Особенности строения столбчатой ткани: взаимосвязь структуры и функций. Губчатая ткань растений
Особенности строения столбчатой ткани: взаимосвязь структуры и функций
Особенности строения столбчатой ткани листа обусловливают выполнение его важнейших функций. Благодаря этому осуществляется жизнедеятельность всего растительного организма. В нашей статье мы рассмотрим отличительные черты анатомии и физиологии столбчатой ткани.
Особенности внутреннего строения листа
В растении столбчатая ткань располагается в листе. Как устроен этот орган? Снаружи он покрыт кожицей. Эта разновидность покровной ткани состоит из плотно прилегающих живых клеток, среди которых располагаются устьица. За счет данных структур обеспечивается проникновение молекул газообразных веществ: кислорода - в растение, а диоксида углерода и паров воды - в обратном направлении.
Под кожицей располагаются клетки основной фотосинтезирующей ткани. Они крупные, рыхло расположены, поэтому составляют основу листа. Проводящую и опорную функцию выполняют жилки - совокупность элементов проводящей и механической ткани. Вместе они формируют сосудисто-волокнистые пучки.
Основная ткань листа
Основная ткань состоит из клеток двух типов: столбчатых и губчатых. Последние имеют овальную форму, а в промежутках между ними располагаются межклетники. Данные структуры занимают до четверти листа. Элементы основной ткани с межклетниками образуют основу листа, запасают различные вещества, участвуют в газообмене. Особенности строения столбчатой ткани делают ее главной фотосинтезирующей структурой листа.
Столбчатая ткань: место расположения
Рисунок столбчатой клетки ткани листа иллюстрирует и особенности ее расположения. Она находится прямо под кожицей с верхней стороны листьев. Клетки данной ткани, действительно напоминающие столбики, могут размещаться в один или несколько рядов. Такое расположение объясняется ее основной функцией - осуществлением фотосинтеза. Оно оптимально для поглощения кислорода и солнечного света.
Особенности строения столбчатой ткани
Столбчатая является разновидностью основной ткани растения. Ее клетки имеют цилиндрическую форму, расположены вертикально и плотно прилегают друг к другу. Количество слоев столбчатой ткани напрямую зависит от интенсивности солнечного излучения. Так, в листьях растений, которые растут на свету, их может быть несколько. А у теневыносливых видов данная ткань развита слабо.
Рисунок столбчатой клетки ткани листа демонстрирует ее основные структуры. Это тонкая оболочка, ядро, митохондрии, комплекс Гольджи, ЭПС. Центральное положение и основной объем клетки занимает вакуоль. Эта полость, заполненная клеточным соком, является своеобразным резервуаром для запаса воды и растворенных в ней веществ. Благодаря наличию хлоропластов, клетки столбчатой ткани имеют зеленый цвет, придавая его и всему листу.
Фотосинтезирующими могут быть разные части растений. К примеру, у кактусов, листья которых редуцированы в колючки, эту функцию осуществляет мясистый стебель. К фотосинтезу способны и многие одноклеточные организмы: хламидомонада, эвглена зеленая, цианобактерии.
Столбчатая ткань: выполняемые функции
Столбчатые клетки содержат наибольшее количество хлоропластов по сравнению с другими элементами основной ткани. Поэтому их главная функция - осуществление фотосинтеза. Его значение сложно переоценить, поэтому его масштабы часто называют планетарными.
Этот фотохимический процесс происходит на внутренней мембране хлоропластов при условии наличия солнечного света, углекислого газа и воды. Продуктами данной реакции является моносахарид глюкоза. Его растение использует в качестве источника энергии, необходимой для его роста и развития. Соединяясь в цепочки, глюкоза образует сложный углевод крахмал. Его гранулы откладываются про запас в цитоплазме в виде включений.
Вторым продуктом реакции фотосинтеза является кислород. Этот газ - необходимое условие аэробного дыхания, которое является основным признаком всего живого на планете. Суть этого процесса заключается в окислении органических веществ с высвобождением энергии их химических связей. Особенности строения столбчатой ткани обеспечивают и ориентацию хлоропластов, которая позволяет им как можно эффективнее улавливать солнечный свет.
Итак, столбчатая ткань является разновидностью основной. Ее клетки имеют цилиндрическую вытянутую форму и вертикально располагаются под верхней кожицей листа. Функции столбчатой ткани обусловлены особенностями строения: ее клетки содержат зеленые пластиды хлоропласты и обеспечивают протекание фотосинтеза. Этот процесс планетарного значения обеспечивает главные условия жизни. В его результате растения обеспечиваются органическими веществами, за счет которых питаются, а все остальные организмы - кислородом, необходимым для дыхания.
fb.ru
Особенности строения столбчатой клетки ткани. Палисадная (столбчатая) ткань пластинки листа растений
Дифференциация клеток и тканей играет большую роль в развитии организма. Разделение обязанностей для каждой клетки можно сравнить с разделением труда на фабрике: если каждая единица выполняет только присущую ей функцию, общий результат можно получить в более короткий срок. То же касается и любого живого организма, качество жизни которого зависит от его сложности развития и занимаемой эволюционной ниши.
Что такое клетка: биология жизнедеятельности организма
Клетка – это структурная и функциональная единица всего живого. Исключение разве что составляют вирусы – неклеточная форма жизни. Ткань – это совокупность клеток и межклеточного вещества, имеющих одинаковое строение, функции и происхождение. Биология функции клетки основана на ее строении, которое диктуется степенью организации животного или растения.
Дифференциация клеток у животных и растений происходит еще в онтогенезе. Каждая из них происходит из ткани-предшественника: если у животных это стволовые клетки, то у растений - меристема.
Что такое клетка? Биология и структура клеток позволяет классифицировать их на две группы.
1. Эукариотические клетки. К ним относятся структурные единицы животного и растительного организма.
2. Прокариотические клетки. Они отличаются отсутствием ядра и других органелл. К прокариотическим организмам относятся бактерии.
Строение животной клетки
Изучением структуры клеток занимается биология. Строение животной клетки было открыто Гуком еще в 19 веке, однако полностью оно было изучено ближе к 20 тысячелетию.
Клетка животных представляет собой цитоплазму, окруженную плазмалеммой. В цитоплазме «плавают» различные органеллы и включения. К органеллам относятся лизосомы, митохондрии, аппарат Гольджи, эндоплазматическая сеть, пероксисомы. Включения – это вещества, которые растворены в цитозоле и ждут, пока они будут нужны для построения структур клетки.
В отличие от растительной, в животной клетке отсутствует клеточная стенка, вакуоль и хлоропласты. Отсутствие дополнительного покровного комплекса сказывается, например, на особенностях деформации плазмалеммы во время деления.
Строение растительной клетки
Внутреннее содержимое растительной клетки намного богаче, нежели животной. Во-первых, здесь можно обнаружить двумембранные структуры – хлоропласты. И функция заключается в обеспечении процесса фотосинтеза, который очень важен для растений с точки зрения дополнительного источника энергии наряду с дыханием, а также глюкозы.
Растительная клетка снаружи дополнительно покрыта клеточной стенкой. Она состоит из целлюлозных волокон, а в месте контакта двух соседних клеток еще присутствует пектин. Здесь столь мощный наружный комплекс не позволяет контактировать так, как это делают животные клетки. Главную роль в транспорте играет строение клетки. 6 класс, биология в котором изучалась еще не так глубоко, не дает информации о десмосомах – специальных порах в клеточной стенке, которые служат для перемещения веществ из одной клетки в другую. С помощью этих структур могут контактировать вакуоли через небольшой по диаметру мостик.
Вакуоль – это еще одно отличие животной клетки от растительной. Ее функция заключается в запасании химически активных алкалоидов, кислот, кальция, которые помогают стабилизировать осмотическое давление. Более того, алкалоиды и кислоты могут отрицательно действовать на содержимое цитоплазмы, поэтому они должны находится в изолированной органелле со специальной мембраной, через которую невозможно проникновение молекул такого размера. Мембрана вакуоли называется тонопластом.
Все особенности строения столбчатой клетки ткани идентичны приведенному плану состава растительных клеток.
Прокариотические клетки
Бактерии (как представители прокариот) являются эволюционно менее развитыми организмами. Бактериальная клетка представляет собой цитозоль, окруженную мембраной, клеточной стенкой и слизистой капсулой. Внутри нет тех органелл, которые встречаются у эукариот. Ядро также отсутствует, а весь генетический материал представлен у большинства бактерий лишь одной хромосомой.
Метаболизм клетки поддерживается специальными структурами – мезосомами. Они представляют собой вырост цитоплазматической мембраны внутрь клетки, а их функция заключается в дыхании или фотосинтезе, если речь идет о фотосинтезирующих бактериях.
Отсутствие ядра помогает увеличить скорость транскрипции и трансляции. Также повышается скорость бинарного деления клетки: колония бактерий может удваивать свою численность каждые 20 минут.
Функции клетки
Клетка как структурная и функциональная единица всего живого может выполнять различные функции, связанные с поддержанием жизнедеятельности организма. Главную роль здесь играет строение клетки. 6 класс, биология в котором изучалась еще на начальном уровне, диктует нам основные особенности организации клеточного аппарата.
Детерминация клеток растений – это многоступенчатый процесс, в результате которого из меристемы образуется множество других тканей организма: покровные, выделительные, проводящие, механические. Клетки каждой из этих тканей отличаются друг от друга по строению и выполняемым функциям. Например, задача покровных клеток - не пропускать чужеродные агенты внутрь организма, когда проводящие элементы нужны для транспорта органических и минеральных веществ по растению.
Взаимодействие клеток достигается специальными контактами, которые носят название плазмодесмы. Регуляция работы происходит на биохимическом уровне с помощью различных ферментов и метаболитов.
Лист – вегетативный орган растений
Функция вегетативных органов заключается в поддержании жизнедеятельности растения на оптимальном уровне. Лист также относится к этой группе, поэтому его основная задача – это фотосинтез.
Столбчатая ткань – это основная фотосинтезирующая ткань листа. Она состоит из паренхиматозных клеток, в которых находится много хлоропластов. Клетки столбчатой ткани находятся ближе к верхней поверхности листа, чтобы получать больше солнечной энергии и, соответственно, увеличить скорость и продуктивность фотосинтеза.
Также в состав листа входит губчатая ткань, которая также имеет хлоропласты, однако их число намного меньше по сравнению с полисадной паренхимой. Дело в том, что основная функция клеток губчатой ткани – это газообмен за счет больших межклетников.
Особенности строения столбчатой клетки ткани листа
Палисадная паренхима находится в верхних слоях листа, чтобы аккумулировать большее количество солнечной энергии. Это нужно для эффективного протекания световой и темновой стадий фотосинтеза, которые проходят только в условии освещения.
Столбчатая клетка – это вытянутая клетка цилиндрической формы, основная функция которой – процесс фотосинтеза. Для этого в клетках столбчатой ткани находятся несколько десятков хлоропластов, которые расположены по периферии клетки. Такое расположение в пространстве цитозоля объясняется увеличением поверхности поглощения солнечных лучей.
У С4-растений тропических и экваториальных лесов строение листа немного отличается. У них столбчатая ткань находится в самом верхнем и в самом нижнем слоях органа. Связано это с особенностями темновой стадии фотосинтеза у этих растений.
Особенности строения столбчатой клетки ткани используются растением для повышения эффективности фотосинтеза.
Что такое фотосинтез?
Фотосинтез – это многоступенчатый биохимический процесс, при котором образуется энергия в виде АТФ и глюкозы – углевода, который запасается растением.
Фотосинтез делится на две стадии: световую и темновую. Во время первой стадии происходит фотолиз воды, выделение кислорода как побочного вещества и синтез АТФ, НАДФН. Темновая стадия фотосинтеза представляет каскад последовательных реакций, в результате которых синтезируется глюкоза или аналоги сахаров.
Почему растениям необходим фотосинтез?
Для поддержания нормальной жизнедеятельности растение запасает большое количество крахмала. Крахмал – это полисахарид, мономером которого является глюкоза. Не удивительно, что в организме растения из всех возможных классов органических веществ наибольший процент занимают углеводы.
Особенности строения столбчатой клетки ткани позволяют эффективно поглощать световую энергию, которая необходима для протекания биохимических реакций фотосинтеза. Во время темновой стадии синтезируется глюкоза и другие гексозы, которые и запасаются в виде больших полимерных молекул крахмала в паренхимных клетках. Даже в самих хлоропластах порой можно наблюдать крахмальные зерна.
fb.ru
Губчатая ткань мезофилла пластинки листа растений
Губчатая ткань мезофилла пластинки листа растений
Клетки губчатой ткани более или менее изодиаметричны и, как правило, располагаются очень рыхло. Через межклетники свободно осуществляется газообмен. СО2, поступающий через устьица внутрь листа, свободно распределяется по всей толще мезофилла, а выделяемый при фотосинтезе О2 по межклетникам поступает к устьицам и через них выделяется наружу, в атмосферу. Благодаря развитой системе межклетников мезофилл обладает громадной внутренней поверхностью, во много раз превышающей наружную поверхность листа. У некоторых растений поверхность мезофилла увеличена за счет складок клеток, вдающихся внутрь (так называемая складчатая паренхима ряда хвойных).
На толщину мезофилла и особенности палисадной и губчатой тканей существенное влияние оказывают факторы внешней среды, в частности интенсивность освещения. У теневыносливых растений палисадная ткань нередко состоит лишь из одного слоя ворончатых по форме клеток. Наоборот, у растений открытых местообитаний палисадная паренхима обычно насчитывает несколько слоев клеток и имеет значительную общую толщину.
У растений умеренной климатической зоны, где вода в почве имеется в достаточном количестве, палисадная ткань, как правило, размещена на верхней стороне пластинки, а губчатая - на нижней. Листья с подобной структурой носят название дорсивентральльных . Если палисадная ткань располагается с обеих сторон листа, что свойственно сухолюбивым растениям, лист называется изолатеральным . Изредка встречается центрический лист с радиальной симметрией (пустынные представители семейства маревых).
Ссылки:
medbiol.ru
Клеточное строение листа. Устьица. Губчатая ткань листа
1. Какое строение имеют клетки кожицы листа?
Кожица листа состоит из одного слоя живых клеток покровной ткани . Клетки кожицы листа прозрачны и плотно прилегают друг к другу. Большую часть клетки кожицы занимает крупная вакуоль с клеточным соком.
2. Чем образованы устьица?
Устьица образованы замыкающими клетками.
3. Благодаря чему происходят смыкание и размыкание клеток устьица?
Устьица открываются, когда в растении много воды: замыкающие клетки набухают, отходят друг от друга, а через устьичную щель из листа выходит водяной пар. При недостатке воды оболочки замыкающих клеток плотно прилегают друг к другу — тогда устьица закрываются, а испарение воды прекращается.
4. Чем отличается губчатая ткань листа от столбчатой?
В губчатой ткани меньше хлоропластов, клетки губчатой ткани неправильной формы. Между клетками находятся крупные межклеткники, заполненные воздухом.
5. В какой из этих тканей имеются межклетники и какова их роль в листе?
В губчатой ткани имеются крупные межклетники заполненные воздухом.
6. Чем образованы жилки листа?
Жилки - проводящие пучки листа состоят из расположенных рядом проводящих тканей — луба ( ситовидные трубки) и древесины (сосуды).
7. По каким тканям проводящих пучков происходит отток из листьев растворов органических веществ?
По ситовидным трубкам луба из клеток основной ткани листа идет отток растворов органических веществ ко всем органам растения.
8. По какой ткани поступают в лист вода и минеральные вещества?
По сосудам древесины в клетки листа поступает вода и растворенные в ней минеральные вещества.
Клеточное строение листа
resheba.com
Губчатая ткань - Большая Энциклопедия Нефти и Газа, статья, страница 1
Губчатая ткань
Cтраница 1
Губчатая ткань имеет характер аэренхимы - ее клетки расположены однорядными цепочками, образующими крупные воздухоносные полости. [1]
Конечно, нельзя отрицать, что относительное развитие палисадной и губчатой ткани отдельных листьев дает указание на то, сильнее или слабее эти листья освещались. Но для того, чтобы установить шкалу светолюбия лесных пород по таким измерениям, необходимо было бы предварительно установить границы применения и степень достоверности метода. [2]
Семенная оболочка / состоит из палисадного эпидермиса, гиподермы, крупноклеточной губчатой ткани, питательной ткани, мелкоклеточной губчатой ткани, алейронового слоя и эндосперма. [4]
Мезофилл листьев головчатотиссовых дифференцирован на палисадную ( дву - или однослойную) и губчатую ткань, клетки последней горизонтально вытянуты от пучка к краям листа. Под пучком имеется небольшой смоляной канал. [5]
Таким образом, по гипотезе Вилыптеттера и Штолля, палисадная паренхима считается пропускающей, а губчатая ткань отражающей. [6]
В некоторых случаях плодовые тела имеют двухслойную ткань, причем верхний слой шляпки состоит обычно из рыхлой, губчатой ткани, а нижний, примыкающий к трубочкам - из более плотной и компактной, иногда суб-желатинозной ткани. [7]
Семенная оболочка / состоит из палисадного эпидермиса, гиподермы, крупноклеточной губчатой ткани, питательной ткани, мелкоклеточной губчатой ткани, алейронового слоя и эндосперма. [9]
Никакая ткань листьев, ни эпидермис и соседние с ним слои, ни палисадная паренхима, которые рассматриваются как малоотражающие из-за прозрачности хлорофилла in vitro, ни губчатая ткань, менее развитая в горах, нежели на равнине, не считаются особым слоем, способным отражать инфракрасные излучения. [10]
При рассмотрении листа с поверхности с обеих сторон видны вытянутые по длине листа клетки эпидермиса с прямыми стенками. Губчатая ткань рыхлая и состоит из разветвленных клеток, вытянутых по ширине листа. В отдельных клетках мезофилла видны пучки тонких рафид и крупные игольчатые кристаллы ( стилоиды) оксалата кальция. [11]
На поперечном срезе листа - клетки эпидермиса более или менее равносторонние с сильно утолщенными наружными стенками и толстым слоем кутикулы, выступающей в виде бугорков; устьица погружены в мезофилл листа. В листьях молодых ветвей палисадная ткань состоит из двух, реже трех рядов клеток; губчатая ткань и межклетники хорошо выражены. В листьях старых ветвей палисадная ткань представлена тремя, реже четырьмя рядами клеток, клетки губчатой ткани неясно выражены. Главная жилка листьев как старых, так и молодых ветвей имеет кристаллоносную обкладку, встречаются друзы оксалата кальция. Эфиромасличные вместилища крупные, округлой или овальной формы, погружены в мезофилл и занимают часто более половины толщины листа; внутри их заметны 1 - 2 слоя выделительных клеток. [12]
Зрелые филлокладии напоминают листья и по внутреннему строению. У них хорошо выражены верхняя и нижняя эпидерма с толстой кутикулой, на обеих сторонах или только на нижней расположены устьица, имеется хло-ренхима, более или менее дифференцированная на палисадную и губчатую ткань. Но что поразительно, эти плосковетки сохранили четкий след своего стеблевого происхождения. В области центральной жилки внутри листа располагается не коллатеральный пучок, а характерный для стебля центральный цилиндр с кольцом из нескольких коллатеральных пучков, разделенных участками паренхимной ткани, по существу настоящая сифоностела. [14]
Если токсичные газы не задерживаются полностью наружными покровами, то в газоустойчивости растений существенную роль начинает играть анатомическое строение внутренних тканей. Чем выше их - плотность, тем слабее развиты межклеточные промежутки и воздухоносные каналы, тем быстрее по ним распространяются газы и, следовательно, сильнее поражаются ткани. Особо важное значение это обстоятельство приобретает у листьев, где располагается так назьшаемая губчатая ткань. Она залегает под палисадным слоем, примыкая к нижнему эпидермису, и характеризуется рыхлым сложением клеток, обилием воздухоносных полостей и ходов. Поэтому листья с плотным мезофиллом оказываются более газоустойчивыми по сравнению с листьями, у которых сильно развита губчатая ткань. Примером высокой газоустойчивости, благодаря указанным особенностям анатомического строения, могут служить суккуленты. В газрустойчивости растений существенное значение имеет физиологическое состояние клеток. При действии физиологически кислых газов решающим оказывается Негличие хлорофилла, который способен оказывать раз рушительное фотсокисляющее действие на цитоплазму клеток, поэтому пестролистные формы, например, у евидины, клена ясене-листного, проявляют повышенную устойчивость к сернистому газу. Газообмен листьев с окружающим воздухом, наблюдаемый при фотосинтезе и дыхании, определяется физиологическим состоянием клеток. Изменение этого состояния неизбежно приводит к соответствующему изменению степени газовых ожогов. [15]
Страницы: 1 2
www.ngpedia.ru
Губчатая паренхима листа - Справочник химика 21
Мезофилл состоит обычно из двух главных типов паренхимы из палисадной паренхимы, клетки которой ориентированы перпендикулярно поверхности листовой пластинки, и губчатой паренхимы—клеток различного размера, образующих рыхлую трехмерную сетку под палисадной тканью или между ее слоями (фиг. 59). Палисадная ткань на поперечном срезе листа представляется значительно более плотной, чем губчатая однако на срезах, параллельных листовой пластинке, видно, что значительная часть поверхности каждой палисадной клетки также соприкасается с воздухом, наполняющим межклетники. [c.233]
У яблони, пораженной ржавчиной, снижение транспирации связано с нарушениями в анатомическом строении листа. Рыхлая ткань губчатой паренхимы заменяется плотной, лишенной межклетников тканью, составленной из столбчатых клеток у больных листьев резко сокращается также число устьиц. [c.645]Важнейшая ткань листа — мезофилл, где осуществляется фотосинтез (рис. 3,17). Покрывающий лист эпидермис, клетки которого, за исключением замыкающих клеток устьиц, не содержат хлоропластов, защищает ткани листа, регулирует газообмен и транспирацию. Система разветвленных проводящих пучков необходима для снабжения тканей листа водой, минеральными и некоторыми органическими веществами и для оттока ассимилятов в другие части растения. Мезофилл обычно дифференцирован на две ткани — палисадную (столбчатую), расположенную под верхним эпидермисом, и губчатую, находящуюся в нижней стороне листа. В палисадном мезофилле клетки вытянуты перпендикулярно поверхности листа и расположены в один или несколько слоев. Клетки губчатого мезофилла связаны друг с другом более рыхло из-за больших межклетников. У большинства растений устьица находятся на нижней стороне листа, обширные межклетники губчатой паренхимы обеспечивают газообмен. Благодаря развитой системе межклетников мезофилл обладает громадной поверхностью, во много раз превышающей наружную поверхность листа. [c.99]
