Фотосинтетический аппарат растений. 2.Структурно-функциональная организация фотосинтетического аппарата высших растений

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

2.Структурно-функциональная организация фотосинтетического аппарата высших растений. Фотосинтетический аппарат растений


Фотосинтетический аппарат - Большая Энциклопедия Нефти и Газа, статья, страница 1

Фотосинтетический аппарат

Cтраница 1

Фотосинтетический аппарат состоит из трех основных компонентов: 1) светособирающих пигментов, поглощающих энергию света и передающих ее в реакционные центры; 2) фотохимических реакционных центров, где происходит трансформация электромагнитной формы энергии в химическую; 3) фотосинтетических электронтранспортных систем, обеспечивающих перенос электронов, сопряженный с запасанием энергии в молекулах АТФ. В фотохимической реакции участвуют, как правило, хлорофиллы или бактериохлорофиллы а в модифицированной форме. Эти же виды хлорофиллов наряду с другими, а также пигментами иных типов ( фикобилипротеины, каротиноиды) выполняют функцию антенны. У некоторых пурпурных бактерий, содержащих только бактериохлорофилл Ь, он выполняет обе функции.  [2]

Фотосинтетический аппарат локализован в хлоропласте.  [3]

Фотосинтетический аппарат растений характеризуется особым химическим составом, отличающим его от остальных участков клеток. Главное отличие заключается в том, что только в хроматофорах и хлоропластах содержатся пигменты, непосредственно участвующие в осуществлении процесса фотосинтеза. Эти пигменты подразделяются на три группы: зеленые ( порфирины), желтые ( каротиноиды) и растительные желчные пигменты - фикобилины, являющиеся вспомогательными пигментами некоторых водорослей.  [4]

Фотосинтетический аппарат клетки заключен в мембранные ламеллы хлоропластов. Липид составляет 50 % сухого веса хлоропластов, именно за счет многочисленных повторяющихся элементарных мембран этих органелл. Как уже упоминалось, в хлоропластах ( благодаря их размерам, многочисленности и высокому содержанию мембран) большинства растительных клеток содержится основная масса липидов. Некоторые липиды, например - каротин и хлорофилл, которые найдены исключительно в хлоропластах, играют важную роль в улавливании световой энергии при фотосинтезе.  [5]

Фотосинтетический аппарат основных групп эубактерий организован по-разному.  [7]

Пигменты фотосинтетического аппарата представляют собой довольно сложные соединения, поэтому процесс их биосинтеза включает в себя много реакций. Вводя в растения различные меченые по углероду С14 соединения и прослеживая за эффективностью использования этих соединений в синтезе тех или иных пигментов ( или промежуточных веществ), удалось расшифровать последовательность реакций образования зеленых и желтых пигментов фотосинтетического аппарата.  [8]

Устойчивость фотосинтетического аппарата к действию почвенной засухи на разных этапах развития растений неодинакова, что связано с различным функциональным состоянием их. Наиболее значительно снижалась интенсивность фотосинтеза у пшеницы во время так называемого критического периода - от момента образования тетрад в спорогенной ткани пыльников до цветения и оплодотворения включительно.  [9]

Каротиноиды фотосинтетического аппарата поглощают свет в синей области спектра ( фиг. Следовательно, энергия поглощенных каротиноидами квантов, казалось бы, может расходоваться лишь двумя путями: на осуществление химической работы и рассеивание в виде тепла. Однако было установлено, что каротиноиды так же как и все другие вспомогательные пигменты, непосредственно в фотохимических реакциях не участвуют, а передают энергию электронного возбуждения на молекулы хлорофилла.  [10]

Работа фотосинтетического аппарата позволяет клеткам, которые им вооружились, строить органические соединения из двуокиси углерода и воды. Сложность задачи не только в том, чтобы из небольших и относительно просто построенных молекул создать сложные по архитектуре структуры, но и в том, чтобы обогатить эти структуры энергией.  [12]

Структура фотосинтетического аппарата делает возможным физическое, пространственное разделение промежуточных нестойких продуктов, образующихся при фотосинтезе. A разоощенн между собой.  [13]

Мембраны фотосинтетического аппарата имеют общий с другими биологическими мембранами принцип строения и состоят из липидов и белков. Отличительной особенностью этих мембран является то, что в них встроены молекулы хлорофилла и других сопровождающих пигментов, которые поглощают свет и обеспечивают передачу энергии электронного возбуждения активному центру и в фотосинтетическую цепь переноса электрона.  [14]

Пигменты фотосинтетического аппарата организованы в хлоропластах растений в два функциональных ансамбля, каждый из которых связан, в свою очередь, с определенгой цепью переноса электронов.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

2.Структурно-функциональная организация фотосинтетического аппарата высших растений

Фотосинтез осуществляют высшие растения, водоросли и некоторые бактерии. Этот процесс заключается в трансформации поглощенной световой энергии в химическую энергию органических соединений.

Суммарный процесс фотосинтеза высших растений можно разделить на две взаимосвязанные стадии: световую и темновую. Световая стадия включает поглощение света пигментами, которые при этом переходят в возбужденное состояние, миграцию энергии электронного возбуждения к реакционным центрам (РЦ), разделение зарядов и трансформацию энергии в РЦ, перенос электронов по электронтранспортной цепи (ЭТЦ) и сопряженные с ним процессы, приводящие к образованию первичных стабильных продуктов: НАДФ.Н и АТФ. Темновая стадия включает ассимиляцию СО2 и образование конечных продуктов в реакциях цикла Кальвина, которые протекают с использованием НАДФ.Н и АТФ.

В зеленых растениях все световые и часть темновых стадий фотосинтеза протекают в субклеточных частицах – хлоропластах.

Хлоропласты высших растений на срезе обычно имеют двояковыпуклую форму, а при взгляде сверху выглядят округлыми. Диаметр хлоропластов составляет от 3 до 10 мкм. Их внутреннее содержимое состоит из стромы (матрикса), в которой протекают темновые стадии фотосинтеза, и ламеллярной системы, образованной мембранами тилакоидов, – замкнутых дискообразных структур диаметром около 500 нм, состоящих из близко расположенных мембран толщиной 90 Aо (рис. 1,А). В мембранах тилакоидов происходят световые стадии фотосинтеза.

Внутри одного хлоропласта содержится обычно около 1 тыс. тилакоидов. Различают тилакоиды гран (граны – стопки тилакоидов) и тилакоиды стромы, выходящие за пределы гран и являющиеся продолжением тилакоидов гран. На один тилакоидный диск приходится в среднем 200 ЭТЦ и 105–106 молекул пигментов (хлорофилл а (Хл а), хлорофилл b (Хл b), каротиноиды).

