Эволюция клеток и тканей. Эволюция тканей у растений
§20 Эволюция клеток и тканей
140
и осень), образуют так называемое годичное кольцо прироста.
Покровные ткани представлены плотно сомкнутыми клетками, располагающимися на внешней поверхности растений (рис. 66). К этим тканям относят эпидерму листьев, а также пробковые слои стебля и корней. Они выполняют защитную функцию, предохраняя от высыхания или механических повреждений лежащие глубже тонкостенные клетки.
Основные ткани представлены различными по форме клетками, образующими основную массу тела растений(мягкие части листьев, цветков, плодов, сердцевину стеблей и корней, а также кору). Главная функция этих тканей заключается в синтезе и накоплении питательных веществ. В частности, часть этих тканей представлена хлоропластосодержащими клетками, в которых происходит фотосинтез.
Проводящие ткани (рис. 67) представлены ксилемой (древесина) и флоэмой (луб). Клетки ксилемы дают начало длинным клеткам, называемым трахеидами. Соединяясь между собой концами, трахеиды образуют сосуды древесины. После растворения в них поперечных стенок они превращаются в длинные целлюлозные трубки, по которым и проходит вода. Ксилема проводит воду и растворенные в ней соли от корня к листьям, что представляет собой восходящий (транспирационный) ток.
Флоэма образуется так же, как и ксилема, но с той лишь разницей, что поперечные стенки не устраняются, а сохраняются. Однако в них образуются отверстия, обеспечивающие «проход» органических веществ от листьев к корням. Следовательно, флоэма обеспечивает нисходящий ток, т. е. движение органических веществ от листьев к корням.
Происхождение, специализация и объединение клеток в ткани есть категории исторические, ибо они возникли в ходе филогенеза. Однако объяснение этих категорий чрезвычайно затруднено, поскольку между клетками прокариотических и эукариотических организмов существуют важные различия. Тем не менее известно несколько гипотез.
На основании изучения ископаемых остатков бактерий и циано-бактерийпредполагают, что предковой клеточной формой была примитивная прокариотическая клетка, возникшая около 3,5 х 109 лет назад. Клетки этого типа для обеспечения своего существования и размножения в начале использовали орга-
141
нические молекулы небиологического происхождения. Первым актом в формировании примитивных клеток было образование мембраны, окружавшей вещество клетки.
В последующем у примитивных прокариотических клеток стали развиваться механизмы синтеза и энергетического обеспечения. Предполагают, что первые прокариотические клетки обладали наиболее простыми каталитическими системами, в результате чего обеспечение их энергией основывалось на брожении. В последующем отдельные виды прокариотических клеток переключились с брожения на дыхание, что способствовало более эффективному получению энергии. Таким образом, эволюционные изменения прокариотических клеток шли по линии развития у них различных метаболических путей. Их геном развивался в направлении формирования «голых» молекул ДНК.
Эволюционные изменения эукариотических клеток шли в направлении увеличивающегося разнообразия в форме, размерах, структуре и функциях с одновременной компартментализацией биохимических систем и сохранением общего для всех Клеток аэробного метаболизма. Считают, что эукариотические клетки возникли менее 1 млрд лет назад из прокариотических клеток, причем для объяснения их происхождения выдвинуто три гипотезы.
Всоответствии с одной их этих гипотез (гипотезой клеточного симбиоза), которая является наиболее распространенной, предполагают, что эукариотическая клетка является симбиотической структурой, состоящей из нескольких клеток разных типов, объединенных общей клеточной мембраной. В частности, предполагают, что пластиды клеток современных зеленых растений происходят от бактерий, бывших предками современных цианобактерий и способных к аэробному фотосинтезу, а митохондрии эукариотических клеток ведут начало от аэробных бактерий, которые вступали в симбиоз с примитивными анаэробными клетками, способными к фотосинтезу, что привело к образованию клеток, способных к существованию в атмосфере кислорода и использованию кислорода путем дыхания. Относительно ядра предполагают, что оно является рудиментом также какого-тодревнего внутриклеточного симбионта, утратившего после включения в исходную клетку свою цитоплазму. В пользу этой гипотезы свидетельствуют данные о симбиотических взаимоотношениях некоторых современных организмов. Например, одноклеточная зеленая водоросль хлорелла (Chlorella) обитает в цитоплазме зеленой парамеции(Paramecium bussaria). Из-
за способности к фотосинтезу она снабжает парамеции питательными веществами. Пластиды и митохондрии содержат собственную систему генетической информации о синтезе белков в виде ДНК, мРНК, рРНК, тРНК и соответствующих ферментов. Для хлоропластов, митохондрии и клеток-прокариотхарактерно сходство способов репродукции (все они одинаково репродуцируются путем простого деления надвое). Наконец, мутациимитохон-дриальныхгенов назависимы от мутаций ядерных генов.
Всоответствии с другой гипотезой считают, что эукариотичес-каяклетка произошла от прокариотической клетки, содержавшей несколько геномов, прикрепленных к клеточной мембране. В результате инвагинаций клеточной мембраны образовывалисьмезо-сомы,способные первоночально к фотосинтезу.
142
Однако в дальнейшем произошла специализация этих органелл, в результате чего одна из них, утратив дыхательную и фотосинтетическую функцию, развилась в ядро, другие, наоборот, развив эти функции, стали митохондриями у животных и пластидами у растений. В пользу этой гипотезы свидетельствуют данные о двойном строении мембран ядра, митохондрии и пластид.
Всоответствии с третьей гипотезой, основанной на мысли о том, что все живые формы произошли от предковых анаэробных ферментативных гетеротрофов, эукариоты представляют собой сублинию бесстеночных(анаэробных) прокариотов, которые развили способность к эндоцитозу. Посредством «заглатывания» других прокариотов, которые дали им дополнительные метаболические способности и которые, в конце концов, дегенерировали в органеллы, примитивная клетка (уркариот) стала эукариотической клеткой. Таким образом, прокариоты древнее, проще и примитивнее клеток-эукариот.
Всоответствии с четвертой гипотезой предполагают, что эукариотические клетки возникли из прокариотической клетки, содержавшей много геномов, которые распадались на части, давшие начало структурам с разными функциями. В последующем шло кло-нированиеструктур со сходными функциями, после чего они покрывались двойными мембранами, что привело к образованию ядра, митохондрии, а позднее и мембранной сети. В пользу этой гипотезы свидетельствуют данные о сходстве генетического кода, содержащегося
вядерной и митохондриальной ДНК, а также о сходстве в регуляции дыхательной функции ядром и митохондриями.
Как отмечено выше, симбиотическая гипотеза происхождения эукариотических клеток сейчас наиболее популярна. Однако, разделяя эту гипотезу, нельзя не отметить, что митохондрии и хло-ропластывопреки их сходству с современнымибактериями-аэробамии цианобактериями (соответственно) все же существенно отличаются от них. В частности, в митохондриях и хлоропластах намного меньше ДНК. Следовательно, здесь митохондрии и хлоропласты в ходе эволюции претерпели значительные изменения в направлении своих размеров.
Геном эукариотических клеток впоследствии развивался в направлении объединения молекул ДНК с белками и формирования хроматина и хромосом разной формы и в разном количестве. Специализация хроматина проявилась в формировании эухроматина и гетерохроматина, в формировании аутосом и половых хромосом. Что касается количества хромосом, то объяснить их эволюционную тенденцию пока трудно, поскольку многие примитивные организмы содержат в своих клетках большее число хромосом, чем организмы, занимающие высшие эволюционные ступени. Однако несомненно, что количественные и структурные изменения карио-типовв течение эволюции играли важную роль в видообразовании. Параллельно с этим происходило усложнение структуры и функции клеточных компонентов, развитие регуляторных механизмов.
Несомненно эволюционное значение митоза. Считают, что точность разделения и распределения хромосом в результате митоза является условием, обеспечивающим многоклеточность. Однако происхождение самого митоза не имеет достаточных объяснений. Предполагают лишь, что он развился из при-
143
митивного митоза, представляющего собой механизм, при котором расхождение реп-лицировавшихсяхромосом происходило после вытягивания и разрыва веретена без разрушения ядерной мембраны (см. выше).
Объяснения эволюции тканей связаны со сложностями, которые обусловлены одинаковым строением тканей, принадлежащих живым организмам, находящимся на разных ступенях эволюционной лестницы. Например, мышечные волокна членистоногих, некоторых моллюсков и позвоночных имеют одинаковое строение. Между тем эти организмы филогенетически разделены очень большими «расстояниями». Аналогичная ситуация имеет место и при сравнении тканей растений из разных таксономических групп.
Начала тканеобразования в эволюционном плане уже прослеживаются у самых простых организмов. Например, у вольвокса отмечается формирование колоний, состоящих иногда более чем из50 000 клеток, причем часть клеток уже специализирована. В частности, клетки, располагающиеся по краям колониальной формы, ответственны за образование новых колоний. У цианобактерий при нерасхождении разделившихся клеток образуются клеточные нити, в которых часть клеток специализирована на фиксации азота, чем обеспечиваются потребности в азоте и других клеток.
Идя вверх по эволюционной лестнице, можно видеть, что у губок уже отмечается около пяти специализированных типов клеток, специализация которых связана с выполнением разных функций в процессе фильтрации воды и поглощения отфильтрованных пищевых частиц.
У кишечнополостных тело состоит из двух слоев— эктодермы и энтодермы, представляющих собой наружный и внутренний эпителиальные слои. Наружные эпителиальные клетки являются стрекательными клетками, содержащими ядовитую жидкость, тогда как внутренние эпителиальные клетки секретируют пищеварительные ферменты и обеспечивают пищеварение. Поэтому предполагают, что первыми сформировались слои эпителиальных клеток и их роль в эволюции многоклеточных аналогизируется с ролью клеточных стенок и мембран одноклеточных организмов.
Значительный вклад в понимание эволюции тканей принадлежит. А. Заварзину(1886-1945),который считал, что одни и те же факторы эволюции обеспечили не только разнообразие организмов, но и однообразие строения их тканей. Сходство в строении тканей у филогенетически далеко отстоящих животных А. А.За-варзинназывал законом параллельных рядов тканевой эволюции. Работы А. А. Заварзина и его учеников заложили основы эволюционной гистологии.
ВОПРОСЫ ДЛЯ ОБСУЖДЕНИЯ
1.Насколько велико значение методов исследования в изучении клеток? Какие из этих методов вы знаете?
2.Сформулируйте основные положения клеточной теории. Как Вы считаете, какова роль этой теории в биологии?
3.Почему клетку определяют в качестве элементарной единицы жизни и в чемза
studfiles.net
Эволюция клеток и тканей
Происхождение, специализация и объединение клеток в ткани есть категории исторические, ибо они возникли в ходе филогенеза. Однако объяснение этих категорий чрезвычайно затруднено, поскольку между клетками прокариотических и эукариотических организмов существуют важные различия. Тем не менее известно несколько гипотез.
На основании изучения ископаемых остатков бактерий и циано-бактерий предполагают, что предковой клеточной формой была примитивная прокариотическая клетка, возникшая около 3,5 х 109 лет назад. Клетки этого типа для обеспечения своего существования и размножения в начале использовали органические молекулы небиологического происхождения. Первым актом в формировании примитивных клеток было образование мембраны, окружавшей вещество клетки.
В последующем у примитивных прокариотических клеток стали развиваться механизмы синтеза и энергетического обеспечения. Предполагают, что первые прокариотические клетки обладали наиболее простыми каталитическими системами, в результате чего обеспечение их энергией основывалось на брожении. В последующем отдельные виды прокариотических клеток переключились с брожения на дыхание, что способствовало более эффективному получению энергии. Таким образом, эволюционные изменения прокариотических клеток шли по линии развития у них различных метаболических путей. Их геном развивался в направлении формирования «голых» молекул ДНК.
Эволюционные изменения эукариотических клеток шли в направлении увеличивающегося разнообразия в форме, размерах, структуре и функциях с одновременной компартментализацией биохимических систем и сохранением общего для всех Клеток аэробного метаболизма. Считают, что эукариотические клетки возникли менее 1 млрд лет назад из прокариотических клеток, причем для объяснения их происхождения выдвинуто три гипотезы.
В соответствии с одной их этих гипотез (гипотезой клеточного симбиоза), которая является наиболее распространенной, предполагают, что эукариотическая клетка является симбиотической структурой, состоящей из нескольких клеток разных типов, объединенных общей клеточной мембраной. В частности, предполагают, что пластиды клеток современных зеленых растений происходят от бактерий, бывших предками современных цианобактерий и способных к аэробному фотосинтезу, а митохондрии эукариотических клеток ведут начало от аэробных бактерий, которые вступали в симбиоз с примитивными анаэробными клетками, способными к фотосинтезу, что привело к образованию клеток, способных к существованию в атмосфере кислорода и использованию кислорода путем дыхания. Относительно ядра предполагают, что оно является рудиментом также какого-то древнего внутриклеточного симбионта, утратившего после включения в исходную клетку свою цитоплазму. В пользу этой гипотезы свидетельствуют данные о симбиотических взаимоотношениях некоторых современных организмов. Например, одноклеточная зеленая водоросль хлорелла (Chlorella) обитает в цитоплазме зеленой парамеции (Paramecium bussaria). Из-за способности к фотосинтезу она снабжает парамеции питательными веществами. Пластиды и митохондрии содержат собственную систему генетической информации о синтезе белков в виде ДНК, мРНК, рРНК, тРНК и соответствующих ферментов. Для хлоропластов, митохондрии и клеток-прокариот характерно сходство способов репродукции (все они одинаково репродуцируются путем простого деления надвое). Наконец, мутации митохон-дриальных генов назависимы от мутаций ядерных генов.
В соответствии с другой гипотезой считают, что эукариотичес-кая клетка произошла от прокариотической клетки, содержавшей несколько геномов, прикрепленных к клеточной мембране. В результате инвагинаций клеточной мембраны образовывались мезо-сомы, способные первоночально к фотосинтезу. Однако в дальнейшем произошла специализация этих органелл, в результате чего одна из них, утратив дыхательную и фотосинтетическую функцию, развилась в ядро, другие, наоборот, развив эти функции, стали митохондриями у животных и пластидами у растений. В пользу этой гипотезы свидетельствуют данные о двойном строении мембран ядра, митохондрии и пластид.
В соответствии с третьей гипотезой, основанной на мысли о том, что все живые формы произошли от предковых анаэробных ферментативных гетеротрофов, эукариоты представляют собой сублинию бесстеночных (анаэробных) прокариотов, которые развили способность к эндоцитозу. Посредством «заглатывания» других прокариотов, которые дали им дополнительные метаболические способности и которые, в конце концов, дегенерировали в органеллы, примитивная клетка (уркариот) стала эукариотической клеткой. Таким образом, прокариоты древнее, проще и примитивнее клеток-эукариот.
В соответствии с четвертой гипотезой предполагают, что эука-риотические клетки возникли из прокариотической клетки, содержавшей много геномов, которые распадались на части, давшие начало структурам с разными функциями. В последующем шло кло-нирование структур со сходными функциями, после чего они покрывались двойными мембранами, что привело к образованию ядра, митохондрии, а позднее и мембранной сети. В пользу этой гипотезы свидетельствуют данные о сходстве генетического кода, содержащегося в ядерной и митохондриальной ДНК, а также о сходстве в регуляции дыхательной функции ядром и митохондриями.
Как отмечено выше, симбиотическая гипотеза происхождения эукариотических клеток сейчас наиболее популярна. Однако, разделяя эту гипотезу, нельзя не отметить, что митохондрии и хло-ропласты вопреки их сходству с современными бактериями-аэробами и цианобактериями (соответственно) все же существенно отличаются от них. В частности, в митохондриях и хлоропластах намного меньше ДНК. Следовательно, здесь митохондрии и хлоропласты в ходе эволюции претерпели значительные изменения в направлении своих размеров.
Геном эукариотических клеток впоследствии развивался в направлении объединения молекул ДНК с белками и формирования хроматина и хромосом разной формы и в разном количестве. Специализация хроматина проявилась в формировании эухроматина и гетерохроматина, в формировании аутосом и половых хромосом. Что касается количества хромосом, то объяснить их эволюционную тенденцию пока трудно, поскольку многие примитивные организмы содержат в своих клетках большее число хромосом, чем организмы, занимающие высшие эволюционные ступени. Однако несомненно, что количественные и структурные изменения карио-типов в течение эволюции играли важную роль в видообразовании. Параллельно с этим происходило усложнение структуры и функции клеточных компонентов, развитие регуляторных механизмов.
Несомненно эволюционное значение митоза. Считают, что точность разделения и распределения хромосом в результате митоза является условием, обеспечивающим многоклеточность. Однако происхождение самого митоза не имеет достаточных объяснений. Предполагают лишь, что он развился из примитивного митоза, представляющего собой механизм, при котором расхождение реп-лицировавшихся хромосом происходило после вытягивания и разрыва веретена без разрушения ядерной мембраны (см. выше).
Объяснения эволюции тканей связаны со сложностями, которые обусловлены одинаковым строением тканей, принадлежащих живым организмам, находящимся на разных ступенях эволюционной лестницы. Например, мышечные волокна членистоногих, некоторых моллюсков и позвоночных имеют одинаковое строение. Между тем эти организмы филогенетически разделены очень большими «расстояниями». Аналогичная ситуация имеет место и при сравнении тканей растений из разных таксономических групп.
Начала тканеобразования в эволюционном плане уже прослеживаются у самых простых организмов. Например, у вольвокса отмечается формирование колоний, состоящих иногда более чем из 50 000 клеток, причем часть клеток уже специализирована. В частности, клетки, располагающиеся по краям колониальной формы, ответственны за образование новых колоний. У цианобактерий при нерасхождении разделившихся клеток образуются клеточные нити, в которых часть клеток специализирована на фиксации азота, чем обеспечиваются потребности в азоте и других клеток.
Идя вверх по эволюционной лестнице, можно видеть, что у губок уже отмечается около пяти специализированных типов клеток, специализация которых связана с выполнением разных функций в процессе фильтрации воды и поглощения отфильтрованных пищевых частиц.
У кишечнополостных тело состоит из двух слоев — эктодермы и энтодермы, представляющих собой наружный и внутренний эпителиальные слои. Наружные эпителиальные клетки являются стрекательными клетками, содержащими ядовитую жидкость, тогда как внутренние эпителиальные клетки секретируют пищеварительные ферменты и обеспечивают пищеварение. Поэтому предполагают, что первыми сформировались слои эпителиальных клеток и их роль в эволюции многоклеточных аналогизируется с ролью клеточных стенок и мембран одноклеточных организмов.
Значительный вклад в понимание эволюции тканей принадлежит А. А. Заварзину (1886-1945), который считал, что одни и те же факторы эволюции обеспечили не только разнообразие организмов, но и однообразие строения их тканей. Сходство в строении тканей у филогенетически далеко отстоящих животных А. А. За-варзин называл законом параллельных рядов тканевой эволюции. Работы А. А. Заварзина и его учеников заложили основы эволюционной гистологии.
Вопросы для обсуждения
1. Насколько велико значение методов исследования в изучении клеток? Какие из этих методов вы знаете?
2. Сформулируйте основные положения клеточной теории. Как Вы считаете, какова роль этой теории в биологии?
3. Почему клетку определяют в качестве элементарной единицы жизни и в чем заключаются доказательства того, что клетка действительно является элементарной единицей жизни? Что представляют собой межклеточные структуры?
4. Назовите два процесса, которые являются общими для всех живых систем.
б. Назовите принципиальные различия между клетками-прокариота-ми и клетками-эукариотами. Является ли одноклеточность признаком прокариот?
6. Назовите и охарактеризуйте компоненты мембранной системы клеток животных. Есть ли мембранная система в клетках растений?
7. Охарактеризуйте цитоплазматический матрикс и клеточные орга-неллы. Что собой представляет цитозоль? Есть ли у клеток скелет? Как организован цитоскелет и каковы его компоненты?
8. Каковы структура и роль клеточного ядра? Есть ли различия между ядрами клеток животных и клеток растений?
9. Каковы структура и функции митохондрий? Все ли клетки обладают митохондриями?
10. Сформулируйте определения клеточного цикла и митоза. С какой скоростью протекают митозы в клетках разных тканей?
11. Что собой представляют лизосомы и какова их роль? Что произойдет с клетками, если лизосомы подвергнутся разрушению?
12. Каково значение ферментов в жизни клеток? Все ли белки являются ферментами и в чем заключается их действие?
13. Каковы фазы митоза и сущность процессов, происходящих в эти фазы?
14. В какой фазе происходит разделение центромеры и освобождение сестринских хроматид?
15. Определите, какая весовая часть ядра приходится на хроматин клетки (примерно), допуская, что диаметр ядра составляет б мкм, а плотность 1,1 г/см"3?
16. Считая, что хромосомы человека состоят на 15% из ДНК, определите массу всех хромосом его диплоидных клеток.
17. Что вы можете сказать о происхождении митоза?
18. Что вы знаете об элементарном составе клеток?
19. Что понимают под биологическими молекулами?
20. Какой представляется вструктура белков и что вы знаете о функциях белков?
21. Как вы понимаете происхождение клеток-прокариот?
22. Как вы понимаете происхождение клеток-эукариот?
23. Каково ваше мнение относительно развития генома эукариотичес-ких клеток?
24. Каковы причины гибели клеток? Существует ли генетический механизм, контролирующий гибель клеток?
25. Что вы знаете об эпителиальных тканях и их функциях?
26. Назовите основные группы мышечной ткани и что составляет основу их классификации?
27. Каковы основные клеточные элементы собственно соединительных тканей?
28. Что такое нервная ткань и из каких компонентов она состоит?
29. Как вы представляете строение нервного волокна?
30. Почему кровь и лимфу считают тканями?
31. Какова функциональная роль лимфоцитов?
32. Как вы понимаете происхождение клеток-прокариотов и клеток-эукариотов?
33. Применима ли эволюционная теория к учению о тканях?
Литература
Альберте В., Брей Д., Льюис Дж„ Рэфф М., Роберте К., Уотсон Дж. Молекулярная биология клетки. М.: Мир. 1994. Т. 1. 615 стр.; 1994. Т. 2. 540 стр.
Вермель Е. М. История учения о клетке. М.: Наука. 1970. 259 стр.
Kaufman Р. В., Wu W. Handbook of Molecular and Cellular Methods in Biology and Medicine. CRC Press L. 1995. 496 pp. Lackie J. M„ Dow 3. A. The Dictionary of Cell Biology. Academic Press. 1995. 380 pp.
Глава VII
Похожие статьи:
poznayka.org
Эволюция тканей — реферат
План
- Введение.
- Актуальность.
- Классификация тканей. Эволюция тканей
- Развитие тканей. Норма и патология .
- Гомеостаз.
- Обновление клеток в эпидермисе.
- Дублирование гомеостаза.
- Регенерация.
- Заключение.
- Список использованной литературы.
Введение
Ткани как системы клеток и их производных - один из иерархических уровней организации живого. Клетки как ведущие элементы ткани. Неклеточные структуры — симпласты и межклеточное вещество как производные клеток. Синцитии. Понятие о клеточных популяциях. Клеточная популяция (клеточный тип, дифферон, клон). Статическая, растущая, обновляющаяся клеточные популяции. Стволовые клетки и их свойства. Детерминация и дифференциация клеток в ряду последовательных делений, коммитирование потенций. Диффероны. Тканевый тип, генез (гистогенез). Закономерности возникновения и эволюции тканей, теории параллелизма А.А. Заварзина и дивергентной эволюции Н.Г. Хлопина, их синтез на современном уровнем развития науки. Принципы классификации тканей. Классификация тканей по фон Лёйдигу: эпителиальная ткань (пограничные и железистые эпителии), ткани внутренней среды (кровь, соединительные ткани и скелетные ткани), мышечные ткани (скелетная мышечная ткань, сердечная мышечная ткань и гладкая мышечная ткань), нервная ткань.
Восстановительные способности тканей — типы физиологической регенерации в обновляющихся, лабильных и стационарных клеточных популяциях, репаративная регенерация. Компенсаторно-приспособительные и адаптационные изменения тканей, их пределы.
Актуальность
В последние годы врачи и реабилитологи сталкиваются с большой категорией больных ,у которых наблюдаются различные патологические состояния ,которые связаны с преимущественным поражением соединительной ткани. Дисплазия соединительной ткани - аномалия тканевой структуры, в основе которой лежит обусловленное нарушение соотношения между содержанием коллагенов различного типа. Анализ последних исследований и публикаций. В настоящее время принято выделять дифференцированные ( достаточно чётко очерченные) и недифференцированные проявления дисплазии соединительной ткани. Среди недифференцированных – синдром соединительно-тканной дисплазии сердца – пролапс клапанов, аневризмы межпредсердной перегородки и синусов Вальсальвы, аномально расположенные хорды, а также другие проявления соединительно-тканных дисплазии : в ортопедии- нетравматические привычные вывихи и дисплазия тазобедренных суставов, в хирургии- грыжи различной локализации, в клинике внутренних болезней- опущение почек, в гинекологии- опущение стенок влагалища, в неврологии- аневризмы сосудов головного мозга и др. Комплексная реабилитационная терапия и профилактика при ДСТ включает немедикаментозную терапию, диетотерапию, медикаментозную терапию, хирургическую коррекцию деформаций опорно-двигательного аппарата и грудной клетки, а также внутренних органов. Всё это определило актуальность исследования и позволило сформулировать его цель и задачи.
Классификация тканей. Эволюция тканей
Ткань - это филогенетически сложившаяся система клеток и неклеточных структур, обладающая общностью строения и специализированная на выполнении определенных функций. В зависимости от этого различают эпителиальную, производные мезенхимы, мышечную и нервную ткань.
1. Эпителиальные ткани
Эпителиальная ткань морфологически характеризуется тесным объединением клеток в пласты. Эпителий и мезотелий (разновидность эпителия) выстилают поверхность тела, серозные оболочки, внутреннюю поверхность полых органов (пищеварительного канала, мочевого пузыря и т. д.) и образуют большинство желез.
Различают покровный и железистый эпителий
Покровный эпителий относится к пограничным, так как располагается на границе внутренней и внешней сред и через него происходит обмен веществ (всасывание и экскреция). Он также защищает подлежащие ткани от химического, механического и других видов внешнего воздействия.
Железистый эпителий обладает секреторной функцией, т. е. способностью синтезировать и выделять вещества—секреты, оказывающие специфическое влияние на процессы, протекающие в организме.
Эпителий располагается на базальной мембране, под которой лежит рыхлая волокнистая ткань. В зависимости от отношения клеток к базальной мембране различают однослойный и многослойный эпителий.
Эпителий, все клетки которого связаны с базальной мембраной, называется однослойный.
У многослойного эпителия с базальной мембраной связан только нижний слой клеток.
Различают одно- и многорядный однослойный эпителий. Для однорядного изоморфного эпителия характерны клетки одинаковой формы с ядрами, лежащими на одном уровне (в один ряд), а для многорядного, или анизоморфного — клетки различной формы с ядрами, лежащими на разных уровнях и в несколько рядов.
Многослойный эпителий, в котором клетки верхних слоев превращаются в роговые чешуйки, называют многослойным ороговевающим, а при отсутствии ороговения — многослойным неороговевающим.
Особой формой многослойного эпителия является переходный, характеризующийся тем, что его внешний вид изменяется в зависимости от растяжения подлежащей ткани (стенки почечных лоханок, мочеточников, мочевого пузыря и др.).
Через однослойный однорядный эпителий происходит обмен веществ между организмом и внешней средой. Например, однослойный эпителий пищеварительного канала обеспечивает всасывание питательных веществ в кровь и лимфу. Многослойный (эпителий кожи), а также однослойный эпителий (бронхов) выполняет главным образом защитные функции.
Возникновение покровной ткани, или эпидермы, было важным, но не единственным требованием при переходе растений к обитанию в наземных условиях. Как организация эпидермы с самого начала должна была отвечать двум прямо противоположным требованиям: с одной стороны, предохранять тело высшего растения от высыхания, с другой — позволять воздуху, содержащему углекислый гаэ, свободно достигать зеленых клеток с хлоропластами. Последнее, как мы помним, было возможным благодаря наличию устьиц. Свободно пропуская воздух, устьица также свободно пропускали воду, находящуюся в растении, что требовало ее постоянной подачи к зеленым частям растения. Так, на самых первых этапах развития высших растений выявилась одна из важнейших черт их физиологии — водный режим, т. е. совокупность всех тех процессов и структурных приспособлений, которые определяют поступление, передвижение и расходование воды.
Решение проблем водного режима привело к образованию ксилемы (от греч. xylon — дерево), или древесины,— системы тканей, специально приспособленных к выполнению функции водопроведения. Задача эта была не из легких. Дело в том, что проведение воды из одной живой клетки в другую осуществляется крайне медленно и требует определенных энергетических затрат. Рациональнее всего такая организация водопроводящей системы, при которой она состоит из мертвых клеток. Однако мертвая клетка может сохраняться среди живых тургоресцентных клеток только в том случае, если она будет достаточно механически укреплена. Такое механическое укрепление могло быть создано лишь при условии значительного утолщения клеточной оболочки и пропитывания ее веществом, придающим жесткость целлюлозному остову оболочки растительной клетки. Такое вещество в эволюции растепий возникло очень давно, еще на заре жизни, до появления высших растений. Это лигнин — сложное ароматическое соединение, чрезвычайно устойчивое к разрушающему действию химических веществ и почти не поддающееся действию ферментов. В процессе эволюции растений лигнин первоначально возник, как полагают многие исследователи, в виде отброса в целях детоксикации (обезвреживания) некоторых ядовитых веществ, в частности фенольных соединений, образующихся в процессах жизнедеятельности клеток. Исключительно удачное сочетание химических и физических свойств сделало лигнин одним из наиболее распространенных растительных веществ, стоящим на втором месте после целлюлозы у семенных растений: его содержание составляет около 60% от количества целлюлозы.
Ксилему, образующуюся из прокамбия, называют первичной ксилемой. Она отчетливо подразделяется на два структурных типа — протоксилему, образующуюся на самых первых этапах дифференциации элементов ксилемы, и возникающую несколько позднее метаксилему. Отличия в строении этих двух типов мы опишем несколько позднее, а сейчас рассмотрим порядок образования элементов первичной ксилемы. Начнем с того, что прокамбий у различных растений возникает в верхушках осевых органов различными путями. Он может представлять собой на поперечном срезе небольшой кружок (а иногда и более сложную фигуру), лежащий в центре осевого органа, и, напротив, может развиться в виде небольшого пояска, к периферии и к центру от которого лежат неспециализированные клетки апикальной меристемы. Формирование элементов первичной ксилемы из прокамбия в принципе может идти тремя различными путями. Оно может происходить центростремительно, т. е. самые первые элементы (протоксилема) возникают на периферии прокамбиального пучка, а самые последние (метаксилема) образуются в центре (или по крайней мере ближе к центру). Это экзархный тип образования ксилемы (или экзархная ксилема). Может быть и прямо противоположный тип формирования первичной ксилемы — когда вычленение элементов ксилемы из клеток прокамбия идет центробежно, от центра к периферии, когда, следовательно, протоксилема располагается в центре, а метаксилема образует внешний край первичной ксилемы. В таком — эндархном — типе ксилемы различают две его модификации. Если центробежное формирование ксилемы происходит в прокамбии, расположенном в виде колечка (и где, следовательно, центральная часть верхушки осевого органа превратится в сердцевину), то за таким типом образования первичной ксилемы сохраняют название эндархной ксилемы. Если же, напротив, центробежное формирование ксилемы происходит в прокамбии, представляющем собой один центральный пучок в верхушке осевого органа, то такую ксилему принято называть центрархной. Этот тип формирования ксилемы характерен для древнейших высших растений и справедливо считается самым примитивным. Напротив, эндархный тип рассматривается как наиболее совершенный. Третий тип формирования ксилемы носит название мезархного. При этом самые первые элементы ксилемы возникают в средней части прокамбиального тяжа и последующее появление других элементов идет и к центру и к периферии возникающего тяжа первичной ксилемы. Образованием первичной ксилемы может закончиться формирование водопроводящей ткани. При этом, как правило, весь прокамбий нацело дифференцируется в проводящие элементы ксилемы и флоэмы, и какие-либо новые клеточные деления, приводящие к образованию новых массивов проводящих тканей, оказываются невозможными. Такие растения обычно обозначают как «лишенные способности к вторичному росту», а их структуру называют первичной. В некоторых группах этого типа растений в массе тканей коры, уже закончивших свою дифференциацию и выполняющих функцию запасающей ткани, могут возникнуть новые очаги клеточных делений и возникающие вторичные меристемы дадут начало новым массивам проводящих тканей.
Развитие тканей. Норма и патология.
С тканями связаны такие понятия, как пролиферация, гиперплазия, метаплазия, дисплазия, анаплазия и регенерация.
Пролиферация — все виды размножения клеток и внутриклеточных структур в норме и при патологии. Она лежит в основе роста и дифференцировки тканей, обеспечивает непрерывное обновление клеток и внутриклеточных структур, а также процессы репарации. Пролиферация клеток, утративших способность дифференцироваться, приводит к образованию опухоли. Пролиферация лежит в основе метаплазии. Разные ткани обладают различной способностью к пролиферации. Высокой пролиферативной способностью отличаются кроветворная, соединительная, костная ткани, эпидермис, эпителий слизистых оболочек, умеренной — скелетные мышцы, эпителий поджелудочной железы, слюнных желез и др. Низкая пролиферативная способность или отсутствие ее характерно для ткани ЦНС и миокарда. При повреждениях функция этих тканей восстанавливается с помощью внутриклеточной пролиферации. Пролиферация внутриклеточных структур приводит к увеличению объема клеток, их гипертрофии. Гипертрофия органа в целом может произойти за счет как клеточной, так и внутриклеточной пролиферации.
Гиперплазия — увеличение числа клеток путем их избыточного новообразования. Осуществляется с помощью прямого (митоза) и непрямого деления (амитоза).
При увеличении количества клеточных органелл (рибосом, митохондрий, эндоплазматической сети и др.) говорят о внутриклеточной гиперплазии. Аналогичные изменения наблюдаются и при гипертрофии. Гиперплазия является частью пролиферации, так как последняя охватывает все виды размножения клеток в норме и при патологии. Развивается гиперплазия вследствие разнообразных влияний, стимулирующих размножение клеток, результатом ее является гиперпродукция клеточных элементов. Кроме увеличения числа клеток гиперплазия характеризуется и некоторыми их качественными изменениями. Клетки по величине больше исходных, равномерно увеличиваются их ядра и количество цитоплазмы, в результате чего ядерно-цитоплазматическое соотношение не изменяется. Могут быть ядрышки. Гиперплазия клеток с атипией расценивается как дисплазия.
Метаплазия — стойкое преобразование одного типа ткани в другой с изменением ее морфологии и функции. Метаплазия может быть прямой — изменение типа ткани без увеличения количества клеточных элементов (превращение собственно соединительной ткани в костную без участия остеогенных элементов) и непрямой (опухолевой), которая характеризуется размножением клеток и их дифференциацией. Метаплазия может возникать на почве хронического воспаления, недостатка в организме ретинола (витамина A), нарушения гормонального состояния и др.
Наиболее часто встречается метаплазия эпителия, например метаплазия цилиндрического эпителия в плоский (в бронхах, слюнных и сальных железах, желчных протоках, кишках и других органах, имеющих железистый эпителий) или кишечная метаплазия (энтеролизация) эпителия слизистой оболочки желудка при гастрите.
Переходный эпителий мочевого пузыря при хроническом воспалении может метаплазироваться и в плоский, и в железистый. Плоский эпителий слизистой оболочки полости рта метаплазируется в плоский ороговевающий. Убедительных доказательств превращения соединительной ткани в эпителиальную не имеется.
Дисплазия — неправильное развитие органов и тканей в процессе эмбриогенеза и в постнатальном (послеродовом) периоде, когда действие внутриутробных факторов проявляется уже после рождения, даже у взрослого человека.
В онкологии термин «дисплазия» употребляется для определения предопухолевого состояния тканей, связанного с нарушением регенерации, которая протекает по типу гиперплазии (с избыточным образованием клеток) и обязательно с признаками атипии.
В зависимости от выраженности атипии клеток различают три степени дисплазии:
- Легкую;
- Умеренную;
- Тяжелую.
Дисплазия легкой степени характеризуется появлением в единичных клетках двухъядерности при сохранении в остальных клетках нормального ядерно-цитоплазматического соотношения. В некоторых клетках могут возникать признаки дистрофии (вакуольной, жировой и др.).
При умеренной дисплазии в единичных клетках отмечаются увеличение ядер и появление в них ядрышек.
Дисплазия тяжелой степени характеризуется полиморфизмом клеток, аннзоцитозом, увеличением ядер, зернистой структурой хроматина в них, появлением многоядерных клеток. В ядрах обнаруживаются ядрышки. Ядерно-цитоплазматическое соотношение изменяется в пользу ядра. В клетках появляются более выраженные дистрофические изменения. Расположение клеток хаотичное. Цитологически такую дисплазию трудно отличить от внутриэпителиального рака. В случаях тяжелой дисплазии атипичных клеток не так много, как при carcinoma in situ (преинвазивный рак — злокачественная опухоль на начальных стадиях развития).
По данным ряда исследователей дисплазия легкой и умеренной степени редко прогрессирует и в 20—50 % случаев подвергается обратному развитию.
В отношении тяжелой дисплазии существуют разные точки зрения: одни ученые считают, что при ней возможны обратное развитие и трансформация в рак; по мнению других, тяжелая дисплазия является необратимым состоянием, которое обязательно переходит в рак. Явления дисплазии могут наблюдаться также при непрямой метаплазии.
yaneuch.ru
РАЗВИТИЕ У НАЗЕМНЫХ РАСТЕНИЙ МЕХАНИЧЕСКОЙ ТКАНИ ОБУСЛОВЛЕНО... гистология растений
К группе ксерофитов относят и суккуленты — растения с сочными листьями или стеблями. У погруженных растений транспирации нет, значит, нет и “верхнего двигателя”, поддерживающего ток воды в растении. Ограничения, обусловленные особенностями водного режима суккулентов, создают и другие трудности для жизни этих растений в аридных условиях.
Вода, обуславливая необходимое тургорное давление, определенным образом участвует и в поддержании формы наземных растений как организмов не имеющих опорного скелета. Растения, для которых вода не только необходимый экологический фактор, но непосредственная среда обитания, относятся к водным, называемым гидрофитами. КСЕРОФИТЫ. Это растения сухих местообитаний, способные переносить значительный недостаток влаги — почвенную и атмосферную засуху.
МЕЗОФИТЫ. Эта группа включает растения, произрастающие в средних условиях увлажнения. По многим особенностям структуры и физиологии близки к ксерофитам растения, которые по тем или иным причинам испытывают недостаток влаги, сопряженный с действием низких температур. Криофиты в экологическом отношении очень близки к психрофитам и связаны с ними переходными формами.
ГИДРОФИТЫ. Это водные растения. По образу жизни и строению среди них можно выделить погруженные растения и растения с плавающими листьями. К настоящим водным растениям очень близко примыкает и обычно вместе с ними рассматривается группа гелофитов или амфибий — земноводных растений. Если у сухопутных мезофитов длина жилок на 1 кв.см. листа составляет около100 мм и более, а у ксерофитов доходит до300, то у водных и прибрежных растений она в несколько раз меньше.
Приспособления растений к водному режиму
Наряду с морфологическими особенностями у растений, приуроченных к местам с разными условиями увлажненности, выработались и физиологические. К числу этих механизмов принадлежит высокая водоудерживающая способность тканей и клеток, обусловленная рядом физиологических и биохимических особенностей.
9. Высшие растения и их ткани
Ярким примером в этом отношении служат пустынные растения, которые летом высыхают до состояния, близкого к воздушно-сухому, и впадают в анабиоз, но после дождей возобновляют рост и развитие. Основной способ преодоления засушливых условий у суккулентов — накопление больших запасов воды в тканях и крайне экономное ее расходование. В дополнение к этому у многих суккулентов поверхность защищена восковым налетом опушением, хотя есть и суккуленты с тонким не защищенным эпидермисом.
Столь же велика транспирация у прибрежных растений, при чем у них значительное количество воды расходуется не только листьями, но и стеблями. Растения, в отличие от животных, растут и образуют новые органы на протяжении всей жизни. Это обусловлено наличием меристематических тканей, которые локализованы в определенных местах растения. Клетки меристемы характеризуются двумя основными свойствами: интенсивным делением и дифференциацией, то есть превращением в клетки других тканей.
Эпидерма. Первичная покровная ткань, которая образуется из протодермы, покрывает листья и молодые стебли. Пробка. Клетки эпидермы вследствие роста стебля в толщину деформируются и отмирают. Под этим названием объединяют ткани, составляющие основную массу различных органов растения. Аэренхима особенно хорошо выражена в подводных органах растений, в воздушных и дыхательных корнях. Механические ткани в совокупности составляют остов, поддерживающий все органы растения, противодействуя их излому или разрыву.
В осевых органах это в основном прозенхимные клетки, в листьях и плодах — паренхимные. В зависимости от формы клеток, химического состава клеточных стенок и способа их утолщения механические ткани подразделяют на три группы: колленхима, склеренхима, склереиды.
Вода — важнейший экологический фактор для всего живого на земле. Для процессов обмена веществ со средой, составляющих основу жизни, необходимо участие воды в качестве растворителя и метаболита. Так у растений вода участвует в реакциях фотосинтеза, минеральные соли поступают в растения из почвы только в виде водных растворов. Вода — главная составная часть тела растений. Ярко выраженные гигрофиты — травянистые растения и эпифиты влажных тропических лесов, не выносящие сколько–нибудь заметного понижения влажности воздуха.
Эволюция растений
Они распространены, обильны и разнообразны в областях с жарким и сухим климатом. В более гумидных районах ксерофиты участвуют в растительном покрове лишь в наиболее прогреваемых и наименее увлажненных местообитаниях (например, на склонах южной экспозиции). В зависимости от структурных черт и способов регулирования водного режима различают несколько разновидностей ксерофитов (по Генкелю П.А.) : эуксерофиты, гемиксерофиты, пойкилоксерофиты.
Как гормон роста помог растениям колонизировать сушу
Различают листовые суккуленты (агавы, алоэ) и стеблевые, у которых листья редуцированы, а наземные части представлены мясистыми стеблями(кактусы, некоторые молочаи). Сюда относятся растения лугов, травяного покрова лесов, лиственные древесные и кустарниковые породы из областей умеренно влажного климата, а также большинство культурных растений. Мезофиты — группа весьма разнообразная не только по видовому составу, но и по различным экологическим оттенкам, обусловленным разным сочетанием факторов в природных местообитаниях.
Растительные ткани
Их объединяют в переходную группу гигромезофитов наряду с некоторыми влаголюбивыми лесными травами, предпочитающими наиболее сырые леса, лесные овраги (недотрога — Impatiens nolitangere). К этой группе принадлежат растения, ранней весной покрывающие степи и пустыни разноцветным цветущим ковром (многолетники — тюльпаны, гусиные луки; однолетники — маки, вероники). Это виды с чрезвычайно краткой вегетацией и длительным периодом покоя, который однолетние эфемеры переживают в виде семян, а многолетние эфемероиды — в виде покоящихся луковиц, клубней, корневищ.
Иногда такие виды в качестве особого подразделения включают в группу ксерофитов, иногда выделяют в самостоятельные экологические типы — психрофиты и криофиты. Это растения сухих и холодных местообитаний — сухих участков тундр, скал, осыпей.
Первичная и вторичная меристема. Также для большой группы растений, живущих в водоемах, морях и океанах, вода является непосредственной средой обитания. Основная ткань состоит из живых паренхимных клеток с тонкими стенками. Водоудерживающая способность тканей суккулентов значительно выше, чем у других растений экологических групп, благодаря содержанию в клетках гидрофильных веществ.
Читайте также:
podnogqali.ru