Гликоген для набора массы и сжигания жира. Гликоген где содержится в растениях
Гликоген в организме, функции, источники гликогена
Гликоген – сейф для хранения глюкозы. Его роль в организме обусловлена постоянной потребностью человека в энергии, а также поддержанием процессов выработки некоторых гормонов. Так как это вещество отвечает за мобилизацию всех сил в случае высокой степени нагрузки, оставить его без внимания никак нельзя.
Функции гликогена в организме
Гликоген является полисахаридом, образование которого происходит на основе остатков глюкозы, переработанной организмом. Он же представляет собой очень важный и один из главных «сейфов» для хранения глюкозы в тканях, концентрируясь, главным образом, в печени и мышечных волокнах. Поэтому говорят, что печень любит сладенькое – она один из главных центров хранения гликогена, который в свою очередь является главной формой сохранения поступающей с пищей глюкозы. Из-за химических свойств и разветвленной структуры иногда гликоген обозначают как «животный крахмал».
Основная функция гликогена в организме человека – это формирование энергетического запаса, который может быть задействован в таких ситуациях, как резкий спад содержания глюкозы в крови или повышение физической активности в течение короткого промежутка времени. При этом только тот гликоген, который концентрируется в печени, используется организмом для мобилизации сил и повышения активности систем. В среднем, вес этого вещества в печени составляет 5% от ее массы. В мышечной ткани гликоген вырабатывается локально и только в тех случаях, когда резко возрастает нагрузка. Иногда объем его концентрации существенно выше, чем в печени, что может быть обусловлено экстренным поведением человека в чрезвычайной ситуации. Совсем мало гликогена присутствует в клетках почечной ткани, головного мозга и крови.
Осуществляя функцию питания, гликоген расщепляется до глюкозы под действием особых ферментов и сразу же всасывается в кровь. Этот процесс подчинен деятельности нервной и эндокринной системы, поэтому нарушение в работе органов этих систем сразу же ведет к нарушению синтеза и распада гликогена, а значит, и к нарушению процессов питания организма, что может привести, например, к развитию дистрофии мышц.
Без гликогена существование человеческого организма невозможно, поэтому резкое сокращение употребления глюкозосодержащих продуктов приводит, прежде всего, к расстройству иммунной системы.
Избыток и недостаток гликогена
Прежде всего, следует сказать о суточной потребности в гликогене, которая составляет почти 100 грамм. Однако не стоит забывать, что это количество складывается из общего числа употребляемых продуктов, которые содержат глюкозу. К таковым относятся хлебобулочные изделия, сладости, сухофрукты, многие овощи и другие продукты. Поэтому данная норма не должна говорить вам о том, что вы можете легко позволить себе стограммовую шоколадку каждый день!
В то же время средняя потребность в этом веществе может возрастать по некоторым причинам, среди которых:
- резкое увеличение физических нагрузок;
- повышение умственной активности, интеллектуальной деятельности в течение дня;
- при общем недостатке питания.
Обратная ситуация наблюдается при переизбытке глюкозы в рационе, что особенно характерно для сладкоежек и любителей консервов. Также снизить выработку гликогена необходимо, когда нарушена функция печени или развиваются прочие заболевания, связанные с распадом глюкозы и ее усвоением.
Несмотря на то, что в рационе современного человека сахаров очень много, он может столкнуться с тем, что в организме полезной глюкозы будет недостаточно. Выражаться это может в ряде существенных факторов.
1. Развитие апатии. Организму не хватает энергии даже на поддержание настроения! Вместе с тем возникает ощущение негодности, бесполезности, развивается леность, подавленность, желание скрыться от всех и от всего, человек стремится «завернуться в кокон» и спрятаться от всех проблем.
2. Снижается уровень памяти. Если раньше вы на зубок помнили телефоны всех своих друзей и знакомых, то теперь не можете повторить ни одного. Вместе с тем вы труднее воспринимаете информацию, поступающую извне, хуже запоминаете подробности прошедшего дня, не до конца воспринимаете поставленные перед вами задачи, в жизни и в работе. Вместе с памятью часто страдает и зрение.
3. Уменьшение мышечной массы, развитие дистрофии мышечной ткани. Это связано с тем, что клетки не получают достаточного питания, волокна ослабевают и, сначала истончаются, а потом полностью разрушаются, если питание не начинает поступать в организм. Так развивается дистрофия. Те люди, которые совсем не позволяют себе сладкого, даже в сухофруктах и фруктах, вредят себе не меньше тех, кто употребляет сладкое бесконтрольно!
4. Ослабление иммунитета. В связи с общей потерей тонуса и недостатком питания страдает и иммунная система, что сразу же отражается на частоте заболеваний на фоне межсезонных обострений. Этот же фактор может привести к ухудшению развития некоторых хронических заболеваний, которые имеет человек. Например, при сахарном диабете, когда выработка инсулина и так нарушена, недостаток гликогена может просто убить.
5. Развитие депрессии. Сладкое – главный провокатор выработки серотонина, отвечающего за хорошее настроение. Когда уровень гликогена резко снижается, клетки мозга не получают должного питания, уровень серотонина медленно, но верно падает вниз, что ухудшает настроение, меняет мировосприятие и провоцирует развитие глубокой депрессии, вылечить которую можно уже только с помощью соответствующих препаратов.
При переизбытке гликогена наблюдается совсем другая картина, которая зачастую может быть куда сложнее и негативнее, чем вышеизложенное.
1. Повышение густоты крови.
2. Сбои в работе печени. Как правило, сопровождаются интоксикацией организма, так как прекращается непрерывная очистка крови, и все продукты переработки белка, а также других веществ, продолжают блуждать по организму, отравляя его.
3. Развитие заболеваний тонкого кишечника, риск столкновения с онкологией ЖКТ.
4. Набор веса, риск развития тяжелого ожирения, сахарного диабета, инсульта.
Источники гликогена
Прямым источником гликогена являются продукты с высоким содержанием глюкозы, фруктозы и сахарозы, то есть всё, что можно назвать сладким. Наиболее яркими представителями из этого списка являются финики и инжир. По содержанию глюкозы они занимают верхушку мирового списка всех сладких плодово-ягодных культур!
Конечно, отличными источниками гликогена являются натуральные фрукты (апельсины, киви, клубника, манго, персики, хурма), некоторые овощи (свекла, морковь).
Менее полезными с точки зрения содержания легких углеводов являются сахар рафинад и мед, заводские сладости на их основе (пряники, кексы, вафли, конфеты с начинкой и т.п.). Хорошим вариантом восполнения гликогена является арбуз или ирга (каринка). Для тех, кто имеет свой сад, стоит обратить внимание на домашнее яблочное повидло. Кроме гликогена, оно еще является источником полезных пектинов, которые помогают очищать организм от накопившихся шлаков.
Гликоген можно получить из большинства бобовых, поэтому еженедельно стоит готовить себе суп из чечевицы или из овощей с фасолью. Полезными в этом вопросе могут оказаться и цельнозерновые изделия, пророщенная пшеница, рисовая, овсяная, ячневая, пшенная каша с сухофруктами (курага, чернослив, изюм).
Зинаида Рублевская для женского журнала InFlora.ru
При использовании и перепечатке материала активная ссылка на женский онлайн журнал InFlora.ru обязательна
www.inflora.ru
Что такое гликоген?
Что такое гликоген?
Гликоген
Небольшое количество глюкозы всегда содержится в нашем организме (в печени, мышечной ткани). Это запас представлен в виде гликогена, который в случае надобности снова приходит в исходное состояние (т.е. глюкозу)
В организме человека запаса данного вещества хватает на сутки, в случае если глюкоза не поступает извне. Это достаточно большой промежуток времени, особенно если учесть что эти запасы тратятся головным мозгом для улучшения мыслительной деятельности.
Хранящийся в печени гликоген регулярно подвержен высвобождению и пополнению запасов. Первый этап происходит во время сна и между приемом еды, когда уровень глюкозы в крови сокращается и требуется ее восполнение. Поступление же вещества в организм происходит извне, с определенной пищей.
Гликоген представляет собой главную форму существования углеводов в организме человека. Эти запасы глюкозы хранятся в мышцах и печени.
Углеводсодержащая пища, попадая в желудок, расщепляется до глюкозы, которая далее всасывается в кровь. Таким образом, ее количество в крови начинает увеличиваться. Инсулин, который выделяется из поджелудочной железы, превращает глюкозу в гликоген. Это происходит до той степени, пока уровень сахара в крови не стабилизируется.Роль гликогена в организме человека
Хранение энергии – это главная роль вещества.
Гликоген в печени поставляет глюкозу всему организму, а из мышц – улучшает физическую активность. В процессе снижения сахара в крови, начинает образовываться глюкагон, гормон превращающий гликоген в энергию. Если не последовал прием пищи и организму больше негде взять глюкозу, то он будет пытаться расщеплять белки для получения энергии.Длительное отсутствие глюкозы и гликогена может привести к развитию булимии или анорексии и негативно отразиться на сердечной мышце. Переизбыток же этого вещества превращается в жир и скапливается в организме человека. В таком случае рекомендуется сократить потребление сладостей.
Гликоген в печени
Печень – крупный внутренний орган, который может достигать до 1,5 кг. Она выполняет ряд важных функций, в том числе и углеводный обмен. Через нее происходит фильтрация крови из желудочно-кишечного тракта, которая насыщена различными веществами.
Задача печени заключается в поддержании количества глюкозы в крови, запасы которой представлены в виде гликогена.
При нормальном содержании глюкозы в крови ее показатель может быть в пределах 80-120 мг на децилитр крови. Как нехватка, так и переизбыток гликогена в крови способен привести к серьезным заболеваниям, поэтому роль печени крайне велика.
Гликоген в мышцах
В мышечной ткани также происходит скопление и хранение гликогена. Он необходим для поступления энергии в организм при физических нагрузках. Быстро восполнить его запасы можно, если после упражнений употребить в пищу продукты или напитки, у которых будет содержание углеводов и белка в соотношении 4:1.
Наибольшее содержание гликогена происходит в клетках печени (до 8% от их массы), остальные органы могут это делать лишь на 1-1,5%. Если перевести все в массу, то в печени взрослого человека может содержаться до 110 г этого вещества!
Вернуться к содержанию
Изменение потребностей в гликогене
Потребность увеличивается при:
- увеличении физических нагрузок однообразного типа.
- увеличении умственной активности затрачивается большое количество гликогена.
- неправильном питании. Если организм недополучает глюкозу, то начинается использование ее запасов.
Снижение потребности:
- при заболеваниях печени.
- в случае болезней, которые требуют большого потребления глюкозы.
- если питание содержит большое количество данного компонента.
- при сбоях в ферментной деятельности.
Дефицит
При хроническом дефиците данного компонента происходит скопление жира в печени, что может привести к ее жировому перерождению. В качестве источников энергии выступают теперь не углеводы, а белки и жиры. Кровь начинает накапливать в себе вредные продукты – кетоны, которые в большом содержании смещают кислотность организма и могут привести к потере сознания.
Дефицит гликогена проявляется следующими симптомами:
- Головная боль;
- Потливость ладоней;
- Мелкая дрожь рук;
- Регулярная слабость и сонливость;
- Ощущение постоянного голода.
Такие симптомы могут быстро исчезнуть, когда организм получит необходимое количество углеводов и сахара.
Избыток
Для избытка свойственно увеличение инсулина в крови и дальнейшее ожирение организма. Это происходит, когда за один прием пищи попадает в организм чрезмерное количество углеводов. Чтобы нейтрализовать организм превращает их в клетки жира.
Регулярный переизбыток гликогена может привести к сахарному диабету скрытого типа.
Чтобы избежать негативных последствий, достаточно скорректировать свое питание, уменьшить потребление сладостей и обеспечивать организм физическими нагрузками.
Вернуться к содержанию
saydiabetu.net
Гликоген где находится | Советы доктора
Гликоген является сложным, комплексным углеводом, который в процессе гликогенеза образуется из глюкозы, поступающей в организм человека вместе с пищей. С химической точки зрения он определяется формулой C6h20O5 и представляет собой коллоидальный полисахарид, имеющий сильно разветвленную цепь из остатков глюкозы. В этой статье мы расскажем все про гликогены: что это такое, каковы их функции, где они запасаются. Также мы опишем, какие бывают отклонения в процессе их синтезирования.
Гликогены: что это и как они синтезируются?
Где находится гликоген?
Хранится полученный гликоген в виде особых гранул в цитоплазме (цитозоле) многих клеток организма. Особенно велико содержание гликогена в печени и мышечной ткани. Причем мышечный гликоген — это источник запаса глюкозы для самой мышечной клетки (в случае сильной нагрузки), а печеночный поддерживает нормальную концентрацию глюкозы в крови. Также запас этих сложных углеводов имеется в нервных клетках, клетках сердца, аорты, эпителиальных покровов, соединительной ткани, слизистой оболочки матки и эмбриональных тканей. Итак, мы рассмотрели, что понимается под термином «гликогены». Что это такое, теперь понятно. Далее поговорим про их функции.
Для чего необходимы организму гликогены?
В организме гликоген служит в качестве энергетического резерва. В случае острой необходимости организм сможет получить из него недостающую глюкозу. Как это происходит? Распад гликогена осуществляется в периодах между приемами пищи, а также значительно ускоряется во время серьезной физической работы. Этот процесс происходит путем отщепления глюкозных остатков под воздействием особых ферментов. В итоге гликоген распадается до свободной глюкозы и глюкозо-6-фосфата без затрат АТФ.
Зачем нужен гликоген в печени?
Печень является одним важнейших внутренних органов человеческого тела. Она выполняет множество разнообразных жизненно необходимых функций. В том числе обеспечивает нормальный уровень сахара в крови, необходимый для функционирования головного мозга. Главными механизмами, при помощи которых осуществляется поддержание глюкозы в нормальном диапазоне — от 80 до 120 мг/дл, являются липогенез с последующим распадом гликогена, глюконеогенез и трансформация других сахаров в глюкозу. При понижении уровня сахара в крови происходит активизация фосфорилазы, и тогда гликоген печени расщепляется. Из цитоплазмы клеток исчезают его скопления, и глюкоза поступает в кровь, давая организму необходимую энергию. При повышении уровня сахара, к примеру после приема пищи, клетки печени начинают активно синтезировать гликоген и депонировать его. Глюконеогенез представляет собой процесс синтезирования печенью глюкозы из других веществ, в том числе и аминокислот. Регуляторная функция печени делает ее критически необходимым для нормальной жизнедеятельности органа. Отклонения — значительные повышения/понижения уровня глюкозы в крови — представляют для здоровья человека серьезную опасность.
Нарушение синтеза гликогена
Нарушения обмена гликогена представляют собой группу наследственных гликогеновых заболеваний. Их причинами являются различные дефекты ферментов, непосредственно участвующих в регуляции процессов образования или расщепления гликогенов. Среди гликогеновых заболеваний выделяют гликогенозы и агликогенозы. Первые представляют собой редкие наследственные патологии, обусловленные чрезмерным накоплением полисахарида C6h20O5 в клетках. Синтез гликогена и его последующее избыточное нахождение в печени, легких, почках, скелетных и сердечной мышцах вызываются дефектами ферментов (например, глюкоза-6-фосфатазы), участвующих в распаде гликогена. Чаще всего при гликогенозе наблюдаются нарушения развития органов, задержка психомоторного развития, тяжелые гипогликемические состояния, вплоть до наступления комы. Для подтверждения диагноза и определения типа гликогеноза проводят биопсию печени и мышц, после чего отправляют полученный материал на гистохимическое исследование. В ходе него устанавливают содержание гликогена в тканях, а также активность ферментов, способствующих его синтезу и распаду.
Если в организме отсуствуют гликогены, что это значит?
Агликогенозы представляют собой тяжелое наследственное заболевание, вызванное отсутствием фермента, способного осуществлять синтез гликогена (гликогенсинтетазы). При наличии данной патологии в печени полностью отсутствует гликоген. Клинические проявления заболевания таковы: крайне низкое содержание глюкозы в крови, вследствие чего — постоянные гипогликемические судороги. Состояние больных определяется как крайне тяжелое. Наличие агликогеноза исследуют, осуществляя биопсию печени.
Главная страница » Компоненты питания
Просмотров: 6247
голосов, средняя оценка:
Гликоген – это «запасной» углевод в человеческом организме, принадлежащий к классу полисахаридов.
Иногда его ошибочно называют термином «глюкоген». Важно не путать оба названия, поскольку второй термин – это белковый гормон-антагонист инсулина, вырабатываемый в поджелудочной железе.
Что такое гликоген?
Практически с каждым приемом пищи организм получает углеводы, которые поступают в кровь в виде глюкозы. Но порой ее количество превышает потребности организма и тогда глюкозные излишки накапливаются в форме гликогена, который при надобности расщепляется и обогащает тело дополнительной энергией.
Где хранятся запасы
Запасы гликогена в форме мельчайших гранул хранятся в печени и мышечной ткани. Также этот полисахарид есть в клетках нервной системы, почек, аорты, эпителия, мозга, в эмбриональных тканях и в слизистой оболочке матки. В теле здорового взрослого человека обычно есть около 400 г вещества. Но, кстати, при повышенных физических нагрузках организм преимущественно использует гликоген из мышц. Поэтому культуристы примерно за 2 часа до тренировки должны дополнительно насытить себя высокоуглеводной пищей, дабы восстановить запасы вещества.
Биохимические свойства
Полисахарид с формулой (C6h20O5)n химики называют гликогеном. Другое название этого вещества – животный крахмал. И хоть гликоген хранится в животных клетках, но это название является не совсем правильным. Открыл вещество французский физиолог Бернар. Почти 160 лет тому назад ученый впервые нашел в клетках печени «запасные» углеводы.
«Запасной» углевод хранится в цитоплазме клеток. Но если организм ощущает внезапный недостаток глюкозы, гликоген высвобождается и попадает в кровь. Но, что интересно, трансформироваться в глюкозу, которая способна насытить «голодный» организм, способен только полисахарид, накопленный в печени (гепатоцид). Запасы гликогена в железе могут достигать 5 процентов от ее массы, и во взрослом организме составлять около 100-120 г. Своей максимальной концентрации гепатоциды достигают примерно через полтора часа после трапезы, насыщенной углеводам (кондитерские изделия, мучное, крахмалистая пища).
В составе мышц полисахарид занимает не больше 1-2 процентов от массы ткани. Но, учитывая общую площадь мускул, становится понятно, что гликогеновые «залежи» в мышцах превышают запасы вещества в печени. Также небольшие запасы углевода есть в почках, глиальных клетках мозга и в лейкоцитах (белых кровяных клетках). Таким образом, общие запасы гликогена во взрослом организме могут составить почти полкилограмма.
Интересно, что «запасной» сахарид найден в клетках некоторых растений, в грибах (дрожжевых) и бактериях.
Роль гликогена
В основном гликоген концентрируется в клетках печени и мышц. И следует понимать, что эти два источника резервной энергии обладают разными функциями. Полисахарид из печени поставляет глюкозу для организма в целом. То есть отвечает за стабильность уровня сахара в крови. При чрезмерной активности или между приемами пищи уровень глюкозы в плазме снижается. И дабы избежать гипогликемии гликоген, содержащийся в клетках печени, расщепляется и попадает в кровоток, выравнивая глюкозный показатель. Регуляторную функцию печени в этом плане нельзя недооценивать, поскольку изменение уровня сахара в любую сторону чревато серьезными проблемами, вплоть до летального исхода.
Мышечные запасы необходимы для поддержания работы опорно-двигательной системы. Сердце также является мышцей, в которой есть запасы гликогена. Зная об этом, становится понятно, почему у большинства людей после длительного голодания или при анорексиии возникают проблемы с сердцем.
Но если излишки глюкозы могут отложиться в форме гликогена, тогда возникает вопрос: «Почему углеводная пища откладывается на теле жировой прослойкой?». Этому также есть объяснение. Запасы гликогена в организме не безразмерны. При низкой физической активности запасы животного крахмала не успевают тратиться, поэтому глюкоза накапливается в другой форме – в виде липидов под кожей.
Помимо этого, гликоген необходим для катаболизма сложных углеводов, участвует в обменных процессах в организме.
Синтезирование
Гликоген – это стратегический запас энергии, который синтезируется в организме из углеводов.
Сначала тело использует полученные углеводы в стратегических целях, а остатки откладывает «на черный день». Дефицит энергии является причиной для расщепления гликогена к состоянию глюкозы.
Синтез вещества регулируется гормонами и нервной системой. Этот процесс, в частности в мышцах, «запускает» адреналин. А расщепление животного крахмала в печени активизирует гормон глюкагон (вырабатывается поджелудочной железой во время голодания). За синтезирование «запасного» углевода отвечает гормон инсулин. Процесс состоит из нескольких этапов и происходит исключительно во время приема пищи.
Гликогеноз и другие нарушения
Но в некоторых случаях расщепление гликогена не происходит. В результате гликоген накапливается в клетках всех органов и тканей. Обычно подобное нарушение наблюдают у людей с генетическими нарушениями (дисфункция ферментов, необходимых для расщепления вещества). Такое состояние называют термином гликогеноз и относят его к списку аутосомно-рецессивных патологий. На сегодня в медицине известны 12 типов этого заболевания, но пока достаточно изученной является только половина из них.
Но это не единственная патология, связанная с животным крахмалом. В число гликогеновых заболеваний также входит агликогеноз – нарушение, сопровождающееся полным отсутствием фермента, отвечающего за синтез гликогена. Симптомы болезни – ярко выраженные гипогликемии и судороги. Наличие агликогеноза определяют путем биопсии печени.
Потребность организма в гликогене
Гликоген, как запасной источник энергии, важно регулярно восстанавливать. Так, по крайней мере, утверждают ученые. Повышенная физическая активность может привести к тотальному истощению углеводных запасов в печени и мышцах, что в результате скажется на жизненной активности и работоспособности человека. В результате длительной безуглеводной диеты запасы гликогена в печени снижаются почти к нулю. Мышечные резервы истощаются во время интенсивных силовых тренировок.
Минимальная суточная доза гликогена составляет от 100 г и выше. Но эту цифру важно увеличить при:
интенсивных физических нагрузках;усиленной умственной деятельности;после «голодных» диет.
Напротив, осторожно к пище, богатой гликогеном, стоит отнестись лицам с дисфункцией печени, недостатком ферментов. Кроме того, диета с высоким содержанием глюкозы предусматривает снижение употребления гликогена.
Пища для накопления гликогена
Как утверждают исследователи, для адекватного накопления гликогена примерно 65 процентов калорий организм должен получать из углеводных продуктов. В частности, для восстановления запасов животного крахмала важно ввести в рацион хлебобулочные изделия, каши, злаки, разные фрукты и овощи.
Лучшие источники гликогена: сахар, мед, шоколад, мармелад, варенье, финики, изюм, инжир, бананы, арбуз, хурма, сладкая выпечка, соки из фруктов.
Влияние гликогена на вес тела
Ученые определили, что во взрослом организме может накопиться около 400 граммов гликогена. Но также ученые определили и то, что каждый грамм резервной глюкозы связывает примерно 4 грамма воды. Вот и получается, что 400 г полисахарида – это примерно 2 кг гликогенного водного раствора. Этим объясняется обильное потоотделение во время тренировок: организм расходует гликоген и при этом теряет в 4 раза больше жидкости.
Этим свойством гликогена объясняется и быстрый результат экспресс-диет для похудения. Безуглеводные диеты провоцируют интенсивное израсходование гликогена, а с ним – жидкости из организма. Один литр воды, как известно, — это 1 кг веса. Но как только человек возвращается к обычному рациону с содержанием углеводов, запасы животного крахмала восстанавливаются, а с ними и потерянная за период диеты жидкость. В этом и кроется причина недолгосрочности результата экспресс-похудения.
Для по-настоящему эффективного похудения врачи советуют не только пересматривать рацион (отдавать предпочтение протеинам), но и усиливать физические нагрузки, которые ведут к быстрому израсходованию гликогена. Кстати, исследователи рассчитали, что 2-8 минут интенсивных кардиотренировок достаточно для использования запасов гликогена и потери лишнего веса. Но эта формула подходит исключительно лицам, не имеющим кардиологических проблем.
Дефицит и излишек: как определить
Организм, в котором, содержатся лишние порции гликогена, скорее всего, сообщит об этом сгущением крови и нарушениями работы печени. У людей с чрезмерными запасами этого полисахарида также случаются сбои в работе кишечника, увеличивается вес тела.
Но и нехватка гликогена не проходит для организма бесследно. Дефицит животного крахмала может послужить причиной эмоционально-психических нарушений. Возникают апатии, депрессивные состояния. Также заподозрить истощение энергетических резервов можно у людей с ослабленным иммунитетом, плохой памятью и после резкой потери мышечной массы.
Гликоген – важный резервный источник энергии для организма. Его недостаток – это не только снижение тонуса и упадок жизненных сил. Дефицит вещества скажется на качестве волос, кожи. И даже потеря блеска в глазах – это также результат нехватки гликогена. Если вы заметили у себя симптомы недостатка полисахарида, самое время подумать об усовершенствовании своего рациона.
Стойкость нашего организма к неблагоприятным условиям внешней среды объясняется его умением делать своевременные запасы питательных веществ. Одним из важных «запасных» веществ организма является гликоген – полисахарид, образуемый из остатков глюкозы.
При условии, что человек ежесуточно получает необходимую норму углеводов, то глюкоза, находящаяся в виде гликогена клеток, может быть оставлена про запас. Если же человек испытывает энергетический голод, в таком случае происходит активация гликогена, с его последующей трансформацией в глюкозу.
Продукты богатые гликогеном:
Соломка сладкая
Яблочное повидло
Соки фруктовые
Общая характеристика гликогена Гликоген в простонародье называют животным крахмалом. Он представляет собой запасной углевод, который производится в организме животных и человека. Его химическая формула — (C6h20O5)n. Гликоген является соединением глюкозы, которая в виде мелких гранул откладывается в цитоплазме клеток мышц, печени, почек, а также в клетках мозга и белых кровяных тельцах. Таким образом, гликоген представляет собой энергетический резерв, способный восполнить недостаток глюкозы, в случае отсутствия полноценного питания организма.Это интересно! Клетки печени (гепатоциты) являются лидерами по накоплению гликогена! Они могут на 8 процентов своего веса состоять из этого вещества. При этом клетки мышц и других органов, способны накапливать гликоген в количестве не более 1 – 1,5%. У взрослых общее количество гликогена печени может достигать 100—120 грамм!
Суточная потребность организма в гликогене По рекомендации медиков, суточная норма гликогена не должна быть ниже 100 граммов в сутки. Хотя необходимо учесть, что гликоген состоит из молекул глюкозы, и расчет может осуществляться только на взаимозависимом основании.
Потребность в гликогене возрастает: • В случае повышенных физических нагрузок, связанных с выполнением большого количества однообразных манипуляций. В результате этого, мышцы страдают от недостатка кровенаполнения, а также от нехватки глюкозы в крови. • При выполнении работ, связанных с мозговой деятельностью. В данном случае, гликоген, содержащийся в клетках мозга, быстро преобразуется в энергию, необходимую для работы. Сами же клетки, отдав накопленное, требуют пополнения запасов. • В случае ограниченного питания. В данном случае, организм, недополучая глюкозу из продуктов питания, начинает перерабатывать свои запасы. Потребность в гликогене снижается: • При употреблении большого количества глюкозы и глюкозоподобных соединений. • При заболеваниях, связанных с повышенным употреблением глюкозы. • При болезнях печени. • При гликогенезах, вызванных нарушением ферментативной деятельности.
Усваиваемость гликогена Гликоген относится к группе быстро усваиваемых углеводов, с отсрочкой к исполнению. Данная формулировка объясняется так: до тех пор, пока в организме достаточно прочих источников энергии, гликогеновые гранулы будут храниться в нетронутом виде. Но как только мозг подаст сигнал о недостатке энергетического обеспечения, гликоген под воздействием ферментов начинает преобразовываться в глюкозу.
Полезные свойства гликогена и его влияние на организм Поскольку молекула гликогена представлена полисахаридом глюкозы, то его полезные свойства, а также влияние на организм соответствует свойствам глюкозы. Гликоген является полноценным источником энергии для организма в период нехватки питательных веществ, необходим для полноценной умственной и физической деятельности.
Взаимодействие с эссенциальными элементами Гликоген обладает способностью быстро преобразовываться в молекулы глюкозы. При этом он отлично контактирует с водой, кислородом, рибонуклеиновой (РНК), а также дезоксирибонуклеиновой (ДНК) кислотами.
Признаки нехватки гликогена в организме: • Апатия • Ухудшение памяти • Снижение мышечной массы • Слабый иммунитет • Депрессивное настроение Признаки избытка гликогена в организме: • Сгущение крови • Нарушения функций печени • Проблемы с тонким кишечником • Увеличение массы тела
Гликоген для красоты и здоровья
Поскольку гликоген является внутренним источником энергии в организме, то его недостаток способен вызвать общее снижение энергетичности всего организма. Это отражается на деятельности волосяных фолликулов, клеток кожи, а также проявляется в потере блеска глаз.
Достаточное же количество гликогена в организме, даже в период острой нехватки свободных питательных веществ, сохранит энергичность, румянец на щеках, красоту кожи и блеск волос!
Мы собрали самые важные моменты о гликогене в этой иллюстрации и будем благодарны, если вы поделитесь картинкой в социальной сети или блоге, с ссылкой на эту страницу:
Другие популярные компоненты питания:
Жиры
99% в рапсовом масле
medic-sovet.ru
Гликоген для набора массы и сжигания жира, что это такое
Процессы жиросжигания и роста мышечной массы зависят от множества факторов, в том числе и от гликогена. Как он влияет на организм и результат тренировки, что нужно делать для пополнения этого вещества в организме — это вопросы, ответы на которые следует знать каждому атлету.
Гликоген — что это такое?
Источниками получения энергии для поддержания функциональности тела человека, в первую очередь, служат белки, жиры и углеводы. На расщепление первых двух макронутриентов затрачивается определенное время, поэтому они относятся к «медленной» форме энергии, а углеводы, которые расщепляются практически сразу, являются «быстрой».
Быстрота усвоения углеводов обусловлена тем, что он используется в виде глюкозы. Она хранится в тканях человеческого тела в связанной, а не в чистой форме. Это позволяет избежать переизбытка, способного спровоцировать развитие диабета. Гликоген и является основной формой, в которой хранится глюкоза.
Где аккумулируется гликоген?
Общее количество гликогена в организме составляет 200-300 граммов. Порядка 100-120 граммов вещества накапливается в печени, остальная часть сохраняется в мышцах и составляет максимум 1% от общей массы этих тканей.
Гликоген из печени покрывает общую потребность организма в энергии, получаемой из глюкозы. Его запасы из мышц идут на локальное потребление, затрачиваются при выполнении силового тренинга.
Какое количество гликогена находится в мышцах?
Гликоген накапливается в окружающей мышцы питательной жидкости (саркоплазме). Наращивание мускулатуры во многом обусловлено объемом саркоплазмы. Чем он выше, тем больше жидкости впитывается мышечными волокнами.
Увеличение саркоплазмы происходит при активной физической деятельности. С возрастанием потребности в глюкозе, которая идет на рост мускул, повышается и объем резервного хранилища под гликоген. Его размеры остаются неизменными, если человек не тренируется.
Зависимость жиросжигания от гликогена
На час физической аэробной и анаэробной нагрузки организму требуется порядка 100-150 граммов гликогена. Когда имеющиеся запасы этого вещества исчерпываются, вступает в реакцию последовательность, предполагающая разрушение сначала мышечных волокон, а потом жировой ткани.
Чтобы избавиться от лишнего жира, эффективнее всего тренироваться после продолжительного перерыва с момента последней трапезы, когда запасы гликогена истощены, например, натощак с утра. Тренироваться с целью похудения нужно в среднем темпе.
Как гликоген влияет на наращивание мышц?
Успех силового тренинга на рост мышечной массы напрямую зависит от наличия достаточного количества гликогена как для занятий, так и для восстановления его запасов после. Если это условие не соблюдается, во время тренировки мышцы не растут, а сжигаются.
Наедаться перед походом в спортзал тоже не рекомендуется. Промежутки между приемами пищи и силовыми тренировками должны постепенно увеличиваться. Это позволяет организму учиться более эффективно распоряжаться имеющимися запасами. На этом основано интервальное голодание.
Как пополнить гликоген?
Преобразованная глюкоза, накапливаемая печенью и мышечными тканями, образуется в результате расщепления сложных углеводов. Сначала они распадаются до простых нутриентов, а затем в глюкозу, поступающую в кровь, которая конвертируется в гликоген.
Углеводы с низким гликемическим индексом медленнее отдают энергию, что повышает процент образования гликогена, вместо жиров. Не следует зацикливаться только на гликемическом индексе, забывая о важности количества потребляемых углеводов.
Восполнение гликогена после тренировки
«Углеводное окно», открывающееся после тренинга, считается лучшим временем для приема углеводов с целью восполнения запаса гликогена и запуска механизма роста мускулатуры. В этом процессе углеводам отводится более значимая роль, нежели протеинам. Как показали последние исследования, питание после тренинга важнее, чем до него.
Заключение
Гликоген представляет собой основную форму хранения глюкозы, количество которой в организме взрослого человека варьируется в пределах от 200 и до 300 граммов. Силовые тренировки, выполняемые без достаточного количества гликогена в мышечных волокнах, ведут к сжиганию мускулатуры.
builderbody.ru
Биологическая роль полисахаридов | sebulfin.com
О классификации углеводов можно прочитать в статье Биологическая роль углеводов.
В данной беседе обсудим вопрос какова биологическая роль полисахаридов.
Биологическая роль крахмала
Крахмалы составляют около 70% всех углеводов в питании Человека. В сыром природном виде действию ферментов желудочно-кишечного тракта (амилаз) они практически не поддаются и в неизменном виде проходят в толстый кишечник, зато продукты, содержащие крахмалы, в варёном и жареном виде отлично перевариваются в тонкой кишке, распадаются до отдельных молекул глюкозы и всасываются в кровь.
В крахмалах присутствуют два типа полисахаридов: амилоза и амилопектин. Отметим, что крахмалы с большим содержанием амилопектина перевариваются легче, чем крахмалы с большим количеством амилозы. Например, крахмалы бобовых продуктов устойчивы к действию амилазы кишечника, и практически без изменений проходят до толстой кишки, где и происходит их расщепление. Наибольшей устойчивостью обладает крахмал морщинистого гороха, способный сохраняться даже после его разваривания.
Данное свойство крахмалов необходимо учитывать при заболеваниях, требующих бережного отношения к слизистой ЖКТ. Крахмал рисовой и манной крупы, варёного картофеля и пшеничного хлеба переваривается легче и быстрей, чем крахмал пшена, гречневой, перловой, ячневой круп, бобовых (гороха, фасоли), поэтому продукты содержащие легкоперевариваемый крахмал могут быть рекомендованы таким больным.
Добавим, что усвоение крахмала ухудшается при поджаривании круп, а крахмал в чистом виде, полученный из картофеля или зерновых продуктов, используемый для приготовления блюд (допустим, киселей) усваивается очень быстро.
Наибольшее содержание крахмала (до 40-60%) в зерновых и зернобобовых (горох, маш, нут, просо, рис, пшеница, рожь, фасоль, сорго, чечевица), включая продукты их переработки (крупа, мука) и изделиях из них (хлеб, каши).
Содержание крахмала в овощах может быть от 0,1 до 15%, наибольшее – в батате и картофеле.
Во фруктах содержание крахмала от 0 до 0,9 %. Отметим, что крахмала мало в зрелых плодах, а в недозрелых яблоках, грушах зимних сортов количество крахмала может доходить до 4-5%, а перед сбором – 1,5-2%. При дальнейшем дозревании крахмал полностью осахаривается.
Нужно сказать, что в качестве источника углеводов наиболее благоприятно употреблять продукты, богатые крахмалом, чем рафинированный сахар, так как вместе с углеводами в организм поступают витамины группы В, минеральные вещества и пищевые волокна.
Биологическая роль гликогена.
1. Гликоген является основным резервом глюкозы в организме. Он способен синтезироваться во всех тканях, но его наибольшие запасы находятся в печени и в скелетных мышцах. В мышцах гликоген накапливается в период восстановления после работы, в печени – только после еды, в основном после приёма богатой углеводами пищи.
2. Резервы гликогена могут использоваться различным способом, в зависимости от функциональной потребности клетки. Гликоген печени расщепляется при снижении уровня глюкозы в крови, наиболее часто между приёмами пищи. Через 12-18 часов полного голодания запасы гликогена в печени полностью истощаются.
Запасы гликогена мышц снижаются во время длительной и напряжённой физической нагрузки, он необходим для обеспечения энергией работающих миоцитов, т.е используется для собственных нужд мышечной ткани. Такова же роль гликогена, содержащегося в других органах.
3. Постоянный уровень глюкозы в крови поддерживает только печень. Образующаяся за счёт распада гликогена глюкоза выходит через мембрану клетки печени (гепатоцита) в кровь.
Биологическая роль инулина.
1. Инулин является полимером фруктозы, поэтому при расщеплении в меньшей степени повышает уровень глюкозы в крови.
2. Доходя до толстого кишечника, инулин способствует развитию полезных микроорганизмов. Продукты, богатые инулином, рекомендуются для профилактики и лечения дисбактериоза.
Большое количество инулина содержится в топинамбуре, цикории и артишоках.
Биологическая роль стахиозы.
1.Стахиоза близка по составу к инулину, практически не расщепляется в тонкой кишке.
2. Является благоприятной средой для нормальной микрофлоры кишечника, используется для профилактики и лечения дисбактериоза, но при её расщеплении бактериями кишечника могут возникать вздутие живота и расстройство стула.
Содержится в стахисе, сое (до 3%), фасоли (1,6%), мягкой озимой пшенице (0,26%), горохе, маше, чечевице, нуте – примерно по 1%.
Пищевые волокна – полисахариды, входящие в состав растительных клеток (целлюлоза) и межклеточных пространств (гемицеллюлоза, пектин и его производные) Выделяют две группы пищевых волокон:
а) растворимые в воде – пектины, камеди, некоторые фракции гемицеллюлозы, слизь;
б) нерастворимые – целлюлоза, лигнин, часть гемицеллюлозы.
Биологическая роль целлюлозы (клетчатки).
1. Является основным структурным компонентом оболочки растительной клетки, полимер глюкозы.
2. Основное физиологическое действие – способность связывать воду (до 0,4 г воды на 1 г клетчатки). В толстом кишечнике метаболизируется бактериями. Отметим, что переваривание клетчатки представляет собой единственный процесс в организме, происходящий без доступа кислорода (в анаэробных условиях). В результате переваривания образуются газы (двуокись углерода, водород и метан), летучие жирные кислоты, большая часть которых всасывается в кровь и может использоваться для энергетических целей организма. Неусвоенная часть летучих жирных кислот и образовавшиеся газы способствуют увеличению объёма каловых масс и ускорению транспорта их в прямую кишку.
Энергия жирных кислот используется также для размножения и поддержания жизнедеятельности полезных бактерий в толстой кишке. С увеличением содержания пищевых волокон в пище увеличивается и объём полезной микрофлоры кишечника, усиливается синтез витаминов.
3. Добавление в пищу 30-45 г пшеничных отрубей приводит к увеличению массы фекалий с 79 до 228 г в сутки и сокращению времени их передвижения с 58 до 40 часов. У тех людей, которые регулярно добавляют в свой рацион клетчатку, стул становится мягче, что является хорошей профилактикой запоров и геморроя.
4. Богатая клетчаткой пища, в частности пищевыми отрубями, способна улучшать устойчивость организма к глюкозе, как у здоровых людей, так и у больных при сахарном диабете 1 типа.
Наиболее высокое содержание клетчатки в пшеничных и ржаных отрубях, хлебе из муки грубого помола, белково-отрубном хлебе, сухофруктах (черносливе, урюке, кураге), свекле, моркови, крупах (гречневой, перловой, ячневой, пшённой, овсяной).
Биологическая роль пектинов.
Пектины состоят из полимеров галактуроновой кислоты.
1. Могут образовывать гели, удерживать воду в соединительной ткани.
2. Связывают ионы металлов (в том числе и токсичные и радиоактивные) и органические вещества, к примеру, желчные кислоты, продукты обмена, переводя их в безвредные комплексы, которые выводятся из организма. Наибольшим эффектом в связывании радиоактивных металлов обладают пектины яблок, поэтому всем людям, работающим в опасных условиях, рекомендуется кушать этот фрукт.
3. Пектин способен полностью расщепляться под действием фермента пектиназы и использоваться в кишечнике человека, но в отличие от других пищевых волокон, он замедляет продвижение пищи в толстой кишке, повышая тем самым вязкость её составных частей.
4. Пектины обладают адсорбирующими, вяжущими и обволакивающими свойствами, предохраняя слизистую оболочку желудочно-кишечного тракта. Тем самым они оказывают противовоспалительное и обезболивающее действие, способствуют заживлению язвенных поражений слизистой.
5. Способствуют выведению из организма холестерина. Данное свойство используется при лечении атеросклероза.
Недостаточное содержание пищевых волокон в пищевом рационе служит одной из причин возникновения запоров, является фактором риска развития атеросклероза, желчно-каменной болезни, сахарного диабета 2-го типа.
С другой стороны, при избытке пищевых волокон снижается всасывание кальция, магния, цинка и железа, что понижает концентрацию этих важных микроэлементов в крови. Возникает усиленное газообразование и брожение в толстой кишке, ухудшается усвоение белков и жира. Так что всё хорошо в меру.
Доброго здоровья!
Общение для души
Вконтакте
Одноклассники
Мой мир
LiveJournal
Google+
sebulfin.com
Гликоген в природе - Справочник химика 21
Классическими методами анализа, например метилированием, показано, что гликоген состоит из а-(1- 4)-связанных остатков О-глюкозы, и имеет а-(1,4,6)-связанные точки ветвления. Применение амилолитических ферментов для определения тонкой структуры гликогена показало, что он имеет ветвистое строение (см. рис. 26.3.5, й), причем каждая цепь состоит из 12 остатков D-глю-козы. Столь малая длина цепей в соединении, имеющем молекулярную массу порядка 10 —10 , свидетельствует о высокоразветвленной структуре, вследствие чего молекула гликогена поглощает Иод в еще меньшем количестве, чем молекула амилопектина. Области густого ветвления, устойчивые к действию а-амилазы, распределены по молекуле статистически [160]. С доступностью паракристаллического гликогена стало возможным применение физических методов для более детального изучения его строения 161]. Нахождению в природе, выделению, строению и ферментативному расщеплению гликогена посвящены обзоры [162—164]. [c.257]
Отдельные представители. Глюкоза (виноградный сахар) широко распространена в природе и в свободном состоянии встречается во фруктах, меде и т. д. Является структурной единицей таких полисахаридов, как крахмал, гликоген, клетчатка. [c.396]Основная масса всех углеводов, встречающихся в природе, существует в виде полисахаридов. С точки зрения их функционального назначения полисахариды можно разделить на две основные группы. Первая группа, в которую входит, например, целлюлоза, несет главным образом структурную функцию. Вторая группа, представителем которой является, в частности, гликоген, выполняет функции, связанные с питанием. Эти молекулы играют в основном роль депо и могут быть легко мобилизованы путем превращения в моносахариды, претерпевающие затем дальнейщие превращения в процессе обмена. [c.233]
Моносахариды. Самый распространенный моносахарид — глюкоза (1) она встречается в природе в свободном виде, входит в состав дисахарида сахарозы, образует важнейшие полисахариды — целлюлозу, крахмал, гликоген. Почему же именно глюкоза играет в природе столь выдающуюся роль В циклической форме [формулы (1а) и (16)] глюкоза термодинамически наиболее устойчива из всех гексоз, поскольку все ее большие заместители (ОН, СНгОН) ориентированы экваториально. В результате инверсии конформации кресла все большие заместители в случае глюкозы окажутся аксиальными и такая конформация (16) будет крайне невыгодна конформационные энергии для обеих форм составляют соответственно 8,5 и 33,5 кДж/моль. [c.406]
Крахмал и гликоген. Подобно целлюлозе, крахмал и гликоген — полимеры глюкозы, широко распространенные в природе. Целлюлоза входит в состав жестких или несущих структур растений. Она нерастворима в воде и в целом обладает свой- [c.276]
Дисперсные системы, в частности коллоидные, широко распространены 1 природе. Такие биологические жидкости животных организмов, как кровь, плазма, лимфа, спинномозговая жидкость и др. представляют собой коллоидные системы, в которых ряд веществ, например белки, холестерин, гликоген и др., находятся в коллоидном состоянии то же можно сказать о белках, крахмале, слизях и камедях в растениях. [c.136]
Гликоген построен из остатков а-В-глюкопиранозы и имеет высоко разветвленную структуру (см. с. 144). Связь остатков в цепях 1- 4, в точках ветвлений — 1- 6. Количественные параметры, характеризующие структуру гликогена, варьируют в зависимости от его источника (вида животного, природы ткани). В типичных случаях внешние неразветвленные цепи (А) содержат шесть-десять моносахаридных остатков, а во внутренних цепях (В в С) между разветвлениями находится два-четыре остатка Глюкозы. Молекулярные массы гликогенов широко варьируют и могут достигать десятков миллионов дальтон. (Это весьма значительная величина даже для биополимеров она превышает, например, массу многих вирусных [c.143]
УГЛЕВОДЫ (глюциды, глициды)—важнейший класс органических соединений, распространенных в природе, состав которых соответствует общей формуле С (НзО) - По химическому строению У.— альдегидо- или кетоноспирты. Различают простые У.— моносахариды (сахара), например глюкоза, фруктоза, и сложные—полисахариды, которые делят на низкомолекулярные У.— дисахариды (сахароза, лактоза и др.) и высокомолекулярные, такие, например, как крахмал, клетчатка, гликоген. Характерным для У. является то, что моносахариды не гидролизуют, а молекулы полисахаридов при гидролизе расщепляются на две молекулы (дисахариды) или на большее число молекул (крахмал, клетчатка) моносахаридов. У. имеют огромное значение в обмене веществ организмов, являясь главным источником [c.255]
К веществам углеводной природы относятся также пектиновые вещества, растительные камеди, слизи. Среди У. имеется много так называемых стереоизомеров — правых и левых форм (обозначаемых знаками -f и —) и форм, отличающихся конфигурацией, пространственным расположением групп Н и ОН (обозначаемых буквами В и Ь). Гликоген — единственный полисахарид, встречающийся в животных организмах (в печени). [c.299]
К группе высших полиоз (к собственно полисахаридам) принадлежат вещества, имеющие весьма большое физиологическое и практическое значение и широко представленные в живой природе. К главнейшим их представителям принадлежат крахмал, клетчатка, гликоген и инулин. [c.292]
В прошлом столетии и первой четверти XX в. углеводы рассмат ривались лишь как широко распространенные в природе вещества, роль которых сводится, в основном, к резервным функциям, заключающимся в покрытии непрерывного расхода энергии в процессе жизнедеятельности (моносахариды, крахмал, гликоген), а также к опорным функциям (клетчатка). [c.4]
Все жизненные процессы требуют для своего осуществления определенного расходования энергии. Всякий организм как растительный, так и животный, при превращении веществ, сопряженном с расходованием энергии, черпает последнюю из биологических процессов, происходящих в нем. Из них гю распространенности и значению на первом месте стоит так называемое кислородное дыхание. Во время дыхания освобождается накопленная в органическом веществе в процессе фотосинтеза энергия. Процесс дыхания происходит непрерывно в течение всей жизни организма и связан с расходом органического вещества. Углеводы, главным образом крахмал, гликоген и глюкоза, являются основными источниками энергии для животных и растений, а также для бесчисленного количества микроорганизмов. Распад углеводов сопровождается освобождением большей или меньшей части энергии, заключающейся в их молекуле. Степень использования освобождающейся энергии для биологических нужд организма зависит от природы тех химических превращений, которые данный организм в состоянии осуществлять, [c.374]
В животных клетках энергия запасается в форме гликогена, который образуется из глюкозо-6-фосфата в результате трех последовательных ферментных реакций 1) превращения глюко-зо-6-фосфата в глюкозо-1-фосфат 2) образования уридиндифос-фат-Е)-глюкозы 3) образования из нее гликогена. Когда клетка получает достаточно энергии, в ней образуется много глюкозо-6-фосфата и это служит сигналом для синтеза гликогена сигнал срабатывает на уровне третьей реакции таким образом, что он активирует фермент, превращающий уридиндифосфат-О-глюкозу в гликоген. При недостатке энергии возникает необходимость в реализации ее запасов, хранимых клеткой в виде гликогена. Осуществляется это также путем активации фермента, но теперь уже гликоген-фосфорилазы, расщепляющей гликоген. Природа этой реакции расшифрована и установлено, что веществом, сигнализирующим о включении положительной обратной связи, является аденозинмонофосфат. [c.90]
Большое разнообразие географических и экологических условий, в пределах которых возможно расселение и существование в природе отдельных видов микроорганизмов, также накладывает свой отпечаток на химический состав клеток и отражается на биохимических функциях микробной популяции. Современные методы лабораторного эксперимента позволяют расчленить микробную клетку на ее органеллы и изучать в отдельности химический состав жгутиков, оболочек, протопласта, мембран, рибосом, нуклеоидов, а также содержимого протопласта различные запасные питательные вещества — гликоген, волютпн, жиры, пигменты, витамины и другие метаболиты. [c.36]
Углеводы типа глюкозы образуют не только полуацетали, но и ацетали. Целлюлоза, крахмал, гликоген и большинство других сложных углеводов, распространенных в природе, представляют собой пе что иное, как полимерные ацетали. Ниже схематически представлен путь образовапия полимерных ацеталей. Для образования полимера молекула должна содержать по крайней мере две гидроксильные и одну альдегидную группы. Одна гидроксильная группа реагирует с альдегидной группой той же молекулы, давая циклический полуацеталь, а вторая — с гидроксилом другой молекулы. [c.21]
Некоторые оптически активные соединения выделяют из природных источников, поскольку в живых организмах обычно образуется только один из двух возможных энантиомеров. Так, только (—)-2-метилбутанол-1 образуется при ферментативном брожении зерна и только (,- -)-молочная кислота СНзСН(ОН)СООН возникает в работающей мышце только (—)-яблочная кислота Н00ССН2СН(0Н)С00Н образуется во фруктовом соке и только (—)-хинин вьщеляют из коры хинного дерева. Нам приходится иметь дело с оптически активными веществами гораздо чаще, чем можно было бы предположить. Мы едим оптически активный хлеб и оптически активное мясо, живем в дома.к, носим одежду и читаем книги из оптически активной целлюлозы. Белки, из которых состоят наши мускулы и другие органы, гликоген в печени и в крови человека, ферменты и гормоны, которые обеспечивают рост и регулируют жизненные процессы в организме человека, — все они оптически активны. Природные вещества оптически активны, потому что ферменты, которые катализируют их образование (и часто являются сырьем, из которого они образуются), сами по себе оптически активны. Что же касается первоначального появления оптически активных веществ в природе, то здесь можно только высказывать предположения. [c.225]
Если учесть, что (-Ь)-глюкоза представляет собой структурную единицу, из которой состоит крахмал, целлюлоза и гликоген, а также ее особую роль в биологических процессах, то окажется, что глюкоза — наиболее распространенный моносахарид (вероятно, в природе остатков (-Ь)-глюкозы больше, чем ианих-либо других органических групп и, безусловно, наиболее важный мопссахарид. [c.932]
Тривиальные названия полисахаридов обычно отражают источник их нахождения в природе так, целлюлоза является основным компонентом клеточной стенки ell — клетка) у растений, а дерматан (обычно в сульфированной форме) впервые обнаружен в дермальном слое кожи. Тривиальные названия могут отражать некоторые свойства выделенного полимера например, английское название star h (крахмал) происходит от слова ster an (придавать жесткость). Для природных полисахаридов одного и того же типа обычно указывают нх происхождение. Так, например, крахмалы из различных растительных источников можно легко различить химическими методами, поэтому в их названиях указывают источник выделения (например, маисовый крахмал). Такие традиционные названия, как целлюлоза, гликоген и амилоза, [c.208]
Хотя подавляющее большинство цианобактерий являются облигатными фототрофами, в природе они часто находятся длительное время в условиях темноты. В темноте у цианобактерий обнаружен активный эндогенный метаболизм, энергетическим субстратом которого служит запасенный на свету гликоген, ка-таболизируемый по окислительному пентозофосфатному циклу, обеспечивающему полное окисление молекулы глюкозы. На двух этапах этого пути с НАДФ Н2 водород поступает в дыхательную цепь, конечным акцептором электронов в которой служит О2. [c.314]
Аминокислоты в организме прежде всего используются для синтеза белков и пептидов. Кроме этого, ряд аминокислот служат предшественниками для образования соединений непептидной природы пуриновых и пиримидиновых оснований, биогенных аминов, порфиринов (в том числе гема), никотиновой кислоты, креатина, холина, таурина, тироксина и ряда других. Из углеродного скелета гликогенных аминокислот синтезируются углеводы, кетогенных — липиды и кетоновые тела. Основным органом метаболизма аминокислот является печень, где происходят многие синтетические процессы, связанные с использованием аминокислот, а также важный процесс перераспределения избыточных количеств, потребляемых с пишей углеродных цепей аминокислот и азота. [c.369]
Функции углеводов в клетках весьма разнообразны. Оии служат источником и аккумулятором энергии клеток (крахмал, гликоген), выполняют скелетные функции в растениях и некоторых животных, например в крабах, кревеУках, служат основой клеточной стенки бактерий, входят в состав некоторых антибиотиков. Большинство животных белков имеют детерминанты углеводной природы, являясь гликопротеннами. Нельзя забывать и о том, что углеводы D-рибоза и D-дезоксирнбоэа — одни иэ главных компонентов нуклеиновых кислот. В последние годы большое внимание привлекают функции углеводов как рецепторов клеточной поверхности и антигенных детерминант природных биополимеров. [c.444]
Углеводы (от уголь + вода ) — соединения, струк-гура которых, как правило, выражается общей формулой Сп(Н20)п, где п больше или равно 4 К углеводам относятся гакие распространенные в природе вещества, как различ- ыe сахара, крахмал, целлюлоза, декстрин, гликоген и др Углеводы широко распространены как в расгительном, гак и в животном мире До 90% сухого вещества растений приходится на углеводы, в животных организмах — около 2% сухого вещества [c.752]
Если число моносахаридов, участвующих в образовании природных полисахаридов, очень ограничено, более того, важнейшие полисахариды, такие, как крахмал, целлюлоза и гликоген, построены исключительно из одного моносахарида, )-глюкозы, то аминокислот в объектах живой природы встречается более 70, но только 22 из них играют жизненно важнзто роль Все они относятся к а-аминокислотам Х-ряда, кроме глицина, и представлены в таблице 25-1 [c.863]
Белки, обеспечивающие все эти функции, а также и многие другие, обладают свойством, отсутствуюпщм у других соединений, а именно специфичностью. Белки различных животных и растительных родов являются типичными только для последних и отличаются от белков других родов, тогда как крахмал, гликоген и жиры очень мало отличаются друг от друга у различных родов. Иногда наблюдаются различия даже между белками индивидуальных представителей одного и того же рода. Следовательно, число встречающихся в природе белков крайне велико. Наконец, особенно характерным свойством белков является способность к денатурации — глубокому, в некоторых случаях необратимому превращению, которое претерпевают белки под действием тех же физических и химических агентов, которые убивают или повреждают живые организмы. Легкость, с которой это происходит, позволила сделать вывод, что белки имеют исключительно сложную и лабильную структуру, или, точнее, конформацию, присушую только этому классу соединений. [c.415]
Высшие полисахариды. Представителями высших полисахаридов являются крахмал, гликоген (животный крахмал) и целлюлоза. Общая их формула — (СбНю05) . Крахмал — широко распространенный в природе полисахарид, макромолекула которого состоит из звеньев остатков глюкозы. Молекулы крахмала неодинаковы по числу образующих их глюкоз-ных остатков и кроме того их цепи могуг быть разветвленными. Крахмал при обработке теплой водой можно разделить на две части — растворимую (амилоза с молекулярной массой 32 10 —160-10 ) и набухающ5то (амилопектин с молекулярной массой 100-10 —100010 ). [c.70]
Как видно из рис. 17, абсорбционные кривые синтетических гликогенов очень близки природным и сильно отличаются от кривых иод-ами-лопектина. Синтетические гликогены, подобно природным, давали комплекс с миозином, что проявлялось в характерном сдвиге максимума поглощения в коротковолновую часть спектра (2660 А). Это указывает, что полученные синтетич кие гликогены близки к природным, мышечным. Однако некоторые синтетические полисахариды являлись как бы промежуточными между гликогенами и амилопектинами. Впоследствии близкие им соединения были найдены в природе (см.с. 136). [c.119]
Полисахаридами называются высокомолекулярные соединения, состоящие из большого количества моносахаридов. Наиболее рас- пространенными в природе полисахаридами являются крахмал, гликоген и клетчатка, состоящие из молекул глюкозы, эфирообразно связанных между собою в крахмале и гликогене — по одному типу, в клетчатке — по другому типу. Подробно с этим вопросом необходимо ознакомиться по учебнику. [c.114]
Таким образом, в настоящее время поликонденсация как синтетический процесс дала науке и технике огромное количество полимерных структур и сыграла важную роль в формировании основных представлений полимерной науки [11, 12]. Необходимо подчеркнуть, что процессы поли-кондепсации имеют большое значение как метод синтеза природных полимеров, потому что многие важнейшие биополимеры, такие, как белки, нуклеиновые кислоты, натуральный каучук, целлюлоза, крахмал, гликоген, хитин, пептозаны и многие другие, так же как и ферменты, энзимы и гормоны, очевидно, получаются в живых организмах с помощью различных процессов поликонденсации, и таким образом этот процесс широко представлен в природе. [c.48]
Начиная с 5—6-х суток, в культурах наряду с мелкозернистыми отложениями десмогликогена появляются крупные аморфные скопления лиогликогена, возникающие, по мнению А. Л. Шабадаша, в результате нарушения симплекса между белком и гликогеном, что, как нам кажется, должно рассматриваться как первый гистохимический сигнал старения клетки, ее неспособности связывать гликоген со структурными элементами. Возможно, что стареющая клетка культуры, продолжая накапливать гликоген, теряет способность его расходовать, вследствие чего большие количества лиогликогена накапливаются в клетках культуры, богато снабжаемых питательными веществами. В погибших клетках культуры гликоген не обнаруживается, однако имеются зерна полисахарида, дающего положительную окраску по Шабадашу, но не исчезающего при воздействии амилазы. Природа этого вещества нами пока не выяснена. [c.215]
О (+)-глюкоза (виноградный сахар, декстроза) — самый распространенный сахар в природе. В растворах имеет правое вращение плоскости поляризации и поэтому называется декстрозой. В свободном состоянии содержится в соке винограда, в сладких фруктах, плодах, в семенах, листьях, цветах и корнях многих растений, а также в меде. Глюкоза является одним из главных компонентов олигосахаров (свекловичного или тростникового сахара, молочного сахара), из нее состоят полисахариды (крахмал, клетчатка, гликоген и др.). Глюкоза — важнейший источник энергии живых организмов. Свободная глюкоза в некотором количестве содержится в крови, спинномозговой жидкости и лимфе людей и животных. [c.342]
При спиртовом брожении в процессе расщепления одной молекулы глюкозы образуется четыре молекулы АТФ (50 ккал, или 210 кдж). Из них две расходуются на функциональную деятельность и синтез. По расчетам некоторых авторов, при гликолизе и гликогенолизе в богатых энергией фосфорных связях аккумулируется 35—40 /о всей освобождающейся свободной энергни, остальные 60—65% рассеиваются в виде теплоты. Коэффициент полезного действия клеток, органов, работающих в анаэробных условиях, не превышает 0,4 (в аэробных 0,5). Эти расчеты основаны главны.м образом на данных, полученных на мышечных экстрактах и дрожжевом соке. В условиях живого организма мышечные клетки, органы и ткани утилизируют энергию, вероятно, значительно больше. С физиологической точки зрения процесс гликогенолиза и гликолиза имеет исключительно важное значение, особенно когда жизненные процессы осуществляются в условиях недостатка кислорода. Папример, при энергичной работе мышц, особенно в первой фазе деятельности, всегда наблюдается разрыв между доставкой кислорода в мышцы и его потребностью. В этом случае начальные энергетические затраты покрываются в значительной степени за счет гликогенолиза. Аналогичные явления наблюдаются при различных патологических состоя иях (гипоксия мозгз, сердца и т. п.). Кроме того, потенциальная энергия, заключенная в молочной кислоте, в конечном счете не теряется для высокоорганизованного организма. Образующаяся молочная кислота быстро пере.ходит из мышц в кровь и далее доставляется в печень, где снова превращается в гликоген. Анаэробный распад углеводов с образованием молочной кислоты очень распространен в природе он наблюдается не только в мышцах, но и в других тканях животного организма. [c.334]
Давно миновало время, когда углеводы рассматривались лишь как широко распространенные в природе вешества, роль которых СВОДИТСЯ, в основном, к резервным функциям, заключающимся в покрытии непрерывного расхода энергии в процессе жизнедеятельности (моносахариды, крахмал, гликоген), а также к опорным функциям (клетчатка). Значение углеводов в газах химиков и биологов сильно возросло, когда было пока-казано, что фотосинтетических цикл, обеспечивающий синтез О рга ническнх веществ на нашей планете, представляет собой, в основном, химические превращения фосфатов сахаров. [c.5]
Было применено длительное воздействие на гликоген реактивов, разрывающих связи гликоген—белок, а также водородные связи (быть может соединяющие молекулы полисахарида)— различные неионные, анионные и катионные детергенты (8 Л1 мочевина, 8 М гуанидин, 8 М бромид лития, твин, доде-цилсз льфат натрия, цетавлон и ряд других воздействий, например протеазы). Однако все эти приемы не изменяли значения молекулярных весов. Были, однако, найдены условия, при которых разукрупняются большие частицы это происходило при температуре выше 65° или при выдерживании гликогена при pH 3 и 25° в течение двух часов. Вопрос о природе разрывающихся при этом связей был предметом большой дискуссии на симпозиуме по гликогену [58]. [c.189]
chem21.info
Гликоген животный органах и тканях
Синтез гликогена из глюкозы происходит не только в печени, но и в других органах и тканях. Об этом говорит уже сам факт наличия гликогена в различных тканях и органах. Значительным содержанием гликогена отличаются мышцы. Содержание гликогена в мышцах колеблется в значительных размерах и зависит прежде всего от упитанности организма. Обычно оно составляет от 0,3 до 0,5 о на сырой вес. При кормлении животных большим количеством углеводов содерлРабота мышц при явлениях утомления сопровождается снижением содержания в них гликогена. Отдых стимулирует повышение содержания гликогена в мышцах, которое вскоре достигает обычного уровня. Отсюда можно заключить, что при работе мышцы потребляют гликоген, а при отдыхе его синтезируют. [c.273]
Гликоген (СбНюОб)я —вещество, похожее на крахмал, содержится в крови и во внутренних органах животных, преимущественно в печени. Гликоген служит источником легко усваиваемого питания для тканей организма как только содержание глюкозы в крови снижается, гликоген быстро гидролизуется с образованием глюкозы. [c.400]
Родственным растительному крахмалу веществом является живот ный крахмал — гликоген, который содержится в различных тканя и органах животных. Гликогена также много и в некоторых растениях в зерне сахарной кукурузы, дрожжах и грибах. В настоящее врем разработаны методы определения количества крахмала. Их можш разделить на пять групп методы, основанные на прямом определени [c.162]
К числу полисахаридов, имеюхцих большое значение, относятся крахмал, гликоген и целлюлоза. Крахмал (СдН Оэ) вырабатывается растениями и находится главным образом в зернах и клубнях. Крахмал является важной составной частью пищи. Гликоген (СеН О 5) — вещество, похожее па крахмал оно содержится в крови и тканях внутренних органов (особенно в печени) животных. Гликогеи служит резервным источником легко усваиваемого и доступного тканям питательного вещества в тех случаях, когда содержание глюкозы в крови понижается, гликоген быстро гидролизуется и превращается в глюкозу. [c.476]
Гликоген — резервный полисахарид, находящийся в различных органах и тканях многих животных. Подобный гликогену лолисахарид, обладающий всеми свойствами гликогена, обнаружен также у грибов, дрожжей и водорослей. У высших животных особенно много гликогена в печени. Гликоген по многим свойствам напоминает крахмал, но отличается от него растворимостью в воде и тем, что с йодом дает красновато-бурую окраску. По характеру этой окраски и по содержанию остатка фос- форной кислоты сходен с амилопектином. Молекулярный вес 110000—140000. -Ы96°. Гликоген очень устойчив к дей- [c.94]
В животных организмах из сложных углеводов наибольшее значение имеет гликоген. Содержание гликогена в отдельных органах и тканях не одинаково. В печени — органе, наиболее богатом углеводами, содержание гликогена обычно не превышает 5%, но иногда может доходить до 10% от сырого веса в м ы ш ц а х гликогена содержится значительно меньше (обычно не более 2%), а в состав других органов и тканей он входит в совсем незначительных количествах. Глюкоза в небольших количествах встречается почти во всех органах и тканях челрвека и животных. Содержание глюкозы в крови человека колеблется в норме от 80 до 120 мг в 100 мл крови. В молочных железах млекопитающих в период лактации образуется молочный сахар — лактоза. [c.71]
Значение полиоз в жизнедеятельности растений и животных чрезвычайно разнообразно и велико. В животном организме гликоген является основным энергетическим материалом. В растениях крахмал, инулин, гликоген, гемицеллюлозы также представляют те вещества, которые сжигаются в процессе дыхания и, подобно гликогену печени, служат запасными веществами. Другие полисахариды образуют скелетное вещество растительных органов, Р ходя в состав клеточных стенок (клетчатки, гемицеллюлозы) или связывая между собой отдельные клетки (пектиновые вещества). У животных углеводы принимают участие в построении опорных тканей только в одном случае у оболочниковых (Тип1са1а) вырабатывается вещество туницип, близкое по [c.171]
Гликоген находится в различных органах и тканях позвоночных животных, а также многих беспозвоночных (например, раков, моллюсков). В пече- [c.175]
ГЛЮКОЗА eHijOs, мол. в. 180,16— моносахарид, одна из восьми изомерных альдогексоз. Г. в виде D-формы (декстроза, виноградный сахар) является самым распространенным углеводом. D-Г. (обычно ее называют просто Г.) встречается в свободном виде и в виде олигосахаридов (тростниковый сахар, молочный сахар), полисахаридов (крах.нал, гликоген, целлюлоза, декстран), гликозидов и др. производных. В свободно виде D-Г. содержится в плодах, цветах и др. органах растений, а также в животных тканях (в крови, мозгу и др.). D-r. является важнейшим источником энергии в организме животных и микроорганизмов (см. Гликолиз). Как и др. моносахариды, D-Г. образует носк. форм. Кристаллич. D-Г. получена в двух формах a-D-Г. (I) и -D-Г. (II). a-D-Г., т. пл. 146°, fa д = -М 12,2° (в воде), кристаллизуется из воды в виде моногидрата с т. пл. 83°. -D-Г. получают кристаллизацией D-Г. из пиридина и нек-рых др. растворителей,т.пл. 148—150°, [ад]=- -18,9° (в воде), В вод- [c.489]
При спиртовом брожении в процессе расщепления одной молекулы глюкозы образуется четыре молекулы АТФ (50 ккал, или 210 кдж). Из них две расходуются на функциональную деятельность и синтез. По расчетам некоторых авторов, при гликолизе и гликогенолизе в богатых энергией фосфорных связях аккумулируется 35—40 /о всей освобождающейся свободной энергни, остальные 60—65% рассеиваются в виде теплоты. Коэффициент полезного действия клеток, органов, работающих в анаэробных условиях, не превышает 0,4 (в аэробных 0,5). Эти расчеты основаны главны.м образом на данных, полученных на мышечных экстрактах и дрожжевом соке. В условиях живого организма мышечные клетки, органы и ткани утилизируют энергию, вероятно, значительно больше. С физиологической точки зрения процесс гликогенолиза и гликолиза имеет исключительно важное значение, особенно когда жизненные процессы осуществляются в условиях недостатка кислорода. Папример, при энергичной работе мышц, особенно в первой фазе деятельности, всегда наблюдается разрыв между доставкой кислорода в мышцы и его потребностью. В этом случае начальные энергетические затраты покрываются в значительной степени за счет гликогенолиза. Аналогичные явления наблюдаются при различных патологических состоя иях (гипоксия мозгз, сердца и т. п.). Кроме того, потенциальная энергия, заключенная в молочной кислоте, в конечном счете не теряется для высокоорганизованного организма. Образующаяся молочная кислота быстро пере.ходит из мышц в кровь и далее доставляется в печень, где снова превращается в гликоген. Анаэробный распад углеводов с образованием молочной кислоты очень распространен в природе он наблюдается не только в мышцах, но и в других тканях животного организма. [c.334]
chem21.info