Большие различия в величине осмотического давления наблюдаются даже у клеток одной и той же ткани. Например, у палисадных клеток листа осмотическое давление в полтора-два раза выше, чем у губчатых. И в данном случае различия не случайны, так как установлено, что сильное развитие палисадной паренхимы наблюдается и в пределах одной и той же ткани (табл. 4). [c.72]
Листья, выросшие на ярком свету, имеют, как правило, более развитый столбчатый мезофилл. У растений засушливых ареалов — ксерофитов — палисадная паренхима часто расположена по обеим сторонам листа, а губчатая сильно редуцирована или совсем отсутствует. [c.100]
Микроскопия. При рассмотрении листа с поверхности видны клетки эпидермиса с извилистыми стенками. Устьица только на нижней стороне листа с 4—7 околоустьичными клетками (аномоцитный тип). На нижней стороне листа по жилкам встречаются редкие, длинные простые волоски с тонкими стенками, часто оборванные, состоящие из 7—20 клеток, иногда перекрученные или с отдельными спавшимися члениками. На верхушках город-чатых зубцов при схождении жилок расположена гидатода с сосочковидным эпидермисом и 2—5 крупными водяными устьицами. Клетки губчатой паренхимы с крупными водяными устьицами. Клетки губчатой паренхимы с крупными межклетниками (аэренхима). Жилки сопровождаются млечными трубками с темно-бурым зернистым содержимым (после кипячения в щелочи). [c.310]
Таким образом, негомогенности нельзя избежать, даже применяя разбавленные клеточные суспензии, в которых освещенность одинакова для всех клеток, но не для всех молекул хлорофилла. В более плотных суспензиях можно достичь лишь средней по времени постоянной освещенности всех клеток, и то лишь при очень энергичном размешивании. В слоевищах многоклеточных водорослей или в листьях высших растений несоразмерность в скоростях поглощения света у различных клеток не может быть учтена совсем. Например, поглощение в клетках губчатой паренхимы при всех обстоятельствах бывает значительно слабее, чем в палисадных клетках (фиг. 136). Таким образом, на кривых, представляюнщх скорость фотосинтеза (Р) как функцию концентрации двуокиси углерода или интенсивности света, абсциссы являются средними значениями, усредненными для одной или [c.276]
Выше было указано, что при опытах с листьями высших наземных растений возникает специальный вопрос о прохождении двуокиси углерода через устьица и воздушные ходы, по которым она должна течь, чтобы достигнуть фотосинтезирующих клеток полисадной ткани и губчатой паренхимы. [c.327]
Мозаика. При этом заболевании листья приобретают пеструю (мозаичную) расцветку, в них происходит уменьшение хлорофилла, уплотнение клеток губчатой паренхимы, исчезно вение межклеточных пространств, уменьшение клеток палисадной паренхимы. Все эти нарушения вызывают ослабление роста и развития растения. [c.39]
Последнее, очевидно, связано с нзлшнением анатомического строения лпстьев растении увеличивается губчатая паренхима межклеточного пространства н тем самым улучшается газообмен листьев. Кроме того, метка радпо-активным изотопом фосфора (Р ) суперфосфата, внесенного в почву, позволила установить более быстрое погло-щ,епие фосфора корнями растений, выросших из облученных семян. [c.289]
А И Ах—оболочка кожицы листа 77—палисадная паренхима Г — губчатая паренхима в клетках обоих видов паренхимы видны зернышки хлорофилла X—меж клетные ходы К — отложёну я кальциевой соли щавелевой кислоты (друзы) У—устьица В — дыхательная полость. [c.53]
Через систему заполненных воздухом межклетников идет газообмен между живыми клетками и внещней средой, с которой связывают эту систему устьица (особые поры листа) или чечевички (специализированные щели в стеблях древесных пород). По этим межклетникам к живым клеткам поступают кислород для дькания и диоксид углерода для фотосинтеза. Особенно развита система воздухоносных межклетников в губчатой паренхиме. [c.222]
МЕЗОФИЛЛ (СМ. ТАКЖЕ РИС. 7.3. И 7.4). Эта выполняющая ткань располагается между двумя слоями эпидермиса листа (рис. 6.1) и состоит из модифицированных паренхимных клеток, осуществляющих фотосинтез. Фотосинтетическую паренхиму иногда называют хлоренхимой. Цитоплазма клеток хлоренхимы содержит большое число хлоропластов, в которых и протекают реакции фотосинтеза. У двудольных растений мезофилл состоит из двух четко различающихся слоев верхний слой составляет палисадная паренхима, клетки которой имеют столбчатую форму, а нижний — губчатая паренхима с клетками неправильной формы, содержащими меньше хлоропластов. Фотосинтез вдет главным образом в палисадной паренхиме, а воздухоносные межклетники губчатой паренхимы обеспечивают интенсивный газообмен. [c.224]
Паренхимные клетки мезофилла содержат специализированные органеллы — хлоропласты, — осуществляющие фотосинтез. В хлоропластах находится хлорофилл. У двудольных клетки палисадной паренхимы мезофшша, содержащие больше хлоропластов, располагаются вблизи верхней поверхности листа, что обеспечивает максимальное улавливание света. Сравнительно большая длина этих клеток увеличивает возможности поглощения света. Хлоропласты находятся по периферии клеток палисадной паренхимы. Это позволяет им поглощать максимально возможное количество света и облегчает газообмен. Хлоропласты обладают фототаксисом, т. е. они перемещаются в клетке по направлению к свету. У двудольных губчатая паренхима мезофилла имеет обширные межклетники для эффективного газообмена. [c.341]
Микроскопия. При рассмотрении листа с поверхности видны клетки эпидермиса с извилистыми боковыми стенками, со складчатой кутикулой многочисленные устьица с 3—4 околоустьичными клетками различной величины преобладают на нижней стороне листа. Волоски редкие, головчатые и простые. Головчатые волоски двух типов одни с длинной многоклеточной ножкой и одноклеточной головкой, другие — с одноклеточной ножкой и головкой из 4—6 клеток. Простые волоски из 2—3 (реже 6) клеток, с тонкими стенками. В губчатой паренхиме видны овальные клетки, заполненные мелким кристаллическим песком оксалата кальция при малом увеличении они имеют вид темных, почти черных пятен при большом — сероватые с различимой кристаллической зернистостью Очень редко встречаются клетки с друзами или одиночными кристаллами. [c.297]
Микроскопия. При рассмотрении листа с поверхности видны клетки эпидермиса с верхней стороны — с более прямыми стенками, с нижней — с более извилистыми устьица с обеих сторон с 3—4 околоустьичными клетками различной величины. Волоски двух типов простые — крупные из 2 (реже 5) клеток с тонкими стенками, с грубобородавчатой кутикулой, расположенные главным образом по жилкам и по краю листа и головчатые — более мелкие, с многоклеточной (реже одноклеточной) округлой притупленной головкой на короткой одноклеточной ножке. У молодых листьев головчатых волосков значительно больше, чем у старых. В клетках губчатой паренхимы имеются в большом количестве друзы оксалата кальция. [c.307]
Необходимо иметь в виду, что этот артефакт (кажущаяся компактность расположения клеток мезофилла, наблюдаемая на типичных поперечных срезах листьев) привел к двум ошибочным представлениям относительно внутренней геометрии листа одно из них касается аэрации палисадной ткани, а другое — строения подустьичных полостей. Поэтому важно указать следующее. Во-первых, площадь внутренней поверхности листа обычно на порядок больше, чем площадь наружной его поверхности [774, 775], а палисадная ткань имеет обычно большую, а не меньшую открытую внутреннюю поверхность, чем губчатая паренхима [217]. Во-вторых, хотя непосредственно под каждым устьицем обычно находится более широкое свободное пространство, чем между большинством клеток мезофилла, представление о том, что подустьичные полости как бы выстланы клетка.ми (возникающее при взгляде на поперечный срез листа), совершенно неверно. Устьица — это только ворота, через которые осуществляется вентиляция всей внутренней поверхности мезофилла. Следовательно, хотя при диффузии газов от поверхности клетки до устьичного отверстия длина и извилистость пути в одной части листа могут быть значительно большими, чем в другой, нужно всегда помнить, что обмен как СО.,, так и водяного пара происходит через все открытые участки поверхности клеток, находящихся внутри листа. [c.233]
Рис, 3.9. Схематическое изображение листа в поперечном разрезе. Лист состоит нз двух защитных слоев — верхнего и нижнего эпидермиса, между которыми располагаются активно фотосинтезирующие клеткн. К верхнему эпидермису примыкает слой палисадной паренхимы, а к иижнему — губчатая паренхима. Эпидермис пронизан устьичными щелями, отверстость которых регулируется тургором замыкающих клеток. Межклеточные оздухоносиые пространства создают тот путь, по которому происходит газообмен, т. е. обмен СО, кисло- родом и водяными парами. По мелким сосудистым пучкам в лист поступают вода и минеральные вещества, а из листа оттекают синтезированные сахара. Как верхний, так и нижний эпидермис бывает обычно покрыт воскообразной, практически водонепроницаемой кутикулой. [c.96]
Мезофиты очень разнообразны по своим физиологическим и анатомо-морфологическим признакам. Такое разнообразие характерно не только для различных видов, но и для растений одного и того же вида, находящихся в неодинаковых экологических условиях. Так, известно явление усиления ксероформио-сти строения по мере перехода от нижних листьев к листьям расположенных выше ярусов (закон В. Р. Заленского). [234]. Объясняется это усложнением условий водоснабжения листьев верхних ярусов по сравнению с листьями нижних ярусов листья верхних ярусов подвергаются более интенсивным воздействиям солнечного света, температурных градиентов, режима влажности атмосферы и т. д. У световых листьев дифференцируются и палисадная паренхима, состоящая из плотно прилегающих друг к другу клеток, и губчатая паренхима, в то время как у теневых листьев имеется только рыхлая губчатая ткань. [c.214]
Для осуществления процесса фотосинтеза имеют значение особенности строения листа. К верхней стороне листа прилегает палисадная ткань, клетки которой расположены перпендикулярно, плотно соприкасаются друг с другом и содержат много хлоропластов. Палисадная паренхима является преимущественно ассимиляционной тканью. К нижнему эпидермису прилегает губчатая паренхима с рыхлорасположенными клетками и межклетниками. Это приспособление у растений служит для лучшего проникновения газов в клетки (рис. 21). [c.151]
Каждый из перечисленных органов растительного организма построен из нескольких типов тканей, т. е. групп клеток, которые выполняют определенную физиологическую функцию и имеют сходное морфологическое строение, обеспечивающее реализацию этой функции. По функциональному значению в растениях различают следующие типы тканей образовательные (меристемы), ассимиляционные (хло-ренхима), запасающие, покровные, выделительные, механические (скелетные), проводящие и аэренхиму. Причем в каждом таком типе представлены ткани с более узкой специализацией. Например, к ассимиляционным тканям листа относятся столбчатая и губчатая паренхима, обкладка пучка. К покровным тканям — эпидермис, ризодерма, перидерма, эндодерма и др. [c.28]
Микроскопия. Цельное и резаное сырье. Кусочки листоппй пластинки просветляют (метод приготовления препаратов, см. стр. 859) и рассматривают с поверхности. В зависимости от установки микрометрического винта виден или эпидермис (кожица) с выростами, или мезофилл (мякоть) с жилками, кристаллами и вместилишами. Палисадная ткань имеет вид равномерных, большей частью округлых клеток. Губчатая ткань состоит из разнообразных по форме клеток, часто с крупными межклетниками. В жилках видны тонкие спиральные (иногда пористые) сосуды в один или несколько рядов. Жилки и паренхима в таких препаратах обычно однообразны для различных листьев и поэтому диагностического значения почти не имеют. [c.296]
Порошок. При измельчении мякоть листа в значительной степени разрушается. Жилки обычно разрываются продольно и сопровождаются сохранившимися клетками паренхимы. Нередко можно встретить отдельные фрагменты листа в поперечном сечении с хорошо с0хранивн1имися тканями на таком фрагменте хорошо видны верхний эпидермис, палисадная ткань, губчатая ткань, нижний эпидермис и часто мелкие проводящие пучки. Основное диагностическое значение в порошках листьев обычно имеют те же элементы, что и в препарате листа с поверхности эпидермис, волоски, кристаллы, железки и т. д. Эпидермис в порошке лежит небольшими обрывками (по нескольку клеток), волоски и их обрывки чаще лежат отдельно и лишь изредка прикреплены к эпидермису кристаллы — отдельно и в клетках паренхимы, железки и вместилища — чаще вместе с обрывками окружающей их ткани листа. [c.296]
Согласно современным представлениям, токсический газ, попадая через устьица или эпидермис в лист, растворяется в воде клеточных оболочек и взаимодействует с щгтоплазмой. Первыми повреждаются клетки устьичных полостей, затем клетки губчатой палисадной паренхимы. Газ, растворяющийся в воде, образует кислоту илн щелочь, которые взаимодействуют с протопластом. Часть их нейтрализуется, а часть остается в свободном состоянии. Кислоты разрушают хлорофилл, изменяют pH тканей листа и устойчивость биоколлопдов цитоплазмы, повышают общую окисляемость, увеличивают дисперсность коллоидов и гигроскопичность ткаией, отрицательно влияют на энзиматический аппарат, нарушают обмен веществ в клетках листа [c.523]
chem21.info