Физиология растений. 1 Предмет, задачи и методы физиологии растений

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Физиология растений (стр. 1 из 14). Физиология растений


Физиология растений

1 Предмет и задачи физиологии растений.

Физиология растений — это наука, изучающая жизненные яв­ления или функции растительного организма в связи со структу­рами растения и условиями окружающей среды (наука о процессах, происходящих в растительном организме).

Физиология растений делится на две большие ветви: общая физиология и прикладная. Первая изучает общие закономерности жизни растения или общие законы протекания физиологических процессов. Для подобных исследований выбираются наиболее подходящие объекты — такие, где изучаемый процесс можно наблюдать в чистом виде. В общей физиологии таким объектом могут быть низшие растения (одноклеточные водоросли), а при изучении высших растений исследование ведется на низших уровнях организации живой материи (молекулярном, субклеточном, клеточном, тканевом). Полученные при этом результаты обычно являются теоретической основой для частной физиологии.

Прикладная, физиология изучает жизненные функции определенных видов растений в конкретных экологиче­ских условиях. Выбор объекта здесь обусловлен практическими целями, а полученные результаты используются непосредственно в агрономии или в селекции. Исследования ведутся обычно на высоких уровнях организации живой материи — органе, целом организме — растении, фитоценозе. Эта ветвь физиологии расте­ний выступает теоретической базой для агрономических наук.

Задачами ф.р. являются: изучение развития растительного организма (для выращивания высокопродуктивных сельскохозяйственных растений и защиты их от неблагоприятных экологических факторов). А также в изучении ж/д растения (механизмы питания, роста, движения, размножения и др).

Ф. р. соприка­сается с науками:

  1. ботаника — анатомия и морфология растений, которые дают представление об объекте;

  2. математика, физика, химия, которые дают начало разработке физиологических методов анализа.

Ф. р. служит основой целого ряда агрономических наук:

Агрохимии — наука о почвенном пи­тании раст. и применении удобрений.

Растениеводстве — наука о возделывании отдельных культурных растений. Селекции — наука о выведении новых высокопродуктивных сортов.

Фитопатологии — наука об инфекци­онных болезнях растений.

Практическое значение: Ф.р. имеет большое практическое значение в агрономии. Например, указывает пути повышения урожаев, предлагает принципиально новые агротех­нические приемы (внесение мин. удобрений). Благодаря ф.р. были предложены приемы светокультуры растений и досвечивания рассады, а также использование фитогормонов и синтетических регуляторов роста. Ауксины стимулируют корнеобразование при вегетативном размножении древесных растений, предохраняют завязи томатов от опаде-ния и усиливают рост плодов.

Гиббереллины стимулируют рост стебля у прядильных растений, увеличивают урожай плодов бессемянного винограда.

Цитокинины оказывают антистрессовое действие, защищают растения от неблагоприятных факторов (низких t° и засухи).

Многие регуляторы роста благодаря широкому спектру действия могут быть использованы на разных культурах и с различными целями. Так, хлор-холинхлорид (препарат ССС, или ТУР) применяется для повышения зимо-стойкости озимых, засухоустойчивости яровой пшеницы, холодоустойчиво-сти проса и огурцов. Аминная соль 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) при высоких концентрациях применяется как гербицид, а при более низких концентрациях это вещество ауксиновой природы способно стимулировать рост.

studfiles.net

Физиология растений - Онлайн-энциклопедия

fizrast.ru

Перейти к содержанию ->

Физиология растений — это наука о процессах, происходящих в растительном организме. Задача физиологии растений заключается в раскрытии сущности этих процессов для того, чтобы научиться рационально использовать их. К.А. Тимирязев писал: «Физиолог не может довольствоваться пассивной ролью наблюдателя, как экспериментатор, он является деятелем, управляющим природой». В этом определении заложена целая программа действия для каждого физиолога. Из него видно, что, с одной стороны, физиология растений — это теоретическая наука, которая опирается на последние достижения физики, химии, молекулярной биологии, с другой стороны, эта наука имеет большое практическое значение для земледелия. К.А. Тимирязев писал: «Физиология растений — это научная основа земледелия». Таким образом, в задачи физиологии растений входят раскрытие сущности процессов, протекающих в растительном организме, установление их взаимной связи, изменение под влиянием среды, механизмов их регуляции, физиологические изыскания и обоснование приемов, направленных на повышение продуктивности сельскохозяйственных культур.

Физиология растений заниматься исследованием процессов, происходящих в организмах на различных уровнях организации: биоценотическом, организменном, органном, клеточном, субклеточном, молекулярном и даже субмолекулярном. При изучении физиологических процессов на каждом уровне надо постоянно иметь в виду, что как в клетке, так и в организме в целом все процессы тесно взаимосвязаны. Перестроение любого процесса отражается на всей жизнедеятельности организма. Вместе с тем любой физиологический процесс вынужден рассматриваться как итог долгой эволюции, в течение которой сложилась способность растений к адаптации, приспособлению к изменяющимся условиям среды. Этот путь исследования, в последнее время широко применяемый биологами, привел к развитию молекулярной биологии — раскрытию наследственного кода, механизма биосинтеза белка, основных закономерностей поглощения и использования квантов света в процессе фотосинтеза и т. д. Однако для того чтобы понять закономерности физиологических процессов, протекающих в целом организме, этот подход недостаточен. На основании имеющихся достижений в настоящее время применяют иной путь — переход от изучения более простого к все более сложному уровню организации. В самом общем виде именно этот подход позволяет проследить развитие отдельных физиологических процессов в целом растительном организме на основе следующей общей схемы: ДНК — РНК — белок — фермент — биохимическая реакция — физиологический процесс — свойство клетки — свойство органа — свойство организма. На всех уровнях указанной схемы процессы регулируются. За последние 10 лет большое влияние на физиологию растений оказали достижения молекулярной биологии и генетики. Именно благодаря этому получили новую интерпретацию процессы поступления воды и питательных веществ, вопросы адаптации растений, механизм действия фитогормонов, их роль в росте и развитии. Сейчас фитогормонам, подобно гормонам животных организмов, отводится важнейшее значение как в регуляции различных физиологических процессов, так и в приспособлении к условиям внешней среды. На основе изучения процессов гормонального влияния разработаны многочисленные приемы применения синтетических регуляторов роста в растениеводстве. Отечественная школа физиологии растений всегда обращала внимание на управление растительными организмами с целью повышения их продуктивности. В настоящее время эта проблема стоит во всем мире чрезвычайно остро. Важно охранять природу и одновременно поднять общую продуктивность биосферы. Особенно важным является то, о чем писал еще К.А. Тимирязев,— повысить коэффициент использования солнечной энергии в процессе фотосинтеза.

Все более широкое применение принципов, открытых при молекулярно-биологических исследованиях, в изучении процессов на уровне целого растения и растительных сообществ, позволяет подойти к управлению ростом и развитием, а следовательно, и продуктивностью растительных организмов. Изучение физиологии растений имеет большое значение для учителя. Оно поможет ему на уроках дать правильное представление о жизни растительного организма, о его огромной роли в жизни нашей планеты. Вместе с тем именно физиология растений способствует привитию учащимся любовь к экспериментальной опытнической работе. Достижения молекулярной биологии и генетики позволили по новому подойти к пониманию многих физиологических процессов. Поэтому при подготовке рукописи были пересмотрены вопросы о способах реализации генетической информации, дано представление о восприятии и трансдукции химических и физических сигналов. Это дало возможность уточнить механизм действия фитогормонов, а также особенности их взаимодействия. В настоящем издании получили широкое освещение результаты исследований, -проведенные на модифицированных растениях (мутантах и трансгенных культурах). Это позволило уточнить структуру и функцию ряда белков-ферментов (АТФ-синтаза и др.), роль транспортных белков в поступлении воды и ионов, особенности биосинтеза гормонов. Прослеживая этапы развития физиологии растений, можно увидеть, что физиологические функции, которые столетие назад всего-навсего только описывались, в данное время досконально изучены на биохимическом и молекулярном уровнях: значение органоидов, энергетика, ассимиляция С02, многие участки обмена веществ, механизмы регуляции и наследственности. В этих процессах основную роль играет взаимодействие клеточек между собой.

В последние годы изменения климата, загрязнение природной среды заставили обратить особое внимание на механизмы адаптации растений к неблагоприятным условиям обитания. В связи с этим изложение соответствующего раздела было переработано. Все вопросы об устойчивости растений объединены в одной главе. Подробно объяснено, что такое стресс, неспецифические и специфические изменения, рассмотрены особенности адаптации организмов к различным стрессорам. Показано значение образования стрессовых белков, приведены примеры идентификации генов, определяющих устойчивость. Введено понятие об особенностях образования и физиологического влияния активных форм кислорода, а также о способах защиты и функционировании антиоксидантной системы.

Физиология растений

Балашовский филиал

Саратовского государственного университета

им. Н. Г. Чернышевского

М. А. Занина

ФИЗИОЛОГИЯ РАСТЕНИЙ

Учебно-методическое пособие

для студентов заочного отделения

факультета экологии и биологии

Балашов 2005

УДК 58

ББК 28.57

З27

Рецензенты:

Доктор биологических наук, профессор

Брянского государственного университета

В. Б. Любимов;

Кандидат сельскохозяйственных наук, доцент Балашовского филиала

Саратовского государственного университета

им. Н. Г. Чернышевского

Е. Б. Смирнова;

Кандидат сельскохозяйственных наук, доцент Балашовского филиала

Саратовского государственного университета

им. Н. Г. Чернышевского

М. Ю. Сергадеева.

.

Рекомендовано к изданию Учебно-методическим советом

Балашовского филиала Саратовского государственного университета

им. Н. Г. Чернышевского.

Занина, М. А.

З27 Физиология растений : учебно-метод. пособие для студентов заочного отделения факультета экологии и биологии / М. А. Занина. — Балашов : Изд-во «Николаев», 2005. — 64 с.

ISBN 5-94035-225-1

Учебно-методическое пособие предназначено для студентов заочного отделения факультета экологии и биологии. Данное пособие включает в себя краткое теоретическое изложение основных программных разделов по физиологии растений, лабораторные работы по каждому разделу и контрольные вопросы.

Пособие может быть полезным и для учителей школ при демонстрации опытов на уроках и факультативных занятиях, а также в кружковой работе по биологии.

УДК 58

ББК 28.57

ISBN 5-94035-222-1 © Занина М. А., 2005

О г л а в л е н и е

Введение................................................................................................................. 5

РАЗДЕЛ 1

Тема 1. ОСНОВЫ ФИЗИОЛОГИИ КЛЕТКИ

1.1. Поступление веществ в клетку.................................................................. 7

1.2. Обмен веществ и энергии в клетке.......................................................... 11

Тема 2. ВОДНЫЙ РЕЖИМ РАСТЕНИЙ

2.1. Общая характеристика водного обмена растительного организма..... 12

2.2. Поступление воды в растение.................................................................. 13

2.3. Передвижение воды по растению............................................................ 13

2.4. Транспирация воды листьями.................................................................. 14

Тема 3. ФОТОСИНТЕЗ

3.1. Общее уравнение фотосинтеза................................................................. 16

3.2. Пигменты пластид.................................................................................... 17

3.3. Световая и темновая фазы фотосинтеза................................................. 19

3.4. Экология фотосинтеза.............................................................................. 21

Тема 4. ДЫХАНИЕ РАСТЕНИЙ

4.1. Превращение веществ в растении и дыхание.......................................... 24

4.2. Факторы, влияющие на процесс дыхания............................................... 25

4.3. Аэробное и анаэробное дыхание.............................................................. 27

4.4. Брожение................................................................................................... 27

4.5. Дыхание и брожение в современном изложении.................................... 29

Тема 5. МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ....................................... 32

5.1. Химический состав растений................................................................... 32

5.2. Роль азота в почвенном питании растений............................................. 33

5.3. Роль зольных макроэлементов в минеральном питании растений..... 35

5.4. Роль микроэлементов в минеральном питании растений..................... 37

Тема 6. РОСТ, РАЗВИТИЕ И ДВИЖЕНИЯ РАСТЕНИЙ

6.1. Общие понятия о росте и развитии растений.......................................... 38

6.2. Регуляторы роста...................................................................................... 39

6.3. Ингибиторы роста..................................................................................... 40

6.4. Влияние внешних условий на рост.......................................................... 41

6.5. Периодичность роста растений................................................................ 42

6.6. Движения растений................................................................................... 43

РАЗДЕЛ 2. ЛАБОРАТОРНЫЕ ЗАНЯТИЯ...................................................... 45

Лабораторная работа № 1. Сравнение проницаемости мембран живых и мертвых клеток 45

Лабораторная работа № 2. Тургор, плазмолиз и деплазмолиз................ 45

Лабораторная работа № 3. Определение транспирации весовым методом 46

Лабораторная работа № 4. Наблюдение за движением устьиц................ 47

Лабораторная работа № 5. Продукты фотосинтеза.................................. 47

Лабораторная работа № 6. Получение из листьев спиртовой вытяжки пигментов и их разделение 48

Лабораторная работа № 7. Обнаружение дыхания растений................... 50

Лабораторная работа № 8. Определение интенсивности дыхания в чашках Конвея 50

Лабораторная работа № 9. Значение различных элементов для растений 51

Лабораторная работа № 10. Зона роста корня.......................................... 53

Лабораторная работа № 11. Влияние температуры и света на скорость роста растений 54

Лабораторная работа № 12. Взаимовлияние культурных и сорных растений 55

Список основной литературы.............................................................................. 56

Список дополнительной литературы.................................................................. 56

ПРИЛОЖЕНИЯ.................................................................................................. 58

Введение

Физиология растений — наука о функциональной активности растительных организмов. Как отмечали Ж. Б. Буссенго и К. А. Тимирязев, знание основных закономерностей жизнедеятельности растений делает физиологию растений теоретической основой рационального земледелия.

Изучение физиологии растений имеет большое значение для учителя средней школы, так как знания о жизни растений помогают на должном уровне проводить работу на учебно-опытном участке. Только изучив жизнь растения, можно понять его космическую роль, оценить процесс фотосинтеза как продуцента органического вещества на планете, роль гормонов роста и физиологически активных веществ, взаимодействие растений и ряд других аспектов. Изучив основные закономерности жизни растений в теоретическом курсе, на практических занятиях будущий учитель овладеет методикой постановки опытов, что ему крайне необходимо при проведении курса ботаники в средней школе.

Данное пособие «Физиология растений» предназначено для студентов специальности 050102 «Биология» заочного отделения факультета экологии и биологии. Оно содержит историю формирования отдельных представлений, описание классических экспериментов и простейших опытов, которые помогут наглядно продемонстрировать основные природные закономерности.

В ходе изучения курса студенты должны:

- знать о физиологических особенностях растительного организма;

- владеть системой знаний о закономерностях роста и развития растительных организмов, уметь применять эти знания;

- владеть основными методами исследования биологических наук.

Пособие включает в себя краткое теоретическое изложение основных программных разделов по физиологии растений, вопросы для самоконтроля, лабораторные работы по каждой теме, задания на полевую практику и вопросы для экзамена.

Теоретический курс представлен темами: «Физиология растительной клетки», «Водный режим растений», «Фотосинтез», «Дыхание растений», «Минеральное питание растений», «Рост и развитие растений». Коротко рассматриваются основные положения, которыми определяется специфические особенности зеленых растений, отличающие их от других форм живых существ.

Лабораторные занятия по физиологии растений служат для закрепления и расширения знаний студентов по теоретическому курсу. Мы сохранили работы, ставшие классическими. Наряду с этим пособие включает работы, апробированные на кафедре биологии и экологии БФСГУ. Для каждой работы приведены список материалов и оборудования, описание ее хода, указания по оформлению результатов. Приобретенные на занятиях навыки экспериментальной деятельности могут быть использованы также учителями средней школы для постановки опытов на уроках ботаники и общей биологии.

В приложении представлены задания на полевую практику, варианты итоговой контрольной работы и вопросы для экзамена по физиологии растений.

РАЗДЕЛ 1

Тема 1. ОСНОВЫ ФИЗИОЛОГИИ КЛЕТКИ

Жизнедеятельность клетки осуществляется в процессе непрерывно протекающих химических реакций, совокупность которых составляет обмен веществ.

Для осуществления обмена веществ необходимо непрерывное передвижение их внутри клетки и между клеткой и окружающей средой. Передвижение веществ связано с преодолением мембран, ограничивающих клетку и клеточные органоиды. Изучение механизмов этого передвижения и составляет проблему клеточной проницаемости.

Проницаемость клетки

Проникновение веществ в клетку осуществляется через клеточную стенку и мембраны цитоплазмы. При этом внутрь клетки проникают лишь некоторые соединения в определенных соотношениях. Значит, клетка не является непроницаемой структурой, но не является и совершенно проницаемой. Клетка обладает избирательной проницаемостью — свойством пропускать одни вещества и задерживать другие.

Через клеточную стенку к плазмалемме легко проходят все растворимые вещества. Они движутся через поровые каналы и по так называемому «свободному пространству», доступному для диффузии ионов и молекул. Клеточная стенка адсорбирует вещества и концентрирует их на своей поверхности, создавая запас ионов для клетки. Свойством же избирательности клетка обязана цитоплазме, которая пропускает через себя и воду, и растворимые вещества, но с разной скоростью. Ряд веществ она совсем не пропускает. Следовательно, цитоплазме обладает избирательной проницаемостью и связана главным образом с ее пограничными мембранами — плазмалеммой и тонопластом. Избирательная проницаемость является одним из специфических свойств живой материи, возникшим и закрепившимся в процессе эволюции.

mirznanii.com

1 Предмет, задачи и методы физиологии растений

Физиология растений — наука, которая изучает процессы жизнедеятельности и функции растительного организма. Слово «физиология» греческого происхождения; оно состоит из двух слов: physis — природа и logos — понятие, учение. Физиология растений является наиболее развитой отраслью экспериментальной ботаники, которая в XIX в. выделилась в самостоятельную науку. Она тесно связана с химией, физикой, биохимией, биофизикой, микробиологией, молекулярной биологией.

Перед научными работниками, физиологами растений поставлены такие задачи: изучить обмен веществ и энергии в растительном организме, фотосинтез, хемосинтез, биологическую фиксацию азота из атмосферы и корневое питание растений; разработать методы повышения использования растениями солнечной энергии и питательных веществ почвы, обогащения почвы азотом; создать новые, более эффективные формы удобрений и разработать методы их применения; исследовать действие биологически активных веществ с целью использования их в растениеводстве; разработать методы более продуктивного использования воды растением. Без решения этих вопросов невозможно решение и ряда других проблем земледелия и растениеводства, направленных на повышение урожайности.

Интенсивное применение минеральных удобрений, гербицидов, физиологически активных веществ, химических препаратов для защиты растений от болезней и вредителей требует глубокого и всестороннего изучения их влияния на рост и обмен веществ растительных организмов с целью значительного повышения продуктивности сельскохозяйственных растений. Решение поставленных задач имеет большое значение для разработки проблем ускорения научно-технического прогресса в растениеводстве и дальнейшего развития сельского хозяйства нашей страны. Основной метод познания процессов, явлений в физиологии — эксперимент, опыт. Следовательно, физиология растений — наука экспериментальная.

Для изучений физико-химической сути функций, процессов в физиологии растений широко применяют методы: лабораторно-аналитический, вегетационный, полевой, меченых атомов, электронной микроскопии, электрофореза, хроматографического анализа, ультрафиолетовой и люминесцентной микроскопии, спектрофотометрии и др. Кроме того, используют фитотроны и лаборатории искусственного климата, в которых выращивают растения и проводят опыты в условиях определенного состава воздуха, нужной температуры и освещения. Применяя эти методы, физиологи исследуют растения на молекулярном, субклеточном, клеточном и организменном (интактное растение) уровнях.

Сейчас в биологических исследованиях широко применяют электронные микроскопы просвечивающего типа с разрешающей способностью 0,15—0,5 нм, в которых объект рассматривают в электронных лучах, проходящих через него. Значительное увеличение разрешающей способности электронных микроскопов по сравнению со световыми обусловливается меньшей длиной волны электронов (на пять порядков меньшей, чем длина волны ультрафиолетовых лучей).

Кроме того, для биологических исследований применяют так называемые растровые электронные микроскопы, в которых изображение создается по принципу телевизионных. Разрешающая способность растровых микроскопов равна 20—40 нм, с их помощью изучают строение поверхности пыльцы, эпидермального слоя клеток, формы клеток и др. Применение электронной микроскопии в биологии имеет большое значение для развития биологической науки и физиологии растений в частности.

Исследование ультраструктуры органоидов растительной клетки (хлоропластов, митохондрий, рибосом, мембранных структур) дало возможность раскрыть суть процессов фотосинтеза и дыхания, которые определяют возможность самой жизни на нашей планете. Изучение строения клеточных оболочек, открытие цитоплазматических мембранных структур способствовали выяснению процессов обмена веществ и энергии в клетке, изучению структуры и функции органоидов растительной клетки. Большое принципиальное значение имеет электронно-микроскопическое исследование строения РНК и ДНК, локализации их на структурных компонентах клетки. Результаты этих исследований легли в основу раскрытия генетической роли ядра и проблемы наследственности.

Место физиологии растений среди других наук

В основе физиологических функций растений лежит преобразование веществ и энергии в соответствии с законами физики и химии. Это означает, что указанные науки являются фундаментом физиологии растений. Физиология растений связана с анатомией и морфологией растений, так как строение органа и его функции взаимосвязаны. Но, еще К. А. Тимирязев подчеркивал, что выяснить до конца функцию, а тем более ее связь со строением соответствующих частей растений можно только основываясь на принципе эволюционного учения. Являясь ботанической дисциплиной, отделившейся от ботаники, физиология растений тесно связана с физиологией животных. Дыхание, питание, рост, раздражимость, размножение – все это свойства живых организмов как животных так и растений. И для того, чтобы понять жизнь растений, необходимо очень хорошо знать свойства всех живых организмов. В этой связи предпринималось много попыток создать общую физиологию, которая бы охватывала жизненные явления во всех живых организмах. Специфические особенности растений в этих условиях отходят на задний план, поэтому, с точки зрения более глубокого освещения проблем физиологии растений, именно ее преподавание является более оправданным, т. е. физиология растений – это самостоятельная наука, имеющая свои особенности. Тесно соприкасаясь с биологическими дисциплинами описательного характера, физиология отличается от них тем, что фундаментом своим имеет, как мы уже отметили, науки физико-химические. Поэтому в своем анализе жизненных явлений, раскладывая более сложные процессы на более простые, мы все время обращаемся к помощи физики и химии, т. е. развитие физиологической науки тесно связано с развитием наук физико-химических.  Так как управление жизненными процессами растений и их использование для нужд человека составляет главную задачу растениеводства, то физиология растений является одной из главнейших основ наук агрономических. Физиология растений является основной для рационального земледелия. И наоборот, проблемы агрономического характера являются стимулом в разработке определенных физиологических проблем, при этом в разработке этих вопросов принимают участие и сами представители агрономической науки. Их работам физиология растений обязана очень многим, особенно в вопросах питания растений. Имена таких ученых как Ж. Б. Бусенго, И. В. Мичурин, В. Р. Вильямс, Д. Н. Прянишников и др. в истории физиологии растений занимают почетные места.  Очень интересно высказался К. А. Тимирязев, который писал, что физиология растений займет со временем такое же положение в отношении агрономии, какое физиология человека уже заняла по отношению к медицине. Как врач не может лечить больного, не зная физиологии человека, так и агроном не может работать, не зная физиологии растений. Почему? Задача агронома – получать высокие урожаи. Урожай – это листья, стебли, семена, плоды, клубни, это значит органы растений, которые образуются в период жизни растений, а физиология – наука о жизни растительного организма.  Физиология растений настолько тесно связана с агрохимией, что между ними нельзя провести реальную границу. Учение о почвенном питании растений неразрывно связано с учением об удобрениях, а поэтому естественно агрохимики часто переходят к решению проблем физиологии питания растений, а физиологи принимают участие в разработке вопросов применения удобрений. Большое значение физиология имеет и для полеводства. Большая часть агротехнических приемов представляет собой не что иное, как создание для растений как можно более благоприятных условий существования, при которых они дали бы наибольший урожай. Например, приемы обработки почвы для создания более благоприятной для растений структуры и для уничтожения сорняков, приемы, которые служат для удержания и накопления в почве необходимой для растений влажности в сухих районах и т. д. Тесная связь существует между физиологией растений и селекцией. Отбор и создание новых сортов ставят своей задачей повышение урожая и качества продуктов, а для целенаправленного отбора необходимо знать физиологические признаки сортов: их скороспелость, зимоустойчивость, засухоустойчивость и т. д. Эти сведения можно получить только при постоянном физиологическом изучении сортов. Еще больше эта связь проявляется в том, что физиология растений, изучая растения в условиях окружающей среды, помогает селекционерам изменять природу растений в необходимую для практики сторону с помощью управления их жизнедеятельностью.  Физиология является источником новых приемов воздействия на растения, при помощи которых можно уже в определенных условиях поднять урожай или повысить устойчивость к неблагоприятным факторам среды, ускорить развитие или улучшить качество урожая. К таким новым приемам следует отнести впервые найденные физиологами способы ранней выгонки растений с помощью эфиризации и разных химических агентов. Необходимо также сказать и об разработанных физиологами приемах светокультуры растений в зимний период в теплицах, способах ускорения и получение корнеобразования у черенков, получения безсеменных плодов с помощью физиологически активных веществ.  Очень большое значение имеет физиология растений для успешного решения экологических проблем. Способность зеленых растений «улучшать» воздух была отмечена еще первыми физиологами растений. Это положение, как вы знаете, происходит за счет выделения растениями кислорода. Только поэтому стала возможной жизнь животных.  Не последнюю роль играет физиология растений в космической биологии. Если при коротких путешествиях всю необходимую пищу и воду можно захватить с Земли, то при космических путешествиях на большие расстояния необходимы более независимые и замкнутые системы жизнеобеспеченности. Растения, как видно, будут служить ценным и важным компонентом такой системы, потому что они могут дать не только постоянное обеспечение пищей, но обеспечить переработку отходов человека. Люди, которые находятся в космосе (корабле) вдыхают кислород и выдыхают углекислый газ. Зеленые же растения в процессе фотосинтеза обеспечивают обратный процесс. Продукты выделения человека могут частично удовлетворить потребности растений в питательных веществах, а выделяемая при транспирации вода, соответствующим образом конденсированная, может служить питьевой водой.  Для получения еды, очистки воздуха, переработки отходов можно использовать и водоросли, в частности хлореллу. Но несомненно, что для увеличения количества продуктов, их разнообразия, а также для оптимального использования очистных способностей будут применяться как одноклеточные водоросли, так и многоклеточные растения. Чтобы все это претворить, необходимы знания физиологии растений: необходимо знать, как проходят процессы фотосинтеза, дыхания и др. конкретных условиях. Особое место занимает физиология растений в проблемах Республики, связанных с радиобиологией, особенно после аварии на ЧАЭС. Только вскрытие механизмов поступления, накопление радионуклидов растениями, их влияние на процессы жизнедеятельности растений можно наметить пути успешной борьбы с радиоактивным загрязнением.  Таким образом, научные успехи в области физиологии растений являются основой успехов многих наук. Благодаря этим успехам, например, сельское хозяйство оказалось способным кормить все возрастающее население земного шара. Обеспечение человечества продуктами питания в будущем зависит от продолжения исследований в области роста растений, создания способов ведения хозяйства, которые бы обеспечивали оптимальный рост. Интенсивность таких исследований зависит от того, какое значение и внимание будут уделять сельскому хозяйству и научным исследованиям в области растениеводства и физиологии растений.  Что служит объектом исследования? Конечно растения, но какие? Флора Земли представлена большим количеством видов, которые произрастают на севере и юге, во влажных и сухих местах, среди растений имеются и травы, и деревья. Основными объектами физиологии растений служат фототрофные организмы, т. е. растения, которые синтезируют органические вещества из минеральных элементов с помощью энергии света. Эти растения отличаются от других (незеленых) тем, что в них идет фотосинтез. Фотосинтез – это процесс органических веществ из неорганических (СО2 и воды) с помощью энергии света. Необходимость поглощения большого количества СО2 воздуха, где по теперешним данным его содержится 0,045 %, привело к формированию большой по сравнению с животными поверхности тела. Неограниченный рост в период всей жизни – еще одна из особенностей растений. Далее, всю жизнь растения проводят на одном месте.  Но среди живых организмов есть и гетеротрофы, к которым относятся все животные, грибы и большая часть бактерий. Среди растений также имеются факультативные или аблигатные гетеротрофы, которые получают пищу из окружающей среды: сапрофиты, паразиты и насекомоядные растения. Сапрофиты (сапротрофы) используют органические вещества разлагающихся остатков животных и растений, а паразиты – органические вещества живых организмов. Насекомоядные растения способны ловить и переваривать мелких беспозвоночных.  У растений есть периоды, когда они питаются за счет ранее запасенных веществ (гетеротрофно): прорастание семян, органов вегетативного размножения (клубни, луковицы и др.), развитие почек и цветков у листопадных древесных растений и т. д. Также все ткани и органы растений имеют гетератрофное питание в темноте. Поэтому в культуре можно выращивать изолированные растительные клетки и ткани без света.  Что означает изучать жизнь растений? Это означает изучать его функции: воздушное питание – фотосинтез, корневое питание – поступление минеральных веществ из почвы, транспорт веществ, поступление воды, рост и развитие организма, движение органов, приспособление к условиям окружающей среды.  Предмет физиологии растений – это изучение всех функций растительного организма, установление связи функций и их зависимости от внешних и внутренних факторов, изучение взаимоотношений органов растений. Таким образом, физиология не останавливается на описании каких-либо особых произвольно взятых свойствах и процессах, а выступает как система законов и закономерностей о жизни растительного организма.

2

studfiles.net

Содержание

Содержание:

Физиология растительной клетки:

Строение клетки:

- Клеточная оболочка

- Цитоплазма

- Митохондрии

- Ядро

Молекулярные основы хранения и реализации наследственной информации:

- Белки

- ДНК и её роль в передаче наследственности

- Наследственный код

- Биосинтез белков

Обмен веществ и особенности его регуляции

Поступление воды в растительную клетку:

- Диффузия и осмос

- Клетка как осмотическая система

Поступление веществ в растительную клетку:

- Пассивное и активное поступление

- Этапы поступления веществ

Водный обмен растений:

Общая характеристика водного обмена растительного организма:

- Распределение воды в клетке и в организме

- Водный баланс в растениях

Расходование воды растением - транспирация:

- Значение транспирации

- Лист как орган транспирации

- Влияние внешних условий на степень открытости

- Влияние условий на процесс транспирации

Поступление и передвижение воды по растению:

- Корневая система как орган поглощение воды

- Основные двигатели водного тока

- Передвижение воды по растению

- Влияние внешних условий нам поступление воды

Фотосинтез (питание растений углеродом):

Значение процесса фотосинтеза и история его изучения

Строение листа. Фотосинтез листьев

Особенности диффузии углекислого газа в листе

Хлоропласты, их строение и образование:

- Химический состав и строение хлоропластов

- Онтогенез пластид

- Полуавтономность хлоропластов и их происхождение

- Физиологические особенности хлоропластов

Пигменты фотосинтеза:

- Хлорофиллы:

- Химические свойства хлорофилла

- Физические свойства хлорофилла

- Биосинтез хлорофилла

- Условия образования хлорофилла

- Каротиноиды

- Фикобилины

Энергетика фотосинтеза:

- Значение отдельных участков солнечного спектра для фотосинтеза

Этапы фотосинтеза:

- Фотофизический этап фотосинтеза

- Фотохимический этап

- Циклический и нециклический поток электронов. Фотосинтетическое фосфорилирование

- Пути превращения углерода - темновая стадия фотосинтеза:

- С3-путь фотосинтеза (цикл Кальвина)

- С4-путь фотосинтеза (цикл Хетча — Слэка)

- САМ-путь фотосинтеза

- Влияние условий на интенсивность процесса фотосинтеза:

- Коэффициент использования солнечной энергии

- Влияние температуры

- Влияние содержания С02 в воздухе

- Влияние снабжения водой

- Снабжение кислородом и интенсивность фотосинтеза

- Влияние минерального питания

- Влияние оттока ассимилятов

- Влияние содержания хлорофилла

- Влияние возраста листа

- Влияние степени открытости устьиц

- Дневной ход фотосинтеза

- Значение фотосинтеза в продукционном процессе

Корневое питание растений:

Физиологическая роль элементов минерального питания:

- Элементы, необходимые для растительного организма

- Физиологическое значение макро- и микроэлементов:

- Макроэлементы

- Микроэлементы

- Признаки голодания растений

- Антагонизм ионов

Поступление минеральных солей через корневую систему:

- Корневая система как орган поглощения солей

- Особенности поступления солеи в корневую систему:

- Влияние внешних условий на поступление солей

- Влияние внутренних факторов на поступление солей

- Механизм и пути поступления минеральных солей через корневую систему

- Роль корней в жизнедеятельности растений

Поступление и превращение соединений азота в растениях:

- Особенности усвоения молекулярного азота

- Питание азотом высших растений. азотный обмен растений

Растения с уклоняющимся типом питания:

- Насекомоядные растения

- Паразиты и полупаразиты

- Микотрофный тип питания

Почва как источник питательных веществ:

- Питательные вещества в почве и их усвояемость

- Значение кислотности почвы

- Значение почвенных микроорганизмов

- Физиологические основы применения удобрений

Передвижение питательных веществ по растению:

Передвижение элементов минерального питания (восходящий ток)

Круговорот минеральных веществ в растении. Реутилизация

Передвижение веществ по флоэме - флоэмный транспорт

Дыхание растений:

Общие вопросы дыхания:

- Значение дыхания в жизни растения

- Аденозинтрифосфат. Структура и функции

- Окислительно-восстановительные процессы. работы А.Н. Баха и В.И. Палладина

- Субстраты дыхания

Пути дыхательного обмена:

- Гликолитический путь дыхательного обмена:

- Анаэробная фаза дыхания (гликолиз)

- Аэробная фаза дыхания

- Энергетический баланс процесса дыхания

- Взаимосвязь процессов дыхания и брожения

- Пентозофосфатный путь дыхательного обмена

Влияние внешних и внутренних факторов на интенсивность дыхания:

- Влияние внешних условий на процесс дыхания

- Влияние внутренних факторов на процесс дыхания

Пути регуляции дыхательного обмена:

- Локализация в клетке реакций дыхательного обмена

- Регуляция дыхательного обмена

- Взаимосвязь дыхания с другими процессами обмена

Рост и развитие растений:

Рост растений:

- Особенности роста клеток

- Физиология оплодотворения

- Особенности прорастания семян

- Типы роста органов растения

- Культура изолированных тканей

- Дифференциация тканей

- Кинетика ростовых процессов

- Влияние внешних условий на рост

- Гормоны роста растений (фитогормоны):

- Ауксины

- Физиологические проявления действия ауксинов

- Гиббереллины

- Физиологические проявления действия гиббереллинов

- Цитокинины

- Физиологические проявления действия цитокининов

- Абсцизовая кислота

- Физиологические проявления действия абсцизовой кислоты

- Этилен

- Физиологические проявления действия этилена

- Брассины (брассиностероиды)

- Молекулярные основы действия фитогормонов

- Применение фитогормонов в практике растениеводства

- Взаимодействие фитогормонов

- Ростовые корреляции. Циркадные ритмы

- Движения растений. Тропизмы и настии

- Физиологическая природа ростовых движений растений

Физиологические основы покоя растений:

- Покой семян

- Покой почек

- Регуляция процессов покоя

Развитие растений:

- Теория циклического старения и омоложения растений

- Этапы развития растении

- Регуляция процесса развития:

- Влияние внешних условий на процесс развития

- Яровизация

- Фотопериодизм

- Гормоны цветения

- Определение пола у растений

Физиологические основы устойчивости растений:

Стресс и его физиологические основы. неспецифические и специфические реакции

Активные формы кислорода и система антиоксидантной защиты

Устойчивость растений к засухе:

- Влияние на растения недостатка воды

- Физиологические особенности засухоустойчивых растений

- Физиологические основы орошения

Устойчивость растений к высоким температурам

Устойчивость растений к низким температурам:

- Холодостойкость растений

- Морозоустойчивость растений:

- Причины гибели растений от мороза

- Закаливание растений

- Зимостойкость растений

Устойчивость растений к засолению:

- Влияние на растения избытка солей

- Физиологические особенности солеустойчивых растений

Устойчивость к затоплению. влияние на растения недостатка или отсутствия кислорода

fizrast.ru

ФИЗИОЛОГИЯ РАСТЕНИЙ - это... Что такое ФИЗИОЛОГИЯ РАСТЕНИЙ?

 ФИЗИОЛОГИЯ РАСТЕНИЙ наука о жизнедеятельности р-ний, организации их функциональных систем и их взаимодействии в целостном организме. Методология Ф. р. основана на представлении о р-нии как о сложной биол. системе, все функции к-рой взаимосвязаны. Регуляция и интеграция физиол. функций обеспечивает поддержание их гомеостаза, адаптацию к внеш. условиям и реализацию генетич. программы в ходе онтогенеза, направленную на воспроизведение потомства. Осн. разделы совр. Ф. р. посвящены изучению фотосинтеза (уникальной способности зелёных р-ний, лежащей в основе всех биосферных явлений и определяющей их космическую роль), а также транспорта в-в, дыхания и обмена вторичных соединений, минер. питания, водного обмена, роста, развития и размножения, устойчивости к факторам внеш. среды, иммунитета, культуры растит. тканей и др. Наряду с классич. методами исследований (полевой и вегетационный методы, водные культуры и др.) Ф. р. использует методы физико-хим. биологии — спектральные, изотопные, электронно-микроскопические, иммуно-химические и др. Ф. р. — одна из теоретич. основ агрономии и биотехнологии. Достижениям Ф. р. обязаны мн. качеств. изменения в земледелии: введение бобовых в севообороты с целью использования биол. фиксации атм. азота для повышения плодородия почвы; применение минер. удобрений на основе теории минер, питания р-ний; программирование урожаев, а также селекции на основе теории продуктивности фотосинтеза; применение хим. регуляторов роста; создание пром. фитотроники и т. п. Данные частной физиологии с.-х. растений используются в агротехнике и селекции. Экологич. Ф. р. изучает приспособительные реакции р-ний к условиям среды, взаимодействие р-ний в ценозах, их роль в биосфере. Физиологами р-ний разработаны методы культивирования изолиров. тканей, клеток и протопластов, на чём основаны клеточная биотехнология — выращивание биомассы клеток р-ний, продуцирующих ценные соединения, и микроклонирование — ускоренное размножение р-ний.

• Сабинин Д. А., Физиологические основы питания растений, М., 1955; его же, Физиология развития растений, М., 1963; Курсанов А. Л., Взаимосвязь физиологических процессов в растении, М., 1960; его же, Транспорт ассимиляторов в растении, М., 1976; Физиология сельскохозяйственных растений, т. 1 — 12, М., 1967 — 71; Новые направления в физиологии растений, М., 1985.

Сельско-хозяйственный энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор: В. К. Месяц. 1989.

  • ФИЗИОЛОГИЯ ЖИВОТНЫХ
  • ФИКОМИКОЗЫ

Смотреть что такое "ФИЗИОЛОГИЯ РАСТЕНИЙ" в других словарях:

  • физиология растений — сущ., кол во синонимов: 1 • физраст (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • физиология растений — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN plant physiology The study of the function and chemical reactions within the various organs of plants. (Source: UVAROV) [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en… …   Справочник технического переводчика

  • Физиология растений — Раздел ботаники Физиология растений Объекты исследования …   Википедия

  • Физиология растений —         биологическая наука, изучающая общие закономерности жизнедеятельности растительных организмов. Ф. р. изучает процессы поглощения растительными организмами минеральных веществ и воды, процессы роста и развития, цветения и плодоношения,… …   Большая советская энциклопедия

  • физиология растений — физиология растений, наука о жизнедеятельности растений, организации их функциональных систем и их взаимодействии в целостном организме. Методология Ф. р. основана на представлении о растении как о сложной биологической системе, все функции… …   Сельское хозяйство. Большой энциклопедический словарь

  • Физиология растений — Содержание: Предмет Ф. Ф. питания. Ф. роста. Ф. формы растений. Ф. размножения. Литература. Ф. растения изучает процессы, совершающиеся в растениях. Эта часть обширной науки о растениях ботаники отличается от ее остальных частей систематики,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • «Физиология растений» — научный журнал РАН, с 1954, Москва. Учредители (1998)  Президент РАН, Институт физиологии растений им. К. А. Тимирязева. 6 номеров в год …   Энциклопедический словарь

  • физиология растений — росток. отросток. сок. сочный. березовый сок. налив (яблоки хорошего налива). наливной (# яблочко). тропизм. йвтотропизм. гальванотропизм. фототропизм. гелиотропизм. геотропизм. гидротропизм. гаптотропизм. реотропизм. хемотропизм. плагиотропизм.… …   Идеографический словарь русского языка

  • ФИЗИОЛОГИЯ РАСТЕНИЙ — раздел ботаники, изучающий общие закономерности жизнедеятельности растительных организмов, сущность и взаимосвязь физиолого биохимических процессов с окружающими условиями (напр., поглощения, транспорта, синтеза, обмена веществ и газообмена,… …   Словарь ботанических терминов

  • ФИЗИОЛОГИЯ — (от греч. physis природа и ...логия), наука, изучающая процессы жизнедеятельности (функции) животных и растит, организмов, их отд. систем, органов, тканей и клеток. Физиологию человека и животных разделяют на неск. тесно связанных между собой… …   Биологический энциклопедический словарь

agricultural_dictionary.academic.ru

Физиология растений

Физиология растений - наука, являющаяся фундаментом для всех остальных прикладных наук в растениеводстве, так как именно знания о сути происходящих в растении процессов позволяют агроному управлять развитием культур, получать максимальные урожаи с учетом условий выращивания растений. Для разработки оптимальных режимов полива, удобрения, сроков посева, посадки, уборки и т.д. необходимы знания о биохимических и физиологических процессах, протекающих в растении.

Физиология растений теснейшим образом связана с генетикой, селекцией, экологией, иммунитетом, агрохимией, агротехникой растений, всеми прикладными науками, такими как овощеводство, растениеводство, плодоводство.

Основные физиологические функции растения - питание, дыхание, рост, развитие, размножение - по сути своей процессы превращения веществ и энергии внутри растительного организма.

Основные направления в современной физиологии растений следующие:

Биохимическое - выявление химической природы механизмов физиологических функций (дыхания, фотосинтеза, питания, биосинтеза органических веществ),

Биофизическое - разработка вопросов энергетики клетки, физико-химических закономерностей физиологических функций,

Онтогенетическое - исследование возрастных закономерностей развития растений,

Эволюционное - исследование филогенеза видов растений, изучение взаимодействия генотипа растения и влияния окружающей среды,

Экологическое - раскрытие зависимости внутренних процессов в растении от условий внешней среды и обоснование оптимальных технологических условий возделывания растений.

Основными методами, использующими в физиологии растений являются:

  • лабораторно-аналитический,
  • полевой,
  • меченых атомов,
  • электронной микроскопии,
  • электрофоретический,
  • хроматографический.

Историческое развитие физиологии растений - на самостоятельное изучение.

В курсе физиологии растений будут изучены такие основные разделы, как:

  • Строение органических веществ.
  • Строение клетки.
  • Водный обмен в растении.
  • Фотосинтез.
  • Дыхание.
  • Минеральное питание.
  • Взаимопревращение органических веществ в растении.
  • Рост и развитие растений.

Химический состав клетки. Вода и минеральные вещества в клетке.

В растительной клетке содержится по массе 85% воды, 1,5% неорганических веществ, 10% белков, 1,1% нуклеиновых кислот, 2% липидов, 0,4% углеводов.

Однако вода в клетке в силу своих молекулярных особенностей находится на 95% в связанном состоянии (пояснить структуру диполя воды). Поэтому структура клетки представляет собой сложную коллоидную систему с особыми свойствами, содержащую разнообразные биологически активные молекулы.

Химический состав растительной клетки

Химический состав растительной клетки

Вода в клетке находится как в связанном состоянии, так и в свободном (в особой органелле - вакуоли). Как универсальный растворитель вода определяет образование биологических коллоидов, сложных молекул, растворяет простые углеводы, переносит минеральные и простые органические вещества от клетки к клетке.

Неорганические вещества, составляющие в клетке незначительную долю, представлены в основном ионами ( катионами водорода, калия, натрия, кальция, аммония и анионами гидроксила, сульфата, карбоната, нитрата, хлора). Основная роль ионов - участие в биохимических процессов в качестве составных элементов ферментов, вхождение в структуру биологических молекул. Определенный запас неорганических ионов всегда находится в вакуоли в растворенном состоянии и используется клеткой по мере необходимости. Кроме того, неорганические ионы определяют электрический потенциал клетки и участвуют в передаче импульсов возбуждения от клетки к клетке.

Из неорганических веществ растительные клетки (а также, как известно из курса микробиологии, клетки микробов, ведущие фотосинтез и хемосинтез) способны синтезировать органические вещества, которые и определяют накопление биомассы в природы, являясь базовым звеном во всех биоценозах.

Органические вещества растительной клетки относятся к четырем основным группам:

  • углеводам,
  • липидам,
  • белкам,
  • нуклеиновым кислотам.

Строение, классификация и функции углеводов.

Углеводы или, как их часто называют, сахара являются первыми синтезируемыми в процессах фотосинтеза или хемосинтеза органическими веществами, а затем в процессе биохимических превращений участвуют в создании других органических веществ.

Химический состав - это углерод, водород, кислород. Пространственная структура определяется сложностью молекулы.

Классифицируются углеводы на 3 группы:

  • моносахариды или монозы, иногда их называют - простые сахара.
  • олигосахариды,
  • полисахариды или полиозы.

Моносахара - это простые молекулы с числом атомов углерода от 2 до 7. В соответствии с этим она называются: биозы, триозы, тетрозы, пентозы, гексозы, гептозы. Первые три - имеют линейную структуру молекул, последние - циклическую. Наиболее известный представитель моноз - глюкоза. Монозы легко растворяются в воде, легко вступают в биохимические реакции. Общая формула моноз (СН2О) п.

Олигосахара - это относительно простые молекулы, состоящие всего из 2-3 молекул моноз. Они не имеют собственной классификации, названия молекул - тривиальны. Наиболее известный представитель олигосахаридов - сахароза. Олигосахариды легко растворяются в воде, участвуют в реакциях синтеза более сложных сахаров.

Полисахариды - это биополимеры, т.е. сложные молекулы, состоящие из большого количества простых сахаров. Процесс синтеза этих молекул достаточно сложен и будет нами изучен в седьмом разделе курса. Пространственная структура полисахаридов сложна, эти молекулы нерастворимы в воде. Наиболее известные представители полисахаридов - крахмал, гликоген, клетчатка или гемицеллюлоза, пектины.

Функции углеводов:

  • энергетическая,
  • строительная,
  • запасающая.

Строение, классификация и функции липидов.

Липиды представляют собой достаточно сложные по химической структуре вещества. В их состав также входят углерод, кислород, водород, но в отдельные группы липидов могут входить и фосфор, и сера, и азот (фосфатиды, пигменты). Все липиды гидрофобны, т.е. не растворяются в воде. Функции у липидов различны в зависимости от химического строения. Липиды не являются биополимерами.

Липиды классифицируются на 5 больших групп по признаку функции и сложности строения:

  • Жиры,
  • Воска,
  • Фосфатиды,
  • Пигменты (хлорофиллы и каротиноиды),
  • Стероиды.

Жиры - наиболее легко синтезируемая группа липидов. С химической точки зрения - это эфиры жирных кислот и глицерина (дать формулу на доске).

Поскольку жирные кислоты бывают насыщенные и ненасыщенные, то они определяют структуру жира. Поэтому в обыденной практике твердые жиры (включающие насыщенные жирные кислоты) называют жирами, а жидкие жиры с ненасыщенными жирными кислотами - маслами.

Твердые жиры - в основном животного происхождения, и маслы - растительного, хотя есть и исключения из правила (рыбий жир и арахисовое масло).

Насыщенность жира ненасыщенными жирными кислотами определяют по йодному числу (т.е. по количеству граммов йода, связывающегося 100 г жира).

Основные функции жиров - энергетическая, строительная и запасающая.

Воска - это жироподобные вещества, твердые при комнатной температуре. По химической структуре - это сложные эфиры между жирными кислотами и высокомолекулярными одноатомными спиртами жирного ряда.

Основная функция восков - защитная.

Фосфатиды, к которым относятся глицерофосфатиды, лецитины и кефалины - это молекулы сложных эфиров глицерина, жирных кислот и фосфорной кислоты. Эти вещества входят в состав запасных жиров и предохраняют их от прогоркания.

Основная функция фосфатидов - запасающая.

Пигменты - это особая группа липидов, имеющая сложное строение, куда входят и азотистые радикалы. Подробно строение пигментов будет изучено в разделе о фотосинтезе. К пигментам относят две группы веществ - хлорофиллы и каротиноиды.

Основная функция пигментов - участие в энергетической (световой) фазе фотосинтеза.

Стероиды - это производные сложного гетероциклического соединения - циклопентанпергидрофенантрена. Дать формулу. В эту группу соединений входят высокомолекулярные спирты (стеролы) и их сложные эфиры (стериды) Наиболее известный стероид - эргостерол, из которого в промышленности получают витамин Д.

Основная функция стероидов - строительная (участвуют в составе мембран).

Строение и классификация аминокислот.

Аминокислоты - это мономеры белков, то есть составные компоненты биополимеро, к которым относятся белки.

В состав аминокислот входят углерод, водород, кислород, азот и сера. Общая форму аминокислот - дать формулу.

В природе имеется всего 20 аминокислот, из которых затем в живых организмах синтезируется огромное количество белков.

Все аминокислоты классифицируются на 4 группы:

моноаминомонокарбоновые (глицин, аланин, цистеин, метионин, валин),

моноаминодикарбоновые (аспарагиновая кислота, глутаминовая кислота),

диаминомонокарбоновые (лизин, аргинин),

гетероциклические (триптофан, гистидин).

Аминокислоты обладают амфотерными свойствами, способны к образованию между собой особого типа связей - пептидной и дисульфидной ( дать на доске).

Строение, классификация и функции витаминов.

Витамины - это низкомолекулярные органические соединения различного химического состава. Практически в растениях синтезируются все витамины, так как провитамины, которые используют затем животные для создания витаминов животного происхождения, тоже имеют растительное происхождение (например провитамин А и витамин Д).

История открытия витаминов крайне интересна (болезни, Н.И. Лунин) - на самостоятельное изучение.

Витамины классифицируются на:

водорастворимые (С, В, РР, Н, пантотеновая кислота, инозит, фолиевая кислота, пара-аминобензойная кислота),

жирорастворимые (А, Д, Е, К).

Для растений особенно важны витамины группы В,РР, тиамин, ниацин, пиридоксин. Особенно нуждаются в притоке витаминов от фотосинтезирующих органов нефотосинтезирующие органы растения (корни, цветки, плоды).

Функция витаминов - участие в биохимических процессах в составе ферментов.

Строение, классификация и функции белков.

Белки являются сложными биополимерами, мономером которых являются аминокислоты. В белковых молекулах в силу их сложного пространственного строения имеются следующие химические и физические связи между отдельными группами мономеров:

  • пептидные,
  • дисульфидные,
  • нековалентные водородные,
  • гидрофобные,
  • электростатические.

Белки имеют трех-четырехуровневую структурную организацию в зависимости от сложности молекулы.

Первичная структура белковой молекулы - это та последовательность аминокислот, которая закодирована в генотипе организма. При формировании этого уровня организации образуются ковалентные пептидные и дисульфидные связи.

Вторичная структура белковой молекулы - это свертывание молекулы белка в пространстве за счет нековалентных водородных связей между соседними аминокислотами.

Третичная структура белковой молекулы - это фиксирование спирали полипептидной цепочки за счет взаимодействия боковых групп аминокислот и образования гидрофобных и электростатических связей постоянной пространственной структуры. Пространственное расположение белковых молекул бывает в основном двояким: нитевидная форма или округлая форма, хотя возможны и другие формы молекулы. В основном по конфигурации белковые молекулы делят на фибриллярные и глобулярные. У всех белков имеются три уровня организации структуры молекулы.

Четвертичная структура белковой молекулы присуща только сложным белкам, состоящим из нескольких белковых молекул. При этом несколько полностью пространственно организованных белков соединяются между собой, часто с помощью иона, гема или другого объединяющего элемента, образуя биологически активный белок. Связи, объединяющие несколько белковых молекул в одну чаще всего бывают водородными, ионными или гидрофобными. Типичным примером такой молекулы является молекула гемоглобина (из курса микробиологии - молекула леггемоглобина).

Свойства белков определяются прежде всего химическими свойствами их мономеров, т. е белкам присуща гидрофильность ( связывание с молекулами воды и образование коллоидных систем), амфотерность. Однако наиболее характерное свойство белков, присущее только им и определяемое их сложной организационной структурой (пространственной конфигурацией) - денатурация и ренатурация. Денатурировать, то есть терять (разрушать) свои уровни структурной организации, белок способен под воздействием таких факторов внешней среды, как температура, кислота, щелочь, рентгеновские или ультрафиолетовые лучи, высокое давление и даже механическое воздействие. При этом происходит последовательное разрушение четвертичной, третичной, вторичной структуры белка. Первичная структура остается неизменной. Если воздействие фактора оказывается слабым или кратковременным, то не все уровни белка разрушаются, тогда молекула способна к ренатурации или восстановлению третичного и четвертичного уровней организации. Однако при воздействии фактора в течение длительного времени или в высокой концентрации денатурация белка становится необратимой. Примеры: взбивание яичного белка, солнечный загар, варка яйца, мяса.

Классификация белков основана на их структуре. Белки делятся на:

  • Протеины (простые белки)
  • Протеиды (сложные белки).

Протеины, в свою очередь, разделяются на 8 групп по свойству растворимости и расположению в клетке:

  • альбумины - растворяются в воде, находятся в цитоплазме,
  • глобулины - растворяются в слабых водных растворах солей, находятся в цитоплазме,
  • проламины - растворяются в 60-80% спирте, находятся в цитоплазме,
  • глютелины - растворяются в 0,2% щелочи, находятся в цитоплазме,
  • фосфопротеины (казеин), содержащие фосфатный ион в составе молекулы, - не растворяются в воде, находятся в цитоплазме,
  • протамины - находятся в ядрах клеток,
  • гистоны - находятся в ядрах клеток и в рибосомах,
  • протеиноиды (кератин, фибрин) - накапливаются в специфических клетках покровных тканей, практически не растворяются в обычных растворителях.

Протеиды представляют собой сложные белковые молекулы, состоящие из нескольких простых белков и обязательной небелковой части, которая называется простетической группой. В зависимости от состава этой группы протеиды подразделяются на 6 групп:

  • нуклеопротеиды (рибосомы, вирусы),
  • липопротеиды,
  • гликопротеиды,
  • фосфопротеиды,
  • гемопротеиды,
  • металлопротеиды.

Функции белков. Поскольку белки занимают ведущее место в составе органических веществ в клетке, то и их функции крайне разнообразны. Белки являются в клетке:

  • ферментами (т.е. ведут катализ биохимических реакций),
  • структурными (строительными) молекулами,
  • запасными веществами,
  • транспортными молекулами (перенос кислорода, углекислого газа, жиров, железа и т.д.),
  • сократительными (мышечными) молекулами,
  • защитными веществами,
  • токсинами,
  • гормонами.

Строение и классификация ферментов.

Ферменты - это белки, выполняющие функция катализатора при прохождении в клетке биохимических реакций.

Ферменты могут быть как простыми, так и сложными белками. Если фермент относится к сложным белкам, то его белковая часть называется апоферментом, а небелковая (простетическая группа) - коферментом. Существуют и ферменты, в состав которых входит несколько апоферментов и коферментов.

В физиологии существует отдельная отрасль науки - энзимология, которая занимается изучением ферментов, разрабатывает практические вопросы синтеза и использования ферментов в пищевой промышленности и медицине.

Ферменты делятся на шесть классов по типу реакции, которая катализируется:

  • оксидоредуктазы (реакции восстановления и окисления),
  • трансферазы (перенос химических групп от молекулы к молекуле),
  • гидролазы (расщепление химических связей в реакциях гидролиза),
  • лиазы (образование двойных связей либо отщеплением, либо присоединением определенных химических групп),
  • изомеразы,
  • лигазы (соединение молекул с использованием АТФ).

Систематическое название молекулы фермента составляют из названия субстрата и названия класса фермента, например, глюкозооксидаза в соответствии с принципами систематики ферментов правильно именуется бета-д-глюкоза, кислород-1-оксидоредуктаза. Часто в литературе, как популярной, так и научной используются тривиальные (привычные, исторически сложившиеся названия), например, пепсин, трипсин, но при этом в научной литературе обязательно указывается полное систематическое название фермента, о котором идет речь.

Основа ферментативного катализа - это принцип " ключа и замка ", когда фермент совершенно точно узнает молекулу субстрата и катализирует соответствующую биохимическую реакцию. Этот принцип сформулирован в 1894 году Фишером.

Механизм действия фермента состоит в образовании комплекса ES между ферментом и субстратом, после чего из субстрата образуется продукт ЕР, который затем распадается на фермент и продукт. Субстрат связывается активным центром фермента, который часто является простетической группой или коферментом. В ряде случаев в ферменте помимо основного активного центра имеются еще дополнительные активные центры, которые называются аллостерическими.

Ферменты, имеющие основной и аллостерические активные центры, называют аллостерическими Аллостерический фермент характеризуется тем, что его активация происходит не за счет активного центра, а за счет присоединения активатора или ингибитора к другому участку молекулы фермента, где при этом образуется аллостерический активный центр. В отличие от обычных активаторов и ингибиторов основных активных центров, активаторы и ингибиторы аллостерических центров называются эффекторами.

Осуществление ферментативного катализа (начало реакции и ее скорость) зависит от:

  • количества или активности фермента,
  • концентрации субстрата,
  • рН и состава раствора,
  • температуры,
  • присутствия активаторов или ингибиторов фермента.

Роль кофермента в осуществлении действия фермента является определяющей, так как он часто выступает активатором активного центра фермента. Это было доказано японским биохимиком Вангом на примере действия каталазы. Каталаза - это фермент, расщепляющий перекись водорода. В состав каталазы входит гем (ион железа в составе порфиринового кольца), который является коферментом и соединяется с апоферментом (белковой молекулой). Оказалось, что чистый раствор перекиси водорода сохраняется длительное время без разложения. Если в раствор добавить соль железа, образующую ионы железа, то 1 ион железа катализирует расщепление 1 молекулы перекиси за 30 минут. При добавлении в раствор гемогруппы (без белка) скорость разложения перекиси возрастает в 150 раз - за 1 минуту разлагается 5 молекул перекиси. При внесении в раствор фермента каталазы, то есть белковой молекулы, содержащей кофермент, скорость реакции уже возрастает в 150 млн. раз, так как за 1 минуту расщепляется 5 млн. молекул перекиси. Добавление же в раствор чистой белковой части фермента (апофермента) разложения перекиси водорода не вызывало вообще.

В любой живой клетке, в том числе и в растительной, ферменты бывают двух категорий:

  • конститутивные или обязательные,
  • адаптивные или индуцированные, то есть образующиеся под влиянием условий внешней среды в ответ на воздействие ее факторов.

Если из окружающий среды в клетку поступают какие-либо факторы, разрушающие конститутивные ферментативные системы и их синтез, а, следовательно, и биохимические реакции, которые катализировались с их помощью прекращаются, то такие ферменты называют репрессированными.

Функционально одни и те же ферменты, которые образуются у разных особей, могут иметь определенные отличия в своих физико-химических свойствах. Такие ферменты называют изоферментами. Ферментов с множественностью молекулярных форм (изоферментов) известно около 50. Способность к образованию изоферментов является частью механизма приспособления организма к условиям внешней среды.

Кинетика ферментативного катализа.

Кинетика ферментативного катализа - это понятие о скорости ферментативной реакции и факторах, влияющих на этот показатель.

Единицей активности любого фермента называется то его количество, которое при данных условиях катализирует превращение одного микромоля субстрата за 1 минуту.

Концентрацию фермента в растворе выражают в единицах активности на 1 мл раствора.

Удельная активность фермента определяется в единицах активности фермента на 1 мг белка (моль/мин. *мг), а молекулярная активность соответствует количеству единиц в одном микромоле фермента, т.е. количеству молекул субстрата, которые превращаются за 1 минуту одной молекулой фермента.

Единицей измерения скорости ферментативной реакции является катал - т.е. такое количество фермента, которое катализирует превращение 1 моля субстрата в продукт за 1 секунду.

Скорость ферментативной реакцией описывается уравнением Михаэлиса-Ментена (см. таблицу), где v - скорость ферментативной реакции, V - максимальная скорость реакции, Кm - константа Михаэлиса, - молекулярная концентрация субстрата.

Константа Михаэлиса численно равна концентрации субстрата, при которой скорость реакции достигает половины максимальной скорости. Константа Михаэлиса выражается в молях.

Величина константы Михаэлиса зависит от концентрации субстрата, рН среды и температуры среды.

Для каждой ферментативной реакции характерна своя величина константы Михаэлиса. Определяется она, если известны концентрация субстрата, скорость реакции и максимальная скорость реакции. Тогда при скорости реакции, равной половине максимальной скорости, константа Михаэлиса равняется концентрации субстрата.

Графически ферментативная реакция описывается уравнением

у = а + bх,

где у - 1/v, a- 1/Vmax., b - Km/Vmax.

Для осуществления ферментативного катализа в клетке должны сложиться определенные условия, которые называются необходимыми условиями ферментативной реакции:

соответствие субстрата и фермента для образования комплекса ЕS (эффект сближения ),

строгая взаимная ориентация субстрата, коферментов и активного центра фермента (эффект ориентации),

активация субстрата, т.е. перераспределение электронной плотности молекул субстрата под действием электроактивных групп фермента (эффект поляризации ).

Важно не только начало ферментативной реакции, но и весь процесс, который определяется активность ферментов. Активность ферментов, а значит и скорость ферментативной реакции, зависит от следующих факторов:

  • температуры,
  • рН среды,
  • наличия активаторов или ингибиторов ферментов.

По мере возрастания температуры скорость ферментативной реакции возрастает, но до определенной величины. Оптимальной является температура 40-50 градусов С, то есть оптимальная температура для белковых молекул. При дальнейшем повышении температуры происходит денатурация белков, а, следовательно, и ферментов и скорость реакции резко падает. Белки в сухом состоянии денатурируются значительно медленнее, чем в гидратированном, именно поэтому сухое зерно выдерживает гораздо более высокую степень нагрева, чем проростки или растения.

Второй важный фактор - кислотность среды. Денатурация белков происходит уже при показателях рН - 5 или 8, так что пределы, ограничивающие возможность и скорость ферментативной реакции находятся в достаточно узких границах.

Однако, наиболее важным фактором является наличие активаторов и ингибиторов ферментов.

К числу активаторов ферментов относятся разные соединения, некоторые витамины или, например, аминокислота цистеин.

Активация ферментов идет одним из следующих путей:

  • отщепление олигопептида от профермента,
  • образование дисульфидных связей, делающих доступным активный центр,
  • образование комплекса и ионами металлов,
  • аллостерическая активация или связывание эффектора с аллостерическим центром, что вызывает постепенное изменение конформации других субъединиц фермента, что приводит в конечном итоге к активации всего аллостерического фермента, который часто является мультиферментом.

Ингибирование ферментов может быть:

  • Конкурентным,
  • Неконкурентным,
  • Аллостерическим.

При конкурентном ингибировании с ферментом связывается не молекула субстрата, а молекула другого вещества, по структуре похожего на молекулу субстрата, но не превращающуюся в молекулу продукта. При этом активный центр фермента становится недоступным для молекул субстрата. Нарушить конкурентное ингибирование можно, увеличив концентрацию субстрата.

При неконкурентном ингибировании ингибитор не похож на молекулу субстрата. Он тоже связывает фермент, но уже за счет изменения структуры фермента. Неконкурентные ингибиторы часто называют ферментными ядами. К ферментным ядам относятся соли тяжелых металлов, которых много в выбросах промышленных предприятий (ртуть, свинец, кадмий), антивитамины, то есть вещества по своему строению похожие на витамины, но обладающие противоположными свойствами (например пара-аминобензойная кислота и стрептоцид, которые представляют собой бензольное кольцо, но в случае пара-аминобензойной кислоты - с карбоксильной группой, а в случае стрептоцида - с группой SO2 и NН2.

При аллостерическом ингибировании отрицательный эффектор связывает молекулу фермента вне активного центра.

У растений активность ферментов низка в семенах или в вегетативных органах, переживающих неблагоприятные условия среды (почках, корнеплодах, клубнях, луковицах, корневищах). В начале вегетации, особенно при прорастании, уровень ферментативной активности резко возрастает, но к концу сезона вегетации снижается.

Нуклеиновые кислоты, их строение, классификации и функции.

К нуклеиновым кислотам относятся две группы веществ:

  • макроэргические соединения,
  • нуклеиновые кислоты.

В основе строения этих веществ лежит нуклеотид - сложная структура, состоящая из азотистого основания, сахара и фосфата. Нуклеотид является основой любого макроэргического соединения и мономером любой нуклеиновой кислоты.

Макроэргические соединения - это специфические молекулы в структуре которых образуются особые макроэргические связи, то есть связи, насыщенные энергией. С помощью таких связей клетка запасает энергию, а при их разрушении - отдает энергию для осуществления биохимических реакций синтеза. Они также способны к переносу фосфатных и ацетильных групп в процессе обмена веществ в клетке, например при синтезе сложных углеводов. Самым широко известным и наиболее широко использующимся в клетке макроэргическим веществом является аденозинтрифосфат АТФ (АДФ, АМФ) ( дать структуру). В клетке также имеются такие макроэргические соединения, как флавинаденозиндифосфат (ФАД), никотинамиддинуклеотидфосфат (НАДФ), уридинтрифосфат (УТФ, УМФ, УДФ). В поэтапном превращении АМФ в АТФ (в процессе фосфорилирования и дефосфорилирования) участвует фермент миокиназа.

Нуклеиновые кислоты - это биополимеры, мономерами которых являются 5 видов нуклеотидов. Нуклеотиды различаются между собой по виду азотистого основания и типу молекулы пентозы, которые входят в их состав.

Азотистые основания делятся на пуриновые (двойное кольцо) - аденин и гуанин - и пиримидиновые (одинарное кольцо) - цитозин, урацил и тимин.

При считывании информации с ДНК на матричную РНК при биосинтезе белков, то есть при транскрипции, урацил соответствует тимину.

Структура РНК и ДНК подчиняется правилу Чаргаффа, которое утверждает, что сумма пиримидиновых оснований равна сумме пуриновых оснований.

Классификация нуклеиновых кислот.

В зависимости от строения нуклеотидов различают два класса нуклеиновых кислот:

  • рибонуклеиновые кислоты (РНК),
  • дезоксирибонуклеиновые кислоты (ДНК).

В РНК входят нуклеотиды А, Г, У и Ц, в состав которых входит рибоза, а в ДНК входят нуклеотиды А, Г, Т и Ц, в состав которых входит дезоксирибоза.

Функции нуклеиновых кислот разнообразны.

ДНК является основным носителем наследственной информации, находится в ядрах клеток, и, реже - в митохондриях и пластидах, определяя так называемую материнскую (цитоплазматическую) наследственность.

РНК выполняет в клетке различные функции и в зависимости от них разделяется на:

  • информационную (или матричную),
  • транспортную,
  • рибосомальную.

В комплексе с белками нуклеиновые кислоты образуют сложные биологические молекулы - нуклеопротеиды, например, нуклеопротеиды семян растений.



biofile.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта