Кто подтвердил клеточное строение растений: Кто открыл клеточное строение клетки

Дистанционный репетитор — онлайн-репетиторы России и зарубежья

КАК ПРОХОДЯТ
ОНЛАЙН-ЗАНЯТИЯ?

Ученик и учитель видят и слышат
друг друга, совместно пишут на
виртуальной доске, не выходя из
дома!


КАК ВЫБРАТЬ репетитора

Выбрать репетитора самостоятельно

ИЛИ

Позвонить и Вам поможет специалист

8 (800) 333 58 91

* Звонок является бесплатным на территории РФ
** Время приема звонков с 10 до 22 по МСК

ПОДАТЬ ЗАЯВКУ

Россия +7Украина +380Австралия +61Белоруссия +375Великобритания +44Израиль +972Канада, США +1Китай +86Швейцария +41

Выбранные репетиторы


Заполните форму, и мы быстро и бесплатно подберем Вам дистанционного репетитора по Вашим пожеланиям.



Менеджер свяжется с Вами в течение 15 минут и порекомендует специалиста.

Отправляя форму, Вы принимаете

Условия использования
и даёте

Согласие на обработку персональных данных

Вы также можете воспользоваться
расширенной формой подачи заявки


Как оплачивать и СКОЛЬКО ЭТО СТОИТ

от
800 до 5000 ₽

за 60 мин.

и зависит

ОТ ОПЫТА и
квалификации
репетитора

ОТ ПОСТАВЛЕННЫХ ЦЕЛЕЙ ОБУЧЕНИЯ
(например, подготовка к олимпиадам, ДВИ стоит дороже, чем подготовка к ЕГЭ)

ОТ ПРЕДМЕТА (например, услуги репетиторовиностранных языков дороже)

Оплата непосредственно репетитору, удобным для Вас способом


Почему я выбираю DisTTutor

БЫСТРЫЙ ПОДБОР
РЕПЕТИТОРА И
ИНДИВИДУАЛЬНЫЙ ПОДХОД

ОПТИМАЛЬНОЕ
СООТНОШЕНИЕ ЦЕНЫ И
КАЧЕСТВА

ПРОВЕРЕНЫ ДОКУМЕНТЫ ОБ
ОБРАЗОВАНИИ У ВСЕХ
РЕПЕТИТОРОВ

НАДЕЖНОСТЬ И ОПЫТ.
DisTTutor на рынке с 2008 года.

ПРОВЕДЕНИЕ БЕСПЛАТНОГО, ПРОБНОГО УРОКА

ЗАМЕНА РЕПЕТИТОРА, ЕСЛИ
ЭТО НЕОБХОДИМО


376221 УЧЕНИКОВ ИЗ РАЗНЫХ СТРАН МИРА
уже сделали свой выбор


И вот, что УЧЕНИКИ ГОВОРЯТ
о наших репетиторах

Владимир Александрович Кузьмин

«

Тренинг у Кузьмина В. А. проходил в экстремальных условиях. Мой модем совершенно не держал соединение. За время часового тренинга связь прерывалась практически постоянно. Ясно, что в таких условиях чрезвычайно непросто чему-то учить.
Однако Владимир Александрович проявил удивительную выдержку и терпение. Неоднократно он перезванивал мне на сотовый телефон, чтобы дать пояснения или комментарии.
Ценой больших усилий нам удалось рассмотреть три программы: ConceptDraw MINDMAP Professional Ru, GeoGebra и Ultra Flash Video FLV Converter. Владимир Александрович открыл мне курс на платформе dist-tutor.info и научил подключать и настраивать Виртуальный кабинет, порекомендовав изучать возможности этого ресурса, чтобы постепенно уходить от использования Skype.
В итоге, занятие мне очень понравилось! Спокойное объяснение материала, дружелюбный настрой, подбадривание дистанционного ученика даже в самых непростых ситуациях — вот далеко не полный перечень качеств Владимира Александровича как дистанционного педагога. Мне следует учиться у такого замечательного репетитора!

«

Вячеслав Юрьевич Матыкин

Чулпан Равилевна Насырова

«

Я очень довольна репетитором по химии. Очень хороший подход к ученику,внятно объясняет. У меня появились сдвиги, стала получать хорошие оценки по химии. Очень хороший преподаватель. Всем , кто хочет изучать химию, советую только её !!!

«

Алина Крякина

Надежда Васильевна Токарева

«

Мы занимались с Надеждой Васильевной по математике 5 класса. Занятия проходили в удобное для обоих сторон время. Если необходимо было дополнительно позаниматься во внеурочное время, Надежда Васильевна всегда шла навстречу. Ей можно было позванить, чтобы просто задать вопрос по непонятной задачке из домашнего задания. Моя дочь существенно подняла свой уровень знаний по математике и начала демонстрировать хорошие оценки. Мы очень благодарны Надежде Васильевне за помощь в этом учебном году, надеемся на продолжение отношений осенью.

«

Эльмира Есеноманова

Ольга Александровна Мухаметзянова

«

Подготовку к ЕГЭ по русскому языку мой сын начал с 10 класса. Ольга Александровна грамотный педагог, пунктуальный, ответственный человек. Она всегда старается построить занятие так, чтобы оно прошло максимально плодотворно и интересно. Нас абсолютно все устраивает в работе педагога. Сотрудничество приносит отличные результаты, и мы его продолжаем. Спасибо.

«

Оксана Александровна

Клиентам

  • Репетиторы по математике
  • Репетиторы по русскому языку
  • Репетиторы по химии
  • Репетиторы по биологии
  • Репетиторы английского языка
  • Репетиторы немецкого языка

Репетиторам

  • Регистрация
  • Публичная оферта
  • Библиотека
  • Бан-лист репетиторов

Партнеры


  • ChemSchool

  • PREPY. RU

  • Class

Клетка

Кле́тка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов и вироидов — форм, жизни не имеющих клеточного строения). Обладает собственным обменом веществ, способна к самостоятельному существованию, самовоспроизведению (животные, растения и грибы). Организм состоящий из одной клетки называется одноклеточным (многие простейшие и бактерии). Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, называется цитология. Также принято говорить о биологии клетки, или клеточной биологии.

     

      

 


История открытия 

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный открытием закона Гука). В 1665 году, пытаясь понять, почему пробковое дерево хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему соты в ульях медоносных пчел, и он назвал эти ячейки клетками (по-английски cell означает «ячейка, клетка»).

В 1675 году итальянский врач Марчелло Мальпиги подтвердил клеточное строение растений, а в 1681 году — английский ботаник Неемия Грю. О клетке стали говорить как о «пузырьке, наполненном питательным соком». В 1674 году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, 1632—1723) с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы (инфузории, амёбы, бактерии). Также Левенгук впервые наблюдал животные клетки — эритроциты и сперматозоиды. Таким образом, к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. В 1802—1808 годах французский исследователь Шарль-Франсуа Мирбель установил, что растения состоят из тканей, образованных клетками. Ж. Б. Ламарк в 1809 году распространил идею Мирбеля о клеточном строении и на животные организмы. В 1825 году чешский учёный Я. Пуркине открыл ядро яйцеклетки птиц, а в 1839 ввёл термин «протоплазма». В 1831 году английский ботаник Р. Броун впервые описал ядро растительной клетки, а в 1833 году установил, что ядро является обязательным органоидом клетки растения. С тех пор главным в организации клеток считается не мембрана, а содержимое.


Клеточная теория 

Клеточная теория строения организмов была сформирована в 1839 году немецкими учёными, зоологом Т. Шванном и ботаником М. Шлейденом, и включала в себя три положения. В 1858 году Рудольф Вирхов дополнил её ещё одним положением, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э. Страсбургер — у растительных.

Клеточная теория является одной из основополагающих идей современной биологии, она стала неопровержимым доказательством единства всего живого и фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. На сегодняшний день теория содержит такие утверждения:

Клетка — элементарная единица строения, функционирования, размножения и развития всех живых организмов, вне клетки нет жизни.

Клетка — целостная система, содержащая большое количество связанных друг с другом элементов — органелл.

Клетки различных организмов похожи (гомологичны) по строению и основным свойствам и имеют общее происхождение.

Увеличение количества клеток происходит путём их деления, после репликации их ДНК: клетка — от клетки.

Многоклеточный организм — система из большого количества клеток, объединенных в системы тканей и органов, связанных между собой с помощью химических факторов гуморальных и нервных.

Клетки многоклеточных организмов тотипотентны — любая клетка многоклеточного организма обладает одинаковым полным фондом генетического материала этого организма, всеми возможными потенциями для проявления этого материала, — но отличаются по уровню экспрессии (работы) отдельных генов, что приводит к их морфологическому и функциональному разнообразию — дифференцировке.

Количество и формулировки отдельных положений современной клеточной теории в разных источниках могут отличаться.


Методы исследования клеток

Впервые клетки удалось увидеть только после создания оптических (световых) микроскопов.

С того времени и до сих пор микроскопия остается одним из важнейших методов исследования клеток. Световая микроскопия, несмотря на небольшое разрешение, позволяла наблюдать за живыми клетками. В ХХ веке была изобретена электронная микроскопия, которая позволила изучить ультраструктуру клеток.

Для изучения функций клеток и их частей используют разнообразные биохимические методы — как препаративные, например фракционирование методом дифференциального центрифугирования, так и аналитические. Для экспериментальных и практических целей используют методы клеточной инженерии. Все упомянутые методические подходы могут использоваться в сочетании с методами культуры клеток

Оптическая микроскопия

В оптическом микроскопе увеличение объекта достигается благодаря серии линз, через которые проходит свет. Максимальное увеличение составляет более 1000 раз. Также важной характеристикой является разрешение — расстояние между двумя точками, которые ещё распознаются отдельно. Разрешение характеризует чёткость изображения. Эта величина ограничивается длиной световой волны, и даже при использовании самого коротковолнового света — ультрафиолетового — можно достичь разрешения только около 200 нм; такое разрешение было получено ещё в конце XIX века. Малейшие структуры, которые можно наблюдать под оптическим микроскопом, это митохондрии и бактерии. Их линейный размер составляет примерно 500 нм. Однако объекты размером меньше 200 нм видны в световом микроскопе, если они сами излучают свет. Эта особенность используется в флуоресцентной микроскопии, когда клеточные структуры или отдельные белки связываются со специальными флуоресцентными белками или антителами с флуоресцентными метками. На качество изображения, полученного с помощью оптического микроскопа, влияет также контрастность — её можно увеличить, используя различные методы окраски клеток. Для изучения живых клеток используют фазово-контрастную, дифференциальную интерференционно-контрастную и темнопольную микроскопию. Конфокальные микроскопы позволяют улучшить качество флуоресцентных изображений

                                                                                                     Изображения, полученные с помощью оптической микроскопии

 

                                                                                                                                                            






Сборник электронных книг UC Press, 1982–2004 гг.

: форма поиска

 Дом  Поиск  Просмотреть
 
 Книжная сумка  О нас  Справка

Ключевое слово SearchAdvanced Search

Поисковые книги для:

Советы по поиску

Точная фраза: «Несоседание в Америке»

96696. 7: 7006677777776 гг. 20052004200320022001200019991998199719961995199419931992199119

91988198719861985198419831982198119801979197819771976197519741973197219711970196919681967196619651964196319621961196019591958195719561955195419531952195119501949194819471946194519441943194219411940  to  20052004200320022001200019991998199719961995199419931992199119

91988198719861985198419831982198119801979197819771976197519741973197219711970196919681967196619651964196319621961196019591958195719561955195419531952195119501949194819471946194519441943194219411940

Show all books public access books   [?]

Структура и функция полисахаридов клеточной стенки растений | Journal of Cell Science

Пропустить пункт назначения

КЛЕТОЧНАЯ ПОВЕРХНОСТЬ В РАСПОЗНАВАНИИ|
01 января 1985 г.

АЛАН Г. ДАРВИЛЛ,

ПИТЕР АЛЬБЕРШЕЙМ,

МАЙКЛ МАКНИЛ,

ДЖЕЙМС М. ЛАУ,

УИЛЬЯМ С. ЙОРК,

ТОМАС Т. СТИВЕНСОН,

ДЖЕРРИ ТОМАС,

СТИВЕН ДОАРЕС,

ДЭВИД Дж. ГОЛЛИН,

ПОЛАННА ШЕЛФ,

КИТ ДЭВИС

Информация об авторе и статье

онлайн ISSN: 1477-9137

Печать ISSN: 0021-9533

© Компания Biologists Limited 1985

1985

J Cell SCI (1985) 1985 (Affemt_2).

https://doi.org/10.1242/jcs.1985.Supplement_2.11

  • Разделенный экран
  • Просмотры

    • Содержание артикула
    • Рисунки и таблицы
    • Видео
    • Аудио
    • Дополнительные данные
    • Экспертная оценка
  • PDF

  • Делиться

    • Facebook
    • Твиттер
    • LinkedIn
    • MailTo
  • Инструменты

    • Получить разрешения


    • Иконка Цитировать

      Цитировать

  • Поиск по сайту

Citation

АЛАН Г. ДАРВИЛЛ, ПИТЕР АЛЬБЕРШЕЙМ, МАЙКЛ МАКНИЛ, ДЖЕЙМС М. ЛАУ, УИЛЬЯМ С. ЙОРК, ТОМАС Т. СТИВЕНСОН, ДЖЕРРИ ТОМАС, СТИВЕН ДОАРЕС, ДЭВИД Дж. ГОЛЛИН, ПОЛАНН ШЕЛФ, КИТ ДЭВИС; Структура и функция полисахаридов клеточной стенки растений. J Cell Sci 1 января 1985 г.; 1985 (Приложение_2): 203–217. Дои: https://doi.org/10.1242/jcs.1985.Supplement_2.11

Скачать файл цитаты:

  • Рис (Зотеро)
  • Менеджер ссылок
  • EasyBib
  • Подставки для книг
  • Менделей
  • Бумаги
  • Конечная примечание
  • РефВоркс
  • Бибтекс

панель инструментов поиска

Расширенный поиск

Исследования первичных структур полисахаридов клеточных стенок растущих растений показали, что эти структуры намного сложнее, чем предполагалось всего несколько лет назад. Эту сложность лучше всего можно оценить, рассмотрев ксилоглюкан, гемицеллюлозу, присутствующую в клеточной стенке как однодольных, так и двудольных, и рамногалактуронан II (RG-II) и рамногалактуронан I (RG-I), два структурно неродственных пектиновых полисахарида. Это понимание привело нас к постулату, что полисахариды клеточной стенки выполняют функции, выходящие за рамки определения размера, формы и силы растений. Несколько лет назад мы продемонстрировали, что олигосахаридные фрагменты разветвленной β -связанный глюкан клеточных стенок грибов может вызывать выработку фитоалексинов (антибиотиков) в растениях, индуцируя образование ферментов, ответственных за синтез фитоалексинов. В настоящее время установлено и подтверждено путем синтеза, что элиситорная активность принадлежит очень специфическому гепта- β -d-глюкозиду. Было показано, что гептаглюкозид вырабатывает фитоалексины, активируя экспрессию специфических генов, то есть вызывая синтез мРНК, которые кодируют ферменты, синтезирующие фитоалексины. Другими словами, сложные углеводы могут быть регуляторными молекулами. Дальнейшие эксперименты установили, что олигосахаридные фрагменты полисахаридов, образующиеся в результате кислотного или основного гидролиза или энзимолиза первичных клеточных стенок растений, также вызывают у растений защитные реакции.