Большинство экспериментальных данных о первичных процессах фотосинтеза у высших растений хорошо укладывается в так называемую Z-схему фотосинтеза (рис. 2). По этой схеме перенос электрона от Н2О к НАДФ+ при поглощении двух квантов света последовательно осуществляется двумя фотосистемами (ФС): коротковолновой ФС2, поглощающей свет с длиной волны =< 690 нм, и длинноволновой ФС1, поглощающей свет с длиной волны =< 710 нм.

Каждая ФС представляет собой обособленную структуру ламеллярной мембраны. Эта структура состоит из следующих компонентов: матрицы светособирающих пигментов; фотохимически активного хлорофилла, принимающего участие в разделении зарядов и входящего в состав РЦ; нескольких переносчиков электронов белковой и небелковой природы. Комплексы ФС2 локализованы в основном в уплотненных областях тилакоидов гран, а комплексы ФС1 находятся преимущественно в стромальных участках тилакоида и в неуплотненных областях тилакоидов гран.

Энергия квантов света, попадающих в фотосинтетический аппарат (ФА), может передаваться на РЦ несколькими путями. Во-первых, каждая ФС имеет собственную (коровую) хлорофилльную антенну (20–40 молекул Хл а), эффективно захватывающую фотоны и передающую энергию возбуждения на РЦ. Во-вторых, энергия возбуждения может поступать в ФС из периферической антенны, образованной светособирающим комплексом (ССК). В ССК сосредоточена примерно половина имеющегося в хлоропластах Хл a и практически весь Хл b. В настоящее время установлены структуры ФС1 (с разрешением 4,5 Aо), ФС2 (с разрешением 8 Aо) и ССК (с разрешением 3,4 Aо).

Хл a является компонентом как коровых комплексов, так и периферической антенны ФС1 и ФС2, тогда как Хл b преимущественно является компонентом периферической антенны обеих фотосистем. В связи с этим изменение отношения Хл а/Хл b указывает на изменение соотношения между комплексами реакционных центров фотосистем и ССК.

Часть ССК, связанная с ФС1 (ССК1), находится в тилакоидах стромы, а часть, связанная с ФС2 (ССК2), – в тилакоидах гран (70–90% всех ССК). Основной структурной единицей этого комплекса является белок с молекулярной массой 25–30 кДа, с которым связаны 7–8 молекул Хл а, 5–6 молекул Хл b и каротиноиды: лютеин, неоксантин и виолаксантин. Помимо улавливания света, каротиноиды выполняют важную защитную функцию, принимая на себя избыток энергии от возбужденных молекул хлорофилла и предотвращая образование активных форм кислорода.

Часть комплексов ССК2 подвижна, она может работать либо на ФС1, либо на ФС2, т.к. способна диффундировать из стромальной области в гранальную. Подвижные ССК2 играют важную роль в распределении энергии квантов света между двумя ФС. Оно связано с обратимым фосфорилированием белка ССК, которое влияет на соотношение между нециклическим и циклическим электронными потоками, обеспечивая требуемое соотношение между количествами НАДФ.Н и АТФ (см. ниже).

Молекулы хлорофилла и вспомогательных пигментов поглощают солнечный свет и переходят в возбужденное состояние. Энергия возбуждения мигрирует по пигментной матрице и попадает в конце концов на РЦ: Р680 в ФС2 и Р700 в ФС1. Здесь происходит разделение положительных и отрицательных зарядов, после чего электрон переносится на первичные акцепторы. На каждую ЭТЦ приходится 300–400 молекул пигментов, что обусловливает частое срабатывание РЦ даже при небольшой интенсивности света. Резонансный перенос энергии между молекулами-светосборщиками и захват ее в РЦ происходят за время около 10–12 с, однако разделенные заряды в РЦ стабилизируются на время около 10–2 с, которого достаточно для эффективного переноса электронов на стадиях, ограниченных диффузией.

Окисленный РЦ ФС2 (P+680) имеет окислительно-восстановительный потенциал +0,81 В и может окислить молекулу воды с помощью специальной ферментативной системы, входящей в состав кислород-выделяющего комплекса. Для функционирования этой системы необходимы ионы Mn:

Первичный акцептор ФС1 имеет окислительно-восстановительный потенциал –0,62 В и может восстанавливать конечный акцептор электронов НАДФ+ через ферредоксин-НАДФ- редуктазу.

Между комплексами ФС1 и ФС2 электроны переносятся по градиенту окислительно-восстановительного потенциала через ЭТЦ. ЭТЦ включает подвижный переносчик пластохинон, цитохромный комплекс b6–f, в состав которого входят цитохром f и два цитохрома b6, а также медьсодержащий белок пластоцианин (Пц), являющийся связующим звеном между комплексом b6–f и Р700.

Описанная совокупность процессов переноса электронов называется нециклическим транспортом. Его лимитирующей стадией является окисление пластохинона комплексом b6–f (t0,5 ~ 15–20 мс и более).

При замедлении или прекращении окисления НАДФ.Н в ФС1 осуществляется циклический электронный транспорт (рис. 2). Таким образом, в зависимости от количества НАДФ+ в системе реализуется либо нециклический транспорт электронов с участием обеих ФС, либо циклический, при котором работает лишь ФС1. Локализация большей части ФС2 в гранальной области обеспечивает основной нециклический поток электронов, восстанавливающий молекулы пластохинона, которые затем диффундируют в стромальную область, отдавая электроны ФС1.

Другая часть ФС2, локализованная в стромальной области, обеспечивает более слабый поток, взаимодействующий с интенсивным циклическим потоком ФС1 – источником энергии для синтеза АТФ. Есть данные, что ферредоксин-НАДФ-редуктаза образует единый комплекс с цитохромным комплексом b6–f. Благодаря этому замыкается циклический путь электронов, включающий ФС1 и комплекс b6-f.

Как было отмечено выше, распределение электронов по нециклическому и циклическому пути имеет важное значение для достижения оптимального соотношения между количествами синтезируемого АТФ и восстановленного НАДФ.Н. Считается, что определенную регуляторную роль играет также циклический электронный транспорт вокруг ФС2.

Процессы электронного и протонного транспорта приводят в действие АТФ-синтазу – фермент, расположенный в стромальной области тилакоидов и катализирующий синтез молекулы АТФ. На рис. 1,Б схематично представлено пространственное расположение комплекса, образующего АТФ.

АТФ-синтаза представляет собой белковый ансамбль, который состоит из двух крупных белковых фрагментов: локализованного в мембране гидрофобного фактора сопряжения CF0 и выступающего наружу (в сторону стромы) белкового комплекса (фактор сопряжения CF1). Реакции синтеза АТФ происходят поочередно в трех b-субъединицах фактора сопряжения CF1, которые вместе с тремя гомологичными им a-субъединицами образуют шарообразную структуру.

В нативной ЭТЦ формально можно выделить два места сопряжения электронного транспорта и фосфорилирования, связанные с выделением протонов во внутритилакоидное пространство: на донорной стороне ФС2 и между двумя ФС (рис. 1,Б). Работу АТФ-синтазы обеспечивает обратный поток протонов через комплекс CF0-CF1, направленный из тилакоидов в строму. При этом мембранный фрагмент CF0 выполняет роль протон-проводящего канала. В последние годы было установлено, что переносящий протоны АТФ-синтазный комплекс работает как настоящая молекулярная машина с вращающимся ротором.

Существенно, что скорость переноса электронов зависит от соотношения между количеством субстратов и продуктов реакции синтеза АТФ:

При избытке АДФ и ФН протоны активно проходят через АТФ-синтазу, сильного закисления внутритилакоидного пространства не происходит и скорость электронного транспорта поддерживается на высоком уровне. По мере истощения АДФ или ФН канал быстрого выхода протонов наружу через АТФ-синтазу закрывается, значение внутритилакоидного pH понижается и перенос электронов между ФС (окисление пластохинона) замедляется. Когда АДФ и ФН появляются вновь (например, за счет гидролиза АТФ в последующих биохимических реакциях), протоны снова начинают «прокачиваться» через АТФ-синтазу, их концентрация внутри тилакоидов уменьшается, скорость электронного транспорта возрастает и т.д.

АТФ и НАДФ.Н, образованные в световой стадии фотосинтеза, используются далее в темновой стадии фиксации СО2. Ферменты, катализирующие отдельные стадии цикла, растворимы в воде и локализованы в строме хлоропластов.

Единственным путем, посредством которого СО2 превращается в фосфаты сахаров, у всех фотоавтотрофных растений является восстановительный пентозофосфатный цикл (ВПФ-цикл), или цикл Кальвина-Бенсона-Бассэма, для которого требуется соотношение АТФ/НАДФ.Н, равное 3:2 (для связывания одной молекулы СО2 затрачиваются 3 молекулы АТФ и 2 молекулы НАДФ.Н). Суммарное уравнение реакций цикла имеет вид:

При нециклическом переносе на 2e образуется 2АТФ и 2НАДФ.Н, т.е. нециклический транспорт электронов не может полностью удовлетворить потребность ВПФ-цикла в АТФ. Для получения дополнительного АТФ используется циклический электронный транспорт в ФС1, упоминавшийся выше.

Таким образом, структурная организация фотосинтетического аппарата растений в настоящее время изучена достаточно хорошо. Наибольшее внимание исследователей привлекают те регуляторные механизмы, которые обеспечивают оптимальное функционирование этого аппарата и наиболее эффективное протекание всех фотосинтетических процессов. Многие из этих механизмов находят отражение в индукционных изменениях флуоресценции фотосинтезирующих объектов и, в частности, в явлении медленной индукции флуоресценции (МИФ).

Билет 20

studfiles.net

Фотосинтетический аппарат - Большая Энциклопедия Нефти и Газа, статья, страница 2

Фотосинтетический аппарат

Cтраница 2

В фотосинтетическом аппарате световая энергия поглощается в основном зелеными пигментами. Спектры поглощения хлорофиллов изображены на фиг. Расположение у хлорофиллов максимума поглощения в красной и инфракрасной ближней области может играть особое значение. Дело в том, что в этом участке спектра солнце излучает максимальное число квантов. Энергии красных квантов вполне достаточно для осуществления фотохимических реакций фотосинтеза.  [16]

По-видимому, фотосинтетический аппарат этих организмов очень сильно напоминает фотосистему I высших растений.  [17]

Изучение строения фотосинтетического аппарата у растений различных систематических групп имеет большое значение, так как позволяет лучше понять особенности взаимосвязи структуры и функции этих образований, играющих такую большую роль в энергетике биосферы.  [18]

Изменения в фотосинтетическом аппарате, вызванные действием ядов, могли оказать влияние и на фотосинтез. Как указано выше, в течение лета у контрольных и опытных яблонь определяли интенсивность фотосинтеза и отток ассимилятов из листьев.  [19]

В этом отношении фотосинтетический аппарат растений существенно отличается от биологических катализаторов. Это различие понятно, так как хлоропласт, слабо заполненный хлорофиллом, прежде всего не мог бы служить эффективной ловушкой световой энергии.  [20]

Для нормального развития фотосинтетического аппарата нужны и другие элементы. Сера является необходимым компонентом белков и сульфолипидов, входит в состав соединений, участвующих в окислительно-восстановительных реакциях, а также коэнзима А, занимающего одну из ключевых позиций в обмене веществ.  [21]

Исходя из этого, фотосинтетический аппарат растений нужно было бы рассматривать только как поставщика для растений универсального питательного материала, из которого уже в результате вторичных реакций, без участия фотосинтетического аппарата, создаются все остальные жизненно важные вещества.  [22]

Полные паразиты не имеют фотосинтетического аппарата и в течение всего периода вегетации живут за счет питательных веществ растения-хозяина. Полупаразиты наряду с присосками имеют и зеленые листья, способные к фотосинтезу.  [23]

Светочувствительные пигменты входят в состав фотосинтетического аппарата высших растении, водорослей и фотосинтези-рующих бактерий. В эукариотических Клетках пигменты находятся в окрашенных пластидах - хлоропластах, у сине-зеленых водорослей - в тилакоидных структурах, у фотосинтезирующих бактерий - в специализированных органеллах мезосомах.  [24]

Компоненты и промежуточные продукты мм фотосинтетического аппарата могут быть способны не только к фото - izo химическому, но и к медленному нефотохимическому самоокислению.  [25]

Костычева о протодлазматическом контроле над фотосинтетическим аппаратом.  [26]

Избирательная сенсибилизация окислительных процессов в фотосинтетическом аппарате, производимая светом, поглощенным каротиноидами или хлорофиллом в сине-фиолетовой полосе, представляет одну из возможностей такого типа. Однако в этом случае подвергаться влиянию должны только те световые кривые, которые принадлежат к типу с оптимумом, зависящим от времени ( этот тип наблюдался, например, у некоторых умбриофильных растений, см. стр.  [27]

Одной из действенных мер, предохраняющих фотосинтетический аппарат растений от губительного действия почвенной засухи, является орошен / ие. Было показано, что интенсивность фотосинтеза имеет более высокое значение при поливе дождеванием, чем при поливе растений по бороздам.  [28]

Выяснение взаимосвязи между структурой и функциями фотосинтетического аппарата является важнейшей задачей, над решением которой работают коллективы ученых многих стран.  [29]

Рост тилакоидной мембраны и развитие функционирующего фотосинтетического аппарата в ходе дифференциации этиопласта в хлоропласт - многоступенчатый процесс, который включает не только биосинтез структурных и функциональных компонентов, но также и интеграцию и сборку этих компонентов в функциональные единицы. На разных стадиях развития мембран можно выделить тилакоиды, содержащие ФС I - и ФС П - единицы. Сначала формируются ядра ФС I и ФС II, включающие реакционные центры, а затем простые ( мономерные. Дифференциация первичных тилакоидов в тилакоиды стромы и гран происходит по мере синтеза ССК; в ходе такой дифференциации размер ФС I - и ФС Н - единиц увеличивается, а в процессе дальнейшего развития пигмент-белковые комплексы постепенно организуются в большие надмолекулярные структуры полностью развитых хлоропластов.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Фотосинтетический аппарат растений и водорослей

    Фотосинтетический аппарат растений характеризуется особым химическим составом, отличающим его от остальных участков клеток. Главное отличие заключается в ТОМ, что только в хроматофорах и хлоропластах содержатся пигменты, непосредственно участвующие в осуществлении процесса фотосинтеза. Эти пигменты подразделяются на три группы зеленые (порфирины), желтые (каротиноиды) и растительные желчные пигменты — фикобилины, являющиеся вспомогательными пигментами некоторых водорослей. [c.35]     Растения живут в световом поле , характер которого зависит от климатической зоны и ее естественной среды и меняется также в зависимости от времени года, времени дня и метеорологических условий. Для растения важны три характеристики естественных световых полей их полная интенсивность, спектральный состав и периодичность. Имеются убедительные доказательства того, что растения приспосабливают свои жизненные процессы вообще и фотосинтетический аппарат в частности ко всем этим трем факторам. Приспособление к интенсивности проявляется в различном характере тенелюбивых и светолюбивых растений (теневые и солнечные растения) приспособление к окраске света (хроматическая адаптация) наиболее ярко иллюстрируется фактом существования красных водорослей в глубинах моря приспособление к периодичности видно из различий между растениями длинного дня (растения преимущественно арктической зоны) и растениями короткого дня (растения преимущественно умеренной и тропической зон). [c.139]

    Необходимо иметь в виду, что параллельно с изменением фотосинтетической функции должна была изменяться и структура фотосинтетического аппарата. Действительно, современные организмы, отличающиеся по способу использования энергии света, имеют различную структуру фотосинтетического аппарата. До 1952 года считали, что у наиболее примитивных форм — фотосинтезирующих бактерий и сине-зеленых водорослей — хлорофилл диффузно рассеян в протоплазме, в то время как у остальных водорослей и высших растений он скон- [c.21]

    В одном из предыдущих разделов, посвященных классификации организмов, использующих энергию света, уже сообщалось, что фотосинтетический аппарат у разных типов растений имеет разное строение. У фотосинтезирующих бактерий и сине-зеленых водорослей хроматофоры представляют собой индивидуальные тилакоиды или их скопления, не окруженные общей мембраной. [c.77]

    Развитие фотосинтетических аппаратов знаменовало собой начало совершенно нового периода в эволюции форм жизни на Земле. Появились новые виды живых существ, резко изменились условия питания, состав атмосферы — началось обогащение ее кислородом. Синтез органических веществ в растениях и водорослях обеспечил пищей гетеротрофные организмы из остатков растений под влиянием химических и биологических факторов начали образовываться массы ископаемых углей. Накопления таких отложений, как нефть, известняки и сланцы,— это тоже результат фотосинтетической деятельности. [c.196]

    Фотосинтезирующие организмы. Самый примитивный тип фотосинтеза осуществляют солелюбивые галобактерии, живущие в средах с высоким (до 30 %) содержанием хлорида натрия. Простейшими организмами, способными осуществлять фотосинтез, являются также пурпурные и зеленые серобактерии, а также несерные пурпурные бактерии. Фотосинтетический аппарат у этих организмов устроен гораздо проще (состоит из одной фотосистемы), чем у растений кроме того, они не выделяют кислород, так как в качестве источника электронов используют соединения серы, а не воду. Фотосинтез такого типа получил название бактериального. Однако существуют цианобактерии (прокариоты, способные к фотоокислению воды и вьщелению кислорода), обладающие более сложной организацией фотосинтетического аппарата — двумя сопряженно работающими фотосистемами. У растений реакции фотосинтеза осуществляются в специализированных органеллах клетки — хлоропластах. У всех растений (от водорослей и мхов до современных голосеменных и покрытосеменных) прослеживается много общих черт в структурно-функциональной организации фотосинтетического аппарата. [c.418]

    Явление замедленной флуоресценции наблюдается у всех видов фотосинтезирующих организмов. Наличие флуоресценции тесно связано с функциональной целостностью фотосинтетического аппарата. Этиолированные листья, мутанты растений водорослей с неактивными фотохимическими реакционными центрами не испускают замедленной флуоресценции. [c.206]

    Самым важным фотосинтетическим пигментом у всех растений является хлорофилл а (Хл а) в бактериях ему соответствует бактериохлорофилл (БХл). Кроме того, фотосинтезирующий аппарат всех клеток содержит ряд пигментов, обычно называемых дополнительными или вспомогательными. Нам теперь ясно, что функции этих компонентов не менее существенны, чем функция обычного хлорофилла а. У всех зеленых растений, включая водоросли, к такого рода пигментам относится также особая форма хлорофилла а (поглощающая в более коротковолновой области спектра) и хлорофилл Ъ. Ряд других вспомогательных пигментов указан в табл. 37. Среди них особенно важную роль играют каротиноиды и фикобилины (фикоцианин и фикоэритрин). На фиг. 93 показано строение некоторых фотосинтетических пигментов. [c.320]

    Прохлорофиты привлекают к себе большое внимание в связи с проблемами эволюции фотосинтетического аппарата и возникновения фотосинтезирующих эукариот. Сравнение прохлорофит с цианобактериями и хлоропластами зеленых водорослей и высших растений обнаруживает черты сходства как с фотосинтетически-ми органеллами эукариот (организация тилакоидов, состав хлорофиллов), так и с цианобактериями (клеточное строение, состав каротиноидов, липидов, некоторые особенности метаболизма, последовательность оснований 165 рРНК). Для ответа на вопрос, в каком отношении прохлорофиты находятся с цианобактериями (развивались ли независимо и параллельно с цианобактериями, возникли ли из их предшественников, потерявших способность синтезировать фикобилипротеины, или, наоборот, цианобактерии возникли из прохлорофит), необходимо дальнейшее сравнительное изучение обеих групп эубактерий с фотосинтезом [c.323]

    Зеленые водоросли имеют верхнюю температурную границу около 60° или несколько ниже. Оптимальные температуры для наземных растений умеренного климата — 25—30° С, максимальные 40—43°. Некоторые растения пустынь способны осуществлять фотосинтез при температуре тканей 58°. Лищайники относятся к наземным организмам, у которых фотосинтетический аппарат, по-видимому, наиболее устойчив к сильным изменениям температуры. Так, например, у них фотосинтез восстанавливается после 4,5- часового нагревания при 100°. [c.120]

    В биогеохимическом плане следующие революционные события связаны, однако не столько с концентрирующей функцией животных, сколько с эволюцией первичных продуцентов. В позднем силуре происходит выход на сушу зеленых растений, способных вынести в воздушную среду фотосинтетический аппарат и при этом не погибнуть от высыхания. Задача была решена с помощью развития проводящей системы для воды, ненужной водорослям, и формирования углеродного скелета из целлюлозы и лигнина, способного поддерживать фотосинтетический аппарат в аэротопе. Неясно, не была ли эта задача решена ранее лишайниками как симбиотическими организмами, способными развиваться в воздушной среде. Существуют предположения, что наземные растения были тесно связаны с микоризоподобными грибами, участвовавшими в создании транспортной системы. Так или иначе в течение геологически короткого времени произошла биологическая революция, связанная с появлением наземного растительного покрова, резко изменившего условия жизни на континентах. Сюда относятся избыток органического углерода в форме лигноцеллюлозы, изменение атмосферного гидрологического цикла за счет эвапотранспирации, изменение денудации за счет образования корневого войлока. [c.339]

    Прохлорофиты привлекают к себе большое внимание в связи с проблемами эволюции фотосинтетического аппарата и возникновения фотосинтезирующих эукариот. Сравнение прохлорофит с цианобактериями и хлоропластами зеленых водорослей и высших растений обнаруживает черты сходства как с фотосинтетическими органеллами эукариот (организация тилакоидов, состав хлорофиллов), так и с цианобактериями (клеточное строение, состав каротиноидов, липидов, стеролов, некоторые особенности метаболизма, последовательность оснований 165-рибосомной РНК). Для ответа на вопрос, в каком отношении прохлорофиты находятся с цианобактериями (развивались ли независимо и параллельно с цианобактериями, возникли ли из их предшественников, потерявших способность синтезировать фикобилипротеиды, или наоборот цианобактерии возникли из прохлорофит), необходимо дальнейшее сравнительное изучение обеих групп прокариот с фотосинтезом кислородного типа. В настоящее время прохлорофиты рассматриваются в качестве возможных эндосимбионтов, последующая эволюция которых привела к возникновению хлоропластов зеленых водорослей и высших растений. [c.285]

    Согласно теории эндосимбиоза (Margulis, 1970 1981), митохондрии эукариот и хлоропласты растений и зеленых жгутиковых произошли от свободноживущих прокариот, заселивших примитивные эукариотические клетки и оставшихся в цитоплазме в качестве постоянных самовоопроизводящихся симбионтов. Считается, что митохондрии происходят от аэробных бактерий, а хлоропласты — от синезеленых водорослей. Основанием для этой теории служит структурное и биохимическое сходство между этими органеллами и соответствующими формами современных прокариот. Митохондрии содержат кольцевые молекулы двухцепочечной ДНК, сходной с ДНК бактерий. Хлоропласты, так же как и клетки синезеленых водорослей, окружены мембраной, содержат фотосинтетический аппарат и, помимо ДНК, тельца, похожие на рибосомы, Кроме того, синезеленые водоросли часто вступают в симбиоз с различными эукариотическими организмами. [c.194]

chem21.info

2.Структурно-функциональная организация фотосинтетического аппарата высших растений

Фотосинтез осуществляют высшие растения, водоросли и некоторые бактерии. Этот процесс заключается в трансформации поглощенной световой энергии в химическую энергию органических соединений.

Суммарный процесс фотосинтеза высших растений можно разделить на две взаимосвязанные стадии: световую и темновую. Световая стадия включает поглощение света пигментами, которые при этом переходят в возбужденное состояние, миграцию энергии электронного возбуждения к реакционным центрам (РЦ), разделение зарядов и трансформацию энергии в РЦ, перенос электронов по электронтранспортной цепи (ЭТЦ) и сопряженные с ним процессы, приводящие к образованию первичных стабильных продуктов: НАДФ.Н и АТФ. Темновая стадия включает ассимиляцию СО2 и образование конечных продуктов в реакциях цикла Кальвина, которые протекают с использованием НАДФ.Н и АТФ.

В зеленых растениях все световые и часть темновых стадий фотосинтеза протекают в субклеточных частицах – хлоропластах.

Хлоропласты высших растений на срезе обычно имеют двояковыпуклую форму, а при взгляде сверху выглядят округлыми. Диаметр хлоропластов составляет от 3 до 10 мкм. Их внутреннее содержимое состоит из стромы (матрикса), в которой протекают темновые стадии фотосинтеза, и ламеллярной системы, образованной мембранами тилакоидов, – замкнутых дискообразных структур диаметром около 500 нм, состоящих из близко расположенных мембран толщиной 90 Aо (рис. 1,А). В мембранах тилакоидов происходят световые стадии фотосинтеза.

Внутри одного хлоропласта содержится обычно около 1 тыс. тилакоидов. Различают тилакоиды гран (граны – стопки тилакоидов) и тилакоиды стромы, выходящие за пределы гран и являющиеся продолжением тилакоидов гран. На один тилакоидный диск приходится в среднем 200 ЭТЦ и 105–106 молекул пигментов (хлорофилл а (Хл а), хлорофилл b (Хл b), каротиноиды).

Большинство экспериментальных данных о первичных процессах фотосинтеза у высших растений хорошо укладывается в так называемую Z-схему фотосинтеза (рис. 2). По этой схеме перенос электрона от Н2О к НАДФ+ при поглощении двух квантов света последовательно осуществляется двумя фотосистемами (ФС): коротковолновой ФС2, поглощающей свет с длиной волны =< 690 нм, и длинноволновой ФС1, поглощающей свет с длиной волны =< 710 нм.

Каждая ФС представляет собой обособленную структуру ламеллярной мембраны. Эта структура состоит из следующих компонентов: матрицы светособирающих пигментов; фотохимически активного хлорофилла, принимающего участие в разделении зарядов и входящего в состав РЦ; нескольких переносчиков электронов белковой и небелковой природы. Комплексы ФС2 локализованы в основном в уплотненных областях тилакоидов гран, а комплексы ФС1 находятся преимущественно в стромальных участках тилакоида и в неуплотненных областях тилакоидов гран.

Энергия квантов света, попадающих в фотосинтетический аппарат (ФА), может передаваться на РЦ несколькими путями. Во-первых, каждая ФС имеет собственную (коровую) хлорофилльную антенну (20–40 молекул Хл а), эффективно захватывающую фотоны и передающую энергию возбуждения на РЦ. Во-вторых, энергия возбуждения может поступать в ФС из периферической антенны, образованной светособирающим комплексом (ССК). В ССК сосредоточена примерно половина имеющегося в хлоропластах Хл a и практически весь Хл b. В настоящее время установлены структуры ФС1 (с разрешением 4,5 Aо), ФС2 (с разрешением 8 Aо) и ССК (с разрешением 3,4 Aо).

Хл a является компонентом как коровых комплексов, так и периферической антенны ФС1 и ФС2, тогда как Хл b преимущественно является компонентом периферической антенны обеих фотосистем. В связи с этим изменение отношения Хл а/Хл b указывает на изменение соотношения между комплексами реакционных центров фотосистем и ССК.

Часть ССК, связанная с ФС1 (ССК1), находится в тилакоидах стромы, а часть, связанная с ФС2 (ССК2), – в тилакоидах гран (70–90% всех ССК). Основной структурной единицей этого комплекса является белок с молекулярной массой 25–30 кДа, с которым связаны 7–8 молекул Хл а, 5–6 молекул Хл b и каротиноиды: лютеин, неоксантин и виолаксантин. Помимо улавливания света, каротиноиды выполняют важную защитную функцию, принимая на себя избыток энергии от возбужденных молекул хлорофилла и предотвращая образование активных форм кислорода.

Часть комплексов ССК2 подвижна, она может работать либо на ФС1, либо на ФС2, т.к. способна диффундировать из стромальной области в гранальную. Подвижные ССК2 играют важную роль в распределении энергии квантов света между двумя ФС. Оно связано с обратимым фосфорилированием белка ССК, которое влияет на соотношение между нециклическим и циклическим электронными потоками, обеспечивая требуемое соотношение между количествами НАДФ.Н и АТФ (см. ниже).

Молекулы хлорофилла и вспомогательных пигментов поглощают солнечный свет и переходят в возбужденное состояние. Энергия возбуждения мигрирует по пигментной матрице и попадает в конце концов на РЦ: Р680 в ФС2 и Р700 в ФС1. Здесь происходит разделение положительных и отрицательных зарядов, после чего электрон переносится на первичные акцепторы. На каждую ЭТЦ приходится 300–400 молекул пигментов, что обусловливает частое срабатывание РЦ даже при небольшой интенсивности света. Резонансный перенос энергии между молекулами-светосборщиками и захват ее в РЦ происходят за время около 10–12 с, однако разделенные заряды в РЦ стабилизируются на время около 10–2 с, которого достаточно для эффективного переноса электронов на стадиях, ограниченных диффузией.

Окисленный РЦ ФС2 (P+680) имеет окислительно-восстановительный потенциал +0,81 В и может окислить молекулу воды с помощью специальной ферментативной системы, входящей в состав кислород-выделяющего комплекса. Для функционирования этой системы необходимы ионы Mn:

Первичный акцептор ФС1 имеет окислительно-восстановительный потенциал –0,62 В и может восстанавливать конечный акцептор электронов НАДФ+ через ферредоксин-НАДФ- редуктазу.

Между комплексами ФС1 и ФС2 электроны переносятся по градиенту окислительно-восстановительного потенциала через ЭТЦ. ЭТЦ включает подвижный переносчик пластохинон, цитохромный комплекс b6–f, в состав которого входят цитохром f и два цитохрома b6, а также медьсодержащий белок пластоцианин (Пц), являющийся связующим звеном между комплексом b6–f и Р700.

Описанная совокупность процессов переноса электронов называется нециклическим транспортом. Его лимитирующей стадией является окисление пластохинона комплексом b6–f (t0,5 ~ 15–20 мс и более).

При замедлении или прекращении окисления НАДФ.Н в ФС1 осуществляется циклический электронный транспорт (рис. 2). Таким образом, в зависимости от количества НАДФ+ в системе реализуется либо нециклический транспорт электронов с участием обеих ФС, либо циклический, при котором работает лишь ФС1. Локализация большей части ФС2 в гранальной области обеспечивает основной нециклический поток электронов, восстанавливающий молекулы пластохинона, которые затем диффундируют в стромальную область, отдавая электроны ФС1.

Другая часть ФС2, локализованная в стромальной области, обеспечивает более слабый поток, взаимодействующий с интенсивным циклическим потоком ФС1 – источником энергии для синтеза АТФ. Есть данные, что ферредоксин-НАДФ-редуктаза образует единый комплекс с цитохромным комплексом b6–f. Благодаря этому замыкается циклический путь электронов, включающий ФС1 и комплекс b6-f.

Как было отмечено выше, распределение электронов по нециклическому и циклическому пути имеет важное значение для достижения оптимального соотношения между количествами синтезируемого АТФ и восстановленного НАДФ.Н. Считается, что определенную регуляторную роль играет также циклический электронный транспорт вокруг ФС2.

Процессы электронного и протонного транспорта приводят в действие АТФ-синтазу – фермент, расположенный в стромальной области тилакоидов и катализирующий синтез молекулы АТФ. На рис. 1,Б схематично представлено пространственное расположение комплекса, образующего АТФ.

АТФ-синтаза представляет собой белковый ансамбль, который состоит из двух крупных белковых фрагментов: локализованного в мембране гидрофобного фактора сопряжения CF0 и выступающего наружу (в сторону стромы) белкового комплекса (фактор сопряжения CF1). Реакции синтеза АТФ происходят поочередно в трех b-субъединицах фактора сопряжения CF1, которые вместе с тремя гомологичными им a-субъединицами образуют шарообразную структуру.

В нативной ЭТЦ формально можно выделить два места сопряжения электронного транспорта и фосфорилирования, связанные с выделением протонов во внутритилакоидное пространство: на донорной стороне ФС2 и между двумя ФС (рис. 1,Б). Работу АТФ-синтазы обеспечивает обратный поток протонов через комплекс CF0-CF1, направленный из тилакоидов в строму. При этом мембранный фрагмент CF0 выполняет роль протон-проводящего канала. В последние годы было установлено, что переносящий протоны АТФ-синтазный комплекс работает как настоящая молекулярная машина с вращающимся ротором.

Существенно, что скорость переноса электронов зависит от соотношения между количеством субстратов и продуктов реакции синтеза АТФ:

При избытке АДФ и ФН протоны активно проходят через АТФ-синтазу, сильного закисления внутритилакоидного пространства не происходит и скорость электронного транспорта поддерживается на высоком уровне. По мере истощения АДФ или ФН канал быстрого выхода протонов наружу через АТФ-синтазу закрывается, значение внутритилакоидного pH понижается и перенос электронов между ФС (окисление пластохинона) замедляется. Когда АДФ и ФН появляются вновь (например, за счет гидролиза АТФ в последующих биохимических реакциях), протоны снова начинают «прокачиваться» через АТФ-синтазу, их концентрация внутри тилакоидов уменьшается, скорость электронного транспорта возрастает и т.д.

АТФ и НАДФ.Н, образованные в световой стадии фотосинтеза, используются далее в темновой стадии фиксации СО2. Ферменты, катализирующие отдельные стадии цикла, растворимы в воде и локализованы в строме хлоропластов.

Единственным путем, посредством которого СО2 превращается в фосфаты сахаров, у всех фотоавтотрофных растений является восстановительный пентозофосфатный цикл (ВПФ-цикл), или цикл Кальвина-Бенсона-Бассэма, для которого требуется соотношение АТФ/НАДФ.Н, равное 3:2 (для связывания одной молекулы СО2 затрачиваются 3 молекулы АТФ и 2 молекулы НАДФ.Н). Суммарное уравнение реакций цикла имеет вид:

При нециклическом переносе на 2e образуется 2АТФ и 2НАДФ.Н, т.е. нециклический транспорт электронов не может полностью удовлетворить потребность ВПФ-цикла в АТФ. Для получения дополнительного АТФ используется циклический электронный транспорт в ФС1, упоминавшийся выше.

Таким образом, структурная организация фотосинтетического аппарата растений в настоящее время изучена достаточно хорошо. Наибольшее внимание исследователей привлекают те регуляторные механизмы, которые обеспечивают оптимальное функционирование этого аппарата и наиболее эффективное протекание всех фотосинтетических процессов. Многие из этих механизмов находят отражение в индукционных изменениях флуоресценции фотосинтезирующих объектов и, в частности, в явлении медленной индукции флуоресценции (МИФ).

studfiles.net

Фотосинтетический аппарат - Большая Энциклопедия Нефти и Газа, статья, страница 3

Фотосинтетический аппарат

Cтраница 3

Очень важен вопрос об обратимости в фотосинтетическом аппарате изменений, вызванных действием засухи. С этим связана полемика, развернувшаяся вокруг положения о временной засухе, как средстве стимуляции фотосинтеза и повышения урожайности пшеницы.  [31]

Вопрос об особенностях формирования структуры и функций фотосинтетического аппарата в процессе эволюции уже давно привлекал к себе внимание биологов ( К. А. Тимирязев, В. Н. Любименко), но разрешить его удалось лишь после того, как накопилось достаточно много данных, характеризующих, с одной стороны, условия эволюции Земли в добиологический период и, с другой - особенности использования энергии света различными формами современных растений.  [32]

Причины этого лежат в большой функциональной сложности фотосинтетического аппарата, существовании многочисленных конкурентных реакций, зависимости скоростей протекания их от процессов доставки в отдельные участки хлюрогаластов исходных субстратов и удаления конечных продуктов, что в свою очередь может определяться состоянием структуры фотосинтетического аппарата. Уже поставлен и начал интенсивно обсуждаться вопрос о путях регуляции ( координации и субординации) различных процессов в хлороплаетах.  [33]

Однако возможность фотоокислительных эффектов в условиях функционирования фотосинтетического аппарата довольно низка, во-первых, из-за чрезвычайно короткого ( 10 п с) времени пребывания хлорофилла в возбужденном состоянии и, во-вторых, из-за защиты клеток от фотоокисления каротиноидами.  [34]

Гаффрон [25] находит, что низкая чувствительность фотосинтетического аппарата у некоторых штаммов Scenedesmus к цианиду не относится к механизму, разлагающему перекись водорода.  [35]

Опыт показывает, что зависимость между деятельностью фотосинтетического аппарата растений и урожаями очень сложна.  [36]

Таким образом, в действительности результативность работы фотосинтетического аппарата растений значительно сложнее, чем это представлено в книге Рабиновича.  [37]

В группе цианобактерии обнаружены два типа структурной организации фотосинтетического аппарата.  [39]

Все пурпурные бактерии характеризуются сходным строением и функционированием фотосинтетического аппарата. Они могут расти на свету в анаэробных условиях, осуществляя фотосинтез бескислородного типа. Однако по целому ряду физиологических особенностей, в том числе и по использованию разных соединений в качестве донора электронов при фотосинтезе, между представителями пурпурных бактерий обнаружены значительные различия. Поэтому на основании ряда физиологических признаков группу подразделяют на пурпурные серные и несерные бактерии.  [41]

Гаффрон предполагает, что функция каталазы заключается в защите фотосинтетического аппарата от повреждений, которые может вызвать перекись водорода, образующаяся, например, при самоокислении желтого дыхательного фермента. В подтверждение этой точки зрения он сообщает, что обработанные цианидом клетки Scencdesmus, обычно способные к длительному фотосинтезу, перестают выделять кислород при прибавлении следов перекиси водорода. Они полагают, что той частью фотосинтетического аппарата, которая разрушается перекисью водорода, является карбоксилирующий энзим Еь.  [42]

Вероятно, наличие таких вторичных фотохимических реакций в работе фотосинтетического аппарата и связанное с этим разнообразие результатов его работы обусловливает резко различное поведение растений в их росте и развитии при свете разного качества.  [43]

Но анализ вопроса о механизме естественного фотосинтеза показал, что фотосинтетический аппарат относится к числу наиболее тонких и сложных созданий природы. До сих пор лишь приблизительно известно, как протекает фотосинтез, и многие его этапы еще остаются темными. Основные стадии фотосинтеза заключаются в сообщении электронам энергии изучения и в использовании энергии возбужденных электронов для создания некоторых видов молекул.  [44]

Энергия, которую из потока солнечных лучей улавливают и запасают бесчисленные фотосинтетические аппараты растений и микроорганизмов в течение года, более чем в 10 раз превышает годовую потребность всего человечества. Если бы удалось в больших масштабах создать установки для искусственного фотосинтеза, это дало бы человеку источники энергии, не менее важные и более безопасные в обращении, чем атомные реакторы.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Растения С типа фотосинтетический аппарат

    В одном из предыдущих разделов, посвященных классификации организмов, использующих энергию света, уже сообщалось, что фотосинтетический аппарат у разных типов растений имеет разное строение. У фотосинтезирующих бактерий и сине-зеленых водорослей хроматофоры представляют собой индивидуальные тилакоиды или их скопления, не окруженные общей мембраной. [c.77]     У отобранных форм сахарной свеклы и хлопчатника была выше активность фотосинтетического аппарата и ниже фотодыхание. Полученная форма сахарной свеклы имела большую массу корнеплода и повышенную сахаристость корня (на 0,8 %). Формы хлопчатника ИФ и БР-1, БР-2 по качеству волокна относились к IV и V типам соответственно, превосходили контрольные растения по урожайности на 10—15 %, а созревание их ускорялось на 5—7 дней. [c.370]

    Фотосинтезирующие организмы. Самый примитивный тип фотосинтеза осуществляют солелюбивые галобактерии, живущие в средах с высоким (до 30 %) содержанием хлорида натрия. Простейшими организмами, способными осуществлять фотосинтез, являются также пурпурные и зеленые серобактерии, а также несерные пурпурные бактерии. Фотосинтетический аппарат у этих организмов устроен гораздо проще (состоит из одной фотосистемы), чем у растений кроме того, они не выделяют кислород, так как в качестве источника электронов используют соединения серы, а не воду. Фотосинтез такого типа получил название бактериального. Однако существуют цианобактерии (прокариоты, способные к фотоокислению воды и вьщелению кислорода), обладающие более сложной организацией фотосинтетического аппарата — двумя сопряженно работающими фотосистемами. У растений реакции фотосинтеза осуществляются в специализированных органеллах клетки — хлоропластах. У всех растений (от водорослей и мхов до современных голосеменных и покрытосеменных) прослеживается много общих черт в структурно-функциональной организации фотосинтетического аппарата. [c.418]

    В клетках высших растений помимо хлоропластов содержатся еще и другие типы пластид, лишенные характерных для хлоропластов ламеллярной структуры и фотосинтетического аппарата. Среди этих пластид различают бесцветные лейкопласты и окрашенные хромопласты, окраска которых определяется высокой концентрацией каротиноидных пигментов. Подобно хлоропластам, эти тельца, по-видимому, передаются по наследству через какие-то структуры типа пропластид, присутствующие в материнской цитоплазме. Лейкопласты играют в клетке роль [c.57]

    Фотосинтетический аппарат растений С4-типа [c.49]

    Прибавление любого нового вещества к среде, в которой живет растение, или удаление обычно присутствующего в ней вещества легко может затронуть его фотосиятетическую деятельность. Список этих веществ весьма обширен и включает яды, наркотики, альдегиды, сахара, органические и неорганические кислоты и их соли, кислород и воду. Действие некоторых веществ высоко специфично они, очевидно, имеют сродство к определенным компонентам фотосинтетического аппарата. Другие вещества действуют менее специфично, как, например, все уретаны вследствие своей поверхностной активности, все кислоты благодаря общему компоненту—водородному иону и все вообще растворенные вещества вследствие осмотического действия. В первой части в астоящей главы рассматриваются специфические каталитические яды (синильная кислота, гидроксиламин, сероводород и т. д.), а во второй — наркотики типа хлороформа, эфира или уретана. Глава Х1П будет посвящена влиянию на фотосинтез концентрации кислорода, углеводов, солей и других разнообразных физических и химических ингибиторов и стимуляторов. [c.309]

    Адаптация к интенсивности света у наземных растений проявляется в суш ествовании тенелюбивых и светолюбивых видов. Любименко [139, 142—144] первый указал на различие этих двух типов как в отно]иенин структуры их листьев, так п в кинетических свойствах фотосинтетического аппарата. Листья тенелюбивых рмоте- [c.424]

    Как отмечает А.Т. Мокроносов (1988), на протяжении столетий до последнего времени практическая селекция обеспечивала выведение все более продуктивных сортов растений, основываясь на экстенсивном типе продукционного процесса. Иными словами, создавались сорта, позволяющие разместить все большее количество фотосинтезирующих единиц (хлоропластов, площади листьев) в единице объема и площади посева при максимально возможной продолжительности активного фотосинтеза. Эти сорта отличались способностью формировать в фитоценозе высокий ассимиляционный потенциал (м сут), но их фотосинтетический аппарат, его активность почти не затрагивались и сохранялись на уровне близком к фотосинтезу исходных форм. [c.368]

    Все остальные реакции по этой классификации относятся к типу I, Оба типа реакций широко распространены. Кроме окисления органических соединений в химических системах, они определяют фотоингибирование фотосинтеза и фотодеструкцию фотосинтетического аппарата при высоких интенсивностях осве-Ецения, участвуют в фотоповреждении сетчатки и хрусталика глаза, определяют фототоксичность некоторых лекарственных препаратов, обусловливают фото деструктивное действие порфи-ринов при их избыточном накоплении в клетках растений и животных, используются для разрезания ДНК, уничтожения вирусов, в фотодинамической терапии раковых заболеваний. [c.134]

    Паразитные сорные растения питаются за счет растения — хозяина, т. е. характеризуются гетеротрофным типом питания. У них. имеются специальные присоски (гаустории), с помощью которых присасываются к стеблям и корням растений и извлекают из них необходимые питательные вещества. По месту расположения присосок их разделяют на стеблевые и корневые паразитные растения. Те и другие сорняки иногда еще называют полными паразитами. Полные паразиты не имеют фотосинтетического аппарата и в течение всего цпкла развР1тия живут за счет растения-хозяина. Наряду с полными паразитами встречаются так называемые полупаразнтные сорные растения. Эти сорняки наряду с присосками имеют зеленые листья, способные к фотосинтезу. [c.123]

    Прохлорофиты привлекают к себе большое внимание в связи с проблемами эволюции фотосинтетического аппарата и возникновения фотосинтезирующих эукариот. Сравнение прохлорофит с цианобактериями и хлоропластами зеленых водорослей и высших растений обнаруживает черты сходства как с фотосинтетическими органеллами эукариот (организация тилакоидов, состав хлорофиллов), так и с цианобактериями (клеточное строение, состав каротиноидов, липидов, стеролов, некоторые особенности метаболизма, последовательность оснований 165-рибосомной РНК). Для ответа на вопрос, в каком отношении прохлорофиты находятся с цианобактериями (развивались ли независимо и параллельно с цианобактериями, возникли ли из их предшественников, потерявших способность синтезировать фикобилипротеиды, или наоборот цианобактерии возникли из прохлорофит), необходимо дальнейшее сравнительное изучение обеих групп прокариот с фотосинтезом кислородного типа. В настоящее время прохлорофиты рассматриваются в качестве возможных эндосимбионтов, последующая эволюция которых привела к возникновению хлоропластов зеленых водорослей и высших растений. [c.285]

chem21.info


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта