Сравнение клетки животного и растения: Сравните строение клетки животных и клетки растений. Выявите различия.

1. Клетка – единица строения и жизнедеятельности организмов. Сравнение клеток растений и животных.

Основоположниками клеточной теории
являются немецкие ботаник М.Шлейден и
физиолог Т.Шванн, в 1838-1839 г.г. высказавшие
идею, что клетка является структурной
единицей растений и животных. Клетки
имеют сходное строение, состав, процессы
жизнедеятельности. Наследственная
информация клеток заключена в ядре.
Клетки возникают только из клеток.
Многие клетки способны к самостоятельному
существованию, но в многоклеточном
организме их работа скоординирована.

Клетки животных и растений имеют
некоторые отличия:

  1. Клетки растений имеют жесткую клеточную
    стенку значительной толщины, содержащую
    целлюлозу (клетчатку). Животная клетка,
    не имеющая клеточной стенки, обладает
    значительно большей подвижностью,
    способна изменять форму.

  2. В клетках растений содержатся пластиды:
    хлоропласты, лейкопласты, хромопласты.
    У животных пластиды отсутствуют. Наличие
    хлоропластов делает возможным фотосинтез.
    Для растений характерен автотрофный
    тип питания с преобладанием в обмене
    веществ процессов ассимиляции. Клетки
    животных являются гетеротрофами, т.е.
    потребляют готовые органические
    вещества.

  3. Вакуоли в клетках растений крупные,
    заполненные клеточным соком, содержащим
    запасные питательные вещества. У
    животных встречаются мелкие пищеварительные
    и сократительные вакуоли.

  4. Запасным углеводом у растений является
    крахмал, у животных – гликоген.

2. Лишайники –
симбиотические организмы, их разнообразие.
Среди гербарных экземпляров найдите
лишайники. По каким признакам вы их
определите? Приведите другие примеры
симбиотических отношений в природе и
раскройте их значение.

Тело лишайника – слоевище состоит из
нитей-гифов гриба, в которых заключены
одноклеточные зеленые водоросли или
цианеи (цианобактерии, старое название
– сине-зеленые водоросли). Лишайники
рассматривают как симбиотические
организмы, где грибы поставляют воду с
растворенными минеральными солями, а
водоросли осуществляют фотосинтез,
обеспечивая поступление органических
веществ. Лишайники первыми заселяют
безжизненные местообитания, произрастают
на голых камнях. Этому способствует их
неприхотливость к субстрату, способность
переносить длительное высушивание,
впитывать атмосферную влагу поверхностью
тела. Необходимым условием произрастания
лишайников является наличие света,
необходимого для фотосинтеза.

Лишайники делятся на накипные (в виде
пленки на камнях), листоватые (серо-зеленая
пармелия, желтая ксантория на коре
деревьев) и кустистые (олений мох –
ягель).

Определить лишайник среди гербарных
экземпляров можно по отсутствию органов
– стеблей, листьев – и характерной
расцветке.

Симбиотические отношения в природе
способствуют процветанию видов, которые
в них участвуют. Можно назвать примеры
из билета №2.

3. Раскройте роль
белков в организме по следующему плану:
в каких продуктах содержатся, конечные
продукты расщепления в пищеварительном
канале, конечные продукты обмена, роль
белков в организме. Объясните, почему
в пищевом рационе детей и подростков
должны обязательно присутствовать
белки.

Богаты белком пищевые продукты животного
происхождения: мясо, рыба, яйцо, молочные
продукты. Также содержат белки растительные
продукты, особенно бобовые культуры,
овес, твердые сорта пшеницы и изготовляемые
из них макаронные изделия.

В пищеварительном канале белки распадаются
на аминокислоты. Конечным продуктом
белкового обмена у человека и других
млекопитающих является мочевина,
удаляемая через почки.

Белки выполняют в организме важнейшие
функции:

  1. структурную – белки входят в состав
    всех органоидов клетки;

  2. ферментативную (каталитическую) –
    например, пищеварительные ферменты;

  3. двигательную – в составе мышечных
    волокон;

  4. транспортную – гемоглобин крови
    переносит кислород ко всем клеткам
    организма;

  5. энергетическую –  хотя есть мнение,
    что при окислении белка промежуточные
    продукты обмена, содержащие азот,
    токсичны для организма, и потребление
    избыточной белковой пищи снижает силу
    и выносливость человека.

У детей и подростков активно идут
процессы роста, биосинтеза, что помимо
повышенной потребности в строительном
материале – аминокислотах повышает
расход ферментов. Поэтому растущий
организм должен получать с пищей большее
количество белка, чем взрослый. Недостаток
белка в рационе детей может быть причиной
низкого роста.

Клетка растения. Специфические особенности клеток растений

Тела живых организмов могут представлять собой одну-единственную клетку, их группу или огромное скопление, насчитывающее миллиарды таких элементарных структур. К последним относится большинство высших растений. Изучением клетки — основного элемента строения и функций живых организмов — занимается цитология. Этот раздел биологии начал бурно развиваться после открытия электронного микроскопа, совершенствования хроматографии и других методов биохимии. Рассмотрим главные признаки, а также особенности, по которым клетка растения отличается от мельчайших структурных единиц строения бактерий, грибов и животных.

Открытие клетки Р. Гуком

Теория о крошечных элементах строения всего живого прошла путь развития, измеряемый сотнями лет. Строение оболочки клетки растений впервые увидел в свой микроскоп британский ученый Р. Гук. Общие положения клеточной гипотезы сформулировали Шлейден и Шванн, до этого похожие выводы делали и другие исследователи.

Англичанин Р. Гук рассмотрел в микроскоп срез пробки дуба и представил результаты на заседании Королевского общества в Лондоне 13 апреля 1663 года (по другим данным, событие произошло в 1665 году). Оказалось, что кора дерева состоит из крохотных ячеек, названных Гуком «клетками». Стенки этих камер, образующих узор в виде пчелиных сот, ученый считал живым веществом, а полость признал безжизненной, вспомогательной структурой. В дальнейшем было доказано, что внутри клетки растений и животных содержат субстанцию, без которой невозможно их существование, да и деятельность всего организма.

Клеточная теория

Важное открытие Р. Гука получило развитие в работах других ученых, изучавших строение клеток животных и растений. Схожие элементы строения наблюдали ученые на микроскопических срезах многоклеточных грибов. Было установлено, что структурные единицы живых организмов обладают способностью к делению. На основании исследований представители биологической науки Германии М. Шлейден и Т. Шванн сформулировали гипотезу, ставшую впоследствии клеточной теорией.

Сравнение клеток растений и животных с бактериями, водорослями и грибами позволило немецким исследователям прийти к следующему выводу: обнаруженные Р. Гуком «камеры» — это элементарные структурные единицы, а идущие в них процессы лежат в основе жизнедеятельности большинства организмов на Земле. Важное дополнение внес Р. Вирхов в 1855 году, отметив, что деление клеток — единственный путь их размножения. Теория Шлейдена-Шванна с уточнениями стала общепризнанной в биологии.

Клетка — мельчайший элемент строения и жизнедеятельности растений

Согласно теоретическим положениям Шлейдена и Шванна, органический мир един, что доказывает схожее микроскопическое строение животных и растений. Кроме этих двух царств, клеточное существование характерно для грибов, бактерий, а у вирусов отсутствует. Рост и развитие живых организмов обеспечивается благодаря возникновению новых клеток в процессе деления уже существующих.

Многоклеточный организм — не просто скопление структурных элементов. Маленькие единицы строения взаимодействуют между собой, образуя ткани и органы. Одноклеточные организмы живут изолированно, что не мешает им создавать колонии. Главные признаки клетки:

  • способность к самостоятельному существованию;
  • собственный обмен веществ;
  • самовоспроизведение;
  • развитие.

В эволюции жизни одним из важнейших этапов стало отделение ядра от цитоплазмы при помощи защитной мембраны. Связь сохранилась, ведь отдельно эти структуры не могут существовать. В настоящее время выделяют два надцарства — безъядерных и ядерных организмов. Вторую группу образуют растения, грибы и животные, изучением которых занимаются соответствующие разделы науки и в целом биология. Клетка растения обладает ядром, цитоплазмой и органоидами, речь о которых пойдет ниже.

Разнообразие клеток растений

На изломе спелого арбуза, яблока или картофеля можно заметить невооруженным глазом структурные «ячейки», заполненные жидкостью. Это клетки паренхимы плодов, имеющие диаметр до 1 мм. Лубяные волокна — вытянутые структуры, длина которых значительно превышает ширину. Например, клетка растения, которое называется хлопчатник, достигает в длину 65 мм. Волокна луба льна и конопли имеют линейные размеры, составляющие 40–60 мм. Типичные клетки намного меньше —20–50 мкм. Рассмотреть такие крохотные структурные элементы можно только под микроскопом. Особенности мельчайших единиц строения растительного организма проявляются не только в различиях по форме и размерам, но и в выполняемых функциях в составе тканей.

Клетка растения: основные черты строения

Ядро и цитоплазма тесно взаимосвязаны и взаимодействуют между собой, что подтверждают исследования ученых. Это главные части эукариотической клетки, от них зависят все остальные элементы строения. Ядро служит для накопления и передачи генетической информации, необходимой для синтеза белка.

Британский ученый Р. Броун в 1831 году впервые заметил в клетке растения семейства орхидных особое тельце (нуклеус). Это было ядро, окруженное полужидкой цитоплазмой. Название этой субстанции означает в дословном переводе с греческого «первичная масса клетки». Она может быть более жидкой или вязкой, но обязательно покрыта мембраной. Наружная оболочка клетки состоит в основном из целлюлозы, лигнина, воска. Один из признаков, отличающих клетки растений и животных, — наличие этой прочной целлюлозной стенки.

Строение цитоплазмы

Внутренняя часть растительной клетки заполнена гиалоплазмой с взвешенными в ней мельчайшими гранулами. Ближе к оболочке так называемая эндоплазма переходит в более вязкую экзоплазму. Именно эти субстанции, которыми заполнена клетка растения, служат местом протекания биохимических реакций и транспорта соединений, размещения органоидов и включений.

Примерно 70–85 % цитоплазмы составляет вода, 10–20 % приходится на белки, другие химические компоненты — углеводы, липиды, минеральные соединения. Клетки растений имеют цитоплазму, в которой среди конечных продуктов синтеза присутствуют биорегуляторы функций и запасные вещества (витамины, ферменты, масла, крахмал).

Ядро

Сравнение клеток растений и животных показывает, что они имеют сходное строение ядра, находящегося в цитоплазме и занимающего до 20 % ее объема. Англичанин Р. Броун, впервые рассмотревший под микроскопом этот важнейший и постоянный компонент всех эукариотов, дал ему название от латинского слова nucleus. Внешний вид ядер обычно коррелирует с формой и размерами клеток, но иногда отличается от них. Обязательные элементы строения — мембрана, кариолимфа, ядрышко и хроматин.

В мембране, отделяющей ядро от цитоплазмы, имеются поры. Через них вещества поступают из ядра в цитоплазму и обратно. Кариолимфа представляет собой жидкое или вязкое ядерное содержимое с участками хроматина. Ядрышко содержит рибонуклеиновую кислоту (РНК), проникающую в рибосомы цитоплазмы для участия в синтезе белка. Другая нуклеиновая кислота — дезоксирибонуклеиновая (ДНК) — также присутствует в больших количествах. ДНК и РНК впервые были обнаружены в животных клетках в 1869 году, впоследствии найдены в растениях. Ядро — это «центр управления» внутриклеточными процессами, место хранения информации о наследственных признаках всего организма.

Эндоплазматическая сеть (ЭПС)

Строение клеток животных и растений имеет значительное сходство. Обязательно присутствуют в цитоплазме внутренние канальцы, заполненные разными по происхождению и составу веществами. Гранулярная разновидность ЭПС отличается от агранулярного типа наличием рибосом на поверхности мембран. Первая участвует в синтезе белков, вторая играет роль в образовании углеводов и липидов. Как установили исследователи, каналы не только пронизывают цитоплазму, они связаны с каждым органоидом живой клетки. Поэтому значение ЭПС оценивают очень высоко как участника метаболизма, системы связи с окружающей средой.

Рибосомы

Строение клетки растений или животных трудно представить без этих мелких частиц. Рибосомы очень малы, увидеть их можно только в электронный микроскоп. В составе телец преобладают белки и молекулы рибонуклеиновых кислот, есть незначительное количество ионов кальция и магния. Практически все количество РНК клетки сосредоточено в рибосомах, они обеспечивают белковый синтез, «собирая» протеины из аминокислот. Затем белки поступают в каналы ЭПС и разносятся сетью по всей клетке, проникают в ядро.

Митохондрии

Эти органоиды клетки считают ее энергетическими станциями, они видны при увеличении в обычный световой микроскоп. Количество митохондрий варьируется в очень широких пределах, их может насчитываться единицы или тысячи. Строение органоида не отличается большой сложностью, есть две мембраны и матрикс внутри. Митохондрии состоят из белка липидов, ДНК и РНК, отвечают за биосинтез АТФ — аденозинтрифосфорной кислоты. Для этого вещества клетки растений или животного характерно присутствие трех фосфатов. Отщепление каждого из них дает энергию, необходимую для всех процессов жизнедеятельности в самой клетке и во всем организме. Наоборот, присоединение остатков фосфорной кислоты дает возможность запасать энергию и переносить в таком виде по всей клетке.

Рассмотрите на представленном ниже рисунке органоиды клетки и назовите те, что вам уже известны. Обратите внимание на крупный пузырек (вакуоль) и зеленые пластиды (хлоропласты). Речь о них пойдет дельше.

Комплекс Гольджи

Сложный клеточный органоид состоит из гранул, мембран и вакуолей. Комплекс был открыт в 1898 году и получил название в честь итальянского биолога. Особенности клеток растений заключаются в равномерном распространении частиц Гольджи по всей цитоплазме. Ученые считают, что комплекс необходим для регулирования содержания воды и продуктов жизнедеятельности, удаления избытков веществ.

Пластиды

Только клетки тканей растений содержат органоиды зеленого цвета. Кроме того, есть бесцветные, желтые и оранжевые пластиды. На их строении и функциях отражается вид питания растения, причем они способны менять цвет за счет химических реакций. Основные типы пластид:

  • оранжевые и желтые хромопласты, образованные каротином и ксантофиллом;
  • хлоропласты, содержащие зерна хлорофилла, — пигмента зеленого цвета;
  • лейкопласты — бесцветные пластиды.

Строение клетки растений связано с идущими в ней химическими реакциями синтеза органического вещества из углекислого газа и воды с использованием световой энергии. Название этого удивительного и очень сложного процесса — фотосинтез. Осуществляются реакции благодаря хлорофиллу, именно это вещество способно улавливать энергию луча света. Наличием зеленого пигмента объясняется характерный цвет листьев, травянистых стеблей, незрелых плодов. Хлорофилл по строению похож на гемоглобин крови животных и человека.

Красная, желтая и оранжевая окраска различных органов растений обусловлена присутствием в клетках хромопластов. Их основой является большая группа каротиноидов, выполняющих важную роль в метаболизме. Лейкопласты отвечают за синтез и накопление крахмала. Пластиды растут и размножаются в цитоплазме, вместе с ней передвигаются вдоль внутренней оболочки клетки растения. Они богаты ферментами, ионами, другими биологически активными соединениями.

Отличия в микроскопическом строении основных групп живых организмов

Большинство клеток напоминают крошечный мешочек, наполненный слизью, тельцами, гранулами и пузырьками. Часто присутствуют разные включения в виде твердых кристаллов минеральных веществ, капель масел, крахмальных зерен. Клетки тесно соприкасаются в составе тканей растений, жизнь в целом зависит от деятельности этих мельчайших единиц строения, образующих целое.

При многоклеточном строении существует специализация, которая выражается в разных физиологических задачах и функциях микроскопических структурных элементов. Они определяются в основном местоположением тканей в листьях, корне, стебле или генеративных органах растения.

Выделим основные элементы проведенного сравнения клетки растения с элементарными единицами строения других живых организмов:

  1. Плотная оболочка, характерная только для растений, образована клетчаткой (целлюлозой). У грибов мембрана состоит из прочного хитина (особого белка).
  2. Клетки растений и грибов отличаются по цвету благодаря наличию или отсутствию пластид. Такие тельца, как хлоропласты, хромопласты и лейкопласты, присутствуют только в растительной цитоплазме.
  3. Есть органоид, который отличает животных, — это центриоль (клеточный центр).
  4. Только в составе клетки растения присутствует крупная центральная вакуоль, заполненная жидким содержимым. Обычно этот клеточный сок окрашен пигментами в разные цвета.
  5. Главное запасное соединение растительного организма — крахмал. Грибы и животные накапливают в своих клетках гликоген.

Среди водорослей известно много одиночных, свободно живущих клеток. К примеру, таким самостоятельным организмом является хламидомонада. Хотя растения отличаются от животных присутствием целлюлозной клеточной стенки, но половые клетки лишены такой плотной оболочки — это еще одно доказательство единства органического мира.

Разница между растительной клеткой и животной клеткой?

Разница между растительной клеткой и животной клеткой?

Ответ

Проверено

254. 1K+ Просмотр

Разница между растительной клеткой и животной клеткой перечислена ниже:

CLLAS 9003

9003

9003

9003

.

1. Растительная клетка окружена жесткой клеточной стенкой.

1. Животная клетка не имеет клеточной стенки.

2. В растительных клетках видно наличие крупной вакуоли.

2. В то время как есть очень маленькие вакуоли по сравнению с клетками растений, в клетках животных видны.

3. Больше по размеру.

3. Меньше по размеру.

4. Растительные клетки имеют пластиды.

4. Животные клетки не имеют пластид.

5. Центросомы отсутствуют в растительных клетках

5. Животные клетки имеют центросомы.

6. Растительные клетки не имеют ресничек.

6. Животные клетки имеют реснички.

7. Лизосомы очень редко встречаются в растительных клетках.

7. Животные клетки имеют лизосомы.

Растительная клетка:

Животная клетка:

Прочтите подробно, в чем разница между растительной клеткой и животной клеткой?

Недавно обновленные страницы

Открытая труба находится в резонансе во второй гармонике с частотой класса 11 по физике CBSE

Кратко объясните разделение и выделение ДНК класса 12 биологии NEET_UG

Обсудите роль микробов как биоудобрений класса 12 биологии NEET_UG

Надземный стебель модифицированный с неограниченным разветвлением класса роста 11 биология NEET_UG

Боковая ветвь с короткими междоузлиями и каждым узлом 11-го класса биологии NEET_UG

Когда верхушка побега превращается в цветок, это всегда 11-й класс биологии NEET_UG

Открытая труба находится в резонансе во 2-й гармонике с частотой 11-го класса физики CBSE

Кратко объясните разделение и выделение ДНК 12-го класса биологии NEET_UG

Обсудите роль микробов как биоудобрений 12-го класса биологии NEET_UG

Модифицированный надземный стебель с неограниченным разветвлением 11-го класса биологии NEET_UG

Боковая ветвь с короткими междоузлиями и каждым узлом 11-го класса биологии NEET_UG

Когда верхушка побега превращается в цветок, это всегда 11-й класс биологии NEET_UG

Актуальные сомнения

2 Клетка и клетка животного

Разница между растительной, животной и бактериальной клеткой

Разница между вирусом растения и вирусом животного

Разница между первичной клеткой и вторичной клеткой

Разница между клетками и тканями

животных клеток

Разница между спор и вегетативными клетками

Разница между клетками и батареей

Растительные ячейки

Разница между клеточной мембраной и плазматической мембраной

Лабораторное руководство Упражнение № 1a

Слово Уэйна

Индекс

Достопримечательные растения

Мелочи

Рясковые

Биология 101

Ботаника

Живописный

Полевые цветы

Поезда

Пауки и насекомые

Поиск

Сравнение растительных и животных клеток

© В. П. Армстронг 22 января 2012 г.

