Деление клетки растения. Деление клеток: описание основных процессов

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

милый модуль / деление клетки. Деление клетки растения


Деление растительной клетки

Деление - очень сложный процесс. Главную роль при этом играет ядро. Оно делится первым. перед делением в нем становятся заметными хромосомы. Каждая хромосома делится продольно, очень точно на две половинки. Эти половинки расходятся к двум противоположным концам материнской клетки, где участвуют в образовании новых, дочерних ядер. В клетке их оказывается два. Позднее каждая хромосома нового ядра достраивает недостающую половину, "ушедшую" в другое дочернее ядро. В новом ядре оказывается столько же хромосом, сколько было в материнской клетке. В цитоплазме возникает перегородка, и клетка разделяется на две. каждая со своим ядром. Перегородка состоит из двух целлюлозных оболочек и слоя межклеточного вещества между ними, склеивающего их. В перегородке остаются очень мелкие отверстия. Благодаря им сохраняется связь между цитоплазмами соседних клеток. Таким образом живое содержимое всех клеток соединено друг с другом.

Строение растительной клетки

Растительная клетка состоит из более или менее жесткой клеточной оболочки и протопласта. Клеточная оболочка - это клеточная стенка и цитоплазматическая мембрана. Термин протопласт происходит от слова протоплазма, которое долгое время использовалось для обозначения всего живого. Протопласт - это протоплазма индивидуальной клетки.

Протопласт состоит из цитоплазмы и ядра. В цитоплазме находятся органеллы (рибосомы, микротрубочки, пластиды, митохондрии) и мембранные системы (эндоплазматический ретикулум, диктиосомы). Цитоплазма включает в себя еще цитоплазматический матрикс (основное вещество) в которое погружены органеллы и мембранные системы. От клеточной стенки цитоплазма отделена плазматической мембраной, которая представляет собой элементарную мембрану. В отличие от большинства животных клеток растительные клетки содержат одну или несколько вакуолей. Это пузырьки, заполненные жидкостью и окруженные элементарной мембраной (тонопластом).

В живой растительной клетке основное вещество находится в постоянном движении. В движение, называемое током цитоплазмы или циклозом, вовлекается органеллы. Циклоз облегчает передвижение веществ в клетке и обмен ими между клеткой и окружающей средой.

Деление клеток

У многоклеточных организмов деление клеток наряду с увеличением их размеров является способом роста всего организма. Новые клетки, образовавшиеся во время деления, сходны по структуре и функциям, как с родительской клеткой, так и между собой. Процесс деления у эукариот можно подразделить на две частично перекрывающиеся стадии: митоз и цитокинез.

Митоз - это образование из одного ядра двух дочерних ядер, морфологически и генетически эквивалентных друг другу. Цитокинез - это деление цитоплазматической части клетки с образованием дочерних клеток.

заснеженное полеФото: Free Photos Art & Fun

Клеточный цикл

Живая клетка проходи ряд последовательных событий, составляющих клеточный цикл. Продолжительность самого цикла варьирует в зависимости от типа клетки и внешних факторов, например от температуры или обеспеченности питательными веществами. Обычно цикл делится на интерфазу и четыре фазы митоза.

Интерфаза

Период между последовательными митотическими делениями. Интерфазу делят на три периода, обозначаемые как G1, S, G2. В период G1, который начинается после митоза. В этот период увеличивается количество цитоплазмы, включая различные органеллы. Кроме того, согласно современной гипотезе, в период G1 синтезируются вещества, которые либо стимулируют, либо ингибируют период S и остальную часть цикла, определяя, таким образом, процесс деления. В период S следует за периодом G1, в это время происходит удвоение генетического материала (ДНК). В период G2, который следует за S, формируются структуры, непосредственно участвующие в митозе, например, компоненты веретена. Некоторые клетки проходит неограниченный ряд клеточных циклов. Это одноклеточные организмы и некоторые клетки зон активного роста (меристем). Некоторые специализированные клетки после созревания теряет способность к размножению. Третья группа клеток, например образующих раневую ткань (каллус), сохраняет способность делиться только в специальных условиях.

Митоз, или деление ядра

Это непрерывный процесс, подразделяемый на четыре фазы: профазу, метафазу, анафазу, телофазу. В результате митоза генетический материал, удвоившийся в интерфазе, делится поровну между двумя дочерними ядрами. Одним из самых ранних признаков перехода клетки к делению служит появление узкого, кольцеобразного пояска из микротрубочек непосредственно под плазматической мембраной. Это относительно плотный поясок окружает ядро в экваториальной плоскости будущего митотического веретена. Так как он проявляется перед профазой, его называют препрофазным пояском. Он исчезает после митотического веретена, задолго до появления в поздней телофазе клеточной пластинки, которая растет от центра к периферии и сливается с оболочкой материнской клетки в области, ранее занятой препрофазным пояском.

Профаза. В начале профазы хромосомы напоминают длинные нити, разбросанные внутри ядра. Затем, по мере того как нити укорачиваются и утолщаются, можно увидеть, что каждая хромосома состоит не из одной, а из двух переплетенных нитей, называемых хроматидами. В поздней профазе две укороченные спаренные хроматиды каждой хромосомы лежат рядом параллельно, соединённые узким участком, называемым центромерой. Она имеет определённое положение на каждой хромосоме и делит хромосому на два плеча различной длины. Микротрубочки располагаются параллельно поверхности ядра вдоль оси веретена. Это само раннее проявление сборки митотического веретена. К концу профазы ядрышко постепенно теряет чёткие очертания и наконец исчезает. Вскоре после этого распадается и ядерная оболочка. Метафаза. В начале метафазы веретено, которое представляет трёхмерную структуру, наиболее широкую в средине и суживающуюся к полюсам, занимает место, прежде занятое ядром. Нити веретена - это пучки микротрубочек. Во время метафазы хромосомы, состоящие из двух хроматид каждая, располагаются так, что их центромеры лежат в экваториальной плоскости веретена. Своей центромерой каждая хромосома прикрепляется к нитям веретена. Однако, некоторые нити проходят от одного полюса к другому, не прикрепляясь к хромосомам. Когда все хромосомы расположатся в экваториальной плоскости, метафаза завершится. Хромосомы готовы к делению. Анафаза. Хроматиды каждой хромосомы расходятся. Теперь это дочерние хромосомы. Прежде всего, делится центромера, и две дочерние хромосомы увлекаются к противоположным полюсам. При этом центромеры движутся впереди, а плечи хромосом тянутся сзади. Нити веретена, прикрепленные к хромосомам, укорачиваются , способствуя расхождению хроматид и движению дочерних хромосом в противоположные стороны.

Телофаза. В телофазе завершается обособление двух идентичных групп хромосом , при этом вокруг каждой из них формируется ядерная мембрана. В этом активное участие принимает шероховатый ретикулум. Аппарат веретена исчезает. В ходе телофазы хромосомы теряют чёткость очертаний, вытягиваются, превращаясь снова в тонкие нити. Ядрышки восстанавливаются. Когда хромосомы становятся невидимыми, митоз завершается. Два дочерние ядра вступают в интерфазу. Они генетически эквивалентны друг другу и материнскому ядру. Это очень важно, так как генетическая программа, а вместе с ней и все признаки должны быть переданы дочерним организмам.

Продолжительность митоза варьирует у различных организмов и она зависит от типа ткани. Однако профаза самая длинная, а анафаза самая короткая. В клетках кончика корня продолжительность профазы составляет 1 - 2 ч; метафазы - 5 - 15 мин; анафазы - 2 - 10 мин; телофазы - 10 - 30 мин. Продолжительность интерфазы составляет от 12 до 30 ч. Во многих эукариотических клетках центры организации микротрубочек, ответственные за формирование митотического веретена, связаны с центриолями.

Цитокинез

Это процесс деления цитоплазмы. У большинства организмов клетки делятся путём втягивания клеточной оболочки и образования борозды деления, которая постепенно углубляется, сжимая оставшиеся нити митотического веретена. У всех растений (мохообразных и сосудистых) и у некоторых водорослей клетки делятся благодаря образованию клеточной пластинки. В ранней телофазе между двумя дочерними ядрами формируется бочкообразная система волокон, называемая фрагмопластом. Волокна фрагмопласта, как и волокна митотического веретена, состоит из микротрубочек. В экваториальной плоскости фрагмопласта появляются мелкие капли. Они сливаются, образуя клеточную пластинку, которая растёт до тех пор, пока не достигнет оболочки делящейся клетки. На этом и завершается разделение двух дочерних клеток. Сливающиеся капельки - это пузырьки, отрывающиеся от аппарата Гольджи. В основном они содержат пектиновые вещества, из которых и формируется срединная пластинка. Мембраны пузырьков участвуют в построении плазматической мембраны по обеим сторонам пластинки. В это же время из фрагментов трубчатого эндоплазматического ретикулума образуются плазмодесмы. После образования срединной пластинки каждый протопласт откладывает на ней первичную оболочку. Кроме того, каждая дочерняя клетка откладывает новый слой оболочки вокруг всего протопласта, которая продолжает оболочку, возникшую из клеточной пластинки. Исходная оболочка родительской клетки разрушается по мере роста дочерних клеток.



biofile.ru

Деление клеток: описание основных процессов

Деление клеток — это естественный процесс, который обеспечивает нормальный рост, развитие и размножение организма. За счет этого увеличивается количество клеток, осуществляется рост тканей, половое размножение и передача наследственного материала. Основные типы деления клеток — это мейоз и митоз. Каждый из этих процессов имеет некоторые особенности.

Митоз

Митоз — это деление клеток, в конечном итоге которого из материнской клетки образуется две дочерние с идентичным количеством и порядком хромосом. Подобные процессы постоянно происходит с соматическими клетками организма, обеспечивая рост, развитие, регенерацию тканей и органов.

Жизненный цикл клетки можно разделить на интерфазу и митоз. Интерфаза — это так называемая стадия спокойствия, во время которой идет активный синтез и накопление необходимых для деления клеток веществ. Ближе к началу митоза происходит удваивание количества хромосом.

Митоз же принято разделять на четыре основных стадии.

  • Профаза. В это период можно заметить начало конденсации хромосом. Две идентичные хромосомы соединяются между собой одной центромерой. В начале профазы происходит деление центриоли. Теперь две дочерние центриоли начинают медленно расходиться к двум противоположным сторонам клетки. При этом они остаются связанными тонкими белковыми нитями — так формируется веретено деления. К концу этой стадии хромосомы сильно укорачиваются и становятся толще и двигаются к экватору клетки.
  • Метафаза — очень коротка стадия, которая начинается с выстраивания хромосом по экватору клетки. Примерно в то же время одновременно во всех хромосомах происходит деление центромеры.
  • Анафаза — нить веретена деления крепится в центромере хромосомы. В это период дочерние хромосомы медленно двигаются к противоположным полюсам. Считается, что нити веретена деления не только направляют хромосомы, но и благодаря наличию АТФ сокращаются, ускоряя их расхождение.
  • Телофаза — начинается в тот момент, когда хромосомы уже разошлись к полюсам. Они раскручиваются и становятся менее заметными — возвращаются в состояние покоя. Вокруг скопления хроматина происходит синтез новой ядерной оболочки. Параллельно с эти происходит деление клеток — цитоплазма и органеллы поровну разделяются между дочерними образованиями.

Мейоз

Мейоз — это способ деления клеток, во время которого образуется четыре гаметы с одинарным набором хромосом. Такие процессы происходят во время образования половых клеток — сперматозоидов, яйцеклеток (у растения таким образом происходит образование спор). Подобные процессы обеспечивают обмен генетическим материалом и комбинаторную изменчивость. При слиянии двух гамет, каждая из которых содержит лишь половину генетического материала, количество хромосом восстанавливается, но их последовательность изменяется.

Процесс образования гамет состоит из двух коротких мейотических делений, в каждом из которых можно выделить все вышеописанные стадии. Но между двумя делениями нет выраженной интерфазы, и синтез ДНК не происходит. Следовательно, во вторую профазу вступает две клетки с одинарным набором хромосом (у человека это 46). Результат второго деления — это 4 гаметы, которые имеют по 23 хромосомы.

Амитоз

Амитоз — это нехарактерное деление клеток, которое наблюдается довольно редко. При этом клетка сохраняет все физиологические функции. Во время этого процесса не происходит удваивание генетического материала и деления клетки. Делится только ядро, но без образования веретена деления. В результате такого процесса хромосомы расходятся в случайном порядке — образуется многоядерная клетка. Стоит отметить, что амитоз, как правило, встречается или в стареющих и умирающих клетках, или же в патологически измененных структурах (опухолевые клетки).

fb.ru

Типы и виды деления клеток.

НЕПРЯМОЕ

ПРЯМОЕ

МИТОЗ

АМИТОЗ

1.Собственно митоз

по форме

по виду

2. Эндомитоз

1.Равномерный

1.Генеративный

3. Политения

2.Неравномерный

2.Реактивный

4. Мейоз

3.Фрагментация

3.Дегенеративный

4.Без деления цитоплазмы

Митоз - наиболее распространенный способ репродукции клеток. Универсальность этого способа деления клеток связана с тем, что он обеспечивает образование генетически равноценных клеток и сохраняет преемственность хромосом в ряду клеточных поколений.

Биологическое значение митоза:

  1. Равномерное распределение генетического материала.

  2. Образование идентичных с материнской двух дочерних клеток с диплоидным набором хромосом.

  3. Обеспечивает рост и регенерацию.

  4. Обеспечивает бесполое размножение.

  5. Является способом деления соматических клеток.

В процессе митоза последовательно протекают фазы: профаза, прометафаза, метафаза, анафаза, телофаза.

Профаза - происходит спирализация, укорочение, утолщение хроматиновых нитей. Наблюдается удвоение центриолей и расхождение их к полюсам. Начало образования нитей веретена деления. В конце – наблюдается разрушение ядрышка и ядерной оболочки. Генетическая характеристика: 2n 2 хроматиды 4С.

Метафаза - хромосомы в животных клетках располагаются в упорядоченном состоянии в области экватора. Образуется метафазная пластинка. В растительных клетках хромосомы лежат неупорядоченно. Завершается образование нитей веретена деления. Хромосомы связаны центромерами с нитями веретена деления. Нити веретена, которые крепятся к хромосомам, называются хромосомными, а которые идут к полюсам - непрерывными. Генетическая характеристика: 2n 2 хроматиды 4С.

Анафаза - хромосомные нити веретена сокращаются. К противоположным полюсам расходятся хроматиды, которые принято называть дочерними хромосомами. На каждом полюсе генетическая характеристика: 2n 1хроматида 2С.

Телофаза - дочерние хромосомы, разошедшиеся к полюсам, деспирализуются, теряют ясные очертания, вокруг них формируются ядерные оболочки, восстанавливается ядрышко. Клеточный центр теряет активность. Начинается цитокинез - деление цитоплазмы. Итогом деления является образование двух диплоидных клеток.

Деление в растительной и животной клетках происходит сходно. Но в клетках высших растений отсутствует клеточный центр. Цитотомия в животных клетках происходит путем перетяжки (образование борозды), которая, углубляясь, делит клетку на две части. В клетках растений формируется в центре срединная пластинка, которая затем растет к периферии.

Митотический цикл клетки - совокупность процессов подготовки клеток к делению и само митотическое деление. Если дочерние клетки, или клетка, сразу же приступают к подготовке к следующему митозу, то их митотический цикл совпадает с жизненным циклом (ткани эмбриона). В других случаях дочерние клетки подвергаются дифференцировке и выполняют различные функции (пресинтетический период удлиняется). Их жизненный цикл заканчивается смертью клетки (у нервных клеток G1 - в течение всей жизни).

Продолжительность каждого из периодов митотического цикла и фаз митоза различна и длится от нескольких минут до нескольких часов, что зависит от ряда причин: типа тканей, физиологического состояния организма, внешних факторов (t, свет, химические вещества). Так суточный ритм митотической активности у ночных животных характеризуется max и min митозов - утром, у дневных - в вечерние часы. Оказывают влияние и факторы внутренней среды: нейрогуморальные механизмы, осуществляемые нервной системой и гормонами, а также продукты распада тканей.

Важную роль играют факторы, обеспечивающие возможность вступления клеток в деление. Четко доказано, что все синтетические процессы в клетке, готовящейся к делению, находятся под контролем ее генетического аппарата. Гены, контролирующие этот процесс, находятся в разных хромосомах. Активность генов объясняется гипотезой Жакоба и Мано (1961). Советские ученые Л. Н. Бляхер (1954), И. А. Уткин (1959) показали важную роль нейрогуморальной регуляции митотической активности. Они установили, что рефлекторный характер регуляции клеточных делений влияет опосредованно - через сдвиг гормонального равновесия. Установлено, что усиление секреции адреналином тормозит митотическую активность, тогда как гормоны щитовидной железы вызывают усиление митоза. Удаление надпочечников приводит к выключению эффекта торможения митоза. На митотический цикл также влияют: суточный ритм митотический активности, факторы внешней среды (свет, температура) нейрогуморальные механизмы, продукты распада тканей.

Эндомитоз – один из видов митоза, суть которого заключается в редупликации хромосом. Без разрушения ядерной оболочки и без деления клетки (образование полиплоидов). Вследствие этого в клетке происходит умножение числа хромосом, иногда в десятки раз по сравнению с исходным. Эндомитоз встречается в интенсивно функционирующих клетках различных тканей: клетках печени, тканях нематод, насекомых, ракообразных, в корешках некоторых растений. Допускают, что эндомитоз возникает в процессе эволюции, как один из вариантов митоза.

Политения – многократное воспроизведение в хромосомах количества хромонем без увеличения их числа в клетке. При политении выпадают все фазы митотического цикла, кроме репродукции хромонем. Политения встречается у двукрылых насекомых, инфузорий, некоторых растений. Используется для построения карт хромосом, а также обнаружения хромосомных перестроек.

Мейоз – деление, обеспечивающее образование половых клеток.

Значение мейоза

1. Обеспечивает образование половых клеток с гаплоидным набором хромосом.

2. Обеспечивает поддержание постоянства числа хромосом в кареотипе.

3. Обуславливает образование большого количества новых комбинаций генов.

4. Является источником комбинативной изменчивости.

5. Обеспечивает половое размножение.

Состоит из двух последовательных делений:

1. Мейоз 1 – редукционное;

2. Мейоз II – эквационное.

Мейоз 1.

Профаза 1 – 5 стадий: 2n 2хр 4С.

Лептотена - хромосомы формы нитей, различимых в микроскоп.

Зиготена – конъюгация (спаривание) гомологичных хромосом, образование бивалентов.

Пахитена – происходит обмен участками гомологичных хромосом - кроссинговер. И образование рекомбинантных генов.

Диплотена – отталкивание между гомологичными хромосомами в области центромер. Остаются связанными в области перекреста. Эти места называются хиазмами.

Диакенез – спирализация максимальная, биваленты располагаются по периферии ядра. Исчезает ядрышко и ядерная оболочка. Центриоли расходятся к полюсам, начало образования веретена деления.

Метафаза 1 – биваленты выстраиваются в экваториальной плоскости, центромерами прикрепляются к нитям веретена деления. Генетическая характеристика: 2n 2хр. 4С.

Анафаза 1 – расхождение гомологичных хромосом к полюсам клетки. На каждом полюсе формируется гаплоидный набор хромосом. Каждая хромосома состоит из 2 хроматид. Генетическая характеристика: n 2хр. 2С.

Телофаза 1 – характерна для клеток животных при этом образуются 2 клетки с гаплоидным набором. Клетки растений сразу переходят в мейоз II.

Между мейозом I и мейозом II наблюдается интеркинез, в котором репликация ДНК отсутствует.

Мейоз II – точная копия митоза.

Профаза 2 - непродолжительная.

Метафаза 2 - образование экваториальной пластинки.

Анафаза 2 - расхождение сестринских хроматид. n 1 хр. 1С

Телофаза 2 - формирование ядер, деление цитоплазмы и образование 4 гаплоидных клеток. n 1 хр. 1С

Амитоз, или прямое деление, представляет собой деление ядра без подготовки аппарата деления, спирализации хромосом. Хромосомы распределяются произвольно.

Прямое деление характеризуется первоначально перешнуровкой ядрышка, затем ядра и цитоплазмы. Ядро может делиться на две равномерные части - равномерный амитоз, или две неравномерные части - неравномерный амитоз, либо ядро делится на несколько частей - фрагментация, шизогония. Иногда после деления ядра цитоплазма не делится, и возникают многоядерные клетки - амитоз без цитотомии. В зависимости от факторов, обуславливающих амитоз, выделяют три его вида: генеративный, реактивный, дегенеративный.

Генеративный амитоз отмечается при делении высоко специализированных полиплоидных клеток. Наблюдается у инфузории при делении макронуклеуса, а также в некоторых клетках млекопитающих (печени, эпидермиса).

Реактивный амитоз выявляется при различных повреждающих воздействиях: ионизирующего облучения, нарушении обменных процессов, голодании, нарушении нуклеинового обмена и денервации ткани. Этот вид амитоза обычно не завершается цитотомией и приводит к образованию многоядерных клеток. Вероятно, его следует рассматривать как компенсаторную реакцию, приводящую к увеличению поверхности обмена между ядром и цитоплазмой.

Дегенеративный амитоз возникает в стареющих клетках с угасающими жизненными свойствами. Этот вид представлен фрагментацией и почкованием ядер. Он не имеет отношения к репродукции клеток. Появление дегенеративных форм амитоза служит одним из признаков некробиотических процессов.

Прямое бинарное деление – характерно для прокариот. Включает репликацию кольцевой ДНК и далее – деление цитоплазмы с образованием двух клеток.

studfiles.net

Типы деления клетки

Способность к делению - важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одно клеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма. Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.

Амитоз

Амитоз, или прямое деление, - это деление интерфазного ядра путем перетяжки без образования веретена деления (хромосомы в световом микроскопе вообще неразличимы). Такое деление встречается у одноклеточных организмов (например, амитозом делятся полиплоидные большие ядра инфузорий), а также в некоторых высокоспециализированных клетках растений и животных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель, либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п. Амитоз можно наблюдать в тканях растущего клубня картофеля, эндосперме, стенках завязи пестика и паренхиме черешков листьев. Такой тип деления характерен для клеток печени, хрящевых клеток, роговицы глаза. Очень часто при амитозе наблюдается только деление ядра, в этом случае могут возникнуть двух- и многоядерные клетки. Если же за делением ядра следует деление цитоплазмы, то распределение клеточных компонентов, как и ДНК, осуществляется произвольно. Амитоз в отличие от митоза является самым экономичным способом деления, так как энергетические затраты при этом весьма незначительны. К амитозу близко клеточное деление у прокариот. Бактериальная клетка содержит только одну, чаще всего кольцевую молекулу ДНК, прикрепленную к клеточной мембране. Перед делением клетки ДНК реплицируется, и образуются две идентичные молекулы ДНК, каждая из которых также прикреплена к клеточной мембране. При делении клетки клеточная мембрана врастает между этими двумя молекулами ДНК, так что в конечном итоге в каждой дочерней клетке, оказывается, по одной идентичной молекуле ДНК. Такой процесс лучил название прямого бинарного деления.

Подготовка к делению. Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе. Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок хроматид. Каждая из хроматид содержит одну молекулу ДНК. Интерфаза в клетках растений и животных в среднем продолжается 10-20 ч. Затем наступает процесс деления клетки - митоз.

Митоз

Митоз (от греч. Mitos- нить) непрямое деление, - основной способ деления эукариотических клеток. Митоз - это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и в родительском ядре. Вслед за делением ядра обычно следует деление самой клетки, поэтому часто термином - «митоз» обозначают деление клетки целиком. Митоз впервые наблюдали в спорах папоротников, хвощей плаунов Г. Э. Руссов, преподаватель Дерптского университета в 1872 г. и русский ученый И. Д. Чистяков в 1874 г. Детальные исследования поведения хромосом в митозе были выполнены немецким ботаником Э. Страсбургером в 1876-1879 гг. на растениях и немецким гистологом В. Флеммингом в 1882 г. на животных.

Рис. 1. Схематическое изображение митоза в животных клетках

Во время интерфазы при подготовке клетки к делению происходит репликация ДНК. Во время профазы ядерная оболочка разрушается и между двумя центриолями формируется веретено. На стадии метафазы хромосомы располагаются в экваториальной плоскости клетки. Когда наступает анафаза, удвоившиеся хромосомы (называемые хроматидами) расходятся. На стадии телофазы хромосомы достигают полюсов веретена, клетка начинает разделяться на две дочерние клетки. По числу и типу хромосом дочерние клетки идентичны материнской

Митоз представляет собой непрерывный процесс, но для удобства изучения биологи делят его на четыре стадии в зависимости оттого, как выглядят в это время хромосомы в световом микроскопе. В митозе выделяют профазу, метафазу, анафазу и телофазу. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные состоят из двух сестринских хроматид, связанных между собой. Одновременно со спирализацией хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. В профазе центриоли (в тех клетках, где они есть) расходятся к полюсам клетки. В конце профазы начинает образовываться веретено деления, которое формируется из микротрубочек путем полимеризации белковых субъединиц.

В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и центросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т. е. располагаются равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. В этот период легко подсчитывать число хромосом, изучать их морфологические особенности. В анафазе дочерние хромосомы с помощью микротрубочек веретена деления растягиваются к полюсам клетки. Во время движения дочерние хромосомы несколько изгибаются на подобие шпильки, концы которой повернуты в сторону экватора клетки. Таким образом, в анафазе хроматиды удвоенные в интерфазе хромосом расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом.

В телофазе происходят процессы, обратные тем, которые наблюдаются в профазе: начинается деспирализация (раскручивание) хромосом, они набухают и становятся плохо видимыми под микроскопом. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах возникают ядрышки. Разрушается веретено деления. На стадии телофазы происходит разделение цитоплазмы (цитотомия) с образованием двух клеток. В клетках животных плазматическая мембрана начинает впячиваться внутрь области, где располагался экватор веретена. В результате впячивания образуется непрерывная борозда, опоясывающая клетку по экватору и постепенно разделяющая одну клетку на две.

В клетках растений в области экватора из остатков нитей веретена деления возникает бочковидное образование - фрагмопласт. В эту область со стороны полюсов клетки устремляются многочисленные пузырьки комплекса Гольджи, которые сливаются друг с другом. Содержимое пузырьков образует клеточную пластинку, которая делит клетку на две дочерние, а мембрана пузырьков Гольджи образует недостающие цитоплазматические мембраны этих клеток. Впоследствии на клеточную пластинку со стороны каждой из дочерних клеток откладываются элементы клеточных оболочек. В результате митоза из одной клетки возникают две дочерние с тем же набором хромосом, что и в материнской клетке.

Биологическое значение митоза состоит, таким образом, в строго одинаковом распределении между дочерними клетками материальных носителей наследственности - молекул ДНК, входящих в состав хромосом. Благодаря равномерному распределению реплицированных хромосом происходит восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологического размножения организмов.

Мейоз или редукционное деление

Мейоз - это особый способ деления клеток, в результат которого происходит редукция (уменьшение) числа хромосом вдвое. Впервые он был описан В. Флеммингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. С помощью мейоза образуются гаметы. В результате редукции споры и половые клетки хромосомного набора в каждую гаплоидную спору и гамету по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т. е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.

Итоговая схема мейозаРис.2. Итоговая схема мейоза

ДНК и связанные с ней белки реплицируются во время интерфазы. Во время профазы ядерная оболочка разрушается и гомологичные хромосомы (каждая из которых состоит из двух хроматид, соединенных центромерой) располагаются попарно. В это время между четырьмя гомологичными хроматидами может происходить обмен участками. После метафазы I две исходно гомологичные хромосомы расходятся в разные клетки. При втором делении центромера расщепляется, и в результате в каждой новой клетке оказывается одна копия каждой хромосо мы.

Редукционное деление является, по сути, механизмом препятствующим непрерывному увеличению числа хромосом при слиянии гамет, без него при половом размножении число хромосом удваивалось бы в каждом новом поколении. Иными словами, благодаря мейозу поддерживает определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет, как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.



biofile.ru

деление клетки

Деление клетки — процесс образования из родительской клетки двух и более дочерних клеток.

Амитоз

Основная статья: Амитоз

Амитоз, или прямое деление, - это деление интерфазного ядра путем перетяжки без образования веретена деления (хромосомы в световом микроскопе вообще неразличимы). Такое деление встречается у одноклеточных организмов (например, амитозом делятся полиплоидные большие ядра инфузорий), а также в некоторых высокоспециализированных клетках растений и животных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель, либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п. Амитоз можно наблюдать в тканях растущего клубня картофеля, эндосперме, стенках завязи пестика и паренхиме черешков листьев. Такой тип деления характерен для клеток печени, хрящевых клеток, роговицы глаза. Очень часто при амитозе наблюдается только деление ядра, в этом случае могут возникнуть двух- и многоядерные клетки. Если же за делением ядра следует деление цитоплазмы, то распределение клеточных компонентов, как и ДНК, осуще­ствляется произвольно. Амитоз в отличие от митоза является самым экономичным способом деления, так как энергетические затраты при этом весьма незначительны. К амитозу близко клеточное деление у прокариот. Бактериальная клетка содержит только одну, чаще всего кольцевую молекулу ДНК, прикрепленную к клеточной мембране. Перед делением клетки ДНК реплицируется, и образуются две идентичные молекулы ДНК, каждая из которых также прикреплена к клеточной мембране. При делении клетки клеточная мембрана врастает между этими двумя молекулами ДНК, так что в конечном итоге в каждой дочерней клетке, оказывается, по одной идентичной молекуле ДНК. Такой процесс получил название прямого бинарного деления.

[править]Подготовка к делению

Эукариотические организмы, состоя­щие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе. Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химиче­ских соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух полови­нок- хроматид. Каждая из хроматид содержит одну молеку­лу ДНК. Интерфаза в клетках растений и животных в среднем про­должается 10-20 ч. Затем наступает процесс деления клетки - митоз.

[править]Митоз

Основная статья: Митоз

Митоз — (реже: кариокинез или непрямое деление) — деление ядра эукариотической клетки с сохранением числа хромосом. В отличие от мейоза, митотическое деление протекает без осложнений в клетках любой плоидности, поскольку не включает как необходимый этап, конъюгацию, гомологичных хромосом в профазе. Митоз (от греч. Mitos- нить) непрямое деление, - основной способ деления эукариотических клеток. Митоз - это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и в родительском ядре. Вслед за делением ядра обычно следует деление самой клетки, поэтому часто термином - «митоз» обозначают деление клетки целиком. Митоз впервые наблюдали в спорах папоротников, хвощей плаунов Г. Э. Руссов, преподаватель Дерптского универси­тета в 1872 г. и русский ученый И. Д. Чистяков в 1874 г. Де­тальные исследования поведения хромосом в митозе были выполнены немецким ботаником Э. Страсбургером в 1876- 1879 гг. на растениях и немецким гистологом В. Флеммингом в 1882 г. на животных. Митоз представляет собой непрерывный процесс, но для удобства изучения биологи делят его на четыре стадии в за­висимости от того, как выглядят в это время хромосомы в све­товом микроскопе. В митозе выделяют профазу, метафазу, ана­фазу и телофазу. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двой­ные состоят из двух сестринских хроматид, связанных между собой. Одновременно со спирализацией хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. В профазе центриоли (в тех клетках, где они есть) расходятся к полюсам клетки. В конце профазы начинает образовываться веретено деления, которое формируется из микротрубочек путем полимеризации белковых субъединиц. В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и центросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т. е. располагаются равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. В этот период легко подсчитывать число хромосом, изучать их морфологические особенности. В анафазе дочерние хромосомы с помощью микротрубочек веретена деления растягиваются к полюсам клетки. Во время движения дочерние хромосомы несколько изгибаются на подобие шпильки, концы которой повернуты в сторону экватора клетки. Таким образом, в анафазе хроматиды удвоенные в интерфазе хромосом расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом. В телофазе происходят процессы, обратные тем, которые наблюдаются в профазе: начинается деспирализация (раскручивание) хромосом, они набухают и становятся плохо видимыми под микроскопом. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах возникают ядрышки. Разрушается верете­но деления. На стадии телофазы происходит разделение цитоплазмы (цитотомия) с образованием двух клеток. В клетках живот­ных плазматическая мембрана начинает впячиваться внутрь области, где располагался экватор веретена. В результате впячивания образуется непрерывная борозда, опоясывающая клетку по экватору и постепенно разделяющая одну клетку на две. В клетках растений в области экватора из остатков нитей веретена деления возникает бочковидное образование - фрагмопласт. В эту область со стороны полюсов клетки устремля­ются многочисленные пузырьки комплекса Гольджи, которые сливаются друг с другом. Содержимое пузырьков образует клеточную пластинку, которая делит клетку на две дочерние, а мембрана пузырьков Гольджи образует недостающие цитоплазматические мембраны этих клеток. Впоследствии на клеточную пластинку со стороны каждой из дочерних клеток откладываются элементы клеточных оболочек. В результате митоза из одной клетки возникают две дочерние с тем же набором хромосом, что и в материнской клетке. Биологическое значение митоза состоит, таким образом, в строго одинаковом распределении между дочерними клетками материальных носителей наследственности - молекул ДНК, входящих в состав хромосом. Благодаря равномерному распределению реплицированных хромосом происходит восстановление органов и тканей после повреждения. Митотическое деление клеток является также частью цитологического размножения организмов.

[править]Мейоз

Основная статья: Мейоз

Мейоз - это особый способ деления клеток, в результат которого происходит редукция (уменьшение) числа хромосом вдвое. Впервые он был описан В. Флеммингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. С помощью мейоза образуются гаметы. В результате редукции споры и половые клетки хромосомного набора получают в каждую гаплоидную спору и гамету по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т. е. кариотип организмов данного вида в ряду поколений остается постоянным.

Нарушение митоза

Правильное течение митоза может быть нарушено различными внешними воздействиями: высокими дозами радиации, некоторыми химическими веществами. Например, под действием рентгеновых лучей ДНК хромосом может разорваться. Хромосомы в таком случае тоже разрываются. При этом могут возникнуть хромосомы без центромерного района. Такие хромосомы лишены способности двигаться в прометафазе и анафазе. В зависимости от того, в каком месте ядра бесцентромерная хромосома находилась накануне деления,будет складываться ее дальнейшая судьба. Если хромосома была смещена к одному из полюсов клетки, то при формировании дочерних клеток она может целиком включиться в одну из них, т. е. обе сестринские хроматиды окажутся в одном ядре. Если хромосома, лишенная центромерного района, окажется вблизи центральной части клетки, то велика вероятность того, что она не попадет ни в одно из формирующихся ядер, так как в анафазе не сможет последовать к полюсу. В обоих случаях вновь возникшие клетки будут иметь хромосомный набор, отличающийся от набора хромосом в исходной клетке. Некоторые химические соединения, не свойственные живым организмам (спирты, эфиры), нарушают согласованность митотических процессов. Одни хромосомы начинают двигаться быстрее, другие отстают. Отставшие хромосомы могут не включиться в формирующиеся дочерние ядра. Иногда в делящейся клетке образуется не два, а три или четыре полюса, что ведет к возникновению соответственно трех или четырех дочерних клеток. При таком делении нарушается весь слаженный механизм распределения хромосом. Метафазная хромосома, состоящая из двух сестринских хроматид, может взаимодействовать одновременно только с двумя полюсами. Если полюсов больше, то каждая хромосома вынуждена "выбирать", с какими двумя полюсами из трех или четырех ей взаимодействовать. Этот выбор совершается случайно. В результате каждая дочерняя клетка получает не весь набор хромосом, а только его часть. Клетки, получившие неполный набор хромосом, как правило, оказываются нежизнеспособными и погибают. Изучение нарушений митоза, вызванных различными факторами, с одной стороны, помогает лучше понять митотические процессы, с другой - позволяет устанавливать механизмы повреждающего действия этих факторов и, следовательно, создает условия для целенаправленного поиска методов устранения таких нарушений.

Некоторые нарушения митоза ученые научились использовать в практических целях. Есть такие химические вещества, которые препятствуют образованию нитей веретена, но не влияют на способность хромосом к разделению центромерных районов и не мешают их переходу в интерфазное состояние. Их называют цитостатиками - останавливающими клеточное деление. К их числу относятся такие вещества, как колхицин и колцемид . Воздействуя ими на делящиеся клетки, можно остановить митоз на стадии прометафазы. Через некоторое время в конденсированных хромосомах произойдет разделение центромерных районов и сестринские хроматиды станут самостоятельными. Однако без веретена деления они не смогут разойтись к полюсам клетки и останутся лежать рядом. Образовавшаяся ядерная оболочка объединит все хромосомы в одно ядро. Таким образом возникнет клетка, которая будет содержать удвоенный по сравнению с исходным набор хромосом. Клетки, у которых количество хромосом увеличено в два и более раз по сравнению с исходным набором хромосом, называются полиплоидными (о полиплоидии еще пойдет речь в разделах генетики и эволюции ). Растения, выращенные из полиплоидных клеток, обладают более крупными размерами. Такие полиплоиды могут быть использованы для получения сортов сельскохозяйственных растений, обладающих высокой продуктивностью.

studfiles.net

Деление клеток

 

Деление клеток

Семена всех сельскохозяйственных культур состоят ив клеток, имеющих некоторую автономию в проявлении жизненных процессов, но в то же время функционально подчиненных всему организму в целом.

Семеноведу приходится иметь дело не только с целыми семенами, но и с отдельными их частями (зародышем, эндоспермом), с его тканями, и знание строения клеток может помочь в решении ряда специальных вопросов. Нельзя понять воздействие стимуляторов на семена без знания строения и жизнедеятельности клеток. Многие вопросы диагностики жизненности семян, эмбриологии, изолированной культуры зародышей, старения семян при хранении и ряд других требуют глубокого понимания жизни клеток семян.

В настоящее время отдельным вопросам строения и химизма клетки посвящены большие монографии, здесь же мы подробно рассмотрим деление клетки, как основы всякого размножения. Деление клетки лежит в основе образования зародыша и эндосперма, процесса прорастания и других важнейших этапов в формировании жизни семян, и поэтому семеноведу очень важны четкие представления в этой области.

При делении клетки наблюдается два важных этапа, которые тесно связаны между собой: деление ядра – кариокинез и деление цитоплазмы – цитокинез.

Значение отдельных элементов клетки в процессе деления различно. При делении ядра основную роль играют хромосомы, претерпевающие ряд сложных преобразований и перестроек, которые и обусловливают проявление наследственности. Поэтому, говоря о делении клетки, прежде всего имеют в виду ядра и превращения хромосом.

Ядро размножается делением, которое бывает двух типов: прямое деление, или амитоз, и непрямое – митоз.

При амитозе на материнском ядре образуется толстая перетяжка, разделяющая ядро на две самостоятельные части. Амитоз встречается довольно часто при начальных этапах формирования эмбриональных тканей, он сменяется затем митозом. Амитоз наблюдается также при обработке семян сильно действующими факторами (радиоактивное облучение, температура и т.п.). Иногда из одного ядра может возникнуть несколько ядер.

Наиболее характерным типом деления ядра для высших растений является митоз, который присущ в основном недифференцированным тканям (эмбриональным и меристемным клеткам) и характерен для вегетативных органов растений. При митозе ядро клетки проходит пять последовательных фаз: интерфазу, профазу, метафазу, анафазу и телефазу (рис. 1).

В интерфазе (или стадия покой) ядро имеет сетчатую структуру, состоящую из тонких нитей, которые позже формируются в типичные хромосомы. Эта фаза наступает после окончания деления клетки и продолжается до начала нового деления и связана со сложными внутренними преобразованиями. В последнее время установлено, что сложнейший процесс самовоспроизведения хромосом происходит именно в этой фазе.

Профаза – первая фаза подготовки ядра к делению. Хроматиновая сеть образует более толстые, узловатые нити – хромосомы. Хромосомы претерпевают процесс скручивания – спирализации, что приводит их к укорачиванию и утолщению. Каждая из хромосом состоит из двух продольных половинок, соединенных на каком-то участке (так называемые центромерные участки), эти половинки называются хроматидами. Располагаются хромосомы в ядре без определенной закономерности. В конце фазы исчезают ядерная оболочка и ядрышко, нуклеоплазма ядра смешивается с цитоплазмой клетки.

При метафазе хроматиды укорачиваются и утолщаются, сосредоточиваясь в экваториальной части клетки. Между полюсами образуется ахроматиновое веретено, в середине которого расположены хромосомы, центромеры каждой из них находятся точно в экваториальной плоскости. Нити веретена идут от полюса к полюсу, некоторые из них прикреплены к центромерам хромосом. Характерным для этой фазы является расположение хромосом на экваторе веретена.

Митотическое деление ядра клетки (схема): 1 – интерфаза; 2, 3, 4 – профаза; 5 – метафаза; 6, 7 – анафаза; 8, 9, 10 – телофаза

Рис. 1. Митотическое деление ядра клетки (схема): 1 – интерфаза; 2, 3, 4 – профаза; 5 – метафаза; 6, 7 – анафаза; 8, 9, 10 – телофаза

При анафазе на центральных участках хромосомы разделяются на две обособленные хроматиды, каждая из которых становится дочерней (или сестринской) хромосомой. Вследствие сокращения нитей веретена, прикрепленных к хромосомам, а также благодаря взаимному отталкиванию дочерние хромосомы подтягиваются к полюсам. Хромосомы приобретают часто V-образную форму и при расхождении всегда ориентируются центромерами к полюсам.

При телефазе хромосомы у полюсов тесно сближаются, утончаются, утрачивают свою видимую индивидуальность и превращаются в дочерние ядра. Появляется ядерная оболочка, возникает ядрышко. Ядра постепенно переходят в интерфазу.

До полного завершения телефазы посредине клетки закладывается клеточная пластинка, которая делит клетку на две совершенно тождественные дочерние клетки.

На этом и заканчивается полный цикл митоза, присущий соматическим клеткам, когда образуются точно такие же клетки, как и материнские, имеющие двойной (диплоидный) набор хромосом.

В клетках, связанных с половым процессом, деление протекает несколько иначе и носит название редукционного деления (мейоз, мейозис). Мейоз, как правило, предшествует образованию спор и происходит он в клетках специальной спорогенной ткани (археспорий), составляющей основное содержимое спорангия. Важнейшая особенность этого деления в том, что получаются клетки, имеющие только половинный набор хромосом (гаплоидные). Кроме того, это деление имеет особое значение в формировании наследственности дочерних ядер и бывает только один раз в жизни растения (однолетних) в период плодоношения: в пыльниках – при образовании пыльцевых зерен и в семяпочках – при формировании зародышевых мешков. Мейоз происходит задолго до развития половых клеток, так как молодое одноядерное пыльцевое зерно должно пройти еще путь сложных превращений, пока образуется зрелое пыльцевое зерно со спермием. Точно также одноядерный зародышевый мешок претерпевает еще ряд преобразований, пока станет зрелым, содержащим половую клетку (яйцеклетку).

Процесс мейоза слагается из двух последовательных делений ядра, быстро следующих одно за другим: редукционного, уменьшающего число хромосом вдвое, и эквацаонного, сходного с митозом (рис. 2). Фазы, относящиеся к редукционному делению, принято обозначать римской цифрой I, а к эквациоиному — цифрой II.

Редукционное деление проходит те же фазы, что и при митозе, но с некоторыми существенными различиями, о которых будет сказано при описании этого деления.

В профазе I хромосомы проходят ряд последовательных стадий подготовки к делению.

На стадии пролептотена вырисовывается сеть, состоящая из хромосомных нитей, а иногда просматриваются отдельные хромосомы.

При лептотене сетчатая структура ядра переходит в состояние отдельных тонких нитей, так называемых моновалент. Число нитей соответствует диплоидному числу хромосом. Моноваленты состоят из тесно сближенных узелков, называемых хромомерами.

Стадия зиготены характерна тем, что сходные (гомологические) моноваленты, привнесенные яйцеклеткой и спермием, попарно сближаются. Каждая из моновалент имеет одно и то же число одинаково расположенных хромомер, которые сближаются таким образом, что каждая из них примыкает к соответствующей хромомере второй моноваленты. Этот процесс называется конъюгацией, или спариванием, хромосом, и сопровождается он обменом генов. Важно отметить, что процесса конъюгации в митозе не бывает, и он присущ только редукционному делению.

В стадии пахитена хромосомные нити вследствие спирализации еще больше утолщаются. Отчетливо просматривается, что каждая нить состоит из двух сестринских хроматид, которые соединены между собой центромерами. Таким образом, видно всего четыре хроматиды, принадлежащие биваленте (двум хромосомам). На этой стадии происходит перекручивание гомологических хромосом.

При диплотене хромосомы, прежде соединенные по всей длине, начинают разъединяться, оставляя в отдельных местах спайки, что ведет к образованию x-образных фигур (хиазмы).

В стадию диакинеза хромосомы резко утолщаются, укорачиваются. В диакинезе легко сосчитать биваленты, число которых постоянно для каждой культуры. На этом заканчивается профаза первого мейотического деления.

Процесс деления ядра в половых клетках (мейоз)

Рис.2. Процесс деления ядра в половых клетках (мейоз)

При метафазе I оболочки ядра и ядрышка исчезают, а биваленты собираются в центре, ориентируясь центромерами в плоскости экватора веретена.

В стадию анафазы I каждая пара сестринских хроматид (гомологичные хромосомы) отталкивается своими центромерами одна от другой и расходится к противоположным полюсам, хиазмы исчезают. Таким образом, вследствие расхождения гомологических хромосом число их в дочерних клетках стало ровно в два раза меньше.

Телофаза продолжается недолго и протекает примерно так же, как и митоз, но эта фаза не всегда оканчивается цитокинезом и образованием двух клеток – чаще появляются два гаплоидных ядра в одной клетке, каждое из которых содержит набор гомологических хромосом. В последнем случае образуются оболочки ядра, но хромосомы сохраняют состояние телофазы (они остаются спирализованными). Это состояние, при котором прошло первое деление, но еще не наступило второе, называют интеркинезом.

Затем наступает второе деление, так называемое эквационное. Профаза II отличается от профазы I тем, что ядро не переходит в интерфазное состояние и хроматиды остаются соединенными в центральном участке.

При метафазе II снова формируется ахроматиновый аппарат, а хромосомы в половинном числе располагаются в экваториальной плоскости. Хромосомы здесь унивалентны в отличие от метафазы I, где они были бивалентными.

В анафазу II половинки хромосом, так называемые монады, расходятся к полюсам. Это становится возможным благодаря разделению центромер, вследствие чего каждая хроматида унивалента становится отдельной хромосомой.

При телефазе II хромосомы расходятся к полюсам и происходит цитокинез.

Таким образом, при первом редукционном делении образуется два ядра с половинным числом хромосом, при втором делении, эквационном, каждое из дочерних ядер вновь разделяется на две части путем расхождения сестринских хромосом. В результате полного мейотического деления из одной клетки образуется четыре клетки (тетрады спор) с гаплоидным числом хромосом. Важно подчеркнуть, что при этом дочерние ядра становятся качественно различными, а, кроме того, каждая из них может быть перестроена включением различных частиц хромосом одного из родителей. Так возникает гибридность организма.

В приведенной выше схеме мейозиса (рис. 2) рассмотрен случай только с двумя парами хромосом (2n=4), но даже при таком ограниченном содержании хромосом при их расхождении к полюсам в анафазе I возможны две комбинации, что ведет к образованию в телефазе I четырех типов ядер по сочетанию хромосом. Полевые культуры имеют значительно большее число хромосом (например, 2n для некоторых культур следующее: у кукурузы – 20, у ржи – 14, у пшеницы мягкой – 42, у пшеницы твердой – 28, у подсолнечника – 34, у свеклы – 18, у льна – 30, гороха – 14 и т.д., что ведет к очень большому числу их различных комбинаций: у льна 215, у кукурузы 210.

Здесь рассмотрена только морфологическая картина деления ядра, но этот процесс связан со сложнейшими биохимическими процессами, в результате которых осуществляется передача наследственных признаков.

В основе химической природы хромосом лежат дезоксирибонуклеиновая (сокращенно ДНК), рибонуклеиновая (РНК) кислоты и белки. В настоящее время установлено, что решающее значение в передаче наследственных свойств имеет ДНК, которая является материальной основой наследственности. Не касаясь подробностей строения ДНК и РНК и механизма их синтеза в клетке, отметим только, что по современным представлениям молекулы ДНК состоят из двух полинуклеотидных цепочек, которые объединяются в виде двойной спирали. Эти нити ДНК дополняют друг друга и не могут существовать одна без другой. В процессе деления хромосом молекулы ДНК распадаются на две самостоятельные цепочки, но тотчас же в каждой из них начинается синтез недостающей цепочки и вновь образуется молекула ДНК совершенно идентичного строения. Каждая молекула ДНК имеет сложную линейную структуру и состоит из большого числа составных единиц, разное сочетание которых и объясняет разнообразие живых индивидуумов.

 

www.agrodialog.com.ua

Деление клетки

Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления. Клеточный цикл – переход от деления к синтезу веществ, составляющих клетку, а затем опять к делению – можно представить на схеме в виде цикла, в котором выделяют несколько фаз.

Описано три способа деления эукариотических клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз (редукционное деление).

Амитоз – относительно редкий способ деления клетки. При амитозе интерфазное ядро делится путем перетяжки, равномерное распределение наследственного материала не обеспечивается. Нередко ядро делится без последующего разделения цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в дальнейшем не способна вступать в нормальный митотический цикл. Поэтому амитоз встречается, как правило, в клетках и тканях, обреченных на гибель.

Митоз. Митоз, или непрямое деление, - основной способ деления эукариотических клеток. Митоз – это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и был в родительском ядре. Имеющиеся в клетке хромосомы удваиваются, выстраиваются в клетке, образуя митотическую пластинку, к ним прикреплены нити веретена деления, которые растягиваются к полюсам клетки и клетка делится, образуя две копии исходного набора.

Митоз и мейозРис.1. Митоз и мейоз

При образовании гамет, т.е. половых клеток – сперматозоидов и яйцеклеток – происходит деление клетки, называемое мейозом. Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются. Но, если при митозе в каждой хромосоме хроматиды просто расходятся, то при мейозе хромосома (состоящая из двух хроматид) тесно переплетается своими частями с другой, гомологичной ей хромосомой (также состоящей из двух хроматид), и происходит кроссинговер - обмен гомологичными участками хромосом. Затем уже новые хромосомы с перемешанными «мамиными» и «папиными» генами расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом уже отличается от исходного, в них произошла рекомбинация. Завершается первое деление мейоза, и второе деление мейоза происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором. Из одной диплоидной клетки образуются четыре гаплоидных клетки. Фазы деления клетки, которые следуют за интерфазой, называются профаза, метафаза, анафаза, телофаза и после деления опять интерфаза.

Фазы деления клеткиРис.2. Фазы деления клетки

Профаза – самая длительная фаза митоза, когда происходит перестройка всей структуры ядра для деления. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные (удвоение происходит в S-периоде интерфазы), состоят из двух хроматид, связанных между собой в области первичной перетяжки осбой структурой – цетромерой. Одновременно с утолщением хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. Начинается формирование ахромативного веретена – веретена деления, которое представляет систему нитей, идущих от полюсов клетки. Нити веретена имеют диаметр около 25нм. Это пучки микротрубочек, состоящих из субъедениц белка тубулина. Микротрубочки начинают формироваться со стороны центриолей либо со стороны хромосом (в клетках растений).

Метафаза. В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и ценросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т.е. располагаются на равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. Именно в этот период легко подсчитать число хромосом, изучать их морфологические особенности.

Анафаза начинается делением центромеры. Каждая из хроматид одной хромосомы становится самостоятельной хромосомой. Сокращение тянущих нитей ахроматинового веретена увлекает их к противоположным полюсам клетки. В результате у каждого из полюсов клетки оказывается столько же хромосом, сколько было их в материнской клетке, причем набор их одинаков.

Телофаза – последняя фаза митоза. Хромосомы деспирализуются, становятся плохо заметными. На каждом из полюсов вокруг хромосом воссоздается ядерная оболочка. Формируются ядрышки, веретено деления исчезает. В образовавшихся ядрах каждая хромосома состоит теперь всего из одной хроматиды, а не из двух.

Каждое из вновь образовавшихся ядер получило весь объем генетической информации, которым обладала ядерная ДНК материнской клетки. В результате митоза оба дочерних ядра имеют одинаковое количество ДНК и одинаковое число хромосом, такое же, как в материнском.

Цитокинез – после образования в телофазе двух новых ядер происходит деление клетки и формирование в экваториальной плоскости перегородки – клеточной пластинки.

В ранней телофазе между двумя дочерними ядрами, не достигая их, формируется цилиндрическая система волокон, называемая фрагмопластом, которая также как и волокна ахроматинового веретена, состоит из микротрубочек и связаны с ним. В центре фрагмопласта на экваторе между дочерними ядрами скапливаются пузырьки Гольджи, содержащие пектиновые вещества. Они сливаются друг с другом и дают начало клеточной пластинке, а их мембраны участвуют в построении плазмолемм по обеим сторонам пластинки. Клеточная пластинка закладывается в виде диска, взвешенного в фрагмопласте. Волокна фрагмопласта, видимо, контролируют направление движения пузырьков Гольджи. Клеточная пластинка растет центробежно по направлению к стенкам материнской клетки за счет включения в нее полисахаридов все новых и новых пузырьков Гольджи. Клеточная пластинка имеет полужидкую консистенцию, состоит из аморфного протопектина и пектатов магния и кальция. В это время из трубчатого ЭР образуются плазмодесмы. Расширяющийся фрагмопласт постепенно приобретает форму бочонка, позволяя клеточной пластинке расти латерально, пока она не соединится со стенками материнской клетки. Фрагмопласт исчезает, обособление двух дочерних клеток заканчивается. Каждый протопласт откладывает на клеточную пластинку свою первичную клеточную стенку.

Цитокинез с помощью клеточной пластинки происходит у всех высших растений и некоторых водорослей. У остальных организмов клетки делятся внедрением клеточной оболочки, которая постепенно углубляется и разделяет клетки.

Биологическое значение митоза состоит в строго одинаковом распределении между дочерними клетками материальных носителей наследственности – молекул ДНК, входящих в состав хромосом. Благодаря равномерному разделению реплицированных хромосом между дочерними клетками обеспечивается образование генетически равноценных клеток и сохраняется преемственность в ряду клеточных поколений. Это обеспечивает таки важные моменты жизнедеятельности, как эмбриональное развитие и рост организмов, восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологической основой бесполого размножения организмов.

Мейоз. Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое и переход клеток из диплоидного состояния (2n) в гаплоидное (n). Мейоз – единый, непрерывный процесс состоящий из двух последовательных делений, каждое из которых можно разделть на те же, что и в митозе, четыре фазы: профазу, метафазу, анафазу и телофазу. Обоим делениям предшествует одна интерфаза. В синтетическом периоде интерфазы до начала мейоза удваивается количество ДНК и каждая хромосома становится двухроматидной.

Первое мейотическое, или редукционное, деление.

Профаза I продолжается от нескольких часов до нескольких недель. Хромосомы спирализуются. Гомологичные хромосомы коньюгируют, образуя пары – биваленты. Бивалент состоит из четырех хроматид двух гомологичных хромосом. В бивалентах осуществляется кроссинговер – обмен гомологичными участками гомологичных хромосом, что приводит к их глубокому преобразованию. Во время коссинговера происходит обмен блоками генов, что объясняет генетическое разнообразие потомства. К концу профазы исчезает ядерная оболочка и ядрышко, формируется ахроматиновое веретено.

Метафаза I – биваленты собираются в экваториальной плоскости клетки. Ориентирование материнской и отцовской хромосомы из каждой гомологичной пары к одному или другому полюсу веретена деления является случайным. К центромере каждой из хромосом присоединяется тянущая нить ахроматинового веретена. Две сетринские хроматиды не разделяются.

Анафаза I – происходит сокращение тянущих нитей, и к полюсам расходятся двухроматидные хромосомы. Гомологичные хромосмы каждого из бивалентов уходят к противоположным полюсам. Расходятся случайно перераспределенные гомологичные хромосомы каждой пары (независимое распределение), и на каждом из полюсов собирается половинное число (гаплоидный набор) хромосом, образуется два гаплоидных набора хромосом.

Телофаза I – у полюсов веретена собирается одиночный, гаплоидный, набор хромосом, в котором каждый вид хромосом представлен уже не парой, а одной хромосомой, состоящей из двух хроматид. В короткой по продолжительности телофазе I восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочернии.

Второе мейотическое деление следует сразу же после первого и сходно с обычным митозом (поэтому его часто называют митозом мейоза), только клетки, вступающие в него, несут гаплоидный набор хромосом.

Профаза II – непродолжительная.

Метафаза II – снова образуется веретено деления, хромосомы выстраиваются в экваториальной плоскости и центормерами прикрепляются к микротрубочкам веретена деления.

Анафаза II – осуществляется разделение их ценромер и каждая хроматида становится самостоятельной хромосомой. Отделившиеся друг от друга дочерние хромосомы направляются к полюсам веретена.

Телофаза II – завершается расхождение сестринских хромосом к полюсам и наступает деление клеток: из двух гаплоидных клеток образуются 4 клетки с гаплоидным набором хромосом.

Редукционное деление является как бы регулятором, препятствующим непрерывному увеличению числа хромосом при слиянии гамет. Не будь такого механизма, при половом размножении число хромосом удваивалось бы в каждом новом поколении. Т.е. благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях каждого вида растений, животных, протист и грибов. Другое значение заключается в обеспечении разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их расхождении в анафазе I мейоза. Это обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.



biofile.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта