Содержание
определение, фазы, условия и значение — Природа Мира
Содержание
- Определение фотосинтеза
- Зачем растениям нужна глюкоза (пища)?
- Фазы фотосинтеза
- Световая фаза фотосинтеза
- Темновая фаза фотосинтеза или цикл Кальвина
- Схема фаз фотосинтеза
- Строение листьев растений
- Внешнее строение листьев
- Внутреннее строение листьев
- Условия, необходимые для фотосинтеза
- Что образуется в результате фотосинтеза?
- Где происходит фотосинтез?
- Строение растительной клетки
- Функции частей растительной клетки
- Углекислый газ в процессе фотосинтеза
- Свет в процессе фотосинтеза
- Вода в процессе фотосинтеза
- Какое значение имеет вода для растений?
- Значение фотосинтеза в природе
- Продуценты
- Основа пищевой цепи
- Удаление углекислого газа
- Круговорот питательных веществ
- Фотосинтетическая зависимость
Каждое живое существо на планете нуждается в пище или энергии, чтобы выжить. Некоторые организмы питаются другими существами, тогда как другие могут производить свои собственные питательные элементы. Растения сами производят продукты питания, глюкозу, в процессе, который называется фотосинтезом.
Фотосинтез и дыхание взаимосвязаны. Результатом фотосинтеза является глюкоза, которая хранится как химическая энергия в растительных клетках. Эта накопленная химическая энергия получается в результате превращения неорганического углерода (углекислого газа) в органический углерод. Процесс дыхания высвобождает накопленную химическую энергию.
Помимо продуктов, которые они производят, растениям также необходим углерод, водород и кислород, чтобы выжить. Вода, поглощенная из почвы, обеспечивает водород и кислород. Во время фотосинтеза, углерод и вода используются для синтеза пищи. Растения также нуждаются в нитратах, чтобы производить аминокислоты (аминокислота – ингредиент для выработки белка). В дополнение к этому, они нуждаются в магнии для производства хлорофилла.
Заметка: Живые существа, которые зависят от других продуктов питания называются гетеротрофами. Травоядные, такие как коровы, а также растения, питающиеся насекомыми, являются примерами гетеротрофов. Живые существа, производящие собственную пищу, называются автотрофами. Зеленые растения и водоросли – примеры автотрофов.
В этой статье вы узнаете больше о том, как происходит фотосинтез у растений и об необходимы для этого процесса условиях.
Определение фотосинтеза
Фотосинтез – это химический процесс, посредством которого растения, некоторые бактерии и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.
Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.
Зачем растениям нужна глюкоза (пища)?
Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:
- Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
- Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
- Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.
Фазы фотосинтеза
Процесс фотосинтеза разделен на две фазы: световую и темновую.
Световая фаза фотосинтеза
Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.
Темновая фаза фотосинтеза или цикл Кальвина
В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.
Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей – АТФ и НАДФН – для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.
Схема фаз фотосинтеза
Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.
Строение листьев растений
Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.
Внешнее строение листьев
Площадь
Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.
Центральная жилка и черешок
Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.
Листовая пластинка
Простые листья имеют одну листовую пластину, а сложные – несколько. Листовая пластинка – одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.
Жилы
Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.
Основание листа
Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.
Край листа
В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.
Верхушка листа
Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.
Внутреннее строение листьев
Ниже представлена близкая схема внутреннего строения тканей листьев:
Кутикула
Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.
Эпидермис
Эпидермис – слой клеток, который является покровной тканью листа. Его главная функция – защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.
Мезофилл
Мезофилл – это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний – палисадный и нижний – губчатый.
Защитные клетки
Защитные клетки – специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.
Устьице
Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.
Условия, необходимые для фотосинтеза
Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:
- Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
- Вода. Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
- Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
- Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
- Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.
Что образуется в результате фотосинтеза?
- Глюкоза;
- Кислород.
(Световая энергия показана в скобках, поскольку она не является веществом)
Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.
Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.
Где происходит фотосинтез?
Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.
Строение растительной клетки
Функции частей растительной клетки
- Клеточная стенка: обеспечивает структурную и механическую поддержку, защищает клетки от патогенов, фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
- Цитоплазма: обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
- Мембрана: действует как барьер, контролируя движение веществ в клетку и из нее.
- Хлоропласты: как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
- Вакуоль: полость внутри клеточной цитоплазмы, которая накапливает воду.
- Клеточное ядро: содержит генетическую марку (ДНК), которая контролирует деятельность клетки.
Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны – они не поглощают свет в зеленом диапазоне.
Углекислый газ в процессе фотосинтеза
Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа – устьицу.
Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.
Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.
Свет в процессе фотосинтеза
Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.
В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.
Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.
Вода в процессе фотосинтеза
Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.
На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).
Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.
Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.
Какое значение имеет вода для растений?
- Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
- Является средой для транспортировки минеральных ресурсов;
- Поддерживает устойчивость и прямостояние;
- Охлаждает и насыщает влагой;
- Дает возможность проводить различные химические реакции в растительных клетках.
Значение фотосинтеза в природе
Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез – это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.
Продуценты
Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в водных экосистемах). Вся пища, которую мы едим, происходит от организмов, являющихся фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.
Основа пищевой цепи
Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для беспозвоночных, которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.
Удаление углекислого газа
Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.
Круговорот питательных веществ
Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.
Фотосинтетическая зависимость
Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.
Гугломаг
Спрашивай! Не стесняйся!
Задать вопрос
Не все нашли? Используйте поиск по сайту
Search for:
Фотосинтез: что это такое и как он работает?
Фотосинтез необходим практически для всего живого, и он является основным источником кислорода в атмосфере.
Фотосинтез окружает нас повсюду. Он происходит под нашими ногами, над нашими головами и в освещенных солнцем зонах водной среды. Но что такое фотосинтез? Почему он так важен? И когда он появился? Ответы на эти и другие вопросы вы найдете ниже.
Что такое фотосинтез?
Фотосинтез — это процесс, в ходе которого синтезируются молекулы углеводов. Он используется растениями, водорослями и некоторыми бактериями для превращения солнечного света, воды и углекислого газа в кислород и энергию в виде сахара. Это, вероятно, самый важный биохимический процесс на планете.
По сути, он забирает углекислый газ, выделяемый всеми дышащими организмами, и возвращает его в атмосферу в виде кислорода.
На скорость фотосинтеза влияют интенсивность освещения, концентрация углекислого газа, поступление воды, температура и наличие минералов. Процесс происходит полностью в хлоропластах, и именно хлорофилл, содержащийся в хлоропластах, придает фотосинтезирующим частям растения зеленый цвет.
Фотосинтез важен и в других частях биосферы. Как морские, так и наземные растения извлекают углекислый газ из атмосферы, и часть его осаждается обратно в виде раковин из карбоната кальция или захоранивается в почве в виде органического вещества.
Без фотосинтеза круговорот углерода не мог бы происходить, и у нас вскоре закончилась бы пища. Со временем атмосфера потеряла бы почти весь газообразный кислород, и большинство организмов исчезло бы.
Как происходит фотосинтез?
Растениям требуется световая энергия, углекислый газ, вода и питательные вещества. Эти ингредиенты поступают как из прилегающей атмосферы, так и из почвы.
Фаза 1
Растения поглощают солнечный свет через два верхних слоя листьев — кутикулу и эпидермис. Эти слои тонкие, поэтому свет легко проходит через них. Углекислый газ поступает из атмосферы, и в то же время вода всасывается из почвы в тело живого растения.
Фаза 2
Сразу под кутикулой и эпидермисом находятся палисадные клетки мезофилла. Эти специализированные клетки имеют вертикальную вытянутую форму и расположены близко друг к другу для максимального поглощения света.
Ниже клеток палисадного мезофилла находится губчатая мезофилловая ткань, которая неплотно упакована для эффективного газообмена. Когда газы движутся внутрь и наружу из этих клеток, они растворяются в тонком слое воды, покрывающем клетки.
Хлоропласты в клетках водного растения элодея.
Фаза 3
Внутри палисадных клеток мезофилла находятся хлоропласты, много хлоропластов. Они содержат хлорофилл — молекулы, которые не поглощают зеленые волны белого света. Вместо этого они отражают его обратно, придавая растениям зеленый цвет.
Фаза 4
Внутри хлоропласта происходит волшебство. Происходит светозависимая реакция, при которой энергия световых волн поглощается и сохраняется в энергонесущих молекулах АТФ.
Затем в светонезависимой реакции (цикл Кальвина) АТФ используется для производства глюкозы, источника энергии. Вода окисляется, углекислый газ восстанавливается, а кислород выбрасывается в атмосферу.
Кислород выделяется через устьица в листьях, микроскопические поры, которые открываются, чтобы впустить углекислый газ и выпустить кислород (и водяной пар).
Какое уравнение фотосинтеза?
Фотосинтезирующие организмы составляют основу пищевой цепи.
Углекислый газ + вода (с энергией света) = глюкоза + кислород
Помимо световой энергии, углекислого газа и воды, растениям необходимы питательные вещества, которые они получают из почвы. Эти питательные вещества снова высвобождаются, или перерабатываются, когда ткани растения отмирают и начинают разлагаться в почве.
Кислород в виде молекул газа (O2) является побочным продуктом фотосинтеза, но именно он отвечает за содержание кислорода в воздухе, который поддерживает нашу жизнь. Растения также выделяют энергию и воду в атмосферу в процессе дыхания.
6CO2 + 6H2O → C6H12O6 + 6O2
Сбалансированное уравнение идет немного дальше. Шесть молекул углекислого газа и шесть молекул воды (реагенты) превращаются в одну молекулу сахара (C6H12O6) и шесть молекул кислорода посредством световой энергии, захваченной хлорофиллом.
Фотосинтез и пищевая цепь
Во время фотосинтеза энергия проходит через систему, и вы можете думать о фотосинтезе как о системе потока энергии, прослеживающей путь солнечной энергии через экосистему. Эта энергия запасается первичными продуцентами, фотосинтезирующими организмами. Когда эти организмы поедаются и перевариваются первичными потребителями, высвобождается химическая энергия, которая используется для запуска новых биохимических реакций.
На каждом уровне преобразования энергии по всей пищевой цепи часть энергии теряется в виде тепла. Кроме того, значительная часть энергии, поступающей в каждый организм, используется в процессе дыхания для поддержания жизнедеятельности организма. Эта энергия не сохраняется для использования другими организмами, находящимися выше по пищевой цепи.
Когда начался фотосинтез?
Эволюция фотосинтеза имела огромные последствия для Земли. По мере того как органические вещества фотосинтетической жизни захоранивались в толщах земли, углерод удалялся из атмосферы, позволяя накапливаться кислороду.
Имеющиеся данные свидетельствуют о том, что фотосинтезирующие организмы существовали примерно 3,2-3,5 миллиарда лет назад в виде строматолитов. Строматолиты представляют собой слоистые микробные структуры (обычно чередование светлых и темных слоев), обычно образованные цианобактериями и водорослями, и являются самыми древними известными окаменелостями, а значит, и самым ранним свидетельством жизни на Земле.
Когда этот ранний кислород распространился в верхние слои атмосферы (стратосферу), солнечное излучение превратило молекулы кислорода в озон, в результате чего образовался озоновый слой стратосферы. И, конечно, поскольку озоновый слой поглощает большую часть ультрафиолетового излучения Солнца, он играет важную роль в защите здоровья человека, поэтому маловероятно, что жизнь процветала бы без этого защитного щита.
Почему фотосинтез так важен для растений?
Обновлено 5 апреля 2019 г.
Автор Kimberly Yavorski
Почему фотосинтез важен для построения структуры растительных клеток, объяснить просто. Растения не едят пищу; они должны создать его для себя.
Они делают это с помощью процесса, известного как фотосинтез . Фотосинтез использует воду, углекислый газ из воздуха и энергию солнца или другого источника света для создания глюкозы или сахара. Эта глюкоза обеспечивает энергию, необходимую растению для выживания.
TL;DR (слишком длинно, не читал)
Фотосинтез — это метод, с помощью которого растения создают пищу. Без этого процесса они бы не выжили.
Фотосинтез происходит в два этапа
Растения поглощают углекислый газ через крошечные отверстия на поверхности листьев, цветов, ветвей, корней или стеблей. Вода является необходимым компонентом для фотосинтеза, и растения способны приспосабливаться к окружающей среде. В то время как большинство растений используют корни для сбора воды, у растений, живущих в засушливых условиях, есть особые структуры (например, листья, форма которых улавливает и накапливает дождь), которые позволяют им собирать доступную воду и сохранять ее для более засушливых периодов.
Существует две фазы фотосинтеза.
Первая — это светозависимая реакция , в которой солнечный свет преобразуется в другие формы энергии. На втором этапе цикла Кальвина , который представляет собой светонезависимую реакцию , углекислый газ вытягивается из воздуха и объединяется с энергией, полученной во время светозависимой реакции, для создания глюкозы (от греческого gleukos , что означает «сладкое вино»).
Затем эта глюкоза расщепляется путем гликолиза, цикла лимонной кислоты и, наконец, через цепь переноса электронов в митохондриях для создания энергии, которую растение затем может использовать для роста или восстановления.
Кислород также вырабатывается во время фотосинтеза и выделяется через те же крошечные отверстия, через которые растение получало углекислый газ.
Если бы вы написали формулу фотосинтеза, она выглядела бы так:
6CO 2 + 6H 2 O + световая энергия → C 6 H 12 O 3 (сахар) + 6O 2
Фотосинтез включает передачу энергии от Солнца к растению. Каждая созданная молекула сахара может быть либо использована растением сразу, либо сохранена на потом.
Photosynthesis Is Important to Living Organisms
In fact, even many primary producers (organisms that form the base of the food web) such as:
- seaweeds
- grasses
- algae
- phytoplankton
- использовать фотосинтез
(Обратите внимание, что водоросли — это не растения и не животные, а скорее отдельная группа организмов, называемых протистами. ) Поскольку эти организмы очень малы, иногда микроскопичны, им необходимо быстро размножаться, чтобы поддерживать порядки жизни.
Зачем растениям фотосинтез и клеточное дыхание?
Обновлено 30 сентября 2021 г.
Автор Кэмерон Дьюк Молекулярная биология и генетика
Растения и животные взаимодействуют друг с другом в том смысле, что животные потребляют кислород и выдыхают углекислый газ, в то время как растения делают обратное. Но на самом деле все не так просто. Хотите верьте, хотите нет, но растениям кислород нужен по той же причине, что и животным. Он необходим для процесса, называемого клеточным дыханием. Таким образом, в то время как животные выполняют клеточное дыхание, чтобы выжить, растения выполняют как фотосинтез, так и клеточное дыхание. Почему растениям необходимы и фотосинтез, и клеточное дыхание?
Что такое клеточное дыхание?
Фотосинтез и клеточное дыхание — два очень важных химических процесса в биологии. Клеточное дыхание — вот почему животным необходимо дышать кислородом. Клеточное дыхание представляет собой серию метаболических процессов, протекающих внутри клетки, в которых кислород и молекулы пищи преобразуются в энергию, которую клетка может использовать.
Постоянное снабжение кислородом клеточных органелл, называемых митохондриями позволяет этим органеллам преобразовывать молекулы пищи в запасающие энергию молекулы, называемые аденозинтрифосфатом (АТФ). Этот АТФ затем используется для питания всех частей клетки. Поскольку все ваше тело постоянно нуждается в энергии, вы не можете жить без клеточного дыхания.
Молекулы, участвующие в клеточном дыхании, поступают из пищи. Это сахара, жиры и белки, все молекулы большие и содержат много энергии. Это означает, что животные являются гетеротрофами , или организмы, которые поедают другие организмы для получения энергии.
Почему растения занимаются фотосинтезом?
Большинство растений не питаются другими организмами. Вместо этого их питание поступает полностью изнутри. Поскольку растения производят свою собственную пищу, их называют автотрофами . Это буквально означает «самопоедание». Это грубо, но это точно.
Растения выживают, улавливая энергию солнечного света в процессе, называемом фотосинтезом. Фотосинтез происходит в хлоропласт , который представляет собой органеллу, обнаруженную в растительных клетках, особенно в клетках, составляющих внутреннюю часть листа и некоторые части стебля.
В хлоропластах содержится пигмент, называемый хлорофиллом , пигмент, благодаря которому листья выглядят зелеными. По сути, любая часть растения зеленого цвета состоит из клеток, содержащих хлоропласты. Задача хлоропластов — улавливать солнечный свет для процесса фотосинтеза.
После захвата солнечной энергии фотосинтез использует полученную солнечную энергию для запуска химического процесса, который извлекает углекислый газ и строит из него сахара. Этот сахар является основным источником питания, питающим растение.
У растений тоже есть клеточное дыхание?
У растений есть клеточное дыхание? Конечно! На самом деле растения все время осуществляют клеточное дыхание. Как животные не могут жить без клеточного дыхания, так и растения не могут жить без клеточного дыхания. Фотосинтез и дыхание у растений — взаимодополняющие процессы, поскольку фотосинтез — это только половина процесса получения растениями энергии. Это то, как они готовят пищу, а не то, как они ее потребляют.
Клеточное дыхание происходит в органеллах, называемых митохондриями, как у растений, так и у животных. Это процесс, который поглощает кислород и молекулы из пищи (сахар из фотосинтеза) и превращает их в полезную энергию для клетки.
Наряду с фотосинтезирующими хлоропластами растения также имеют митохондрии, потребляющие кислород, питающиеся пищей, полученной в результате фотосинтеза.