  1. Иллюстрация клеток растений
  2. Иллюстрация клеток животных
  3. Определения эукариотических клеток
  4. Эволюция и происхождение жизни

Изображение растительной клетки с гиперссылками

Нажмите на каждую этикетку для получения дополнительной информации

Изображение обобщенной растительной клетки


Изображение клеток животных с гиперссылками

Нажмите на каждую этикетку для получения дополнительной информации

Иллюстрация обобщенной животной клетки.


    Определения эукариотических клеток:
    = Обычно встречается только в клетках растений
    = Обычно встречается в клетках животных

  • Аппарат Гольджи: Ряд (стопка) уплощенных мембраносвязанных мешочков (мешочков), участвующих в хранении, модификации и секреции белков (гликопротеинов) и липидов, предназначенных для выхода из клетки (внеклеточные) и для использования внутри клетки (внутриклеточные). В аппарате Гольджи много секреторных клеток, таких как клетки поджелудочной железы.
  • Пузырь Гольджи: Связанное с мембраной тело, которое формируется путем «отпочкования» от аппарата Гольджи. Он содержит белки (гликопротеины), такие как пищеварительные ферменты, и мигрирует к клеточной (плазматической) мембране. Везикулы Гольджи сливаются с клеточной мембраной и выбрасывают свое содержимое за пределы клетки посредством процесса, называемого экзоцитозом. Некоторые везикулы Гольджи становятся лизосомами, участвующими во внутриклеточном пищеварении.
  • Пиноцитозная везикула: Связанная с мембраной вакуоль, образованная в результате особого типа эндоцитоза, называемого пиноцитозом. Плазматическая мембрана инвагинирует (защемляется внутрь) с образованием пузырька, который отделяется и перемещается в цитоплазму. Макромолекулярные капли и частицы диаметром до 2 микрометров проникают в клетку в составе этих пиноцитозных пузырьков. Более крупные частицы (включая бактерии) попадают в специальные лейкоциты (фагоциты) посредством формы эндоцитоза, называемой фагоцитозом. Amoeba — одноклеточный протист, который поглощает пищу (включая клетки водорослей) путем фагоцитоза.
  • Лизосома: Связанная с мембраной органелла, содержащая гидролитические (пищеварительные) ферменты. Лизосомы возникают в виде связанных с мембраной везикул (называемых везикулами Гольджи), которые отпочковываются от аппарата Гольджи. В первую очередь они связаны с внутриклеточным пищеварением. Лизосомы сливаются с везикулами (мелкими вакуолями), образующимися в результате эндоцитоза. Содержимое этих пузырьков переваривается лизосомальными ферментами. Самопереваривание лизосомами также происходит во время эмбрионального развития. Пальцы человеческого эмбриона изначально перепончатые, но отделены друг от друга лизосомальными ферментами. Клетки хвоста головастика перевариваются лизосомальными ферментами при постепенном переходе в лягушку.
  • Пероксисома: Связанная с мембраной органелла, содержащая специфические ферменты, поступающие из цитоплазмы (цитозола). Например, некоторые пероксисомы содержат фермент каталазу, которая быстро расщепляет токсичную перекись водорода на воду и кислород. Эту реакцию легко продемонстрировать, полив перекисью водорода сырое мясо или открытую рану.
  • Гликолиз: Путь анаэробного окисления вне митохондрий, при котором глюкоза окисляется до пирувата с чистым приростом 2 молекул АТФ. Пируват превращается в 2-углеродную ацетильную группу, которая вступает в цикл Кребса в митохондриях.
  • Митохондрия: Связанная с мембраной органелла и место аэробного дыхания и продукции АТФ. Энергия поэтапного окисления глюкозы (так называемый цикл Кребса или цикл лимонной кислоты) используется для производства молекул аденозинтрифосфата (АТФ). Цикл Кребса начинается, когда ацетильная группа с 2 атомами углерода соединяется с группой с 4 атомами углерода, образуя цитрат с 6 атомами углерода. С учетом гликолиза (который происходит вне митохондрий) из одной молекулы глюкозы образуется в общей сложности 38 молекул АТФ.

В эукариотических клетках, в том числе в клетках вашего тела, АТФ вырабатывается в специальных мембраносвязанных органеллах, называемых митохондриями. Во время этого процесса электроны перемещаются через железосодержащую систему цитохромных ферментов вдоль мембран крист, что приводит к фосфорилированию АДФ (аденозиндифосфата) с образованием АТФ (аденозинтрифосфата). АТФ является молекулой жизненной энергии всех живых систем, которая абсолютно необходима для ключевых биохимических реакций внутри клеток. Фактический синтез АТФ в результате сочетания АДФ (аденозиндифосфата) с фосфатом (PO 4 ) очень сложен и включает механизм, называемый хемиосмосом . Поток электронов создает более высокую концентрацию (заряд) положительно заряженных ионов водорода (H+) (или протонов) на одной стороне мембраны. Когда одна сторона мембраны достаточно «заряжена», эти протоны повторно пересекают мембрану через специальные каналы (поры), содержащие фермент АТФ-синтетазу, по мере образования молекул АТФ. В мембранах прокариотических бактериальных клеток АТФ производится аналогичным образом. На самом деле, некоторые биологи считают, что митохондрии и хлоропласты в эукариотических клетках животных и растений могли произойти от древних симбиотических бактерий, которые когда-то были захвачены другими клетками в далеком геологическом прошлом. Эта увлекательная идея называется « Эндосимбионтная теория » (или «Эндосимбионтная гипотеза» для тех, кто настроен более скептически). Хлоропласты и митохондрии имеют наружные фосфолипидные бислойные мембраны и кольцевые молекулы ДНК, как у прокариотических бактериальных клеток. Кроме того, слои тилакоидных мембран в гранах хлоропласты удивительно сходны с фотосинтезирующими клетками цианобактерий.Приобретение клеток и геномов от других организмов известно как симбиогенез . Согласно Л. Маргулису и Д. Сагану ( Приобретение геномов: теория происхождения видов 2002), симбиогенез является основным фактором эволюции жизни на Земле. Фактически автор утверждает, что долгосрочные геномные слияния приводят к гораздо большим эволюционным изменениям, чем мутации ДНК и естественный отбор.

Упрощенная иллюстрация молекулы АТФ
Иллюстрация крист митохондрии
Симбиогенез: геномные слияния и эволюция
Теория происхождения сосудистых растений

  • Cristae: Выступающие внутрь полкообразные мембраны митохондрий, по которым электроны текут по ферментной системе цитохрома.

    См. Структуру митохондрии

  • Хлоропласт: Связанная с мембраной органелла и место фотосинтеза и продукции АТФ в клетках автотрофных растений. Как и митохондрии, хлоропласты содержат свои кольцевые молекулы ДНК. Фактически, хлоропластная ДНК, включая ген RBCL, кодирующий белок, часто используется на уровне семейства, чтобы показать отношения между родами и видами внутри семейств растений. Интронные области ДНК хлоропластов также используются для построения генеалогических деревьев. Интроны представляют собой участки информационной РНК, которые удаляются перед трансляцией на рибосоме. Сравнительная ДНК между различными родами и видами семейства растений может быть показана с помощью созданных компьютером эволюционных деревьев, называемых кладограммами.

    Эволюционное древо (кладограмма) семейства рясковых

    Некоторые биологи считают, что митохондрии и хлоропласты в эукариотических клетках животных и растений могли произойти от древних симбиотических бактерий, которые когда-то были захвачены другими клетками в далеком геологическом прошлом. Эта увлекательная идея называется «Эндосимбионтная теория » (или «Эндосимбионтная гипотеза» для тех, кто настроен более скептически). Хлоропласты и митохондрии имеют наружные фосфолипидные двухслойные мембраны и кольцевые молекулы ДНК, как у прокариотических бактериальных клеток. Кроме того, слои тилакоидных мембран в гранах хлоропластов удивительно похожи на фотосинтезирующие клетки цианобактерий. Приобретение клеток и геномов других организмов известно как симбиогенез . Согласно Л. Маргулису и Д. Сагану ( Acquiring Genomes: A Theory of the Origins of Species 2002), симбиогенез является основным фактором эволюции жизни на Земле. Фактически автор утверждает, что долгосрочные геномные слияния приводят к гораздо большим эволюционным изменениям, чем мутации ДНК и естественный отбор.

    Иллюстрация граны хлоропласта
    Упрощенная иллюстрация молекулы АТФ
    Симбиогенез: геномные слияния и эволюция
    Теория происхождения сосудистых растений

  • Грана: Область хлоропласта, состоящая из стопок тилакоидных мембран. Это место «световых реакций», где образуются АТФ и НАДФН 2 . Эти два продукта используются в «темновых реакциях», когда углекислый газ превращается («восстанавливается») в глюкозу.
  • Строма: Область хлоропласта, где происходят «темновые реакции». Углекислый газ (СО 2 ) постепенно превращается в глюкозу посредством ряда реакций, называемых циклом Кальвина.

    См. Структуру флуоресценции хлоропласта
    в растворе хлорофилла

  • Эндоплазматический ретикулум: Сложная система связанных с мембраной каналов, простирающихся по всей цитоплазме клеток. Как и отделение неотложной помощи в больнице, эндоплазматический ретикулум часто обозначается аббревиатурой ER.
  • Гладкий эндоплазматический ретикулум: Не содержит прикрепленных рибосом.
  • Грубый эндоплазматический ретикулум: Усеян (пунктиром) прикрепленными рибосомами на стороне мембраны, обращенной к цитоплазме.
  • Рибосома: Органелла сайт синтеза белка. Рибосома состоит из большой и малой субъединиц, разделенных центральной бороздкой. Нить информационной РНК (м-РНК) помещается в бороздку, и рибосома движется вдоль м-РНК в направлении от 5′ к 3′. Молекулы транспортной РНК в форме листа клевера (т-РНК), каждая из которых содержит уникальную аминокислоту, временно прикрепляются к м-РНК на рибосоме в процессе, называемом трансляцией. Антикодоны транспортной РНК соединяются с кодонами м-РНК, а аминокислоты связываются вместе посредством синтеза дегидратации. По мере продвижения рибосомы к 3′-концу цепи м-РНК аминокислотная цепь (полипептид) становится все длиннее и длиннее. Наконец, готовый полипептид покидает участок рибосомы и удаляется, чтобы стать белком, используемым внутри клетки или секретируемым из клетки. Упрощенные анимированные gif-изображения ниже иллюстрируют этот замечательный процесс. Ряд нескольких рибосом, движущихся по одной и той же цепи м-РНК, называется полирибосомой. Рибосомы состоят из рибосомальной РНК и не связаны с мембраной. Они встречаются как в прокариотических, так и в эукариотических клетках. В эукариотических клетках рибосомная РНК синтезируется в ядрышке. Большая и малая субъединицы рибосом синтезируются специфическими генами. Один ген в ядрышке кодирует меньшую субъединицу рибосомы. Ген называется SSU рДНК или малой субъединицей рибосомной ДНК. Базовые последовательности этого гена иногда используются для сравнения таксонов на уровне видов. Результаты сравнительных исследований ДНК с использованием митохондриальной и хлоропластной ДНК иллюстрируются компьютерными эволюционными деревьями, называемыми кладограммами.

    Рицин из клещевины ( Ricinus communis ) является сильнодействующим цитотоксическим белком, который смертоносен для эукариотических клеток, инактивируя сайты органелл синтеза белка, называемые рибосомами. Всего одна единственная молекула рицина, попадающая в цитозоль клетки (полужидкая среда между ядром и плазматической мембраной), может инактивировать более 1500 рибосом в минуту и ​​убить клетку. Одна из двух белковых субъединиц рицина (RTA) представляет собой смертоносный фермент, который удаляет пурины (например, аденин) из рибосомной РНК, изменяя тем самым ее молекулярную структуру и функцию.

    См. Статью о клещевине

    См. Модель трансферной РНК клеверного листа
    См. Объяснение синтеза белка
    Кладограмма семейства ряски

    Анимированное изображение транскрипции внутри Nucleus
    Анимированное Gif-изображение трансляции на рибосоме
    Анимированное Gif-изображение синтеза белка внутри клетки

  • Ядрышко: Темное тело в ядре, где синтезируется рибосомальная РНК. Ядра растений в клетках кончика корня лука могут иметь несколько ядрышек.
  • Ядро: Связанная с мембраной органелла, содержащая хроматин, термин, применяемый ко всем хромосомам вместе, когда они находятся в тонкой (нитевидной) стадии. Во время профазы митоза хромосомы становятся короче и толще и выглядят как отчетливые удвоенные тела, называемые «хромосомными дублетами».
  • Клеточная (плазменная) мембрана: Живая мембрана, окружающая цитоплазму всех клеток. Он состоит из двойного слоя фосфолипидов со встроенными гликопротеинами. В «сэндвич-модели» два слоя фосфолипидов расположены между двумя слоями белка. Мембраны органелл также состоят из двойного фосфолипидного слоя, включающего вакуоли, ядра, митохондрии и хлоропласты. [Риубосомы не связаны с мембраной.] Гликопротеины, встроенные в плазматические мембраны, включают мембранные транспортные «молекулы-носители» и антигены распознавания клеток. Плазматическая мембрана проницаема для молекул воды путем осмоса, но не проницаема для других молекул и ионов путем простой диффузии. Ионы проходят через плазматическую мембрану через молекулы-носители путем активного транспорта и облегченной диффузии. Для активного транспорта требуется АТФ.

    См. схему осмоса
    Сэндвич-модель клеточной мембраны
    Жидкостно-мозаичная модель клеточной мембраны

  • Клеточная стенка: Слой целлюлозы, окружающий плазматическую мембрану растительных клеток. Поскольку клеточная стенка очень пористая, она проницаема для молекул и ионов, которые не могут пройти через плазматическую мембрану путем простой диффузии. При плазмолизе клеточная мембрана теряет воду и ее содержимое сжимается в шар, а внешняя клеточная стенка остается неповрежденной. Кустарники и деревья имеют утолщенную вторичную клеточную стенку, содержащую лигнин, коричневый фенольный полимер, который придает древесине большую прочность и твердость. Железные деревья, такие как lignum vitae, тонут в воде из-за плотности их тяжелых, толстостенных, одревесневших клеток.

    Плазмолиз в клетке листа
    Анатомия и текстура древесины
    Деревья с очень твердой древесиной
    Анатомия стеблей и корней

  • Вакуоль: Мембранный, заполненный жидкостью мешок внутри клеток растений и животных. Сократительные вакуоли простейших, таких как Paramecium , представляют собой специализированные органеллы для удаления лишней воды. Пищевые вакуоли Amoeba переваривает более мелкие клетки, захваченные фагоцитозом. Клетки растений имеют крупные центральные вакуоли, занимающие большую часть объема клетки.

    Paramecium: Реснитчатый простейший
    Амеба: Амебоидный простейший
    Трипаносома: Жгутиковый простейший

  • Большая центральная вакуоль: Мембранный, заполненный жидкостью мешок, занимающий большую часть объема растительной клетки. По этой причине хлоропласты, ядро ​​и другие органеллы смещены к периферии цитоплазмы (вокруг центральной вакуоли). Помимо воды, эта большая вакуоль хранит соли, водорастворимые пигменты (антоцианы) и потенциально токсичные молекулы в виде кристаллов. В кристаллическом состоянии оксалаты относительно безвредны для растительной клетки. Кристаллы оксалата кальция могут быть игольчатыми ( кристаллы рафида ) или многогранные, как сверкающий алмаз ( кристаллы друзы ). Клетки растений с высоким содержанием оксалата кальция могут быть токсичными для человека. Основная причина того, что вольфия (самое маленькое цветковое растение в мире) является более привлекательным для человека источником пищи с высоким содержанием белка, заключается в том, что в ее вакуолях отсутствуют кристаллы шва, которых много у других рясок ( Lemna и Spirodela ). Сравнительные исследования ДНК хлоропластов показали, что семейство рясковых (Lemnaceae) тесно связано с семейством арумовых (Araceae). Фактически, члены обоих семейств имеют клетки, содержащие обильные кристаллы оксалата кальция. Жевание листьев культивируемого аронника, называемого «немой тростник» ( Dieffenbachia ) может вызывать трудности при разговоре и глотании. Симптомы проглатывания включают жгучую боль, воспаление и отек тканей языка, горла и гортани. Протеолитический фермент листьев, называемый думкаином, вводится в клетки через микроскопические проколы тысячами игольчатых кристаллов рафида. Также могут быть повреждены тучные клетки (базофилы), особые лейкоциты в соединительной ткани. При аллергических реакциях сенсибилизированные тучные клетки выделяют в пораженные ткани сильнодействующие гистаминовые вещества.

    Друза кристалла внутри клетки липы
    Питательные блюда из вольфии для гурманов
    Тучные клетки при аллергических реакциях
    Домашняя страница семейства ряски

  • Амилопласт (крахмальное зерно): Связанная с мембраной органелла, содержащая концентрические слои крахмала (амилопектина). Эта органелла обычно находится в подземных запасающих органах, таких как клубни (картофель), клубнелуковицы (таро и дашин) и запасающие корни (сладкий картофель). Амилопласты также содержатся в бананах и других фруктах.

    См. Амилопласты в клетках клубней картофеля
    Подземные овощи, хранящие крахмал

  • Центриоли Немембранные органеллы, встречающиеся парами сразу за ядром клеток животных. Каждая центриоль состоит из цилиндра или кольца из 9 наборов триплетов микротрубочек без ни одного в середине (паттерн 9 + 0). Во время клеточного деления пара центриолей перемещается к каждому концу клетки, образуя полюса митотического веретена. Центриоли также дают начало базальным тельцам, которые контролируют происхождение ресничек и жгутиков в подвижных клетках протистов. На поперечном сечении жгутики и реснички имеют 9наборы дублетов микротрубочек, окружающих пару одиночных микротрубочек в центре (паттерн 9 + 2). Этот характерный паттерн также встречается в подвижных клетках высших организмов, таких как сперматозоиды человека.

    Деление клеток (митоз) в эукариотических клетках
    См. Жгутик на сперматозоиде человека

  • Центросома: Центр организации микротрубочек, формирующий митотическое веретено в делящихся клетках. В клетках животных центросома включает пару центриолей, окруженных расходящимися нитями микротрубочек, называемых астрами.
  • Микротрубочки: Белковые филаменты, состоящие из полимера, называемого тубулином. Центросомы животных клеток (включая пару центриолей и лучистую звездочку) состоят из микротрубочек. Микротрубочки участвуют в движении клеток, формировании формы клеток и формировании митотических веретен во время клеточного деления (митоза). Некоторые противоопухолевые химиотерапевтические препараты вызывают растворение (деполимеризацию) тубулина в микротрубочках, тем самым разрушая митотические веретена и эффективно останавливая клеточное деление в опухолевых клетках.
    Дата последнего обновления страницы 2021