индии.

Эвкалипт – одно из самых высоких деревьев в мире. Растет в Австралии (100 м) и в пустынях Центральной Австралии, но уже кустарники высотой 2 – 3 метра. Эти растения приспосабливаются к жаре. Листья эвкалиптов на длинных черешках и всегда поворачиваются параллельно к падающим солнечным лучам”.

Рассказ иллюстрируется рисунками из энциклопедий, открытками.

7) “Занимательная физика” (выступление ребят по статьям книги Перельмана)5. Закрепление материала.

Рассмотрим вопросы, которые были поставлены в начале урока.

- Так зачем же африканскому слону столь большие уши, в отличие от

otvet.mail.ru

Сообщения учащихся о роли испарения в жизни растений и животных

Сообщения учащихся о роли испарения в жизни растений и животных.

Испарение в жизни растений

Для нормального существования растительной клетки необходимо ее насыщение водой. Для водорослей оно является естественным следствием условий их существования, у растений суши достигается в результате двух противоположных процессов: поглощения воды корнями и испарения. Для успешного фотосинтеза хлорофиллоносные клетки наземных растений должны поддерживать самое тесное соприкосновение с окружающей атмосферой, снабжающей их необходимым для них углекислым газом; однако это •тесное соприкосновение неизбежно приводит к тому, что насыщающая клетки вода непрерывно испаряется в окружающее пространство, и та же солнечная энергия, которая доставляет растению необходимую для фотосинтеза энергию, поглощаясь хлорофиллом, способствует нагреванию листа, а тем самым и усилению процесса испарения.

Очень немногие, и притом низкоорганизованные, растения, например мхи и лишайники, могут выдерживать длительные перерывы в водоснабжении и переносить это время в состоянии полного высыхания. Из высших растений к этому способны лишь некоторые представители скальной и пустынной флоры, например осока, распространенная в песках Каракумов. Для громадного большинства наших растений такое высыхание было бы смертельно, а потому исход воды у них примерно равен ее приходу.

Чтобы представить себе масштабы испарения воды растениями, приведем такой пример: за один вегетационный период одно Цветение подсолнечника или кукурузы испаряет до 200 кг и более воды, т. е. солидных размеров бочку! При таком энергичном расходе требуется не менее энергичное добывание воды. Для этого корневая система, размеры которой огромны счеты числа корней и корневых волосков для озимой ржи дали следующие удивительные цифры: корней оказалось почти четырнадцать миллионов, общая длина всех корней 600 км, а их общая поверхность около 225 м2. На этих корнях было около 15 миллиардом корневых волосков общей площадью в 400 м2.

Количество воды, расходуемое растением в течение своей жизни, в большой степени зависит от климата. В жарком сухом климате растения потребляют не меньше, а иногда даже больше воды, чем в климате более влажном, у этих растений более развита корневая система и меньшее развитие имеет листовая поверхность. Меньше всего расходуют воду растения сырых, тенистых тропических лесов, берегов водоемов: у них тонкие широкие листья, слабые корневая и проводящая системы. У растений засушливых местностей, где воды в почве очень мало, а воздух горяч и сух, наблюдаются разнообразные приемы приспособления к этим суровым условиям. Интересны растения пустынь. Это, например, кактусы растения с толстыми мясистыми стволами, листья которых превратились в колючки. У них незначительная поверхность при большом объеме, толстые покровы, мало проницаемые для воды и водяного пара, с немногочисленными, почти всегда закрытыми устьицами. Поэтому даже в сильную жару кактусы испаряют мало воды.

У других растений зоны пустынь (верблюжьей колючки, степной люцерны, полыни) тонкие листья с широко открытыми устьицами, которые энергично ассимилируют и испаряют, за счет чего значительно снижается температура листьев. Часто листья бывают покрыты густым слоем серых или белых волосков, представляющих как бы полупрозрачный экран, защищающий растения от перегревания и снижающий интенсивность испарения.

Многие растения пустынь (ковыль, перекати-поле, вереск) имеют жесткие, кожистые листья. Такие растения способны переносить длительное увядание. В это время их листья скручиваются в трубку, причем устьица находятся внутри нее.

Условия испарения зимой резко меняются. Из мерзлой почвы корни не могут всасывать воду. Поэтому за счет листопада уменьшается испарение влаги растением. Кроме того, при отсутствии листьев меньше снега задерживается на кроне, что предохраняет растения от механических повреждений.

Роль процессов испарения для животных организмов

Испарение - это наиболее легко регулируемый способ уменьшения внутренней энергии. Всякие условия, затрудняющие испарение, нарушают регулирование теплоотдачи организма. Так, кожаная, резиновая, клеенчатая, синтетическая одежда затрудняет регулировку температуры тела.

Для терморегуляции организма важную роль играет потоотделение, оно обеспечивает постоянство температуры тела человека ли животного. За счет испарения пота уменьшается внутренняя энергия, благодаря этому организм охлаждается.

Нормальным для жизни человека считается воздух с относительной влажностью от 40 до 60%. Когда окружающая среда имеет температуру более высокую, чем тело человека, то происходит усиленное, обильное выделение пота ведет к охлаждению организма, помогает работать в условиях высокой температуры. Однако такое активное потоотделение является значительной нагрузкой для человека! Если еще при этом абсолютная влажность высока, то жить и работать становится еще тяжелее (влажные тропики, некоторые цеха, например красильные).

Относительная влажность ниже 40% при нормальной температуре воздуха тоже вредна, так как приводит к усиленной потере влаги организмом, что ведет к его обезвоживанию.

Очень интересны с точки зрения терморегуляции и роли процессов испарения некоторые живые существа. Известно, например, что верблюд может две недели не пить. Объясняется это тем, что он очень экономно расходует воду. Верблюд почти не потеет даже в сорокаградусную жару. Его тело покрыто густой и плотной шер­стью - шерсть спасает от перегрева (на спине верблюда в знойный полдень она нагрета до восьмидесяти градусов, а кожа под ней - лишь до сорока!). Шерсть препятствует и испарению влаги из организма (у стриженого верблюда потоотделение возрастает на 50%). Верблюд никогда, даже самый сильный зной, не раскрывает рта: ведь со слизистой оболочки ротовой полости, если открыть широко рот, испаряете много воды! Частота дыхания верблюда очень низка - 8 раз минуту. За счет этого меньше воды уходит из организма с воздухом. В жару, однако, частота дыхания его увеличивается до 16 раз в минуту. (Сравните: бык при этих же условиях дышит 250, а собака - 300-400 раз в минуту.) Кроме того, температура тела верблюда понижается ночью до 34°, а днем, в жару, повышается до 40 41°. Это очень важно для экономии воды. У верблюда имеется так же очень любопытное приспособление для сохранения воды впрок Известно, что из жира, когда он «сгорает» в организме, получается много воды - 107 г из 100 г жира. Таким образом, из своих горбов верблюд при необходимости может извлечь до полцентнера воды.

С точки зрения экономии в расходовании воды еще более удивительны американские тушканчиковые прыгуны (кенгуровые крысы). Они вообще никогда не пьют. Кенгуровые крысы живут и пустыне Аризона и грызут семена и сухие травы. Почти вся вода, которая имеется в их теле, эндогенная, т.е. получается в клетках при переваривании пищи. Опыты показали, что из 100 г перловой крупы, которой кормили кенгуровых крыс, они получали, переварив и окислив ее, 54 г воды!

В теплорегуляции птиц большую роль играют воздушные мешки. В жаркое время с внутренней поверхности воздушных меш ков испаряется влага, что способствует охлаждению организма. В связи с этим птица в жаркую погоду открывает клюв.

rud.exdat.com


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта