Содержание
Дистанционный репетитор — онлайн-репетиторы России и зарубежья
КАК ПРОХОДЯТ
ОНЛАЙН-ЗАНЯТИЯ?
Ученик и учитель видят и слышат
друг друга, совместно пишут на
виртуальной доске, не выходя из
дома!
КАК ВЫБРАТЬ репетитора
Выбрать репетитора самостоятельно
ИЛИ
Позвонить и Вам поможет специалист
8 (800) 333 58 91
* Звонок является бесплатным на территории РФ
** Время приема звонков с 10 до 22 по МСК
ПОДАТЬ ЗАЯВКУ
Россия +7Украина +380Австралия +61Белоруссия +375Великобритания +44Израиль +972Канада, США +1Китай +86Швейцария +41
Выбранные репетиторы
Заполните форму, и мы быстро и бесплатно подберем Вам дистанционного репетитора по Вашим пожеланиям.
Менеджер свяжется с Вами в течение 15 минут и порекомендует специалиста.
Отправляя форму, Вы принимаете
Условия использования
и даёте
Согласие на обработку персональных данных
Вы также можете воспользоваться
расширенной формой подачи заявки
Как оплачивать и СКОЛЬКО ЭТО СТОИТ
от
800 до 5000 ₽
за 60 мин.
и зависит
ОТ ОПЫТА и
квалификации
репетитора
ОТ ПОСТАВЛЕННЫХ ЦЕЛЕЙ ОБУЧЕНИЯ
(например, подготовка к олимпиадам, ДВИ стоит дороже, чем подготовка к ЕГЭ)
ОТ ПРЕДМЕТА (например, услуги репетиторовиностранных языков дороже)
Оплата непосредственно репетитору, удобным для Вас способом
Почему я выбираю DisTTutor
БЫСТРЫЙ ПОДБОР
РЕПЕТИТОРА И
ИНДИВИДУАЛЬНЫЙ ПОДХОД
ОПТИМАЛЬНОЕ
СООТНОШЕНИЕ ЦЕНЫ И
КАЧЕСТВА
ПРОВЕРЕНЫ ДОКУМЕНТЫ ОБ
ОБРАЗОВАНИИ У ВСЕХ
РЕПЕТИТОРОВ
НАДЕЖНОСТЬ И ОПЫТ.
DisTTutor на рынке с 2008 года.
ПРОВЕДЕНИЕ БЕСПЛАТНОГО, ПРОБНОГО УРОКА
ЗАМЕНА РЕПЕТИТОРА, ЕСЛИ
ЭТО НЕОБХОДИМО
375863 УЧЕНИКОВ ИЗ РАЗНЫХ СТРАН МИРА
уже сделали свой выбор
И вот, что УЧЕНИКИ ГОВОРЯТ
о наших репетиторах
Владимир Александрович Кузьмин
«
Тренинг у Кузьмина В. А. проходил в экстремальных условиях. Мой модем совершенно не держал соединение. За время часового тренинга связь прерывалась практически постоянно. Ясно, что в таких условиях чрезвычайно непросто чему-то учить.
Однако Владимир Александрович проявил удивительную выдержку и терпение. Неоднократно он перезванивал мне на сотовый телефон, чтобы дать пояснения или комментарии.
Ценой больших усилий нам удалось рассмотреть три программы: ConceptDraw MINDMAP Professional Ru, GeoGebra и Ultra Flash Video FLV Converter. Владимир Александрович открыл мне курс на платформе dist-tutor.info и научил подключать и настраивать Виртуальный кабинет, порекомендовав изучать возможности этого ресурса, чтобы постепенно уходить от использования Skype.
В итоге, занятие мне очень понравилось! Спокойное объяснение материала, дружелюбный настрой, подбадривание дистанционного ученика даже в самых непростых ситуациях — вот далеко не полный перечень качеств Владимира Александровича как дистанционного педагога. Мне следует учиться у такого замечательного репетитора!
«
Вячеслав Юрьевич Матыкин
Чулпан Равилевна Насырова
«
Я очень довольна репетитором по химии. Очень хороший подход к ученику,внятно объясняет. У меня появились сдвиги, стала получать хорошие оценки по химии. Очень хороший преподаватель. Всем , кто хочет изучать химию, советую только её !!!
«
Алина Крякина
Надежда Васильевна Токарева
«
Мы занимались с Надеждой Васильевной по математике 5 класса. Занятия проходили в удобное для обоих сторон время. Если необходимо было дополнительно позаниматься во внеурочное время, Надежда Васильевна всегда шла навстречу. Ей можно было позванить, чтобы просто задать вопрос по непонятной задачке из домашнего задания. Моя дочь существенно подняла свой уровень знаний по математике и начала демонстрировать хорошие оценки. Мы очень благодарны Надежде Васильевне за помощь в этом учебном году, надеемся на продолжение отношений осенью.
«
Эльмира Есеноманова
Ольга Александровна Мухаметзянова
«
Подготовку к ЕГЭ по русскому языку мой сын начал с 10 класса. Ольга Александровна грамотный педагог, пунктуальный, ответственный человек. Она всегда старается построить занятие так, чтобы оно прошло максимально плодотворно и интересно. Нас абсолютно все устраивает в работе педагога. Сотрудничество приносит отличные результаты, и мы его продолжаем. Спасибо.
«
Оксана Александровна
Клиентам
- Репетиторы по математике
- Репетиторы по русскому языку
- Репетиторы по химии
- Репетиторы по биологии
- Репетиторы английского языка
- Репетиторы немецкого языка
Репетиторам
- Регистрация
- Публичная оферта
- Библиотека
- Бан-лист репетиторов
Партнеры
-
ChemSchool -
PREPY. RU -
Class
Органоиды клетки, подготовка к ЕГЭ по биологии
Органоиды (органеллы) клетки — специализированные структуры клетки, выполняющие различные жизненно необходимые
функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции
дыхания, выделения, пищеварения и многие другие.
Органоиды клетки подразделяются на:
- Немембранные — рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
- Одномембранные — ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
- Двумембранные — пластиды, митохондрии
Ядро не включается в понятие «органоиды клетки», является структурой клетки, однако также будет рассмотрено нами в этой статье.
Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо
упомянуть о том, без чего вообще не существует клетки — о клеточной мембране. Клеточная мембрана ограничивает клетку
от окружающего мира и формирует ее внутреннюю среду.
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную,
жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется
только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Клеточная мембрана представляет собой билипидный слой (лат. bi — двойной + греч. lipos — жир), который пронизывают молекулы
белков.
Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а
гидрофильные «головки» смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично — погруженные белки,
имеются также поверхностно лежащие белки — периферические.
Белки принимают участие в:
- Поддержании постоянства структуры мембраны
- Рецепции сигналов из окружающей среды (химического раздражения)
- Транспорте веществ через мембрану
- Ускорении (катализе) реакций, которые ассоциированы с мембраной
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее.
«Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует
в избирательном транспорте веществ через мембрану.
Теперь вы знаете, что гликокаликс — надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных
сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется
только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны
регулируют жизнедеятельность клеток.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к
ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов
нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный
иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают
его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые
по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой:
через мембрану вещества поступают в клетку и удаляются из нее.
Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:
- Разделительная (барьерная) — образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
- Поддержание обмена веществ между внешней средой и цитоплазмой
- Транспортная
-
Пассивный — часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии
или облегченной (с участием белка-переносчика) диффузии. - Активный
Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности — мочевина
— удаляются из клетки во внешнюю среду.
Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку.
Выделяется два вида транспорта:
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O,
CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и
энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы
натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.
Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:
- Фагоцитоз (греч. phago — ем + cytos — клетка) — поглощение твердых пищевых частиц и бактерий фагоцитами
- Пиноцитоз (греч. pino — пью) — поглощение клеткой жидкости, захват жидкости клеточной поверхностью
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы
нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь
клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное
пищеварение.
Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к
мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω — вне, снаружи). Таким образом, процессы экзоцитоза и
эндоцитоза противоположны.
Клеточная стенка
Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует.
Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму.
Клеточная стенка бактерий состоит из полимера муреина, у грибов — из хитина, у растений — из целлюлозы.
Цитоплазма
Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме
происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты — удалить из клетки.
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Прокариоты (греч. πρό — перед и κάρυον — ядро) или доядерные — одноклеточные организмы, не обладающие в отличие от
эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды.
Их генетический материал представлен в виде кольцевой молекулы ДНК — нуклеоида (нуклеоид — ДНК–содержащая зона клетки прокариот). К прокариотам относятся бактерии, в их числе цианобактерии (цианобактерий по-другому называют — сине-зеленые водоросли).
Эукариоты (греч. εὖ — хорошо + κάρυον — ядро) или ядерные — домен живых организмов, клетки которых содержат оформленное
ядро. Растения, животные, грибы — относятся к эукариотам.
Немембранные органоиды
- Рибосома
- Микротрубочки и микрофиламенты
- Клеточный центр (центросома, от греч. soma — тело)
- Реснички и жгутики
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа.
Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая
в ядрышке.
Запомните ассоциацию: «Рибосома — фабрика белка». Именно здесь в ходе матричного биосинтеза — трансляции, с которой
подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок — последовательность
соединенных аминокислот в заданном иРНК порядке.
Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают
определенную форму клетки, участвуют во внутриклеточном транспорте и процессе деления путем образования нитей веретена деления. Микротрубочки
также образуют основу органоидов движения: жгутиков (у бактерий жгутик состоит из сократительного белка — флагеллина) и ресничек.
Микрофиламенты — тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме,
служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.
Этот органоид характерен только для животной клетки, в клетках грибов и высших растений отсутствует. Клеточный
центр состоит из 9 триплетов микротрубочек (триплет — три соединенных вместе). Участвует в образовании нитей веретена деления,
располагается на полюсах клетки.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек.
Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
- Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum — сеть)
- Комплекс (аппарат) Гольджи
- Лизосома (греч. lisis — растворение + soma — тело)
- Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
- Вакуоли
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части
(компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу,
что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними
имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая
ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается
вокруг ядра клетки, внешне напоминает стопку блинов. Это — «клеточный склад». В нем запасаются жиры и углеводы, с
которыми здесь происходят химические видоизменения.
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они
изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках
эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) — липазы, протеазы, фосфатазы.
Лизосому можно ассоциировать с «клеточным желудком».
Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце — вторичная лизосома с непереваренными остатками, которые удаляются из клетки.
Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком.
В норме у каждой клетки жизненный цикл заканчивается апоптозом — запрограммированным процессом клеточной гибели.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что
нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2
(пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы
к серьезным повреждениям клетки.
Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных — сократительные
вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором
содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление,
придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют
вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные
органоиды на периферию.
Двумембранные органоиды
- Митохондрия
- Пластиды (др.-греч. πλαστός — вылепленный)
- Хлоропласт (греч. chlōros — зелёный)
- Хромопласты (греч. chromos – краска)
- Лейкопласты (др.-греч. λευκός — белый )
Органоид палочковидной формы. Митохондрию можно сравнить с «энергетической станцией». Если в цитоплазме происходит
анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный — аэробный этап (кислородный). В
результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы)
получаются 36 молекул АТФ.
Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь — кристы, на которых имеется
большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена
матриксом.
Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК — нуклеоида (ДНК–содержащая зона клетки прокариот), и рибосом. То есть
митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были
самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Митохондрий особенно много в клетках мышц, в том числе — в сердечной мышечной ткани. Эти клетки выполняют активную работу и
нуждаются в большом количестве энергии.
Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У
подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:
Получил свое название за счет содержащегося в нем зеленого пигмента — хлорофилла (греч. chloros — зеленый
и phyllon — лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки — граны. Внутреннее
пространство между тилакоидами и мембраной называется стромой.
Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая
(светонезависимая) фаза — в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении
фотосинтеза в дальнейшем.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает
красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал,
в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается
крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать
процесс фотосинтеза.
Ядро («ядро» по лат. — nucleus, по греч. — karyon)
Важнейшая структура эукариотической клетки — оформленное ядро, которое у прокариот отсутствует. Внутренняя часть
ядра представлена кариоплазмой, в которой расположен хроматин — комплекс ДНК, РНК и белков, и одно или несколько
ядрышек.
Ядрышко — место в ядре, где активно идет процесс матричного биосинтеза — транскрипция, с которым мы познакомимся
подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество
ядрышек или не найти ни одного.
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение
между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала
дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы
ДНК, связанные с белками.
Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать
вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы — во время деления, спирализованное ДНК), если же клетка не
делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин — деспирализованное ДНК).
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом
называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна — трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).
© Беллевич Юрий Сергеевич 2018-2022
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Клетки животных и клетки растений
Результаты обучения
- Идентификация ключевых органелл, присутствующих только в растительных клетках, включая хлоропласты и центральные вакуоли
- Определите ключевые органеллы, присутствующие только в клетках животных, включая центросомы и лизосомы
На данный момент должно быть ясно, что эукариотические клетки имеют более сложную структуру, чем прокариотические клетки. Органеллы позволяют одновременно выполнять в клетке различные функции. Несмотря на их фундаментальное сходство, между животными и растительными клетками есть некоторые поразительные различия (см. рис. 1).
В клетках животных есть центросомы (или пара центриолей) и лизосомы, тогда как в растительных клетках их нет. Растительные клетки имеют клеточную стенку, хлоропласты, плазмодесмы и пластиды, используемые для хранения, а также большую центральную вакуоль, в то время как у животных клеток их нет.
Практический вопрос
Рис. 1. (a) Типичная животная клетка и (b) типичная растительная клетка.
Какие структуры есть у растительной клетки, чего нет у животной клетки? Какие структуры есть у животных клеток, которых нет у клеток растений?
Показать ответ
Растительные клетки
Клеточная стенка
На рис. 1b, схеме растительной клетки, вы видите структуру, расположенную снаружи плазматической мембраны, называемую клеточной стенкой. Клеточная стенка представляет собой жесткое покрытие, которое защищает клетку, обеспечивает структурную поддержку и придает клетке форму. Клетки грибов и некоторые клетки простейших также имеют клеточные стенки.
В то время как основным компонентом клеточных стенок прокариот является пептидогликан, основной органической молекулой в клеточной стенке растений является целлюлоза (рис. 2), полисахарид, состоящий из длинных прямых цепей единиц глюкозы. Когда информация о пищевой ценности относится к пищевым волокнам, она имеет в виду содержание клетчатки в пище.
Рисунок 2. Целлюлоза представляет собой длинную цепь молекул β-глюкозы, соединенных связью 1–4. Пунктирные линии на каждом конце рисунка обозначают серию из гораздо большего количества единиц глюкозы. Размер страницы не позволяет изобразить всю молекулу целлюлозы.
Хлоропласты
Рисунок 3. На этой упрощенной схеме хлоропласта показаны внешняя мембрана, внутренняя мембрана, тилакоиды, грана и строма.
Как и митохондрии, хлоропласты также имеют собственную ДНК и рибосомы. Хлоропласты участвуют в фотосинтезе и могут быть обнаружены в фотоавтотрофных эукариотических клетках, таких как растения и водоросли. При фотосинтезе углекислый газ, вода и световая энергия используются для производства глюкозы и кислорода. В этом основное различие между растениями и животными: растения (автотрофы) способны производить себе пищу, например, глюкозу, тогда как животные (гетеротрофы) должны полагаться на другие организмы в поисках органических соединений или источника пищи.
Как и митохондрии, хлоропласты имеют наружную и внутреннюю мембраны, но внутри пространства, ограниченного внутренней мембраной хлоропласта, находится набор взаимосвязанных и уложенных друг на друга, заполненных жидкостью мембранных мешочков, называемых тилакоидами (рис. 3). Каждая стопка тилакоидов называется граном (множественное число = грана ). Жидкость, окруженная внутренней мембраной и окружающая грану, называется стромой.
Хлоропласты содержат зеленый пигмент хлорофилл, который улавливает энергию солнечного света для фотосинтеза. Как и клетки растений, фотосинтезирующие протисты также имеют хлоропласты. Некоторые бактерии также осуществляют фотосинтез, но у них нет хлоропластов. Их фотосинтетические пигменты расположены в тилакоидной мембране внутри самой клетки.
Эндосимбиоз
Мы упоминали, что и митохондрии, и хлоропласты содержат ДНК и рибосомы. Вы задавались вопросом, почему? Веские доказательства указывают на эндосимбиоз как на объяснение.
Симбиоз — это отношения, при которых организмы двух отдельных видов живут в тесной ассоциации и обычно проявляют специфические приспособления друг к другу. Эндосимбиоз ( эндо- = внутри) — отношения, при которых один организм живет внутри другого. В природе изобилуют эндосимбиотические отношения. Микробы, вырабатывающие витамин К, живут в кишечнике человека. Эта взаимосвязь полезна для нас, потому что мы не можем синтезировать витамин К. Она также полезна для микробов, потому что они защищены от других организмов и им предоставлена стабильная среда обитания и обильное питание, живя в толстой кишке.
Ученые давно заметили, что бактерии, митохондрии и хлоропласты имеют одинаковый размер. Мы также знаем, что митохондрии и хлоропласты имеют ДНК и рибосомы, как и бактерии. Ученые считают, что клетки-хозяева и бактерии сформировали взаимовыгодные эндосимбиотические отношения, когда клетки-хозяева поглощали аэробные бактерии и цианобактерии, но не уничтожали их. В ходе эволюции эти проглоченные бактерии стали более специализированными по своим функциям: аэробные бактерии стали митохондриями, а фотосинтезирующие бактерии стали хлоропластами.
Попробуйте
Центральная вакуоль
Ранее мы упоминали вакуоли как важные компоненты клеток растений. Если вы посмотрите на рисунок 1b, то увидите, что каждая растительная клетка имеет большую центральную вакуоль, занимающую большую часть клетки. Центральная вакуоль играет ключевую роль в регуляции концентрации воды в клетке при изменении условий внешней среды. В растительных клетках жидкость внутри центральной вакуоли обеспечивает тургорное давление, то есть внешнее давление, вызванное жидкостью внутри клетки. Вы когда-нибудь замечали, что если вы забудете полить растение на несколько дней, оно завянет? Это связано с тем, что по мере того, как концентрация воды в почве становится ниже, чем концентрация воды в растении, вода выходит из центральных вакуолей и цитоплазмы в почву. Когда центральная вакуоль сжимается, она оставляет клеточную стенку без опоры. Эта потеря поддержки клеточных стенок растения приводит к увядшему виду. Когда центральная вакуоль заполнена водой, она обеспечивает низкоэнергетическое средство для расширения растительной клетки (в отличие от затрат энергии на фактическое увеличение размера). Кроме того, эта жидкость может отпугивать травоядных, поскольку горький вкус содержащихся в ней отходов препятствует потреблению насекомыми и животными. Центральная вакуоль также служит для хранения белков в развивающихся семенных клетках.
Клетки животных
Лизосомы
Рис. 4. Макрофаг фагоцитировал потенциально патогенную бактерию в везикулу, которая затем сливается с лизосомой внутри клетки, что позволяет уничтожить патоген. В клетке присутствуют и другие органеллы, но для простоты они не показаны.
В клетках животных лизосомы являются клеточным «мусоропроводом». Пищеварительные ферменты в лизосомах помогают расщеплять белки, полисахариды, липиды, нуклеиновые кислоты и даже изношенные органеллы. У одноклеточных эукариот лизосомы важны для переваривания пищи, которую они глотают, и переработки органелл. Эти ферменты активны при гораздо более низком рН (более кислом), чем ферменты, расположенные в цитоплазме. Многие реакции, протекающие в цитоплазме, не могут протекать при низком рН, поэтому очевидны преимущества разделения эукариотической клетки на органеллы.
Лизосомы также используют свои гидролитические ферменты для уничтожения болезнетворных организмов, которые могут проникнуть в клетку. Хороший пример этого происходит в группе лейкоцитов, называемых макрофагами, которые являются частью иммунной системы вашего организма. В процессе, известном как фагоцитоз, часть плазматической мембраны макрофага инвагинирует (сворачивается) и поглощает патоген. Инвагинированный участок с возбудителем внутри отщипывается от плазматической мембраны и превращается в везикулу. Везикула сливается с лизосомой. Затем гидролитические ферменты лизосом уничтожают патоген (рис. 4).
Внеклеточный матрикс клеток животных
Рисунок 5. Внеклеточный матрикс состоит из сети веществ, секретируемых клетками.
Большинство клеток животных выделяют материалы во внеклеточное пространство. Основными компонентами этих материалов являются гликопротеины и белок коллаген. В совокупности эти материалы называются внеклеточным матриксом (рис. 5). Внеклеточный матрикс не только удерживает клетки вместе, образуя ткань, но также позволяет клеткам внутри ткани общаться друг с другом.
Свертывание крови является примером роли внеклеточного матрикса в клеточной коммуникации. Когда клетки, выстилающие кровеносный сосуд, повреждены, они обнаруживают белковый рецептор, называемый тканевым фактором. Когда тканевой фактор связывается с другим фактором во внеклеточном матриксе, он заставляет тромбоциты прикрепляться к стенке поврежденного кровеносного сосуда, стимулирует соседние гладкомышечные клетки в кровеносном сосуде сокращаться (таким образом сужая кровеносный сосуд) и инициирует серию действия, которые стимулируют тромбоциты к выработке факторов свертывания крови.
Межклеточные соединения
Клетки также могут связываться друг с другом путем прямого контакта, называемого межклеточными соединениями. Существуют некоторые различия в том, как это делают растительные и животные клетки. Плазмодесмы (единственное число = плазмодесма) представляют собой соединения между растительными клетками, тогда как контакты животных клеток включают плотные и щелевые соединения и десмосомы.
Как правило, длинные участки плазматических мембран соседних растительных клеток не могут соприкасаться друг с другом, поскольку они разделены клеточными стенками, окружающими каждую клетку. Плазмодесмы представляют собой многочисленные каналы, которые проходят между клеточными стенками соседних растительных клеток, соединяя их цитоплазму и позволяя транспортировать сигнальные молекулы и питательные вещества из клетки в клетку (рис. 6а).
Плотное соединение представляет собой водонепроницаемое соединение между двумя соседними клетками животных (рис. 6b). Белки плотно удерживают клетки друг против друга. Эта плотная адгезия предотвращает утечку материалов между ячейками. Плотные соединения обычно обнаруживаются в эпителиальной ткани, которая выстилает внутренние органы и полости и составляет большую часть кожи. Например, плотные соединения эпителиальных клеток, выстилающих мочевой пузырь, предотвращают просачивание мочи во внеклеточное пространство.
Также только в клетках животных обнаружены десмосомы, которые действуют как точечные сварные швы между соседними эпителиальными клетками (рис. 6c). Они удерживают клетки вместе в виде листа в растягивающихся органах и тканях, таких как кожа, сердце и мышцы.
Щелевые контакты в клетках животных аналогичны плазмодесмам в клетках растений в том смысле, что они представляют собой каналы между соседними клетками, обеспечивающие транспорт ионов, питательных веществ и других веществ, обеспечивающих связь между клетками (рис. 6d). Однако структурно щелевые контакты и плазмодесмы различаются.
Рисунок 6. Существует четыре типа соединений между ячейками. а) Плазмодесма представляет собой канал между клеточными стенками двух соседних растительных клеток. (б) Плотные контакты соединяют соседние клетки животных. (c) Десмосомы соединяют две клетки животных вместе. (г) Щелевые контакты действуют как каналы между животными клетками. (кредит b, c, d: модификация работы Марианы Руис Вильярреал)
Внесите свой вклад!
У вас есть идеи по улучшению этого контента? Мы будем признательны за ваш вклад.
Улучшить эту страницуПодробнее
Растительная клетка — Полное руководство
Определение
Растительные клетки являются основной единицей жизни в организмах царства Plantae. Это эукариотические клетки, которые имеют настоящее ядро, а также специализированные структуры, называемые органеллами, которые выполняют различные функции. Клетки растений имеют специальные органеллы, называемые хлоропластами, которые создают сахара посредством фотосинтеза. У них также есть клеточная стенка, которая обеспечивает структурную поддержку.
3D-модель растительной клетки
Обзор растительных клеток
Животные, грибы и простейшие состоят как минимум из одной эукариотической клетки. Напротив, бактерии и археи состоят из одной прокариотической клетки. Клетки растений отличаются от клеток других организмов клеточными стенками, хлоропластами и центральной вакуолью.
Хлоропласты — это органеллы, играющие решающую роль в функционировании клеток растений. Это структуры, которые осуществляют фотосинтез, используя энергию солнца для производства глюкозы. При этом клетки используют углекислый газ, а выделяют кислород.
Другие организмы, такие как животные, полагаются на этот кислород и глюкозу, чтобы выжить. Растения считаются автотрофными, потому что они производят свою собственную пищу и не должны потреблять какие-либо другие организмы. В частности, растительные клетки являются фотоавтотрофными, поскольку они используют световую энергию солнца для производства глюкозы. Организмы, питающиеся растениями и другими животными, считаются гетеротрофными.
Другие компоненты растительной клетки, клеточная стенка и центральная вакуоль, работают вместе, чтобы придать клетке жесткость. Растительная клетка будет запасать воду в центральной вакуоли, которая расширяет вакуоль по бокам клетки. Затем клеточная стенка давит на стенки других клеток, создавая силу, известную как тургорное давление. В то время как животные полагаются на скелет как основу строения, тургорное давление в растительных клетках позволяет растениям расти в высоту и достигать большего количества солнечного света.
Клетки растений и клетки животных
Клетки растений и животных являются эукариотическими клетками, то есть они обладают определенным ядром и связанными с мембраной органеллами. Они имеют много общих черт, таких как клеточная мембрана, ядро, митохондрии, аппарат Гольджи, эндоплазматический ретикулум, рибосомы и многое другое.
Однако у них есть очевидные различия. Во-первых, у растительных клеток есть клеточная стенка, которая окружает клеточную мембрану, тогда как у животных клеток ее нет. Растительные клетки также обладают двумя органеллами, которых нет у животных клеток: хлоропластами и крупной центральной вакуолью.
Эти дополнительные органеллы позволяют растениям формировать вертикальную структуру без необходимости в скелете (клеточная стенка и центральная вакуоль), а также позволяют им производить себе пищу посредством фотосинтеза (хлоропласты).
Части растительной клетки
Схема растительной клетки с органеллами, помеченными
Растительная клетка имеет много различных особенностей, которые позволяют ей выполнять свои функции. Каждая из этих структур, называемых органеллами, выполняет особую роль.
Клетки животных и растений имеют много общих органелл, о которых вы можете узнать больше, посетив статью «Клетка животных». Однако в растительных клетках есть некоторые специализированные структуры, в том числе хлоропласты, большая вакуоль и клеточная стенка.
Хлоропласты
Хлоропласты представляют собой специализированные органеллы, встречающиеся только в растениях и некоторых видах водорослей. Эти органеллы осуществляют процесс фотосинтеза, который превращает воду, углекислый газ и световую энергию в питательные вещества, из которых растение может получать энергию. В некоторых растительных клетках может быть более сотни хлоропластов.
Хлоропласты представляют собой дискообразные органеллы, окруженные двойной мембраной. Наружная мембрана образует внешнюю поверхность хлоропласта и относительно проницаема для небольших молекул, что позволяет веществам проникать в органеллу. Внутренняя мембрана находится непосредственно под внешней мембраной и менее проницаема для внешних веществ.
Между наружной и внутренней мембраной находится тонкое межмембранное пространство шириной около 10-20 нанометров. Центр хлоропласта, окруженный двойной мембраной, представляет собой жидкую матрицу, называемую стромой (вы можете думать об этом как о цитоплазме хлоропласта).
В строме есть много структур, называемых тилакоидами, которые выглядят как сплющенные диски. В сосудистых растениях тилакоиды уложены друг на друга стопками, называемыми грандами. Тилакоиды имеют высокую концентрацию хлорофилла и каротиноидов, которые представляют собой пигменты, улавливающие световую энергию солнца. Молекула хлорофилла также придает растениям зеленый цвет.
Маркированная схема хлоропласта
Вакуоли
Растительные клетки уникальны тем, что имеют большую центральную вакуоль. Вакуоль — это небольшая сфера плазматической мембраны внутри клетки, которая может содержать жидкость, ионы и другие молекулы. Вакуоли — это, по сути, просто большие везикулы. Их можно найти в клетках многих различных организмов. Однако растительные клетки обычно имеют большую вакуоль, которая может занимать от 30% до 90% общего объема клетки.
Центральная вакуоль растительной клетки помогает поддерживать ее тургорное давление, которое представляет собой давление содержимого клетки на клеточную стенку. Растение лучше всего растет, когда его клетки имеют высокую тургор, а это происходит, когда центральная вакуоль заполнена водой. Если тургорное давление в растениях снижается, растения начинают увядать. Растительные клетки лучше всего себя чувствуют в гипотонических растворах, где в окружающей среде больше воды, чем в клетке. В этих условиях вода устремляется в клетку путем осмоса, и тургорность высокая.
Клетки животных, для сравнения, могут лизироваться, если внутрь попадает слишком много воды; они чувствуют себя лучше в изотонических растворах, где концентрация растворенных веществ в клетке и в окружающей среде одинакова, а чистое движение воды в клетку и из клетки одинаково.
Многие животные клетки также имеют вакуоли, но они намного меньше и, как правило, играют менее важную функцию.
Клеточная стенка
Клеточная стенка представляет собой прочный слой, находящийся снаружи растительной клетки, который придает ей прочность, а также поддерживает высокую твердость. У растений клеточная стенка содержит в основном целлюлозу, а также другие молекулы, такие как гемицеллюлоза, пектин и лигнины. Состав клеточной стенки растений отличает ее от клеточных стенок других организмов.
Например, клеточные стенки грибов содержат хитин, а клеточные стенки бактерий содержат пептидогликан. Эти вещества не содержатся в растениях. Важно отметить, что основное различие между клетками растений и животных заключается в том, что клетки растений имеют клеточную стенку, а клетки животных — нет.
Растительные клетки имеют первичную клеточную стенку, которая представляет собой гибкий слой, образованный снаружи растущей растительной клетки. Растения также могут иметь вторичную клеточную стенку, прочный толстый слой, образующийся внутри первичной клеточной стенки растения, когда клетка созревает.
Другие органеллы
Растительные клетки имеют много других органелл, которые по существу аналогичны органеллам других типов эукариотических клеток, таких как клетки животных.
- Ядро содержит дезоксирибонуклеиновую кислоту (ДНК), генетический материал клетки. ДНК содержит инструкции по созданию белков, которые контролируют всю деятельность организма. Ядро также регулирует рост и деление клетки.
- Белки синтезируются на рибосомах, модифицируются в эндоплазматическом ретикулуме, сворачиваются, сортируются и упаковываются в везикулы в аппарате Гольджи.
- Митохондрии также встречаются в растительных клетках. Они производят АТФ посредством клеточного дыхания. Фотосинтез в хлоропластах обеспечивает питательные вещества, которые митохондрии расщепляют для использования в клеточном дыхании. Интересно, что и хлоропласты, и митохондрии, как полагают, образовались из бактерий, поглощаемых другими клетками в эндосимбиотических (взаимовыгодных) отношениях, и они сделали это независимо друг от друга.
- Жидкость внутри клеток представляет собой цитозоль. Он в основном состоит из воды, а также содержит ионы, белки и небольшие молекулы. Цитозоль и все находящиеся в нем органоиды, кроме ядра, называются цитоплазмой.
- Цитоскелет представляет собой сеть филаментов и канальцев, расположенных по всей цитоплазме клетки. Много функций; он придает клетке форму, обеспечивает прочность, стабилизирует ткани, закрепляет органеллы внутри клетки и играет роль в передаче клеточных сигналов. Клеточная мембрана, двойной слой фосфолипидов, окружает всю клетку.
Типы растительных клеток
Существует пять типов тканей, образованных растительными клетками, каждая из которых выполняет различные функции. Паренхима, колленхима и склеренхима — все это простые растительные ткани, то есть они содержат клетки одного типа. Напротив, ксилема и флоэма содержат смесь типов клеток и называются сложными тканями.
Типы растительных тканей, образованные клетками паренхимы, колленхимы и склеренхимы
- Паренхиматозная ткань представляет собой большинство клеток растения. Они находятся в листьях и осуществляют фотосинтез и клеточное дыхание наряду с другими метаболическими процессами. Они также хранят такие вещества, как крахмал и белки, и играют роль в заживлении ран растений.
- Ткань колленхимы обеспечивает поддержку растущих частей растения. Они имеют удлиненную форму, имеют толстые клеточные стенки и могут расти и менять форму по мере роста растения.
- Ткань склеренхимы содержит твердые клетки, которые являются основными поддерживающими клетками в областях растения, которые прекратили рост. Клетки склеренхимы мертвы и имеют очень толстые клеточные стенки.
- Клетки ксилемы транспортируют в основном воду и некоторые питательные вещества по всему растению, от корней к стеблю и листьям.
- Клетки флоэмы транспортируют питательные вещества, образующиеся в процессе фотосинтеза, ко всем частям растения. Они переносят сок, который представляет собой водный раствор с высоким содержанием сахаров.
Тест
1. Какие из них встречаются в клетках растений, но не в клетках животных?
A. Центральная вакуоль
B. Хлоропласты
C. Клеточная стенка
D. Все вышеупомянутые
2. Что молецита клеточные стенки других организмов?
A. Целлюлоза
B. Хитин
C. Пептидогликан
D. Фосфолипиды
9001 900
A. Гипертонический
B. Изотонический
C. Гипотонический
D. Ни один из вышеперечисленных организмов не похож на новый вид
4. 900 животных или грибов. При осмотре клетки организма обнаруживают, что она имеет клеточную стенку и хлоропласты.