Что такое гидрофобные вещества? Гидрофобные растения
Что такое гидрофобные вещества?
Кое-кому в школе повезло на уроках химии не только писать скучные контрольные и вычислять молярную массу или указывать валентность, но и смотреть на то, как учитель проводит опыты. Неизменно в рамках эксперимента как по волшебству жидкости в пробирках непредсказуемо меняли цвет, а еще что-нибудь могло взорваться или красиво сгореть. Пожалуй, не так эффектны, но все равно интересны опыты, в которых используются гидрофильные и гидрофобные вещества. Кстати, что это и чем они любопытны?
Физические свойства
На уроках химии, проходя очередной элемент из периодической таблицы, а также все основные вещества, обязательно шла речь об их различных характеристиках. В том числе затрагивались их физические свойства: плотность, агрегатное состояние в нормальных условиях, температура плавления и кипения, твердость, цвет, электропроводность, теплопроводность и многие другие. Иногда шла речь о таких характеристиках, как гидрофобность или гидрофильность, однако отдельно, как правило, об этом не говорят. Между тем это достаточно интересная группа веществ, с которой легко можно столкнуться в повседневной жизни. Так что нелишним будет узнать о них больше.
Гидрофобные вещества
Примеры легко можно взять из жизни. Так, нельзя смешать воду с маслом - это известно всем. Оно просто не растворяется, а остается плавать пузырьками или пленкой на поверхности, поскольку его плотность меньше. Но почему так и какие существуют еще гидрофобные вещества?
Обычно к этой группе относят жиры, некоторые белки и нуклеиновые кислоты, а также силиконы. Название веществ происходит от греческих слов hydor - вода и phobos - страх, но это не значит, что молекулы боятся. Просто они являются мало или совсем нерастворимыми, их еще называют неполярными. Абсолютной гидрофобности не бывает, даже те вещества, которые, казалось бы, совсем не взаимодействуют с водой, все-таки адсорбируют ее, хоть и в ничтожных количествах. На практике же контакт такого материала с h3O выглядит в виде пленки или капелек, либо жидкость остается на поверхности и принимает форму шара, поскольку он имеет наименьшую площадь поверхности и обеспечивают минимальный контакт.
Гидрофобные свойства объясняются химической структурой тех или иных веществ. Это связано с низким показателем притяжения к молекуле воды, как это происходит, например, с углеводородами.
Гидрофильные вещества
Название этой группы, как уже несложно догадаться, тоже происходит от греческих слов. Но в данном случае вторая часть philia - любовь, и это прекрасно характеризует отношения таких веществ с водой - полное "взаимопонимание" и прекрасная растворимость. В эту группу, иногда называемую "полярной", относятся простые спирты, сахара, аминокислоты и т. д. Соответственно, они обладают такими характеристиками, поскольку имеют высокую энергию притяжения к молекуле воды. Строго говоря, вообще-то все вещества являются гидрофильными в большей или меньшей степени.
Амфифильность
А бывает ли так, что гидрофобные вещества могут одновременно иметь и гидрофильные свойства? Оказывается, да! Эту группу веществ называют дифильными, или амфифильными. Оказывается, одна и та же молекула может иметь в своей структуре как растворимые - полярные, так и водоотталкивающие - неполярные элементы. Такими свойствами, например, обладают некоторые белки, липиды, поверхностно-активные вещества, полимеры и пептиды. При взаимодействии с водой они образуют различные надмолекулярные структуры: монослои, липосомы, мицеллы, бислойные мембраны, везикулы и т. д. Полярные группы при этом оказываются ориентированными к жидкости.
Значение и применение в жизни
Помимо взаимодействия воды и масла, можно найти немало подтверждений тому, что гидрофобные вещества встречаются едва ли не повсеместно. Так, чистые поверхности металлов, полупроводников, а также кожа животных, листья растений, хитиновый покров насекомых обладают подобными свойствами.
В природе оба вида веществ имеют важное значение. Так, гидрофилы используются в транспорте питательных веществ в организмах животных и растений, конечные продукты обмена также выводятся при помощи растворов биологических жидкостей. Неполярные вещества же имеют серьезное значение в формировании клеточных мембран, имеющих избирательную проницаемость. Именно поэтому подобные свойства играют важную роль в протекании биологических процессов.
В последние годы ученые разрабатывают все новые гидрофобные вещества, при помощи которых можно защитить различные материалы от смачивания и загрязнения, создавая таким образом даже самоочищающиеся поверхности. Одежда, металлические изделия, стройматериалы, автомобильные стекла - сфер применения множество. Дальнейшее изучение этой темы приведет к разработке мультифобных веществ, которые станут основной для грязеотталкивающих поверхностей. Создав подобные материалы, люди смогут сэкономить время, средства и ресурсы, а также появится возможность снизить степень загрязнения природы чистящими средствами. Так что дальнейшие разработки пойдут на пользу всем.
fb.ru
ГИДРОФОБНЫЕ РАСТЕНИЯ - это... Что такое ГИДРОФОБНЫЕ РАСТЕНИЯ?
Словарь ботанических терминов. — Киев: Наукова Думка. Под общей редакцией д.б.н. И.А. Дудки. 1984.
- ГИДРОФОБНОСТЬ
- ГИДРОФОБЫ
Смотреть что такое "ГИДРОФОБНЫЕ РАСТЕНИЯ" в других словарях:
ГИДРОФОБЫ — см. гидрофобные растения … Словарь ботанических терминов
История жизни на Земле — млн л … Википедия
БЕЛКИ — (протеины), класс сложных азотсодержащих соединений, наиболее характерных и важных (наряду с нуклеиновыми кислотами) компонентов живого вещества. Белки выполняют многочисленные и разнообразные функции. Большинство белков ферменты, катализирующие… … Энциклопедия Кольера
аминокислоты — лот; мн. (ед. аминокислота, ы; ж.). Органические вещества, сочетающие свойства кислот и оснований (являются основным элементом построения всех белков животных и растительных организмов). * * * аминокислоты класс органических соединений,… … Энциклопедический словарь
Липиды — (от греч. λίπος, lípos жир) широкая группа органических соединений, включающая жирные кислоты, а также их производные, как по радикалу, так и по карбоксильной группе. Используемое ранее определение липидов, как группы органических… … Википедия
Химическая эволюция — или пребиотическая эволюция этап предшествовавший появлению жизни[1][2][3], в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу… … Википедия
Гумус — Эта статья о соединениях, находящихся в почве. О еде, см. Хумус. На данном изображении тёмным цветом обозначен гумусовый слой Гумус (лат. hum … Википедия
Роль воды в клетке — Уникальные свойства позволили воде играть в клетке роль растворителя, терморегулятора, а также поддерживать структуру клеток и осуществлять транспортировку веществ и т.д. Содержание 1 Природа водородных связей 1.1 Участие в химических реакциях … Википедия
Липид — Липиды (от греч. λίπος, lípos жир) жирные кислоты, а также их производные, как по радикалу, так и по карбоксильной группе. Используемое ранее определение липидов, как группы органических соединений, хорошо растворимых в неполярных органических… … Википедия
Липоиды — Липиды (от греч. λίπος, lípos жир) жирные кислоты, а также их производные, как по радикалу, так и по карбоксильной группе. Используемое ранее определение липидов, как группы органических соединений, хорошо растворимых в неполярных органических… … Википедия
botanical_dictionary.academic.ru
Панафобные покрытия на смену гидрофобных
Несмачиваемые природные поверхности можно наблюдать у растений и насекомых. Это, например, листья настурции, аквилегии, крылья бабочек, волоски на теле водных жуков, ткани шёлковых гнёзд некоторых пауков. Однако хрестоматийным считается «эффект лотоса».
Так выглядят «шипы» на замороженных и высушенных листьях лотоса под электронным микроскопом. Высокая плотность «шипов» на поверхности и небольшой диаметр обеспечивают супергидрофобные свойства растения. Фото Вильгельма Бартлотта (W. Barthlott).
Понятие «эффект лотоса» ввёл немецкий ботаник Вильгельм Бартлотт в 1990-х годах, впервые описавший микроструктуру поверхности листьев цветка.
Поверхность листа лотоса содержит своеобразные шипы размером в несколько микрометров, состоящие из гидрофобных веществ (воска и др.). Благодаря такому удивительному строению поверхности вода, попадающая на листья, не растекается, а «садится» на шипы в виде шарообразных капель. Тем самым обеспечивается существенное снижение площади контакта жидкости с поверхностью листа. Она составляет менее одного процента всей площади капли, а краевой угол смачивания может достигать 170°. В итоге при малейшем наклоне вода скатывается с листа, захватывая при этом частички пыли и грязи. Удивительно, но даже если погрузить лист лотоса в замутнённую воду, а затем вынуть, он останется без единого пятнышка.
Краевой угол смачивания (γ) гидрофобной (не смачиваемой водой) поверхности более 90°, гидрофильной (смачиваемой водой) — меньше или равен 90°.
На основе «эффекта лотоса» созданы материалы с крайне низкой смачиваемостью водой — супергидрофобные материалы. Их разработкой занялись ещё в семидесятых годах прошлого века. Первые появились в 1986 году — это были перфторалкильные и перфторполиэфирные материалы, предназначенные для работы с химическими и биологическими жидкостями. Позже были созданы и другие материалы с крайне низкой смачиваемостью.
В 2007 году С. Ванг и Л. Янг из Института химии Китайской академии наук (Пекин) в статье «Definition of superhydrophobic states» («Определение супергидрофобного состояния»), вышедшей в журнале «Advanced Materials», уточнили это понятие. Формально материалы-супергидрофобы отличаются от гидрофобных значениями угла контакта капли воды с поверхностью (он же краевой угол смачивания) и угла скатывания. К супергидрофобным относят материалы, у которых контактный угол превышает 150°, а капля скатывается при наклоне поверхности менее чем на 10°.
Варьируя условия получения и химический состав материала, исследователи разработали покрытия с различными степенями смачивания. Тем самым были решены некоторые важные прикладные задачи. В качестве примеров можно назвать защиту городских зданий от загрязнений и разрушения с помощью водоотталкивающих покрытий, защиту одежды и обуви от воды, защиту металлов в условиях влажной атмосферы.
Одно из самых забавных применений супергидрофобных покрытий предложили сотрудники группы Сирила Дуэса из Лионского университета. Наверняка каждый сталкивался с тем, что струйка чая или воды льётся, скользя вдоль носика, и вместо чашки оказывается на скатерти. Французские материаловеды продемонстрировали прототип супергидрофобного чайника, лишённого этого распространённого недостатка. «Чудо» чайника объясняется наличием наноструктурированной гидрофобной внешней поверхности носика. Её краевой угол смачивания близок к 180°, что заставляет проливающиеся капли буквально отскакивать от сосуда.
Струя воды из чайника с гидрофильной поверхностью стекает по носику (фото вверху). Супергидрофобный носик решает неприятную для любой хозяйки проблему (фото внизу). Фото Лидерика Боке (Lyderic Bocquet et. al., Лионский университет).
Стоит отметить, что все новейшие разработки в области создания супергидрофобных поверхностей тесно связаны с развитием новых методов получения микро- и наноструктурированных покрытий — предмета активной работы многих исследовательских центров и университетов. Однако большинство этих работ пока остаются на стадиях лабораторных испытаний и создания прототипов. Их успешной коммерциализации препятствуют неудовлетворительная олеофобность (способность к «отталкиванию» молекул жиров и масел), непригодность к работе в условиях повышенных механических нагрузок и температур, а также высокая себестоимость. Но недавно исследователи из Виссеновского института биоинженерии при Гарвардском университете (Wyss Institute for Biologically Inspired Engineering, США) под руководством профессора Джоанны Айзенберг создали супергидрофобные покрытия, лишённые этих недостатков.
Панафобные материалы
Как и раньше, идея нового материала была заимствована у природы — на сей раз у непентеса кувшинчикового, известного своим хищническим характером. Благодаря уникальным свойствам «цветка» этого растения — ловчего кувшина, образованного пластинкой листа, севшее на него насекомое мгновенно соскальзывает внутрь, попадая в смертельную ловушку.
Непентес относится к насекомоядным растениям, приспособившимся к ловле и перевариванию насекомых. Так они добывают себе дополнительный азот для синтеза собственных белков. Перистом — структура, расположенная вокруг входа в ловушку растения (ловчего листа).
Технология, разработанная группой Джоанны Айзенберг, получила название SLIPS* (Slippery Liquid-Infused Porous Surfaces — несмачиваемые пористые поверхности, пропитанные жидкостью). Пористые покрытия, создаваемые с её помощью, — настоящие панафобы (от англ. рanphobia — боязнь всего), поскольку плохо смачиваются практически любой жидкостью — водой, солевыми растворами, нефтью и др.
В названии присутствует игра слов: с английского SLIPS переводится как «скользить».
Демонстрация олеофобности SLIPS-материала: даже при очень маленьком наклоне капля нефти скатывается с покрытия. Вверху показано поведение капли нефти на повреждённой поверхности SLIPS-материала.
Какая именно особенность непентеса кувшинчикового реализована в инновационных покрытиях, авторы подробно не описывают, но можно предположить, что она связана со специфическим строением ловушки. Согласно недавним исследованиям, основную роль в захвате насекомых цветком играет его перистом — структура у входа в кувшинообразную ловушку.
Поверхность перистома содержит микроскопические впадины между соседними эпидермальными клетками — своеобразные поры, в которых находится смазочная жидкость — вода или нектар. Вода может попадать туда во время дождя или вследствие конденсации влаги из воздуха. Нектар выделяют многочисленные железы цветка. Такое строение приводит к эффекту, подобному аквапланированию — возникновению гидродинамического клина в пятне контакта шины автомобиля. При большой скорости на дороге, покрытой слоем воды, шина не успевает продавить водяную плёнку и может полностью потерять контакт с дорогой. Так и здесь: — небольшой слой жидкости на растении приводит к тому, что лапки насекомого теряют сцепление с его поверхностью.
Эффект аквапланирования более всего известен автомобилистам. Водяной слой отделяет шины движущегося авто от дорожной поверхности, что приводит к полной или частичной потере сцепления. Иллюстрация Дэйва Индеча (Dave Indech).
Полученные образцы SLIPS-материалов могут работать в экстремальных условиях высоких давлений, мгновенно самовосстанавливаться, оптически прозрачны и химически инертны. Кроме того, они имеют низкую адгезию к таким материалам, как лёд и воск.
Свойства SLIPS-покрытий определяют множество их потенциальных приложений, под каждое из которых материал может быть соответствующим образом оптимизирован.
Например, стабильность SLIPS-материалов при различных температурах и давлениях делает их идеальными для использования в качестве покрытий нефте- и водопроводов, антиобледенительных покрытий для приборов, работающих при отрицательных температурах, и даже материалов для глубоководных исследований.
Оптическая прозрачность (в видимом и ближнем ИК-диапазонах) и способность к самоочищению открывают перспективы их применения в качестве покрытий для оптических поверхностей солнечных батарей, линз, сенсорных датчиков, приборов ночного видения. Несмачиваемость биологическими жидкостями (такими как кровь или лимфа) пригодится в борьбе с биозагрязнением поверхности медицинских приборов и инструментов. Панафобная натура SLIPS-материалов предопределяет их применение и в качестве защитных покрытий на порогах жилищ от насекомых, а также корпусов морских судов — от биообрастания.
Процесс получения SLIPS-покрытий представлят собой нанесение пористой структуры на подложку и её дальнейшее «наполнение» специальным раствором, создающим мультифобную плёнку на поверхности. Как именно это происходит, составляет ноу-хау авторов разработки.
Как утверждают исследователи из Виссеновского института, покрытия SLIPS можно создавать из простых и недорогих материалов без специализированного оборудования, что, несомненно, очень привлекательно. Детали процесса не раскрываются, но, согласно публикации в журнале «NanoToday», можно предположить, что в качестве пористой структуры предлагается использовать недорогие полимеры на основе полидиметилсилоксана. Эти полимеры доступны, нетоксичны, гидрофобны, работают в широком диапазоне температур (от –60о до +300оС). Конечно, большой интерес представляют как составы растворов, которыми наполняют пористые структуры, так и условия их нанесения. Однако об этом можно только догадываться. Так или иначе, видимо, уже в недалёком будущем на смену супергидрофобным материалам придут панафобные.
Автор: Мария Раскина, МГУ им. М.В. Ломоносова («Наука и жизнь» №1, 2013 г.)
www.corrosio.ru
Подобные непентесу | Наука и жизнь
Так выглядят «шипы» на замороженных и высушенных листьях лотоса под электронным микроскопом. Высокая плотность «шипов» на поверхности и небольшой диаметр обеспечивают супергидрофобные свойства растения. Фото Вильгельма Бартлотта (W. Barthlott).
Краевой угол смачивания (γ) гидрофобной (не смачиваемой водой) поверхности более 90<sup>о</sup>, гидрофильной (смачиваемой водой) — меньше или равен 90<sup>о</sup>.
Струя воды из чайника с гидрофильной поверхностью стекает по носику (фото вверху). Супергидрофобный носик решает неприятную для любой хозяйки проблему (фото внизу). Фото Лидерика Боке (Lyderic Bocquet et. al., Лионский университет).
Непентес относится к насекомоядным растениям, приспособившимся к ловле и перевариванию насекомых. Так они добывают себе дополнительный азот для синтеза собственных белков. Перистом — структура, расположенная вокруг входа в ловушку растения (ловчего листа)
Эффект аквапланирования более всего известен автомобилистам. Водяной слой отделяет шины движущегося авто от дорожной поверхности, что приводит к полной или частичной потере сцепления. Иллюстрация Дэйва Индеча (Dave Indech).
Демонстрация олеофобности SLIPS-материала: даже при очень маленьком наклоне капля нефти скатывается с покрытия. Вверху показано поведение капли нефти на повреждённой поверхности SLIPS-материала.
Процесс получения SLIPS-покрытий представлят собой нанесение пористой структуры на подложку и её дальнейшее «наполнение» специальным раствором, создающим мультифобную плёнку на поверхности. Как именно это происходит, составляет ноу-хау авторов разработки.
‹
›
Отталкивающие воду
Несмачиваемые природные поверхности можно наблюдать у растений и насекомых. Это, например, листья настурции, аквилегии, крылья бабочек, волоски на теле водных жуков, ткани шёлковых гнёзд некоторых пауков. Однако хрестоматийным считается «эффект лотоса».
Понятие «эффект лотоса» ввёл немецкий ботаник Вильгельм Бартлотт в 1990-х годах, впервые описавший микроструктуру поверхности листьев цветка (см. «Наука и жизнь» № 2, 2005 г.; № 4, 2012 г.).
Поверхность листа лотоса содержит своеобразные шипы размером в несколько микрометров, состоящие из гидрофобных веществ (воска и др.). Благодаря такому удивительному строению поверхности вода, попадающая на листья, не растекается, а «садится» на шипы в виде шарообразных капель. Тем самым обеспечивается существенное снижение площади контакта жидкости с поверхностью листа. Она составляет менее одного процента всей площади капли, а краевой угол смачивания может достигать 170о. В итоге при малейшем наклоне вода скатывается с листа, захватывая при этом частички пыли и грязи. Удивительно, но даже если погрузить лист лотоса в замутнённую воду, а затем вынуть, он останется без единого пятнышка.
На основе «эффекта лотоса» созданы материалы с крайне низкой смачиваемостью водой — супергидрофобные материалы. Их разработкой занялись ещё в семидесятых годах прошлого века. Первые появились в 1986 году — это были перфторалкильные и перфторполиэфирные материалы, предназначенные для работы с химическими и биологическими жидкостями. Позже были созданы и другие материалы с крайне низкой смачиваемостью. В 2007 году С. Ванг и Л. Янг из Института химии Китайской академии наук (Пекин) в статье «Definition of superhydrophobic states» («Определение супергидрофобного состояния»), вышедшей в журнале «Advanced Materials», уточнили это понятие. Формально материалы-супергидрофобы отличаются от гидрофобных значениями угла контакта капли воды с поверхностью (он же краевой угол смачивания) и угла скатывания. К супергидрофобным относят материалы, у которых контактный угол превышает 150о, а капля скатывается при наклоне поверхности менее чем на 10о.
Варьируя условия получения и химический состав материала, исследователи разработали покрытия с различными степенями смачивания. Тем самым были решены некоторые важные прикладные задачи. В качестве примеров можно назвать защиту городских зданий от загрязнений и разрушения с помощью водоотталкивающих покрытий, защиту одежды и обуви от воды, защиту металлов в условиях влажной атмосферы.
Одно из самых забавных применений супергидрофобных покрытий предложили сотрудники группы Сирила Дуэса из Лионского университета. Наверняка каждый сталкивался с тем, что струйка чая или воды льётся, скользя вдоль носика, и вместо чашки оказывается на скатерти. Французские материаловеды продемонстрировали прототип супергидрофобного чайника, лишённого этого распространённого недостатка. «Чудо» чайника объясняется наличием наноструктурированной гидрофобной внешней поверхности носика. Её краевой угол смачивания близок к 180о, что заставляет проливающиеся капли буквально отскакивать от сосуда.
Стоит отметить, что все новейшие разработки в области создания супергидрофобных поверхностей тесно связаны с развитием новых методов получения микро- и наноструктурированных покрытий — предмета активной работы многих исследовательских центров и университетов. Однако большинство этих работ пока остаются на стадиях лабораторных испытаний и создания прототипов. Их успешной коммерциализации препятствуют неудовлетворительная олеофобность (способность к «отталкиванию» молекул жиров и масел), непригодность к работе в условиях повышенных механических нагрузок и температур, а также высокая себестоимость. Но недавно исследователи из Виссеновского института биоинженерии при Гарвардском университете (Wyss Institute for Biologically Inspired Engineering, США) под руководством профессора Джоанны Айзенберг создали супергидрофобные покрытия, лишённые этих недостатков.
Панафобные материалы
Как и раньше, идея нового материала была заимствована у природы — на сей раз у непентеса кувшинчикового, известного своим хищническим характером. Благодаря уникальным свойствам «цветка» этого растения — ловчего кувшина, образованного пластинкой листа, севшее на него насекомое мгновенно соскальзывает внутрь, попадая в смертельную ловушку.
Технология, разработанная группой Джоанны Айзенберг, получила название SLIPS* (Slippery Liquid-Infused Porous Surfaces — несмачиваемые пористые поверхности, пропитанные жидкостью). Пористые покрытия, создаваемые с её помощью, — настоящие панафобы (от англ. рanphobia — боязнь всего), поскольку плохо смачиваются практически любой жидкостью — водой, солевыми растворами, нефтью и др. Какая именно особенность непентеса кувшинчикового реализована в инновационных покрытиях, авторы подробно не описывают, но можно предположить, что она связана со специфическим строением ловушки. Согласно недавним исследованиям, основную роль в захвате насекомых цветком играет его перистом — структура у входа в кувшинообразную ловушку.
Поверхность перистома содержит микроскопические впадины между соседними эпидермальными клетками — своеобразные поры, в которых находится смазочная жидкость — вода или нектар. Вода может попадать туда во время дождя или вследствие конденсации влаги из воздуха. Нектар выделяют многочисленные железы цветка. Такое строение приводит к эффекту, подобному аквапланированию — возникновению гидродинамического клина в пятне контакта шины автомобиля. При большой скорости на дороге, покрытой слоем воды, шина не успевает продавить водяную плёнку и может полностью потерять контакт с дорогой. Так и здесь: — небольшой слой жидкости на растении приводит к тому, что лапки насекомого теряют сцепление с его поверхностью.
Полученные образцы SLIPS-материалов могут работать в экстремальных условиях высоких давлений, мгновенно самовосстанавливаться, оптически прозрачны и химически инертны. Кроме того, они имеют низкую адгезию к таким материалам, как лёд и воск.
Свойства SLIPS-покрытий определяют множество их потенциальных приложений, под каждое из которых материал может быть соответствующим образом оптимизирован. Например, стабильность SLIPS-материалов при различных температурах и давлениях делает их идеальными для использования в качестве покрытий нефте- и водопроводов, антиобледенительных покрытий для приборов, работающих при отрицательных температурах, и даже материалов для глубоководных исследований. Оптическая прозрачность (в видимом и ближнем ИК-диапазонах) и способность к самоочищению открывают перспективы их применения в качестве покрытий для оптических поверхностей солнечных батарей, линз, сенсорных датчиков, приборов ночного видения. Несмачиваемость биологическими жидкостями (такими как кровь или лимфа) пригодится в борьбе с биозагрязнением поверхности медицинских приборов и инструментов. Панафобная натура SLIPS-материалов предопределяет их применение и в качестве защитных покрытий на порогах жилищ от насекомых, а также корпусов морских судов — от биообрастания.
Как утверждают исследователи из Виссеновского института, покрытия SLIPS можно создавать из простых и недорогих материалов без специализированного оборудования, что, несомненно, очень привлекательно. Детали процесса не раскрываются, но, согласно публикации в журнале «NanoToday», можно предположить, что в качестве пористой структуры предлагается использовать недорогие полимеры на основе полидиметилсилоксана. Эти полимеры доступны, нетоксичны, гидрофобны, работают в широком диапазоне температур (от –60о до +300оС). Конечно, большой интерес представляют как составы растворов, которыми наполняют пористые структуры, так и условия их нанесения. Однако об этом можно только догадываться. Так или иначе, видимо, уже в недалёком будущем на смену супергидрофобным материалам придут панафобные.
Комментарии к статье
* В названии присутствует игра слов: с английского SLIPS переводится как «скользить».
www.nkj.ru
Гидрофобность — WiKi
Гидрофобность (от др.-греч. ὕδωρ — вода и φόβος — боязнь, страх) — это физическое свойство молекулы, которая «стремится» избежать контакта с водой[1]. Сама молекула в этом случае называется гидрофобной.
Гидрофобные молекулы обычно неполярны и «предпочитают» находиться среди других нейтральных молекул и неполярных растворителей. Поэтому вода на гидрофобной поверхности, обладающей высоким значением угла смачивания, собирается в капли. А при добавлении в воду гидрофобных жидкостей, в зависимости от плотности, они собираются в изолированные сгустки, либо распределяются по поверхности воды, как происходит с нефтью.
Гидрофобными являются молекулы алканов, масел, жиров и других подобных материалов. Гидрофобные материалы используются для очистки воды от нефти, удаления разливов нефти и химических процессов разделения полярных и неполярных веществ.
Слово «гидрофобный» часто используется в качестве синонима к слову «липофильный» — «жиролюбивый», хотя это не вполне корректно. Действительно, гидрофобные вещества в целом липофильны, но среди них есть и исключения — например, силиконы, фторопласт.
Согласно термодинамике, материя стремится к состоянию с минимальной энергией, а связывание понижает химическую энергию. Молекулы воды поляризованы и способны образовывать между собой водородные связи, чем объясняются многие уникальные свойства воды. В то же время, гидрофобные молекулы не поляризованы и не способны образовывать водородные связи, поэтому вода отталкивает такие молекулы, предпочитая образовывать связи внутри себя. Именно этот эффект определяет гидрофобное взаимодействие, называемое так не совсем корректно, так как его источником является взаимодействие гидрофильных молекул воды между собой.[2] Так, две несмешивающиеся фазы (гидрофильная и гидрофобная) будут находиться в таком состоянии, где поверхность их контакта будет минимальной. Данный эффект можно наблюдать в явлении разделения фаз, происходящем, например, при расслоении водно-масляной эмульсии.
Капля на поверхности Лотоса.Сверхгидрофобные материалы имеют поверхности, чрезвычайно не склонные к смачиванию (с углом контакта с водой, превышающим 150°). Многие из подобных материалов, обнаруженных в природе, подчиняются закону Кассье и являются двухфазными на субмикронном уровне, причем одним из компонентов является воздух. Эффект лотоса основан на этом принципе. Примером сверхгидрофобного материала-биомиметика в нанотехнологии является нанопин-пленка (англ.)русск.. Показано, что поверхность пентоксида ванадия может переключаться между сверхгидрофобностью (англ.)русск. и сверхгидрофильностью под действием УФ излучения[3]. Согласно этому исследованию, любую поверхность можно наделить подобным свойством путём нанесения на неё суспензии розеткообразных частиц V2O5, например, с помощью струйного принтера. Тут гидрофобность также вызывается межслойными воздушными полостями (разделёнными расстояниями 2.1 нм). Механизм действия УФ излучения состоит в создании пар «электрон-дырка», в которых дырки реагируют с атомами кислорода в кристаллической решетке, создавая кислородные вакансии на поверхности, а электроны восстанавливают V5+ до V3+. Кислородные вакансии закрываются водой и такое поглощение воды поверхности ванадия делает её гидрофильной. При продолжительном пребывании в темноте вода замещается кислородом и гидрофильность утрачивается.
ru-wiki.org
Гидрофобность - это... Что такое Гидрофобность?
Гидрофобность (от др.-греч. ὕδωρ — вода и φόβος — боязнь, страх) — это физическое свойство молекулы, которая «стремится» избежать контакта с водой[1]. Сама молекула в этом случае называется гидрофобной.
Гидрофобные молекулы обычно неполярны и «предпочитают» находиться среди других нейтральных молекул и неполярных растворителей.
В воде такие молекулы часто кластеризуются с образованием мицелл. Вода на гидрофобных поверхностях собирается в капли с низкими значениями угла смачивания.Гидрофобными являются молекулы алканов, масел, жиров и других подобных материалов. Гидрофобные материалы используются для очистки воды от нефти, удаления разливов нефти и химических процессов разделения полярных и неполярных веществ.
Слово «гидрофобный» часто используется в качестве синонима к слову «липофильный» — «жиролюбивый», хотя это не вполне корректно. Действительно, гидрофобные вещества в целом липофильны, но среди них есть и исключения — например, силиконы.
Химические основы
Согласно термодинамике, материя стремится к состоянию с минимальной энергией, а связывание понижает химическую энергию. Молекулы воды поляризованы и способны образовывать между собой водородные связи, чем объясняются многие уникальные свойства воды. В то же время, гидрофобные молекулы не поляризованы и не способны образовывать водородные связи, поэтому вода отталкивает такие молекулы, предпочитая образовывать связи внутри себя. Именно этот эффект определяет гидрофобное взаимодействие, называемое так не совсем корректно, так как его источником является взаимодействие гидрофильных молекул воды между собой.[2] Так, две несмешивающиеся фазы (гидрофильная и гидрофобная) будут находиться в таком состоянии, где поверхность их контакта будет минимальной. Данный эффект можно наблюдать в явлении разделения фаз, происходящем, например, при расслоении водно-масляной эмульсии.
Сверхгидрофобность
Капля на поверхности Лотоса.Сверхгидрофобные материалы имеют поверхности, чрезвычайно не склонные к смачиванию (с углом контакта с водой, превышающим 150°). Многие из подобных материалов, обнаруженных в природе, подчиняются закону Кассье и являются двухфазными на субмикронном уровне, причем одним из компонентов является воздух. Эффект лотоса основан на этом принципе. Примером сверхгидрофобного материала-биомиметика в нанотехнологии является нанопин-пленка. В работе [3] показано, что поверхность ванадия пентоксида может переключаться между сверхгидрофобностью и сверхгидрофильностью под действием УФ излучения. Согласно этому исследованию, любую поверхность можно наделить подобным свойством путем нанесения на неё суспензии розеткообразных частиц V2O5, например, с помощью струйного принтера. Тут гидрофобность также вызывается межслойными воздушными полостями (разделёнными расстояниями 2.1 нм). Механизм действия УФ излучения состоит в создании пар «электрон-дырка», в которых дырки реагируют с атомами кислорода в кристаллической решетке, создавая кислородные вакансии на поверхности, а электроны восстанавливают V5+ до V3+. Кислородные вакансии закрываются водой и такое поглощение воды поверхности ванадия делает её гидрофильной. При продолжительном пребывании в темноте вода замещается кислородом гидрофильность утрачивается.
См. также
Примечания
- ↑ Aryeh Ben-Na’im Hydrophobic Interaction Plenum Press, New York (ISBN 0-306-40222-X)
- ↑ Goss, K. U. and R. P. Schwarzenbach (2003): «Rules of Thumb for Assessing Equilibrium Partitioning of Organic Compounds: Successes and Pitfalls.» JOURNAL OF CHEMICAL EDUCATION 80(4): 450—455. Link to abstract
- ↑ UV-Driven Reversible Switching of a Roselike Vanadium Oxide Film between Superhydrophobicity and Superhydrophilicity Ho Sun Lim, Donghoon Kwak, Dong Yun Lee, Seung Goo Lee, and Kilwon Cho J. Am. Chem. Soc.; 2007; 129(14) pp 4128 — 4129; (Communication) DOI:10.1021/ja0692579
Ссылки
dic.academic.ru
ЧТО ТАКОЕ ГИДРОФОБНЫЕ ВЕЩЕСТВА - Гидрофобные вещества - Гидроизоляционные смеси - Каталог покрытий
Гидрофо́бные покры́тия — не смачивающиеся водой покрытия на основе гидрофобных веществ. Действительно, гидрофобные вещества в целом липофильны, но среди них есть и исключения — например, силиконы, фторопласт. Так, в молекулах поверхностно-активных веществ различают гидрофильные (полярные) и гидрофобные (углеводородные) группы. Особенно широко такие покрытия применяют в машиностроении, строительстве и текстильном производстве.
Гидрофобность (от др.-греч.ὕδωρ — вода и φόβος — боязнь, страх) — это физическое свойство молекулы, которая «стремится» избежать контакта с водой. Гидрофобные молекулы обычно неполярны и «предпочитают» находиться среди других нейтральных молекул и неполярных растворителей. Поэтому вода на гидрофобной поверхности, обладающей высоким значением угла смачивания, собирается в капли, а нефть, попадая в водоём, распределяется по его поверхности.
Гидрофобные материалы используются для очистки воды от нефти, удаления разливов нефти и химических процессов разделения полярных и неполярных веществ. При продолжительном пребывании в темноте вода замещается кислородом и гидрофильность утрачивается. Кстати, что это и чем они любопытны? Между тем это достаточно интересная группа веществ, с которой легко можно столкнуться в повседневной жизни. Так что нелишним будет узнать о них больше.
Гидрофобное покрытие своими руками
Название веществ происходит от греческих слов hydor — вода и phobos — страх, но это не значит, что молекулы боятся. Абсолютной гидрофобности не бывает, даже те вещества, которые, казалось бы, совсем не взаимодействуют с водой, все-таки адсорбируют ее, хоть и в ничтожных количествах.
Оказывается, одна и та же молекула может иметь в своей структуре как растворимые — полярные, так и водоотталкивающие — неполярные элементы. Такими свойствами, например, обладают некоторые белки, липиды, поверхностно-активные вещества, полимеры и пептиды. Помимо взаимодействия воды и масла, можно найти немало подтверждений тому, что гидрофобные вещества встречаются едва ли не повсеместно.
Гидрофобные пропитки
В природе оба вида веществ имеют важное значение. Так, гидрофилы используются в транспорте питательных веществ в организмах животных и растений, конечные продукты обмена также выводятся при помощи растворов биологических жидкостей. Гидрофильность и гидрофобность — понятия, характеризующие сродство веществ или образованных ими тел к воде: это сродство обусловлено силами межмолекулярного взаимодействия.
Все указанные неионогенные деэмульгаторы значительно эффективнее анионоактивных, но для их синтеза был ограничен выбор доступных гидрофобных веществ. Эта проблема была решена синтезом соединений нового типа, гидрофобная часть молекулы которых состоит из цепочек (блоков) окисей пропилена и бутилена.
В промышленных условиях горную породу или руду перед ее обогащением тщательно размалывают, затем энергично размешивают в воде, к которой прибавляют небольшое количество гидрофобного вещества (масла). Различные примеси, как правило, бывают гидрофильными, а ценная часть породы гидрофобна. В данном -случае белки обволакивают микропузырьки этих газов и предохраняют их от слияния. После пропитки ткань высушивают, и при этой на волоконцах материала-образуются пленки водоотталкивающих веществ.
Однако в условиях последующей сушки при повыщенной температуре гидрофобное вещество обычно плавится и растекается по волокну. Гидрофобность рассматривают как малую степень гидрофильности, т.к. между молекулами воды и любого тела всегда действуют в большей или меньшей степени межмолекулярные силы притяжения. Гидрофильность поверхности тела может резко изменяться в результате адсорбции таких веществ. Интересно, что гидрофобный эффект не сводится к «обычным» физическим взаимодействиям: за ним стоит Второй закон термодинамики и величина, именуемая энтропией.
Так неужели гусь гидрофобнее фторопласта? Рисунок 1. Лист лотоса: пример гидрофобной поверхности.А. Б. Определение гидрофобной поверхности на основе краевого угла смачивания θ: при θ 90° — несмачиваемой (гидрофобной). Дело было в 1774 году, и хотя тогда представления о молекулярной природе веществ были еще крайне туманны, общая любознательность государственных мужей была, как видим, не в пример нынешней.
«Вглубь» гидрофобного эффекта
Рисунок 2. Иллюстрация гидрофобного эффекта.А. Это явление заставляет молекулы детергентов образовывать в растворе мицеллы, липиды — формировать моно- и бислои. Рисунок 4. Различная конфигурация молекул воды вблизи маленькой (слева) и большой (справа) гидрофобных частиц (в обоих случаях изображены красными сферами).
Поскольку гидрофобный эффект носит энтропийный характер, его роль в различных процессах (то есть, вклад в свободную энергию) зависит от температуры. В конформации статистического клубка гидрофобные боковые остатки оказываются сближены в пространстве и агрегируют под влиянием гидрофобного эффекта. Однако хотя бы примерная оценка гидрофобных и гидрофильных свойств молекул все же востребована в молекулярном моделировании и его приложениях (например, биотехнологических или индустриальных).
Смотреть что такое «Гидрофобные покрытия» в других словарях:
Было сделано предположение, что изменение характера гидрофобного «пятна» на карте МГП изменит взаимодействие с мембранами бактерий и эритроцитов по-разному, и задачу удастся выполнить. Проверили три пептида, в которые ввели точечные мутации: Ile7→Gln, Phe10→Lys и Gly11→Leu.
Роль воды сложно переоценить и в жизни главных биологических «машин» — белков. Но где вода — там и гидрофобный эффект, все еще скрывающий много неизученного и просто не понятого. Правильное название это супер гидрофобное самоочищающиеся нанопокрытие и такие покрытия для производственных целей уже существуют достаточно давно, для бетона, металла, для пластика.
Сама молекула в этом случае называется гидрофобной. Такое взаимодействие полярной и неполярной фаз носит название гидрофобного эффекта. Выбирая в анимации различные переключатели, вы можете изучить свойства гидрофильных и гидрофобных веществ на плоской поверхности и в капилляре.
Читайте также:
Читаем дальше:
nowseruterb.ru