Ткани животных и растений биология: Назовите типы тканей : животных,растений

Содержание

Биология Строение клетки. Ткани

Материалы к уроку

Конспект урока

Строение клетки. Ткани

Клеточное строение – это особенность всех живых организмов. Поскольку все живые организмы очень разнообразны – это и грибы, и растения, и животные – то и клетки у всех их различны. В то же время, все клетки живых организмов имеют общие черты строения, которые мы и рассмотрим на сегодняшнем уроке.

Все клетки живых организмов имеют три основных части:

  1. Ядро.
  2. Цитоплазма.
  3. Клеточная мембрана.

Рассмотрим каждое образование более подробно.

Ядро – чаще всего круглое образование. В нем заключена вся наследственная информация клетки, необходимая для ее жизнедеятельности и функционирования.

Цитоплазма – образование, располагающееся между ядром и клеточной мембраной. Она содержит множество образований, выполняющих в клетке различные функции. Например:

  1. Рибосомы – участвуют в образовании белка.
  2. Хлоропласты – содержат хлорофилл, участвующий в преобразовании неорганических веществ в органические.
  3. Вакуоль – содержит запас питательных веществ для клетки, или накапливает ненужные клетке вещества.

Клеточная мембрана покрывает клетку снаружи и защищает ее содержимое от воздействия окружающей среды. Все клетки организма связаны между собой благодаря порам, располагающимся в клеточной мембране.

Клетки растений имеют снаружи клеточной мембраны твердую клеточную стенку, придающую клеткам форму.

Все живые организмы делятся на одноклеточные и многоклеточные.

Одноклеточные – их организм представляет собой одну клетку.

Многоклеточные состоят из множества клеток.

Клетки многоклеточных организмов очень разнообразны и выполняют различные специализированные функции. В зависимости от похожести они образуют ткани.

Ткань — это группы клеток, сходных по строению, функциям и обычно имеющих общее происхождение.

Ткани животных и растений сильно отличаются, поэтому каждый тип организмов имеет свои виды тканей.

К тканям животных относятся:

  1. Эпителиальная ткань – образует покровы тела и внутренних органов.
  2. Соединительная ткань составляет хрящи, кости и кровь.
  3. Мышечная ткань образует все внешние и внутренние мышцы тела.
  4. Нервная ткань входит в состав головного мозга, спинного мозга и нервов.

Ткани растений это:

  1. Образовательная ткань.
  2. Основная ткань.
  3. Покровная ткань.
  4. Проводящая ткань.
  5. Механическая ткань.

Образовательная ткань – располагается на растении в местах активного роста: в конусе нарастания стебля, и зоне роста корня, и состоит из клеток, способных делиться на протяжении всей жизни.

Основная ткань – бывает следующих типов: 1) содержащая хлорофилл, преобразующий неорганические вещества в органические; 2) находящаяся в семенах и клубнях и выполняющая запасающую функцию.

Покровная ткань – покрывает все органы растения, и бывает двух типов —  кожица и пробка.

Проводящая ткань – осуществляет продвижение веществ по организму растения. К этому типу ткани относятся ситовидные трубки и сосуды.

Механическая ткань – образована клетками, имеющими очень прочную клеточную стенку и защищающими растения от больших механических нагрузок (порыв ветра, сгибание). Это древесинные волокна и лубяные волокна.

Остались вопросы по теме? Наши репетиторы готовы помочь!

  • Подготовим к ЕГЭ, ОГЭ и другим экзаменам

  • Найдём слабые места по предмету и разберём ошибки

  • Повысим успеваемость по школьным предметам

  • Поможем подготовиться к поступлению в любой ВУЗ

Выбрать репетитора

Виды тканей растений и животных

Похожие презентации:

Методы биологических исследований. Приготовление микропрепарата и работа с ним

Ткани животных

Гистология. Виды тканей

Ткани растений и животных

Ткани растений и животных

Ткани животных и растений

Ткани животных и человека

Гистология. Понятие о тканях. Виды тканей. Строение и функции эпителиальной ткани

Ткани в организме животных и человека

Ткани человека. Виды и строение

1. Практическая работа 6

Использование различных методов
при изучении биологических
объектов

2.

Цель работы: закрепить знания по теме урока, умения по приготовлению микропрепаратов, повторить виды тканей.

3. Вопросы

• Какие методы используются при изучении
природы?
• В чем особенность каждого метода?
• Вспомните виды тканей растений и животных.
Дайте краткую характеристику тканям растений.

4. Методы биологических исследований:

Наблюдение
Сравнение
Эксперимент
Описание
Мониторинг
Моделирование

8. Виды тканей

Растения
Животные
Образовательные;
Покровные;
Проводящие;
Механические;
Основные.
Мышечные;
Нервная;
Соединительные;
Эпителиальные

10. Ткани растений

11. Покровная ткань

Строение:
Живые и мертвые клетки.
Имеют толстые и прочные оболочки
Прочно соединены друг с другом
Функции:
Защита от неблагоприятных воздействий, повреждений.

12. Основная ткань

Строение:
Живые клетки, в которых
содержатся хлоропласты
и питательные вещества
Функция:
Образование и накопление
питательных веществ

13.

Образовательная ткань

Строение:
Мелкие постоянно делящиеся
клетки с крупными ядрами,
вакуолей нет.
Функции:
Образование клеток
Рост растения

14. Проводящая ткань

Ситовидные
трубки
Строение:
Клетки живые и мертвые,
напоминают сосуды и
трубочки.
Функции:
Передвижение веществ по
растению
Сосуды

15. Механическая ткань

Строение:
Мертвые клетки с
утолщенными и
одревесневшими
оболочками.
Функция:
Опора растения

17. Дополнительная информация.

• Вы можете также повторить ткани животных и
вспомнить их особенности.

18. Характеристика ткани:

Эпителиальная
ткань
(эпителий)
покрывает
поверхность тела, выстилает слизистые оболочки полых
органов пищеварительной и дыхательной систем,
мочеполового аппарата и образует железистую
паренхиму желез внешней и внутренней секреции.
Эпителий выполняет покровную и защитную функции,
поэтому в эпителиальной ткани мало межклеточного
вещес тва и клетки плотно прилегают друг к другу.

19. Эпителиальные ткани:

А — однослойный плоский
эпителий
Б — однослойный кубический
эпителий
В — однослойный
цилиндрический эпителий
Г — псевдомногослойный
эпителий (однослойный
многорядняй реснитчатый)
Д — многослойный переходный
эпителий
Е — многослойный плоский
неороговевающий эпителий

20. Соединительные ткани:

очень разнообразны по строению и содержат
много межклеточного вещества. Основными
функциями соединительной ткани являются
трофическая (питательная), опорная, защитная и
запасающая. Выделяют такие виды
соединительной ткани: рыхлая, кровь, плотная,
хрящевая, костная и жировая ткани.

21. Соединительные ткани:

1
1- рыхлая
2
3
4
5
соединительная ткань,
2-плотная соединительная ткань,
3-хрящ,
4-кость,
5-кровь

22. Мышечные ткани:

Мышечные ткани осуществляют двигательные
процессы в организме животных. Они образованы
мышечными волокнами, в цитоплаз ме которых есть
особые, сократительные волокна — миофибриллы.
Различают гладкую (неисчерченную), поперечнополосатую скелетную (исчерченную) и сердечную
поперечно-полосатую(исчерченную)
мышечные
ткани. Гладкая мышечная ткань образует стенки
внутренних органов, а
перечно-полосатая —
скелетные мышцы и мышцу сердца.

23. Мышечные ткани:

1
2
продольные срезы
1-поперечно-полосатой,
2-гладкой;
3-сердечной мышцы
3

24. Нервная ткань

Нервная ткань состоит из нервных клеток (нейронов) и нейроглии.
Нейрон состоит из тела и отростков различной длины: дендритов и аксона.
Аксон — наиболее длинный отросток нейрона, по которому нервный импульс
движется от тела нервной клетки к рабочим органам — мышце, железе или к
следующей нервной клетке. Аксоны образуют нервные волокна.
Короткие и ветвистые отростки нейрона называются дендритами. Их
окончания воспринимают нервное раздражение и проводят нервный им пульс к
телу нейрона.
Основным свойством нейрона является способность возбуждаться и
проводить это возбуждение по нервным волокнам.
Клетки нейроглии выполняют опорную, питательную, защитную и другие
функции. Они выстилают полости головного мозга и спинномозговой канал,
образуют опорный аппарат центральной нервной системы и окружают тела
нейронов и их отростки.

25. Нервная клетка-основа нервной ткани

26. Инструкция к работе:

• Сделайте тонкий срез листа фиалки;
• На предметное стекло капните каплю воды и положите
препарат;
• Закройте покровным стеклом;
• При малом увеличении микроскопа рассмотреть срез
листовой пластинки;
• Затем перейти к детальному изучению тканей при
большом увеличении. Начать с рассмотрения верхней
эпидермы и сравнить ее с нижней;
• Далее изучить мезофилл;
• Найти флоэму и ксилему;
• Зарисовать лист фиалки и обозначить эпидерму (верхнюю
и нижнюю), устьице, столбчатый и губчатый мезофилл,
проводящий пучок с ксилемой и флоэмой.

27. Проверь себя. Поперечный срез листа фиалки

28. Инструкция к работе:

• Рассмотрите под микроскопом микропрепарат
хвоинки.
• Какие ткани вы увидели?
• Сначала рассмотреть срез при малом увеличении
и зарисовать его контуры. Нанести на схему
границы отдельных тканей и перейти к изучению
препарата при большом увеличении. По мере
рассмотрения тканей схему детализовать.
• Обозначить гиподерму, мезофилл, смоляные
ходы, проводящие пучки. Указать функцию.
• Какими методами вы пользовались при
выполнении работы? Сделайте вывод по работе.

29. Проверь себя. Поперечный срез хвоинки.

30. Контрольные вопросы:

1.В чем отличие между столбчатой и губчатой
тканями листа? Чем обусловлено их
расположение?
2. Каково строение проводящих пучков листа?
3. В чем особенность строения мезофилла хвои?
4. Какие методы вы использовали в работе?
Спасибо за урок!

English    
Русский
Правила

24.2 Первичные ткани животных. Биология для курсов AP®

Цели обучения

В этом разделе вы изучите следующие вопросы:

  • Каковы характеристики эпителиальных тканей?
  • Какие типы соединительной ткани существуют у животных?
  • Каковы различия между тремя типами мышечной ткани?
  • Каковы характеристики нервной ткани?

Соединение для AP

® Курсы

Содержимое, описанное в этом разделе, не входит в область действия AP ®. Однако мы уже узнали, что взаимосвязь между структурой и функцией включает клеточный уровень, и мы продолжим подтверждать это, когда позже будем исследовать нервную систему.

Ткани многоклеточных сложных животных бывают четырех основных типов: эпителиальная, соединительная, мышечная и нервная. Напомним, что ткани представляют собой группы сходных клеток, группу сходных клеток, выполняющих родственные функции. Эти ткани объединяются, образуя органы, такие как кожа или почки, которые выполняют определенные специализированные функции в организме. Органы организованы в системы органов для выполнения функций; примеры включают систему кровообращения, состоящую из сердца и кровеносных сосудов, и пищеварительную систему, состоящую из нескольких органов, включая желудок, кишечник, печень и поджелудочную железу. Системы органов объединяются, чтобы создать целый организм.

Эпителиальные ткани

Эпителиальные ткани покрывают снаружи органы и структуры тела и выстилают просветы органов одним или несколькими слоями клеток. Типы эпителия классифицируются по форме присутствующих клеток и количеству слоев клеток. Эпителий, состоящий из одного слоя клеток, называется простым эпителием ; эпителиальная ткань, состоящая из нескольких слоев, называется многослойным эпителием . В табл. 24.2 приведены различные типы эпителиальных тканей.

Different Types of Epithelial Tissues

Cell shape Description Location
squamous flat, irregular round shape simple: lung alveoli, capillaries stratified: skin, mouth, vagina
кубовидная кубовидная, центральное ядро ​​ железы, почечные канальцы
столбчатая высокая, узкая, ядро ​​направлено к основанию
высокий, узкий, ядро ​​вдоль клетки
простой: пищеварительный тракт
псевдослоистые: дыхательные пути
переходные круглые, простые, но кажущиеся расслоенными мочевой пузырь

Таблица
24. 2

Плоскоклеточный эпителий

Плоскоклеточные эпителиальные клетки обычно круглые, плоские и имеют маленькое центрально расположенное ядро. Очертания клеток слегка неровные, и клетки соединяются вместе, образуя покрытие или выстилку. Когда клетки располагаются в один слой (простой эпителий), они облегчают диффузию в ткани, например, в зоны газообмена в легких и обмен питательных веществ и отходов в кровеносных капиллярах.

Рисунок
24,7

Клетки плоского эпителия (а) имеют слегка неправильную форму и маленькое центрально расположенное ядро. Эти клетки можно разделить на слои, как в (b) этом образце шейки матки человека. (кредит b: модификация работы Эда Утмана; данные шкалы Мэтта Рассела)

Рис. 24.7 a иллюстрирует слой плоскоклеточных клеток, мембраны которых соединены вместе, образуя эпителий. Изображение На рис. 24.7 b показаны клетки плоского эпителия, расположенные в многослойных слоях, где необходима защита тела от внешнего истирания и повреждений. Это называется многослойным плоским эпителием и встречается в коже и тканях, выстилающих рот и влагалище.

Кубический эпителий

Кубовидные эпителиальные клетки , показанные на рис. 24.8, имеют форму куба с одним центральным ядром. Чаще всего они встречаются в виде одного слоя, представляющего собой простой эпителий в железистых тканях по всему телу, где они подготавливают и секретируют железистый материал. Они также обнаруживаются в стенках канальцев и в протоках почек и печени.

Рисунок
24,8

Простые кубические эпителиальные клетки выстилают канальцы в почках млекопитающих, где они участвуют в фильтрации крови.

Столбчатый эпителий

Колончатые эпителиальные клетки выше, чем в ширину: они напоминают стопку столбцов в эпителиальном слое и чаще всего встречаются в однослойном расположении. Ядра столбчатых эпителиальных клеток в пищеварительном тракте кажутся выстроенными у основания клеток, как показано на рис. 24.9. Эти клетки поглощают материал из просвета пищеварительного тракта и подготавливают его к поступлению в организм через кровеносную и лимфатическую системы.

Рисунок
24,9

Простые столбчатые эпителиальные клетки поглощают материал из пищеварительного тракта. Бокаловидные клетки выделяют слизь в просвет пищеварительного тракта.

Столбчатые эпителиальные клетки, выстилающие дыхательные пути, кажутся многослойными. Однако каждая клетка прикреплена к базовой мембране ткани и, следовательно, это простые ткани. Ядра расположены на разных уровнях в слое клеток, что создает впечатление наличия более одного слоя, как показано на рис. 24.10. это называется псевдомногослойный , цилиндрический эпителий. Это клеточное покрытие имеет реснички на апикальной или свободной поверхности клеток. Реснички усиливают движение слизистых и захваченных частиц из дыхательных путей, помогая защитить систему от инвазивных микроорганизмов и вредных материалов, которые вдыхаются в организм. Бокаловидные клетки вкраплены в некоторые ткани (например, в слизистую оболочку трахеи). Бокаловидные клетки содержат слизь, которая улавливает раздражители, которые в случае трахеи препятствуют попаданию этих раздражителей в легкие.

Рисунок
24.10

Псевдостратифицированный цилиндрический эпителий выстилает дыхательные пути. Они существуют в одном слое, но расположение ядер на разных уровнях создает впечатление, что существует более одного слоя. Бокаловидные клетки, расположенные между цилиндрическими эпителиальными клетками, выделяют слизь в дыхательные пути.

Переходный эпителий

Переходные или уроэпителиальные клетки появляются только в мочевыделительной системе, преимущественно в мочевом пузыре и мочеточнике. Эти клетки располагаются в виде стратифицированного слоя, но могут казаться нагроможденными друг на друга в расслабленном пустом мочевом пузыре, как показано на рис. 24.11. Когда мочевой пузырь наполняется, эпителиальный слой разворачивается и расширяется, удерживая введенный в него объем мочи. Когда мочевой пузырь наполняется, он расширяется, а слизистая оболочка становится тоньше. Другими словами, ткань переходит из толстой в тонкую.

Визуальная связь

Рисунок
24.11

Переходный эпителий мочевого пузыря претерпевает изменения толщины в зависимости от того, насколько мочевой пузырь наполнен.

См. рис. 24.11

(кредит: модификация работы Pathology Apps)

Рисунок
24.12

На изображении показаны клетки переходного эпителия, формирующие стенки мочевого пузыря. Просвет представляет собой полое пространство, которое заполняется мочой.

Что, по вашему мнению, произойдет с этими клетками, когда мочевой пузырь наполнится мочой?

  1. Эпителиальная выстилка разворачивается и становится толще.

  2. Эпителиальная выстилка остается складчатой ​​со скоплением клеток.

  3. Эпителиальная выстилка разворачивается и становится тоньше.

  4. Эпителиальная выстилка разворачивается, но остается той же толщины.

Соединительные ткани

Соединительные ткани состоят из матрицы, состоящей из живых клеток и неживого вещества, называемого основным веществом. Основное вещество состоит из органического вещества (обычно белка) и неорганического вещества (обычно минерала или воды). Основной клеткой соединительной ткани является фибробласт. Эта клетка образует волокна, присутствующие почти во всех соединительных тканях. Фибробласты подвижны, способны осуществлять митоз и могут синтезировать любую необходимую соединительную ткань. В некоторых тканях обнаруживаются макрофаги, лимфоциты и иногда лейкоциты. Некоторые ткани имеют специализированные клетки, которых нет в других. матрикс в соединительных тканях придает ткани ее плотность. Когда соединительная ткань имеет высокую концентрацию клеток или волокон, она имеет пропорционально менее плотный матрикс.

Органическая часть или белковые волокна соединительной ткани представляют собой коллагеновые, эластические или ретикулярные волокна. Коллагеновые волокна обеспечивают прочность ткани, предотвращая ее разрыв или отделение от окружающих тканей. Эластические волокна состоят из белка эластина; это волокно может растягиваться на полторы своей длины и возвращаться к своим первоначальным размерам и форме. Эластичные волокна обеспечивают эластичность тканей. Ретикулярные волокна представляют собой третий тип белковых волокон соединительной ткани. Это волокно состоит из тонких нитей коллагена, образующих сеть волокон для поддержки тканей и других органов, с которыми оно связано. Различные типы соединительных тканей, типы клеток и волокон, из которых они состоят, и расположение образцов тканей приведены в таблице 24.3.

Соединительные ткани

Ткань Ячейки Волокна Местоположение
свободная/ареолярная фибробласты, макрофаги, некоторые лимфоциты, некоторые нейтрофилы несколько: коллагеновые, эластические, ретикулярные вокруг кровеносных сосудов; якорный эпителий
плотная волокнистая соединительная ткань фибробласты, макрофаги, в основном коллаген нерегулярный: кожа в норме: сухожилия, связки
хрящ хондроциты, хондробласты гиалин: мало коллагена волокнистый хрящ: большое количество коллагена скелет акулы, кости плода, человеческие уши, межпозвонковые диски
кость остеобласты, остеоциты, остеокласты некоторые: коллаген, эластик скелеты позвоночных
жировой адипоциты несколько жировая ткань (жир)
кровь эритроциты, лейкоциты нет кровь

Стол
24. 3

Свободная/ареолярная соединительная ткань

Рыхлая соединительная ткань , также называемая ареолярной соединительной тканью, содержит образцы всех компонентов соединительной ткани. Как показано на рис. 24.13, рыхлая соединительная ткань содержит некоторое количество фибробластов; присутствуют также макрофаги. Коллагеновые волокна относительно широкие и окрашиваются в светло-розовый цвет, в то время как эластические волокна тонкие и окрашиваются в темно-синий или черный цвет. Пространство между форменными элементами ткани заполнено матрицей. Содержащийся в соединительной ткани материал придает ей рыхлую консистенцию, похожую на растянутый ватный тампон. Рыхлая соединительная ткань находится вокруг каждого кровеносного сосуда и помогает удерживать сосуд на месте. Ткань также находится вокруг и между большинством органов тела. Таким образом, ареолярная ткань жесткая, но гибкая и состоит из мембран.

Рисунок
24.13

Рыхлая соединительная ткань состоит из рыхло переплетенных коллагеновых и эластических волокон. Волокна и другие компоненты матрикса соединительной ткани секретируются фибробластами.

Волокнистая соединительная ткань

Волокнистые соединительные ткани содержат большое количество коллагеновых волокон и небольшое количество клеток или матриксного материала. Волокна могут быть расположены неравномерно или регулярно с параллельными нитями. Неравномерно расположенные волокнистые соединительные ткани обнаруживаются в тех областях тела, где нагрузка возникает со всех сторон, например, в дерме кожи. Обычная волокнистая соединительная ткань, показанная на рис. 24.14, содержится в сухожилиях (соединяющих мышцы с костями) и связках (соединяющих кости с костями).

Рисунок
24.14

Волокнистая соединительная ткань сухожилия имеет параллельные тяжи коллагеновых волокон.

Хрящ

Хрящ представляет собой соединительную ткань с большим количеством матрикса и переменным количеством волокон. Клетки, называемые хондроцитами , образуют матрикс и волокна ткани. Хондроциты находятся в тканевых пространствах, называемых лакунами .

Хрящ с небольшим количеством коллагеновых и эластических волокон — это гиалиновый хрящ, показанный на рис. 24.15. Лакуны беспорядочно разбросаны по всей ткани, а матрикс приобретает молочный или шероховатый вид при обычном гистологическом окрашивании. У акул есть хрящевой скелет, как и почти у всего человеческого скелета на определенной стадии развития до рождения. Остаток этого хряща сохраняется во внешней части человеческого носа. Гиалиновый хрящ также находится на концах длинных костей, уменьшая трение и смягчая сочленения этих костей.

Рисунок
24.15

Гиалиновый хрящ состоит из матрицы с внедренными в нее клетками, называемыми хондроцитами. Хондроциты существуют в полостях матрикса, называемых лакунами.

Эластичный хрящ содержит большое количество эластичных волокон, что придает ему невероятную гибкость. Уши большинства позвоночных животных содержат этот хрящ, как и части гортани или голосового аппарата. Фиброхрящ содержит большое количество коллагеновых волокон, придающих ткани огромную прочность. Волокнистый хрящ включает межпозвонковые диски у позвоночных животных. Гиалиновый хрящ, обнаруженный в подвижных суставах, таких как колено и плечо, повреждается в результате старения или травмы. Поврежденный гиалиновый хрящ заменяется волокнистым хрящом, в результате чего суставы становятся «жесткими».

Кость

Кость, или костная ткань, представляет собой соединительную ткань, содержащую большое количество матриксного материала двух различных типов. Органический матрикс подобен материалу матрикса, обнаруженному в других соединительных тканях, включая некоторое количество коллагена и эластических волокон. Это придает ткани прочность и гибкость. Неорганическая матрица состоит из минеральных солей, в основном солей кальция, которые придают ткани твердость. Без адекватного органического материала в матрице ткань разрывается; без адекватного неорганического материала в матрице ткань изгибается.

В кости есть три типа клеток: остеобласты, остеоциты и остеокласты. Остеобласты активно участвуют в создании кости для роста и ремоделирования. Остеобласты откладывают костный материал в матрицу, и после того, как матрица окружает их, они продолжают жить, но в сниженном метаболическом состоянии в виде остеоцитов. Остеоциты находятся в костных лакунах. Остеокласты активны в разрушении кости для ее ремоделирования и обеспечивают доступ к кальцию, хранящемуся в тканях. Остеокласты обычно находятся на поверхности ткани.

Кость можно разделить на два типа: компактную и губчатую. Компактная кость находится в теле (или диафизе) длинной кости и на поверхности плоских костей, тогда как губчатая кость находится в конце (или эпифизе) длинной кости. Компактная кость организована в субъединицы, называемые остеонами , как показано на рис. 24.16. Кровеносный сосуд и нерв находятся в центре структуры внутри гаверсова канала, вокруг которого расходящиеся круги лакун, известные как пластинки. Волнистые линии между лакунами — это микроканалы, называемые 9.0029 канальцы ; они соединяют лакуны, чтобы способствовать диффузии между клетками. Губчатая кость состоит из крошечных пластин, называемых трабекулами , эти пластины служат распорками, придающими губчатой ​​кости прочность. Со временем эти пластины могут сломаться, в результате чего кость станет менее упругой. Костная ткань образует внутренний скелет позвоночных животных, обеспечивая структуру животного и точки крепления сухожилий.

Рисунок
24.16

(а) Компактная кость представляет собой плотный матрикс на внешней поверхности кости. Губчатая кость внутри компактной кости пористая с перепончатыми трабекулами. (b) Компактная кость организована в кольца, называемые остеонами. Кровеносные сосуды, нервы и лимфатические сосуды находятся в центральном гаверсовом канале. Кольца пластинок окружают гаверсов канал. Между ламелями находятся полости, называемые лакунами. Каналики – это микроканалы, соединяющие лакуны между собой. (c) Остеобласты окружают внешнюю часть кости. Остеокласты проделывают туннели в кости, а остеоциты обнаруживаются в лакунах.

Жировая ткань

Жировая ткань или жировая ткань считается соединительной тканью, даже несмотря на то, что она не имеет фибробластов или настоящего матрикса и имеет лишь несколько волокон. Жировая ткань состоит из клеток, называемых адипоцитами, которые собирают и хранят жир в форме триглицеридов для энергетического метаболизма. Жировая ткань дополнительно служит изоляцией, помогая поддерживать температуру тела, позволяя животным быть эндотермическими, и они действуют как защита от повреждений органов тела. Под микроскопом клетки жировой ткани кажутся пустыми из-за выделения жира при обработке материала для просмотра, как видно на рис. 24.17. Тонкие линии на изображении — это клеточные мембраны, а ядра — маленькие черные точки по краям клеток.

Рисунок
24.17

Жировая ткань представляет собой соединительную ткань, состоящую из клеток, называемых адипоцитами. Адипоциты имеют небольшие ядра, расположенные по краю клетки.

Кровь

Кровь считается соединительной тканью, поскольку она имеет матрицу, как показано на рис. 24.18. Типы живых клеток — это эритроциты (эритроциты), также называемые эритроцитами, и лейкоциты (лейкоциты), также называемые лейкоцитами. Жидкую часть цельной крови, ее матрикс, принято называть плазмой.

Рисунок
24.18

Кровь представляет собой соединительную ткань, имеющую жидкую матрицу, называемую плазмой, и не имеющую волокон. Эритроциты (красные кровяные тельца), преобладающий тип клеток, участвуют в транспорте кислорода и углекислого газа. Также присутствуют различные лейкоциты (лейкоциты), участвующие в иммунном ответе.

Клеткой, обнаруженной в наибольшем количестве в крови, являются эритроциты. Эритроциты в образце крови исчисляются миллионами: среднее количество эритроцитов у приматов составляет от 4,7 до 5,5 миллионов клеток на микролитр. Эритроциты постоянно имеют одинаковый размер у вида, но различаются по размеру между видами. Например, средний диаметр эритроцита примата составляет 7,5 мкм, у собаки он близок к 7,0 мкм, а диаметр эритроцита кошки составляет 5,9 мкм.гм. Овечьи эритроциты еще меньше и составляют 4,6 мкм. Эритроциты млекопитающих теряют свои ядра и митохондрии, когда они высвобождаются из костного мозга, где они производятся. Красные кровяные тельца рыб, амфибий и птиц сохраняют свои ядра и митохондрии на протяжении всей жизни клетки. Основная функция эритроцита – транспортировать и доставлять кислород к тканям.

Лейкоциты являются преобладающими лейкоцитами в периферической крови. Лейкоциты в крови исчисляются тысячами с измерениями, выраженными в виде диапазонов: количество приматов колеблется от 4800 до 10 800 клеток на мкл, собак от 5600 до 19.200 клеток на мкл, кошки от 8000 до 25000 клеток на мкл, крупный рогатый скот от 4000 до 12000 клеток на мкл и свиньи от 11000 до 22000 клеток на мкл.

Лимфоциты функционируют главным образом в иммунном ответе на чужеродные антигены или материал. Различные типы лимфоцитов вырабатывают антитела, адаптированные к чужеродным антигенам, и контролируют выработку этих антител. Нейтрофилы являются фагоцитирующими клетками и участвуют в одной из первых линий защиты от микробных захватчиков, способствуя удалению бактерий, проникших в организм. Другим лейкоцитом, обнаруживаемым в периферической крови, является моноцит. Моноциты дают начало фагоцитирующим макрофагам, которые очищают мертвые и поврежденные клетки в организме, независимо от того, являются ли они чужеродными или принадлежат животному-хозяину. Два дополнительных лейкоцита в крови — эозинофилы и базофилы — помогают облегчить воспалительную реакцию.

Слабозернистый материал среди клеток представляет собой цитоплазматический фрагмент клетки костного мозга. Это называется тромбоцитом или тромбоцитом. Тромбоциты участвуют в стадиях, ведущих к свертыванию крови, чтобы остановить кровотечение через поврежденные кровеносные сосуды. Кровь выполняет ряд функций, но в первую очередь она переносит вещества по телу, чтобы доставлять питательные вещества к клеткам и удалять из них отходы.

Мышечные ткани

В телах животных есть три типа мышц: гладкие, скелетные и сердечные. Они различаются наличием или отсутствием исчерченности или полос, количеством и расположением ядер, независимо от того, контролируются ли они вольно или невольно, и их расположением в теле. Таблица 24.4 суммирует эти различия.

Типы мышц

Тип мышц Полосы Ядра Управление Местоположение
гладкая нет одинарный, в центре непроизвольный внутренние органы
скелет да много, на периферии добровольно скелетные мышцы
сердечный да одинарный, в центре непроизвольный сердце

Стол
24,4

Гладкая мускулатура

Гладкая мышца не имеет исчерченности в своих клетках. Он имеет одно центральное ядро, как показано на рис. 24.19.. Сокращение гладкой мускулатуры происходит под непроизвольным контролем вегетативной нервной системы и в ответ на местные условия в тканях. Гладкую мышечную ткань также называют неисчерченной, поскольку она не имеет полосчатого вида скелетных и сердечных мышц. Стенки кровеносных сосудов, трубки пищеварительной системы и трубки половой системы состоят в основном из гладкой мускулатуры.

Рисунок
24.19

Гладкомышечные клетки не имеют исчерченности, в отличие от клеток скелетных мышц. Клетки сердечной мышцы имеют исчерченность, но, в отличие от многоядерных клеток скелета, имеют только одно ядро. Сердечная мышечная ткань также имеет вставочные диски, специализированные области, идущие вдоль плазматической мембраны, которые соединяют соседние клетки сердечной мышцы и помогают передавать электрический импульс от клетки к клетке.

Скелетная мышца

Скелетные мышцы имеют исчерченность клеток, обусловленную расположением сократительных белков актина и миозина. Эти мышечные клетки относительно длинные и имеют несколько ядер по краю клетки. Скелетные мышцы находятся под произвольным контролем соматической нервной системы и находятся в мышцах, которые двигают кости. На рис. 24.19 показана гистология скелетных мышц.

Сердечная мышца

Сердечная мышца, показанная на рис. 24.19., находится только в сердце. Как и скелетная мышца, она имеет поперечную исчерченность в своих клетках, но сердечная мышца имеет одно ядро, расположенное в центре. Сердечная мышца не находится под произвольным контролем, но вегетативная нервная система может влиять на ее ускорение или замедление. Дополнительным признаком клеток сердечной мышцы является линия, которая проходит вдоль конца клетки, когда она упирается в следующую сердечную клетку в ряду. Эта линия называется вставочным диском: она помогает эффективно передавать электрический импульс от одной клетки к другой и поддерживает прочную связь между соседними клетками сердца.

Нервные ткани

Нервные ткани состоят из клеток, специализированных для приема и передачи электрических импульсов от определенных участков тела и отправки их в определенные места тела. Основной клеткой нервной системы является нейрон, изображенный на рис. 24.20. Крупная структура с центральным ядром является телом нейрона. Отростки тела клетки представляют собой либо дендриты, специализирующиеся на получении входных данных, либо отдельные аксоны, специализирующиеся на передаче импульсов. Также показаны некоторые глиальные клетки. Астроциты регулируют химическую среду нервной клетки, а олигодендроциты изолируют аксон, благодаря чему электрический нервный импульс передается более эффективно. Другие глиальные клетки, которые не показаны, поддерживают потребности нейрона в питании и отходах. Некоторые из глиальных клеток являются фагоцитами и удаляют остатки или поврежденные клетки из ткани. Нервная ткань состоит из нейронов и глиальных клеток.

Рисунок
24.20

Нейрон имеет выступы, называемые дендритами, которые принимают сигналы, и выступы, называемые аксонами, которые посылают сигналы. Также показаны два типа глиальных клеток: астроциты регулируют химическую среду нервной клетки, а олигодендроциты изолируют аксон, поэтому электрический нервный импульс передается более эффективно.

Ссылка на обучение

Нажмите на интерактивный обзор, чтобы узнать больше об эпителиальных тканях.

См. [ссылка]

Почему один слой плоских эпителиальных клеток, а не кубовидных клеток (кубообразных) функционирует более эффективно при диффузии?

  1. В виде однослойного плоского эпителия они более плотно спаяны, чем кубовидные клетки.

  2. Поскольку диффузия питательных веществ и газа легче через один слой плоских эпителиальных клеток, чем кубовидных клеток.

  3. Поскольку диффузия только газов легче через один слой плоских эпителиальных клеток, чем кубовидных клеток.

  4. Поскольку активный транспорт питательных веществ и газа легче проходит через однослойные плоские эпителиальные клетки, чем кубовидные клетки.

Связь с карьерой

патологоанатом

Патологоанатом — это врач или ветеринар, специализирующийся на лабораторном выявлении заболеваний у животных, включая людей. Эти специалисты заканчивают медицинское образование, а затем проходят последипломную ординатуру в медицинском центре. Патолог может наблюдать за клиническими лабораториями для оценки тканей тела и образцов крови для выявления заболеваний или инфекций. Они исследуют образцы тканей под микроскопом для выявления заболеваний. Некоторые патологоанатомы проводят вскрытие, чтобы определить причину смерти и прогрессирование заболевания.

14.2 Первичные ткани животных — концепции биологии — 1-е канадское издание

Глава 14. Тело животного: основная форма и функция

Цели обучения

К концу этого раздела вы сможете:

  • Описывать эпителиальные ткани
  • Обсудите различные типы соединительной ткани у животных
  • Опишите три типа мышечной ткани
  • Опишите нервную ткань

Многоклеточные сложные животные имеют четыре основных типа тканей: эпителиальную, соединительную, мышечную и нервную. Напомним, что ткани представляют собой группы однотипных клеток, выполняющих родственные функции. Эти ткани объединяются, образуя органы, такие как кожа или почки, которые выполняют определенные специализированные функции в организме. Органы организованы в системы органов для выполнения функций; примеры включают систему кровообращения, состоящую из сердца и кровеносных сосудов, и пищеварительную систему, состоящую из нескольких органов, включая желудок, кишечник, печень и поджелудочную железу. Системы органов объединяются, чтобы создать целый организм.

Эпителиальные ткани

Эпителиальные ткани покрывают снаружи органы и структуры тела и выстилают просветы органов одним или несколькими слоями клеток. Типы эпителия классифицируются по форме присутствующих клеток и количеству слоев клеток. Эпителии, состоящие из одного слоя клеток, называются простыми эпителиями ; эпителиальная ткань, состоящая из нескольких слоев, называется многослойным эпителием . В табл. 14.2 приведены различные типы эпителиальных тканей.

Таблица 14.2 Различные типы эпителиальных тканей
Форма ячейки Описание Местоположение
чешуйчатый плоская, неправильной круглой формы простой: альвеолы ​​легких, капилляры многослойные: кожа, рот, влагалище
прямоугольный в форме куба, с центральным ядром железы, почечные канальцы
столбчатый высокое, узкое, ядро ​​направлено к основанию
высокое, узкое, ядро ​​расположено вдоль клетки
простые: пищеварительный тракт
псевдослоистые: дыхательные пути
переходный круглый, простой, но выглядит многослойным мочевой пузырь

Плоскоклеточный эпителий

Плоскоклеточный эпителий обычно круглые, плоские клетки с небольшим центрально расположенным ядром. Очертания клеток слегка неровные, и клетки соединяются вместе, образуя покрытие или выстилку. Когда клетки располагаются в один слой (простой эпителий), они облегчают диффузию в ткани, например, в зоны газообмена в легких и обмен питательных веществ и отходов в кровеносных капиллярах.

Рис. 14.7 Клетки плоского эпителия (а) имеют слегка неправильную форму и маленькое ядро, расположенное в центре. Эти клетки можно разделить на слои, как в (b) этом образце шейки матки человека. (кредит b: модификация работы Эда Утмана; данные масштабной линейки от Мэтта Рассела)

Рис. 14.7 a иллюстрирует слой плоскоклеточных клеток, мембраны которых соединены вместе, образуя эпителий. Изображение На рис. 14.7 b показаны клетки плоского эпителия, расположенные в многослойных слоях, где необходима защита тела от внешнего истирания и повреждений. Это называется многослойным плоским эпителием и встречается в коже и тканях, выстилающих рот и влагалище.

Кубический эпителий

Клетки кубического эпителия , показанные на рис. 14.8, имеют форму куба с одним центральным ядром. Чаще всего они встречаются в виде одного слоя, представляющего собой простой эпителий в железистых тканях по всему телу, где они подготавливают и секретируют железистый материал. Они также обнаруживаются в стенках канальцев и в протоках почек и печени.

Рисунок 14.8. Простые кубические эпителиальные клетки выстилают канальцы в почках млекопитающих, где они участвуют в фильтрации крови.

Столбчатый эпителий

Столбчатый эпителий Клетки больше в высоту, чем в ширину: они напоминают стопку столбцов в эпителиальном слое и чаще всего встречаются в однослойном расположении. Ядра столбчатых эпителиальных клеток в пищеварительном тракте кажутся выстроенными у основания клеток, как показано на рис. 14.9. Эти клетки поглощают материал из просвета пищеварительного тракта и подготавливают его к поступлению в организм через кровеносную и лимфатическую системы.

Рисунок 14.9. Простые столбчатые эпителиальные клетки поглощают материал из пищеварительного тракта. Бокаловидные клетки выделяют слизь в просвет пищеварительного тракта.

Столбчатые эпителиальные клетки, выстилающие дыхательные пути, кажутся стратифицированными. Однако каждая клетка прикреплена к базовой мембране ткани и, следовательно, это простые ткани. Ядра расположены на разных уровнях в слое клеток, что создает впечатление наличия более одного слоя, как показано на рис. 14.10. это называется псевдомногослойный , цилиндрический эпителий. Это клеточное покрытие имеет реснички на апикальной или свободной поверхности клеток. Реснички усиливают движение слизистых и захваченных частиц из дыхательных путей, помогая защитить систему от инвазивных микроорганизмов и вредных материалов, которые вдыхаются в организм. Бокаловидные клетки вкраплены в некоторые ткани (например, в слизистую оболочку трахеи). Бокаловидные клетки содержат слизь, которая улавливает раздражители, которые в случае трахеи препятствуют попаданию этих раздражителей в легкие.

Рисунок 14.10. Псевдостратифицированный цилиндрический эпителий выстилает дыхательные пути. Они существуют в одном слое, но расположение ядер на разных уровнях создает впечатление, что существует более одного слоя. Бокаловидные клетки, расположенные между цилиндрическими эпителиальными клетками, выделяют слизь в дыхательные пути.

Переходный эпителий

Переходные или уроэпителиальные клетки появляются только в мочевой системе, преимущественно в мочевом пузыре и мочеточнике. Эти клетки располагаются в виде стратифицированного слоя, но могут казаться нагроможденными друг на друга в расслабленном пустом мочевом пузыре, как показано на рис. 14.11. Когда мочевой пузырь наполняется, эпителиальный слой разворачивается и расширяется, удерживая введенный в него объем мочи. Когда мочевой пузырь наполняется, он расширяется, а слизистая оболочка становится тоньше. Другими словами, ткань переходит из толстой в тонкую.

Рисунок 14.11. Переходный эпителий мочевого пузыря претерпевает изменения толщины в зависимости от того, насколько мочевой пузырь наполнен.

Какое из следующих утверждений о типах эпителиальных клеток неверно?

  1. Простые столбчатые эпителиальные клетки выстилают легочную ткань.
  2. Клетки простого кубического эпителия участвуют в фильтрации крови в почках.
  3. Псевдослоистые столбчатые эпителии встречаются в одном слое, но расположение ядер создает впечатление, что присутствует более одного слоя.
  4. Переходный эпителий меняет толщину в зависимости от того, насколько наполнен мочевой пузырь.

Соединительные ткани

Соединительные ткани состоят из матрицы, состоящей из живых клеток и неживого вещества, называемого основным веществом. Основное вещество состоит из органического вещества (обычно белка) и неорганического вещества (обычно минерала или воды). Основной клеткой соединительной ткани является фибробласт. Эта клетка образует волокна, присутствующие почти во всех соединительных тканях. Фибробласты подвижны, способны осуществлять митоз и могут синтезировать любую необходимую соединительную ткань. В некоторых тканях обнаруживаются макрофаги, лимфоциты и иногда лейкоциты. Некоторые ткани имеют специализированные клетки, которых нет в других. матрикс в соединительных тканях придает ткани ее плотность. Когда соединительная ткань имеет высокую концентрацию клеток или волокон, она имеет пропорционально менее плотный матрикс.

Органическая часть или белковые волокна соединительной ткани представляют собой коллагеновые, эластические или ретикулярные волокна. Коллагеновые волокна обеспечивают прочность ткани, предотвращая ее разрыв или отделение от окружающих тканей. Эластические волокна состоят из белка эластина; это волокно может растягиваться на полторы своей длины и возвращаться к своим первоначальным размерам и форме. Эластичные волокна обеспечивают эластичность тканей. Ретикулярные волокна представляют собой третий тип белковых волокон соединительной ткани. Это волокно состоит из тонких нитей коллагена, образующих сеть волокон для поддержки тканей и других органов, с которыми оно связано. Различные типы соединительных тканей, типы клеток и волокон, из которых они состоят, а также расположение образцов тканей приведены в таблице 14.3.

Таблица 14.3. Соединительные ткани
Ткань Ячейки Волокна Местоположение
свободная/ареолярная фибробласты, макрофаги, некоторые лимфоциты, некоторые нейтрофилы несколько: коллагеновые, эластические, ретикулярные вокруг кровеносных сосудов; якорный эпителий
плотная волокнистая соединительная ткань фибробласты, макрофаги, в основном коллаген нерегулярный: кожа в норме: сухожилия, связки
хрящ хондроциты, хондробласты гиалин: мало коллагена волокнистый хрящ: большое количество коллагена скелет акулы, кости плода, человеческие уши, межпозвонковые диски
кость остеобласты, остеоциты, остеокласты некоторые: коллаген, эластик скелеты позвоночных
жировой адипоцитов несколько жировая ткань (жир)
кровь эритроциты, лейкоциты нет кровь

Рыхлая/ареолярная соединительная ткань

Рыхлая соединительная ткань , также называемая ареолярной соединительной тканью, содержит образцы всех компонентов соединительной ткани. Как показано на рис. 14.12, рыхлая соединительная ткань содержит некоторое количество фибробластов; присутствуют также макрофаги. Коллагеновые волокна относительно широкие и окрашиваются в светло-розовый цвет, в то время как эластические волокна тонкие и окрашиваются в темно-синий или черный цвет. Пространство между форменными элементами ткани заполнено матрицей. Содержащийся в соединительной ткани материал придает ей рыхлую консистенцию, похожую на растянутый ватный тампон. Рыхлая соединительная ткань находится вокруг каждого кровеносного сосуда и помогает удерживать сосуд на месте. Ткань также находится вокруг и между большинством органов тела. Таким образом, ареолярная ткань жесткая, но гибкая и состоит из мембран.

Рисунок 14.12. Рыхлая соединительная ткань состоит из рыхло переплетенных коллагеновых и эластических волокон. Волокна и другие компоненты матрикса соединительной ткани секретируются фибробластами.

Волокнистая соединительная ткань

Волокнистая соединительная ткань содержит большое количество коллагеновых волокон и небольшое количество клеток или матриксного материала. Волокна могут быть расположены неравномерно или регулярно с параллельными нитями. Неравномерно расположенные волокнистые соединительные ткани обнаруживаются в тех областях тела, где нагрузка возникает со всех сторон, например, в дерме кожи. Обычная волокнистая соединительная ткань, показанная на рис. 14.13, содержится в сухожилиях (соединяющих мышцы с костями) и связках (соединяющих кости с костями).

Рисунок 14.13. Волокнистая соединительная ткань сухожилия имеет параллельные тяжи коллагеновых волокон.

Хрящ

Хрящ представляет собой соединительную ткань с большим количеством матрикса и переменным количеством волокон. Клетки, называемые хондроцитами , образуют матрикс и волокна ткани. Хондроциты находятся в тканевых пространствах, называемых лакунами .

Хрящ с небольшим количеством коллагеновых и эластических волокон представляет собой гиалиновый хрящ, показанный на рис. 14.14. Лакуны беспорядочно разбросаны по всей ткани, а матрикс приобретает молочный или шероховатый вид при обычном гистологическом окрашивании. У акул есть хрящевой скелет, как и почти у всего человеческого скелета на определенной стадии развития до рождения. Остаток этого хряща сохраняется во внешней части человеческого носа. Гиалиновый хрящ также находится на концах длинных костей, уменьшая трение и смягчая сочленения этих костей.

Рисунок 14.14. Гиалиновый хрящ состоит из матрицы с внедренными в нее клетками, называемыми хондроцитами. Хондроциты существуют в полостях матрикса, называемых лакунами.

Эластичный хрящ имеет большое количество эластичных волокон, что придает ему невероятную гибкость. Уши большинства позвоночных животных содержат этот хрящ, как и части гортани или голосового аппарата. Фиброхрящ содержит большое количество коллагеновых волокон, придающих ткани огромную прочность. Волокнистый хрящ включает межпозвонковые диски у позвоночных животных. Гиалиновый хрящ, обнаруженный в подвижных суставах, таких как колено и плечо, повреждается в результате старения или травмы. Поврежденный гиалиновый хрящ заменяется волокнистым хрящом, в результате чего суставы становятся «жесткими».

Кость, или костная ткань, представляет собой соединительную ткань, содержащую большое количество матриксного материала двух различных типов. Органический матрикс подобен материалу матрикса, обнаруженному в других соединительных тканях, включая некоторое количество коллагена и эластических волокон. Это придает ткани прочность и гибкость. Неорганическая матрица состоит из минеральных солей, в основном солей кальция, которые придают ткани твердость. Без адекватного органического материала в матрице ткань разрывается; без адекватного неорганического материала в матрице ткань изгибается.

В кости есть три типа клеток: остеобласты, остеоциты и остеокласты. Остеобласты активно участвуют в создании кости для роста и ремоделирования. Остеобласты откладывают костный материал в матрицу, и после того, как матрица окружает их, они продолжают жить, но в сниженном метаболическом состоянии в виде остеоцитов. Остеоциты находятся в костных лакунах. Остеокласты активны в разрушении кости для ее ремоделирования и обеспечивают доступ к кальцию, хранящемуся в тканях. Остеокласты обычно находятся на поверхности ткани.

Кости можно разделить на два типа: компактные и губчатые. Компактная кость находится в теле (или диафизе) длинной кости и на поверхности плоских костей, тогда как губчатая кость находится в конце (или эпифизе) длинной кости. Компактная кость организована в субъединицы, называемые остеонами , как показано на рис. 14.15. Кровеносный сосуд и нерв находятся в центре структуры внутри гаверсова канала, вокруг которого расходящиеся круги лакун, известные как пластинки. Волнистые линии между лакунами — это микроканалы, называемые 9.0029 канальцы ; они соединяют лакуны, чтобы способствовать диффузии между клетками. Губчатая кость состоит из крошечных пластин, называемых трабекулами , эти пластины служат распорками, придающими губчатой ​​кости прочность. Со временем эти пластины могут сломаться, в результате чего кость станет менее упругой. Костная ткань образует внутренний скелет позвоночных животных, обеспечивая структуру животного и точки крепления сухожилий.

Рисунок 14.15. (а) Компактная кость представляет собой плотный матрикс на внешней поверхности кости. Губчатая кость внутри компактной кости пористая с перепончатыми трабекулами. (b) Компактная кость организована в кольца, называемые остеонами. Кровеносные сосуды, нервы и лимфатические сосуды находятся в центральном гаверсовом канале. Кольца пластинок окружают гаверсов канал. Между ламелями находятся полости, называемые лакунами. Каналики – это микроканалы, соединяющие лакуны между собой. (c) Остеобласты окружают внешнюю часть кости. Остеокласты проделывают туннели в кости, а остеоциты обнаруживаются в лакунах.

Жировая ткань

Жировая ткань или жировая ткань считается соединительной тканью, даже несмотря на то, что она не имеет фибробластов или настоящего матрикса и имеет лишь несколько волокон. Жировая ткань состоит из клеток, называемых адипоцитами, которые собирают и хранят жир в форме триглицеридов для энергетического метаболизма. Жировая ткань дополнительно служит изоляцией, помогая поддерживать температуру тела, позволяя животным быть эндотермическими, и они действуют как защита от повреждений органов тела. Под микроскопом клетки жировой ткани кажутся пустыми из-за выделения жира при обработке материала для просмотра, как видно на рис. 14.16. Тонкие линии на изображении — это клеточные мембраны, а ядра — маленькие черные точки по краям клеток.

Рисунок 14.16. Жировая ткань представляет собой соединительную ткань, состоящую из клеток, называемых адипоцитами. Адипоциты имеют небольшие ядра, расположенные по краю клетки.

Кровь считается соединительной тканью, поскольку она имеет матрицу, как показано на рис. 14.17. Типы живых клеток — это эритроциты (эритроциты), также называемые эритроцитами, и лейкоциты (лейкоциты), также называемые лейкоцитами. Жидкую часть цельной крови, ее матрикс, принято называть плазмой.

Рисунок 14.17. Кровь представляет собой соединительную ткань, имеющую жидкую матрицу, называемую плазмой, и не имеющую волокон. Эритроциты (красные кровяные тельца), преобладающий тип клеток, участвуют в транспорте кислорода и углекислого газа. Также присутствуют различные лейкоциты (лейкоциты), участвующие в иммунном ответе.

Клеткой, обнаруженной в крови в наибольшем количестве, являются эритроциты. Эритроциты в образце крови исчисляются миллионами: среднее количество эритроцитов у приматов составляет от 4,7 до 5,5 миллионов клеток на микролитр. Эритроциты постоянно имеют одинаковый размер у вида, но различаются по размеру между видами. Например, средний диаметр эритроцита примата составляет 7,5 мкл, у собаки он близок к 7,0 мкл, а диаметр эритроцитов у кошки составляет 5,9 мкл. Овечьи эритроциты еще меньше – 4,6 мкл. Эритроциты млекопитающих теряют свои ядра и митохондрии, когда они высвобождаются из костного мозга, где они производятся. Красные кровяные тельца рыб, амфибий и птиц сохраняют свои ядра и митохондрии на протяжении всей жизни клетки. Основная функция эритроцита – транспортировать и доставлять кислород к тканям.

Лейкоциты являются преобладающими лейкоцитами в периферической крови. Лейкоциты в крови исчисляются тысячами с измерениями, выраженными в виде диапазонов: количество приматов колеблется от 4800 до 10 800 клеток на мкл, собак от 5 600 до 19 200 клеток на мкл, кошек от 8 000 до 25 000 клеток на мкл, крупного рогатого скота от 4 000 до 12 000 клеток. на мкл, а свиньи от 11 000 до 22 000 клеток на мкл.

Лимфоциты функционируют главным образом в иммунном ответе на чужеродные антигены или материалы. Различные типы лимфоцитов вырабатывают антитела, адаптированные к чужеродным антигенам, и контролируют выработку этих антител. Нейтрофилы являются фагоцитирующими клетками и участвуют в одной из первых линий защиты от микробных захватчиков, способствуя удалению бактерий, проникших в организм. Другим лейкоцитом, обнаруживаемым в периферической крови, является моноцит. Моноциты дают начало фагоцитирующим макрофагам, которые очищают мертвые и поврежденные клетки в организме, независимо от того, являются ли они чужеродными или принадлежат животному-хозяину. Два дополнительных лейкоцита в крови — эозинофилы и базофилы — помогают облегчить воспалительную реакцию.

Слабозернистый материал среди клеток представляет собой цитоплазматический фрагмент клетки костного мозга. Это называется тромбоцитом или тромбоцитом. Тромбоциты участвуют в стадиях, ведущих к свертыванию крови, чтобы остановить кровотечение через поврежденные кровеносные сосуды. Кровь выполняет ряд функций, но в первую очередь она переносит вещества по телу, чтобы доставлять питательные вещества к клеткам и удалять из них отходы.

Мышечные ткани

В телах животных есть три типа мышц: гладкие, скелетные и сердечные. Они различаются наличием или отсутствием исчерченности или полос, количеством и расположением ядер, независимо от того, контролируются ли они вольно или невольно, и их расположением в теле. Таблица 14.4 суммирует эти различия.

Таблица 14.4. Типы мышц
Тип мышц Полосы Ядра Управление Местоположение
гладкая нет одинарный, в центре непроизвольный внутренние органы
скелет да много, на периферии добровольно скелетные мышцы
сердечный да одинарный, в центре непроизвольный сердце

Гладкая мышца

Гладкая мышца не имеет исчерченности в своих клетках. Он имеет одно центральное ядро, как показано на рис. 14.18. Сокращение гладкой мускулатуры происходит под непроизвольным контролем вегетативной нервной системы и в ответ на местные условия в тканях. Гладкую мышечную ткань также называют неисчерченной, поскольку она не имеет полосчатого вида скелетных и сердечных мышц. Стенки кровеносных сосудов, трубки пищеварительной системы и трубки половой системы состоят в основном из гладкой мускулатуры.

Рисунок 14.18. Гладкомышечные клетки не имеют исчерченности, в отличие от клеток скелетных мышц. Клетки сердечной мышцы имеют исчерченность, но, в отличие от многоядерных клеток скелета, имеют только одно ядро. Сердечная мышечная ткань также имеет вставочные диски, специализированные области, идущие вдоль плазматической мембраны, которые соединяют соседние клетки сердечной мышцы и помогают передавать электрический импульс от клетки к клетке.

Скелетная мышца

Скелетная мышца имеет исчерченность клеток, обусловленную расположением сократительных белков актина и миозина. Эти мышечные клетки относительно длинные и имеют несколько ядер по краю клетки. Скелетные мышцы находятся под произвольным контролем соматической нервной системы и находятся в мышцах, которые двигают кости. На рис. 14.18 показана гистология скелетных мышц.

Сердечная мышца

Сердечная мышца, показанная на рис. 14.18, находится только в сердце. Как и скелетная мышца, она имеет поперечную исчерченность в своих клетках, но сердечная мышца имеет одно ядро, расположенное в центре. Сердечная мышца не находится под произвольным контролем, но вегетативная нервная система может влиять на ее ускорение или замедление. Дополнительным признаком клеток сердечной мышцы является линия, которая проходит вдоль конца клетки, когда она упирается в следующую сердечную клетку в ряду. Эта линия называется вставочным диском: она помогает эффективно передавать электрический импульс от одной клетки к другой и поддерживает прочную связь между соседними клетками сердца.

Нервные ткани

Нервные ткани состоят из клеток, специализированных для приема и передачи электрических импульсов от определенных областей тела и для отправки их в определенные места тела. Основной клеткой нервной системы является нейрон, изображенный на рис. 14.19. Крупная структура с центральным ядром является телом нейрона. Отростки тела клетки представляют собой либо дендриты, специализирующиеся на получении входных данных, либо отдельные аксоны, специализирующиеся на передаче импульсов. Также показаны некоторые глиальные клетки. Астроциты регулируют химическую среду нервной клетки, а олигодендроциты изолируют аксон, благодаря чему электрический нервный импульс передается более эффективно. Другие глиальные клетки, которые не показаны, поддерживают потребности нейрона в питании и отходах. Некоторые из глиальных клеток являются фагоцитами и удаляют остатки или поврежденные клетки из ткани. Нерв состоит из нейронов и глиальных клеток.

Рисунок 14.19. Нейрон имеет выступы, называемые дендритами, которые принимают сигналы, и выступы, называемые аксонами, которые посылают сигналы. Также показаны два типа глиальных клеток: астроциты регулируют химическую среду нервной клетки, а олигодендроциты изолируют аксон, поэтому электрический нервный импульс передается более эффективно.