Углекислый газ своими руками для растений. CO2 в теплице и гроубоксе или преимущество использования CO2 для растений

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Углекислый газ для аквариума своими руками видео. Углекислый газ своими руками для растений


Углекислый газ для теплиц своими руками: со2 для растений

Углекислота жидкая (СО2, двуокись углерода, диоксид углерода)

  • Углекислота жидкая —  это, сжиженный углекислый газ под очень высоким давлением, которое обычно равно 70 атмосферам. Жидкость, как и газ, абсолютно бесцветна, имеет слегка кислый привкус.
  • Поставляется и хранится углекислота в:
    • 40-литровых герметичных баллонах, которые защищены от коррозийных разрушений — срок хранения 2 года.
    • В транспортной бочке ЦЖУ-18 — срок хранения 6 месяцев.
  • Изготавливается в соответствии с ГОСТ 8050-50 «Двуокись углерода»
  • Чтобы узнать цены и сроки поставки нажмите подробнее.

Значение подкормки растений углекислым газом

Рост растений основан на процессе фотосинтеза. Листья растений на свету с помощью хлорофилла поглощают углекислоту (углекислый газ, СО2) воздуха и вместе с водой перерабатывают ее в органические вещества. Процесс фотосинтеза можно схематически изобразить так: углекислота + вода + свет = органическое вещество + кислород + вода.

В среднем, растение синтезирует из воды и углекислого газа 94% массы сухого вещества, остальные 6% растение получает из минеральных удобрений. С повышением освещенности растений, фотосинтез, а значит и рост растений ускоряются. Одновременно, с ускорением фотосинтеза, увеличивается потребление углекислоты. Для осуществления фотосинтеза растениям необходимы большие количества воздуха, так как атмосферный воздух содержит всего лишь 0,03% углекислого газа, что недостаточно для оптимального роста растений. При выращивании растений в теплицах низкое содержание углекислого газа является фактором, ограничивающим урожайность. Установлено, что овощные растения на 100 м2 открытой площади ежечасно потребляют из атмосферного воздуха до 350 г углекислого газа, для этого им требуется не менее 500 м3 свежего воздуха в час, что в холодное время года невыполнимо из-за больших потерь тепла при проветривании теплицы. При недостаточном воздухообмене, содержание СО2 в теплицах в результате его интенсивного поглощения растениями может упасть ниже 0,01% и фотосинтез практически прекращается. Но даже и при проветривании теплицы содержания углекислого газа в ее воздухе будет недостаточно, так как для оптимального роста растений концентрация СО2 в воздухе теплицы должна быть больше, чем существующая концентрация СО2 в атмосферном воздухе. Недостаток СО2 становится основным из факторов ограничивающих рост и развитие растений. Дефицит СО2 является более серьёзной проблемой, чем дефицит элементов минерального питания. По нормам технологического проектирования теплиц НТП 10-95 рекомендуемая концентрация СО2 в воздухе для томатов 0,13-0,15%, для огурцов 0,15-0,18%. Из практики оптимальным считается содержание СО2 у редиса 0,1-0,2%, капусты и моркови — 0,2-0,3%, огурца — 0,3-0,6%. Подкормки СО2 играют очень важную роль в управлении вегетативным и генеративным балансом растения. Повышение активности фотосинтеза углекислотой стимулирует развитие растений. При этом до корневой системы доходит значительно больше питательных веществ, поэтому усиливается рост молодых корней, активизируется поглощение элементов минерального питания, повышается устойчивость растения к неблагоприятным факторам среды. При добавлении углекислоты в воздух и повышении в нем ее концентрации можно повысить интенсивность фотосинтеза в 1,5-3 раза. На этом основан прием агротехники в условиях закрытого грунта — воздушное удобрение растение подкормкой углекислотой. Дозируя углекислый газ, можно эффективно добиться сокращения продолжительности вегетативной фазы развития растения, что обеспечит получение раннего, самого дорогого урожая овощей. При достаточной обеспеченности элементами минерального питания, эти подкормки всегда повышают общую урожайность этих культур на 15-40%, увеличивая количество и массу плодов, и ускоряют их созревание на 5-8 дней. Прирост биомассы зеленых культур при подкормках СО2 существенно увеличивается. К примеру, урожайность салата повышается на 40%, созревание ускоряется на 10-15 дней. Подкормка цветочных культур в теплицах также высокоэффективна, поскольку значительно повышает качество, выход продукции увеличивается до 30%. За счёт увеличения содержания углекислого газа в воздухе теплицы можно добиться снижения содержания нитратов в овощах, выращиваемых в зимнее время. Повышенная концентрация СО2 частично компенсирует недостаток освещённости зимой и при уменьшении светопропускания кровли теплицы, а также способствует более эффективному использованию света ранним утром. К примеру, недостаток солнечной радиации зимой, который часто приводит к потере первых соцветий у томата, возможно успешно компенсировать увеличением концентрации СО2 до 0,1%. Такой технологический приём увеличивает интенсивность фотосинтеза, способствует более высокой интенсивности выведения ассимилятов из листьев, тем самым восстанавливая завязывание плодов. В осеннем обороте подкормки углекислым газом являются основным резервом повышения урожайности овощных культур, в первую очередь томата. Ведение светокультуры вообще немыслимо без постоянных подкормок углекислым газом. Многочисленные опыты показывают, что при подкормке углекислотой вес зелени и плодов увеличивается: у огурцов на 74-103%, у бобов на 112%, у томатов до 124%. В опытах с сахарной свеклой вес корня увеличился на 19-57%, вес ботвы уменьшился. В других опытах, урожай редиса увеличился на 33-77%, фасоли 17-82%. Овощи поразному реагируют на подкормку углекислотой. Огурцы требуют наибольшей подкормки, томатам и фасоли достаточно меньшей концентрации СО2. Продолжительность подкормки является фактором, улучшающим возможности прироста урожая. При повторении опытов с подкормкой огурцов в течение 3 месяцев урожай увеличился на 55%. Количество расходуемой углекислоты должно быть пропорционально площади теплицы. Чем меньше расход углекислоты на единицу площади теплицы, тем хуже результаты по приросту урожая и наоборот. Полностью покрыть дефицит СО2 в воздухе возможно только за счёт использования технических источников углекислого газа. В настоящее время существуют три основных группы промышленных технологий подкормки растений в остеклённых и плёночных теплицах, использующие технические источники углекислого газа: прямая газация при помощи пламенных горелок, нагнетание отходящих газов котельной, подача чистого углекислого газа. Для объективного сравнения этих технологий между собой, необходимо рассмотреть эти инженерные решения.

Прямая газация при помощи пламенных горелок

Прямая газация осуществляется путём использование пламенных горелок на природном газе (метан, очищенный от высших углеводородов (пропан, бутан и т.п.), сернистых и прочих примесей), установленных в помещении теплицы. Подкормка производится непосредственно продуктами сгорания. На практике, при этом способе, воздух теплицы, одновременно с попаданием в него СО2, загрязняется соединениями, образующимися при сгорании топлива (из-за присутствия в нем микропримесей минеральной пыли, соединений серы и проч.), вредными для растений и человека. Образующийся в продуктах сгорания этилен значительно ускоряет старение растений. Данная технология подкормки сильнейшим образом влияет на агрономический режим в теплице (особенно летом), поскольку горелки нагревают и насыщают водяными парами и фитотоксичными газами воздух в теплице, что небезопасно для растений. Выжигание горелками кислорода из воздуха теплицы создает проблемы для здоровья работающему в ней персоналу. Подкормка прямой газацией огурца и томата применяться не может, из-за сильного влияния на температурно-влажностный режим и присутствия фитотоксичных газов в продуктах сгорания. Для других культур затраты на этот способ не всегда опрадывают его применение.

Нагнетание отходящих газов котельной

При нагнетании отходящих газов котельной, отходящие от котельной газы (дым) очищают с помощью палладиевых катализаторов или водяных скрубберов, охлаждают с отделением водного конденсата и затем подают в теплицу по газопроводам, нередко многократно разбавляя атмосферным воздухом. По этому способу возможны значительные изменения состава продуктов сгорания, зависящие от режима работы котельной, содержание СО2 в дыме может изменяться. Недостатком данной технологии подкормки также является попадание в воздух теплицы сопутствующих продуктов сгорания топлива: окиси углерода, оксидов азота и серы, этилена и бензапирена. Концентрация в дыме этих токсичных соединений сильно зависит от режимов работы котельной. Степень очистки от тех же оксидов азота с помощью палладиевого катализатора составляет не более 40-75%. Даже при многократном разбавлении дымовых газов воздухом, ПДК токсичных компонентов в воздухе рабочей зоны может многократно превышать предельно допустимые концентрации для растений и человека. Главное требование к горелкам котельной – работать в постоянном режиме, сложно выполнить, из-за меняющейся температуры наружного воздуха. Палладиевые катализаторы для очистки отходящих газов весьма дороги.

Подача привозной жидкой углекислоты

Подача к растениям в теплице чистого углекислого газа, распределяемого по системе пластиковых рукавов малого диаметра – более совершенная на сегодня группа технологий. Такой комплекс оборудования использует привозную углекислоту в цистернах или в баллонах, из которых газ через устройства подогрева и регулирования подачи нагнетается под собственным давлением в теплицу к растениям по пластиковым рукавам. Несмотря на удобство и относительную техническую простоту систем, работающих на привозной углекислоте, их эффективное применение осложняется следующим обстоятельством. Подаваемая к растениям углекислота должна иметь высокую чистоту. Подобный высокоочищенный продукт, который подходит для подкормки тепличных растений, стоит достаточно дорого. На практике часты случаи покупки дешёвой жидкой углекислоты из спиртзаводов и химпроизводств, которая плохо очищена и пригодна лишь для технического использования.

В ней могут содержаться значительные примеси сивушных масел, сероводорода и аммиака, этаноламинов, которые отрицательно сказываются на продуктивности растений и здоровье людей. Такую углекислоту не следует использовать для подкормки растений.

Назад

aquariumfan.ru

CO2 в теплице и гроубоксе или преимущество использования CO2 для растений

  1. Влияние углекислого газа на урожайность
  2. Как повысить концентрацию СО2?
  3. Открытый грунт
  4. Закрытый грунт
  5. Какое количество СО2 подавать растениям и в какое время?

Всем еще с уроков биологии известно, как происходят процессы дыхания у растений. Человеческий организм устроен иначе, поэтому мы и прекрасно сосуществуем на нашей планете, зависят друг от друга.

Углекислый газ – это диоксид углерода, который в химии представлен формулой CO2. Это газ без запаха и цвета, незначительный процент которого содержится в воздухе. Именно он является источником чистого углерода для растений, который лежит в основе всех их процессов жизнедеятельности. СО2 играет очень важную роль в процессе фотосинтеза, давая возможность растительному организму производить энергию, необходимую для роста и развития. Без углекислого газа растения попросту погибнут, как человек без кислорода.

Влияние углекислого газа на урожайность

Если растениевод при выращивании растений использует умеренное по мощности освещение растений, то он может не беспокоиться, что его питомцам не хватит углекислого газа, содержащегося в воздухе. СО2 при установке мощных источников света будет недостаточно, чтобы культуры могли полностью поглотить и использовать получаемую световую энергию.

Давая растениям дополнительное количество углекислого газа совместно с мощным освещением, садовод помогает им поглощать больше света, что положительно сказывается на проведении процесса фотосинтеза. В результате они начинают быстрее расти, формировать более пышные соцветия и сочные плоды, которые содержат в себе значительно большее количество вкусоароматических веществ. В результате растениевод получает урожай не только немного раньше, но и в значительно большем количестве. Соцветия и плоды вырастают более сочными и объемными, что говорит об улучшении их качества.

Еще одна положительная сторона использования СО2 в теплицах и гроубоксах – представители флоры становятся более устойчивыми к повышенным температурам и световым ожогам. Они могут отлично себя чувствовать при показателях термометра в 30-35 градусов.

Как повысить концентрацию СО2?

Открытый грунт

Повысить уровень концентрации углекислого газа в воздухе в открытом грунте не так-то просто. Из-за свободного движения воздушных масс он быстро улетучивается с места высадки. Даже для незначительного поднятия процента его содержания садоводам потребуется большое количество газа и энергии, что станет попросту неоправданным. Его положительное влияние попросту сведется на нет. Однако есть все же один способ. Он подразумевает внесение в грунт органических удобрений, которые в процессе разложения выделяют углекислый газ. Это продолжается достаточно долго, что позволяет насытить приближенные к растениям слои воздуха СО2.

Закрытый грунт

В закрытом грунте дела обстоят совершенно иначе. Благодаря тому, что растения выращиваются в закрытом пространстве, повысить концентрацию углекислого газа в них достаточно просто. Сразу хотелось бы уточнить, что ценовая политика всех наиболее распространенных способов довольно широка, поэтому каждый гровер должен в первую очередь ориентироваться на свой кошелек. Также все будет зависеть от площади культивации и количества растущих культур.

Повысить уровень СО2 в теплице или гроубоксе можно следующими способами:

  • Генератор углекислого газа

Представляет собой специальное устройство, которое образовывает СО2 путем сжигания пропана и этилового спирта. Контроль над его работой осуществляется с помощью автоматики, представленной датчиком измерения концентрации углекислого газа. С его помощью можно легко поддерживать необходимый уровень СО2 в закрытом пространстве. Генератор больше подходит для больших теплиц, поскольку требует существенных финансовых вложений, часть из которых пойдет на дополнительное обустройство самого помещения, ведь должны быть соблюдены все меры безопасности. Также стоит отметить, что генератор повышает уровень влажности и температуры в замкнутом пространстве. Поэтому лучше всего устанавливать его за пределами теплицы;

  • Сжатый углекислый газ в баллонах

Это наиболее приемлемый способ насыщения теплиц и больших гроуромов СО2, однако цена на него все же является высокой для любительского садоводства. Только при солидных посевных площадях он полностью себя оправдывает. Садовод просто ставит баллон с газом в боксе или теплице, и откручивает кран, чтобы СО2 выходил наружу. Минус способа заключается в том, что без датчика концентрации углекислого газа гровер может легко перенасытить им замкнутое пространство, что отрицательно отразится на растительных культурах. Еще одни немаловажный фактор – баллон является взрывоопасным;

  • Ферментация или брожение

Больше подходит для насыщения углекислым газом небольших гроубоксов, поскольку в процессе вырабатывается малое количество СО2, которого хватит только для небольшого количества растений. В боксе размещаются специальные вещества, после чего активируется их процесс брожения, побочным продуктом которого является углекислый газ. Из недостатков ферментации стоит отметить тот факт, что растениевод должен уметь проводить и контролировать этот процесс. Также в брожения выделяется неприятный запах и это может привлечь насекомых;

  • Использование органики

Наиболее популярный среди гроверов способ, который не требует специальных знаний и умений. На рынке прогрессивного растениеводства востребован препарат СО2 Bottle. По сути – это обычная бутыль с сухим веществом органического происхождения внутри, которое при контакте с теплой водой начинает выделять углекислый газ. Большой плюс в том, что такого количества вполне достаточно для насыщения гроубокса. Препарат очень прост в использовании. После добавления воды садоводу нужно убрать специальный стикер, закрывающий выходное отверстие, и встряхнуть бутылку. Бутыль необходимо встряхивать один раз каждые два дня. Всего ее хватает на 3-4 недели, по окончанию ее можно легко наполнить новой порцией с помощью пакета для заправки СО2 Bottle. Данный способ обогащения гроубокса углекислым газом стал наиболее востребованным среди канадских и европейских гроверов благодаря своей простоте и дешевизне;

  • Компостирование

Обогатить воздух в теплице СО2 можно с помощью компостирования, однако этот метод приносит скорее больше хлопот, чем пользы. С самодельным компостом всегда трудно работать, а его результат неоднозначен – никогда не знаешь, сколько углекислого газа вырабатывается. Готовые СО2 бустеры можно приобрести на рынке, но они стоят недешево и вырабатывают слишком большое количество углекислого газа для домашней оранжереи. Также во время компостирования всегда возникает неприятный запах, а сам процесс является гигиеничным;

Представляет собой холодный твердый СО2, в процессе нагревания которого углекислый газ попадает в воздух. Он хорошо проявляет себя, если необходимо резко повысить концентрацию СО2 в закрытом помещении. При постоянном использовании является затратным и долгим способом, который также небезопасен для человека. Пополнять запасы льда придется каждый день, а уровень выделения углекислого газа довольно трудно контролировать.

Какое количество СО2 подавать растениям и в какое время?

Сотни тысяч лет назад концентрация углекислого газа в атмосфере нашей планеты была намного больше, чем сегодня. Поскольку в процессе эволюции растения приспособились к данным условиям, они способны поглощать существенно больше СО2, чем его сегодня находится в воздухе. По заверениям ученых, они могут эффективно использовать до 1500 ppm газа. А поскольку в атмосфере его концентрация сегодня достигает всего лишь 400 ppm, то эффект от повышения его дозировки весьма ощутим. Растения смогут производить гораздо больше энергии в процессе фотосинтеза, что положительно отразится на их росте и производительности – это факт.

Однако стоит понимать, что в первую очередь на эффективность процесса фотосинтеза влияет именно мощность света. Дело в том, что при низкой концентрации СО2 растительные культуры способны перерабатывать не всю поступающую им световую энергию. Поэтому, если Вы решили повысить контракцию углекислого газа в теплице или гроубоксе, то непременно стоит позаботиться о мощном освещении.

Опытные гроверы советуют поддерживать концентрацию углекислого газа в закрытом грунте на уровне в 1200-1500 ррm. Такой показатель является наиболее оптимальным. Однако он актуален только при использовании ДНаТ или LED светильников мощностью не менее 600 Вт на площади культивации в 1 м2. При меньшей освещенности его следует снизить. Также растениеводу следует понимать, что в ночное время, когда растение отдыхает, оно не поглощает углекислый газ. Это значит, что при выключенном свете нужда в его поступлении отпадает. Всегда следует отключать «обогатитель» СО2 на ночь.

Профессионалы рекомендуют обогащать гроубокс СО2 в следующих случаях:

Такой режим поможет гроверу сэкономить ресурс преобразователя СО2 и не повлияет на эффективность использования.

agrodom.com

Со2 для аквариума своими руками, видео, генератор co2 для растений

Самый простой и дешевый способ обеспечить аквариум углекислым газом, это построить генератор СО2 на основе дрожжей.

Да, да. Банальных дрожжей. Да, они у вас есть на кухне.

Все, что нам потребуется: герметичная пластиковая, или стеклянная бутылка, трубка и дрожжи.

Бутылку можно выбрать любую, лишь бы герметично закрывалась. Отдавайте предпочтение бутылкам объема в 1.5/2 литра…

Большие бутылки позволяют добавлять большие объемы воды, что в конечном счете, разбавляет алкоголь, который появится в результате брожения, прежде, чем алкоголь убьет дрожжи.

Соответственно, время, на которое хватит одного такого генератора, более длительно.

Трубку можно взять любую, но лучше отдать предпочтение специфичным, которые способны выдержать прохождение углекислого газа без образования трещин в своей структуре.

СО2 для аквариума своими руками.

Большинство резиновых трубок будет повреждено подобным образом.

Инструкция по созданию подачи со2 своими руками

Шаг 1

Сверлим отверстие в крышке бутылки чуть меньше, чем диаметр используемой трубки. При необходимости отверстие будет проще расширить, чем загерметизировать, в случае просверливания большего отверстия, чем диаметр трубки.

Шаг 2

Обрежьте конец трубки по диагонали, это облегчит пропускание трубки через отверстие в крышке. Проденьте трубку через крышку бутылки. Проконтролируйте герметичность стыка крышки и трубки во избежании утечки СО2.

Шаг 3

Собираем систему подачи, то есть навинчиваем крышку с трубкой на бутылку и готовим смесь по какому-либо распространенному рецепту. Один из популярнейших рецептов приведен по ссылке внизу этой статьи.

Несколько важных моментов о генераторах СО2:

  • Во-первых, они находятся по давлением. Маловероятно, что давление самодельного генератора хватит для того, чтобы разорвать бутылку, но при засорившейся трубке подачи это возможно. Но, чисто теоретически.Некоторые умельцы добавляют обратный клапан, между аквариумом и генератором СО2, для предотвращения попадания в аквариум дрожжевой смеси. Лично я никогда не видел, чтобы при нормально подготовленном самодельном генераторе дрожжи попадали в аквариум.Это становиться возможным при переполнении или встряхивании смеси. По мне, обратный клапан только добавит возможную точку утечки СО2.
  • Во-вторых, нельзя сжимать бутылку. Как только вы ее отпустите, она тут же засосет воду из аквариума, которая зальет ваш генератор. Это нарушит течение реакции и привнесет микроорганизмы из аквариума, которые начнут конкурировать с дрожжами, что приведет к неизвестным последствиям: от загнивания до заражения газообразующей смеси.
  • В-третьих, герметичность крайне важна. Маленькая утечка приведет к неработоспособности генератора, и появлению процессов гниения в смеси.

Подробнее рецепт СО2 и его преимущества расписаны в статье: Рецепт СО2 для аквариума. Интенсивность или длительность

Рекомендую по теме:

Безнапорный генератор CO2 для аквариума

Можно пропустить введение и эксперименты, и сразу перейти к описанию конструкции Циклического безнапорного генератора. Это лучший вариант на сегодня.

В последнее время в моём аквариуме плохо растут растения. Валлиснерия еле выживает. Криптокорина и подобные растения размножаются так медленно, что все листы успевают обрасти чёрной бородой.

Однажды у меня уже был аквариум с сочными зелёными растениями без чёрной бороды или нитчатки.

  • Аквариум стоял на подоконнике.
  • Мы жили вчетвером в одной комнате коммунальной квартиры.

По этим двум причинам света и углекислого газа было много.

Освещение

Недавно я заменил люминисцентные лампы на светодиодные 2 по 30 вт в аквариуме 200 литров и 2 по 20 вт в аквариуме 100 литров. Теперь при освещении из растений поднимаются пузырьки кислорода. Чаще стали появляться новые листочки.

Пришло время добавлять CO2

Я не собираюсь создавать "голландский" аквариум или "травник". Меня устраивает более-менее естественное биологическое равновесие в аквариуме. Подавление водорослей и буйные растения, требующие прополки — это не равновесие, а особое хобби. Мне интересно использовать новый вид ламп, и самодельный генератор CO2, чтобы посмотреть, что из этого получится. Это не аквариумный интерес, а инженерный интерес. Просто любопытство.

Балонная подача CO2 кажется сложной. Это для профессионалов с красивыми большими подводными садами. Мне до этого пока далеко. Новичкам проще начинать с брагогенератора. Однажды я пробовал получать CO2 из сахара и дрожжей.

схема генератора CO2 на дрожжах

Эксперимент прекратился, так как неудобно каждое утро и вечер переключать краник, чтобы углекислый газ подавался только при наличии освещения. Также мне не нравился запах дрожжей.

Генератор на сахаре и дрожжах — однокомпонентный, и поэтому конструкция простая. Углекислый газ сначала выделяется бурно, потом всё медленнее. Время работы одной заправки — примерно неделя.

С тех пор появились электромагнитные клапаны для автоматизации подачи газа. Был изобретен двухкомпонентный генератор CO2 без дрожжей с использованием лимонной кислоты и соды.

Самодельщики делают генераторы углекислого газа не только для аквариума. CO2 на подоконнике улучшает рост комнатных цветов. CO2 используется в продвинутых ловушках для комаров.

Химия

В присутствии воды лимонная кислота и пищевая сода реагируют и дают в результате цитрат натрия , воду и углекислый газ.

Уравнение реакции: C6H8O7 + 3NaHCO3 (кислота+сода в воде) Na3C6H5O7 + 3h3O + 3CO2 (соль вода газ) без воды реакция не идёт

1 моль (192 грамма) лимонной кислоты даёт 3 моля углекислого газа. Получаемая при этом масса CO2 равна 3×44 = 132 грамма, объём — 66 литров.

Все участвующие в химической реакции компоненты (сода, лимонная кислота, цитрат натрия, вода и углекислый газ) достаточно безопасны и могут использоваться для приготовления пищевых продуктов.

Напорный генератор "сода + лимонная кислота"

Генераторы с лимонной кислотой бывают с обратными клапанами (более стабильные)

схема с обратными клапанами

и без обратных клапанов (более надёжные)

схема без обратных клапанов

Оба типа работают при достаточно большом давлении 1.5-2 атм и используют кран тонкой регулировки подачи CO2, который также служит редуктором для снижения давления. Иногда приходится использовать дроссели, например в виде полой иглы от шприца, для уменьшения подачи кислоты и темпа выхода углекислого газа.

Благодаря двухкомпонентности процесс выработки CO2 более стабильный, так как одна из компонент (лимонная кислота) подаётся малыми порциями по мере необходимости. При снижении давления газа в ёмкости с содой происходит перекачка небольшого количества раствора кислоты в соду. Как только выработка CO2 восстановится и давление повысится, оно также повышается в ёмкости с кислотой. Таким образом в ёмкости с кислотой поддерживается постоянное (достаточно высокое) давление пока она не кончится. Сигналом подачи новой порции кислоты служит снижение давления CO2.

Использование генератора CO2 с повышенным давлением похоже на ис

olyon.ru

СО2 для аквариума - где взять и как сделать своими руками

Доброго времени суток, друзья. Сегодня я хочу осветить тему углекислоты в аквариуме и ее роль для гидрофитов. В связи с тем, что покупные установки СО2 достаточно дорогие, аквариумисты начали искать способы изготовления установок СО2 собственноручно. В этой сфере деятельности удалось добиться некоторых результатов и успешно применять их на практике. 

В сегодняшней статье я постараюсь описать по максимуму какие вообще есть штуки для подачи углекислоты в аквариум и плюсы и минусы покупных установок с самодельными. Давайте приступать.

Хочу начать с самодельной установки основанной на дрожжевом брожении. Простота изготовления такой установки подачи углекислого газа в аквариум сделала этот способ одним из популярных, не прибегая к дорогостоящим устройствам. Для изготовления такого приспособления вам необходимо взять емкость объемом 1,5-5 литров, дрожжи, вода и сахар.

Как изготовить такое чудо техники? Берете в бутыль насыпаете 100 грамм сахара, кидаете 10 грамм дрожжей и заливаете это все водой. Мой вам совет — не доливайте до самого верха, оставьте пространство до крышки сантиметров 5, так как может произойти беда. Два раза я перестарался и налил многовато воды. Произошла сильная реакция этой смеси, вся муть поднялась до силиконовой шланги и поперла ко мне в аквариум. И представьте мои глаза: Захожу домой и вижу как в аквариуме не видно ни рыб ни растений. В общем первый раз все обошлось более менее удачно, включил усиленную аэрацию и фильтрацию, за сутки от мути избавиться удалось. Но вот второй раз было по хуже: сдохли практически все красные неоны, меченосцы, родостомусы и один жемчужный гурами. После этого я столько много воды не наливаю.

Бражка

Из плюсов такой установки СО2 я считаю простоту изготовления и дешевизну. Минусы следующие: невозможно подавать порционно углекислоту в аквариум, нерегулируемая подача СО2 и быстрота истощения смеси. Когда смесь готова, закройте ее герметично крышкой, в которой предварительно сделайте отверстие для силиконовой трубки. Вставляете трубку в крышку и хорошо замазываете силиконом вокруг, дабы не было утечки углекислого газа наружу а не в аквариум.

После установки готовой смеси, надо немножко подождать, пока начнет протекать реакция. В первое время СО2 будет выделяться в сравнительно малых порциях, затем существенно увеличится подача, а к концу жизни «закваски» опять снизится интенсивность подачи. Получается что мы никак не отрегулируем подачу, а газ будет поступать в аквариум и ночью, что не очень хорошо. В ночное время суток СО2 в аквариуме не нужно, так как растения будут сами его вырабатывать в результате фотосинтеза.

Вы конечно можете взять какой-либо зажимчик и прищемить трубку, однако я не советовал бы такого делать. У вас либо разрушится герметик вокруг шланги, либо от большой концентрации газа среди ночи может разорвать бутылку. Кстати это так же можно назвать минусом такого метода получения углекислоты.

Кроме продуктов брожения можно использовать баллоны низкого давления. Для любителей аквариумов не так давно начали изготавливать специальные баллоны с тонкими стенками. Такие емкости чем-то напоминают обыкновенные баллончики  из-под аэрозолей. Внутрь таких резервуаров закачивают углекислый газ по давлением, который впрыскивается в аквариумный диффузор.

Такие баллоны стоят не дорого и этот вариант будет сравнительно по лучше вышеописанного по одной простой причине: ночью можно спать спокойно и не переживать что в темное время суток в аквариумной воде будет растворено большое количество углекислого газа. Однако как и в первом случае, у вас так же не получится дозировать подачу и будет все делать на глаз. Кроме того, срок жизни подобного баллона будет не намного больше самодельной бражки.

Следующий вариант — использование баллона высокой давки. Этот метод подачи углекислоты в аквариум считается профессиональным. Углекислый газ закачивают в толстостенные баллоны под высоким давлением. К баллону подключают специальный понижающий редуктор чтобы снизить давление. Емкости таких баллонов различны и могут колебаться от 1 до1 40 литров. Величина давления углекислого газа в таком баллоне составляет чуть больше 50 бар. Плюсом такого способа подпитки аквариумных растений углекислотой является то, что такого баллона вам хватит где-то на год.

Баллон высокого давления

Стоимость понижающего редуктора и баллона умеренная и не кусается. Однако так же как и в первых двух описанных случаях остается открытым вопрос дозировки газа. Однако был найден следующий интересный способ: взять игольчатый клапан и настроить его на расход углекислоты. Еще есть вариант применения счетчика пузырьков.

Чтобы избежать частые тесты на концентрацию углекислого газа, можете отрегулировать счетчик пузырьков как нужно. Еще для контроля уровня СО2 в аквариуме есть индикаторы, которые будут менять свою окраску при различной концентрации углекислоты. Если вам такой способ по душе, тогда возьмите за правило каждый вечер вентиль перекрывать чтобы газ в акву ночью не поступал, а утром, когда свет включился, подождите пару часов и може включать снова. Чтобы не париться и постоянно не караулить этот вентиль, можно приобрести электромагнитный клапан, который будет открывать и закрывать вентиль автоматически по таймеру. Ведь все мы люди, все мы человеки, можно забыть открыть или закрыть, поэтому это я считаю идеальным вариантом. Но за это вам придется отвалить некую деньгу, я такими вещами не интересовался, я имею в виду стоимости таких вентилей, поэтому их цену я даже не смогу назвать.

Если вы будете подавать в аквариум углекислый газ повременно и потребление растениями СО2 будет бесконтрольным, то у вас будет постоянно колебаться насыщенность воды углекислым газом. Пожалуй самым оптимальным решением данной проблемы стала бы дорогая установка рН/СО2 контроллер. Данный аппарат будет автоматически поддерживать уровень активной реакции среды, в результате чего вы сможете отследить концентрацию газа в вашем аквариуме.

Принцип работы аппарата основан на учтении соотношения таких показателей, как карбонатная жесткость, водородный показатель, рН и уровень СО2 в аквариуме. Если рН превысило установленный допустимый уровень, контроллер должен запитать специальный электромагнитный клапан. При установлении нормального показателя рН, клапан должен закрыться.

Такой вариант считается идеальным, остается один лишь «маленький» нюанс — установки подобного характера стоят баснословную сумму и далеко не каждый может позволить себе такую игрушку. Так как наши зарплаты оставляют желать лучшего, наши умы толкают нас на пути более дешевого решения задачи, пусть не очень простого. Есть конечно один нюанс такого контроллера: его я советую использовать в аквариумах с сильно мягкой водой, это будет вполне оправдано. Но так как вода из нашего водопровода пересыщена солями, ее жесткость иногда доходит до 30 градусов. Мы может понизить жесткость подливая дистиллированную воду или использовать воду, предварительно очищенную через фильтра. Таким образом мы добиваемся средней жесткости, а в такой воде я считаю бояться не стоит переизбытка углекислоты.

И в завершение данной статьи, которая получилась достаточно объемной, хочу отметить три важных устройства, которые стоят не дорого и при их помощи мы можем вносить углекислый газ в наши аквариумы:

Диффузор

Диффузор представляет собой колокол наполненный углекислым газом. Углекислоту подают сверху, а нижняя часть этого колокола в сторону воды открыта. На этом участке СО2 попадает в наш аквариум. Есть варианты исполнения колоколов, в которых отверстие заделано либо сеткой, либо полупроницаемой мембраной. Однако как показали опыты, устройства подобного характера сильно проигрывают обычным открытым диффузорам, так как всасывание углекислого газа замедляется сеткой, которая достаточно быстро засоряется. Устройство подобного характера не дорогие и идеально подходят для банок небольших объемов.

Диффузор

Реактор

Данная идея считается благоразумной, если вы не хотите даром распылять пузырьки углекислого газа прямо в воде. Реактор имеет вид прозрачного пластикового стакана, сверху которого подведено две струи: углекислого газа и воды. Скорость потока нужно выбрать так, чтобы происходило насыщение аквариумной воды углекислотой непосредственно в установке.

Снизу приспособления устанавливается поролоновая пробка, благодаря которой газ не выходит из реактора, а вода спокойно через него просачивается. Как правило, реакторы подключают к рН контроллеру, что является идеальным вариантом. Такие приспособления как раз идеально подходят для аквариумов больших объемов, где диффузоры будут бессильными.

Реактор

Спираль

И наконец мы подошли к завершению поста, и напоследок хочется отметить простое и старое приспособление для подачи СО2. Газ в таком приспособлении будет подаваться в длинную спираль из стекла, а затем будет подниматься по ней медленно и растворяться в аквариумной воде. Автоматически регулировать уровень подачи у вас тут не получится. Лучше купить такой вариант исполнения приспособления, в котором пузырек газа будет растворен до того, как он достигнет воды. В магазинах вы можете встретить разные модификации такой приспособы, однако принцип остался тот же.

Спираль

На этом на сегодня все, до скорых встреч, друзья.

aqua-blog.com.ua

Углекислый газ для аквариума своими руками видео

СО2 для аквариума своими руками

Периодическая подача углекислого газа в аквариум нужна потому, что в результате фильтрации и аэрации содержание СО2 в воде стремится к нулю. А в таких условиях водоросли в рыбьем домике могут погибнуть. Систему (или генератор) газовой углекислоты можно создать своими руками в домашних условиях. Это не так уж и сложно.

Со школьной скамьи любому человеку известно, что углекислый газ — основа процесса фотосинтеза — усваивается растениями из окружающего воздуха. Благодаря этому, собственно, и происходит рост наземной флоры. И в природной водной среде концентрация СО2 достаточна для развития водных растений.

Такие же условия необходимо создать и в аквариуме, который представляет собой замкнутую ёмкость. Создание концентрации углекислоты в пределах от 3 до 7 миллиграмм на литр аквы — вот необходимое условие, при котором аквариумные растения чувствуют себя нормально. Для этого совсем не обязательно приобретать промышленные углекислотные системы.

Питьевая газированная вода как источник углекислоты

Это настолько элементарно, что многие аквариумисты даже не рассматривают такой способ внесения СО2 в акву. И совершенно напрасно, кстати.

В обычной продаваемой повсюду газировке содержится значительная доза углекислоты (до 10000 миллиграмм на литр в сильно газированной воде).

После открывания бутылки достаточно много газа выходит моментально, но всё равно в напитке остаётся значительная его часть — до 1500 мг/литр.

Если по утрам вносить в аквариумную воду всего по 20 миллилитров газировки на 10 литров воды, то для водной флоры этого будет достаточно.

Простейший способ подачи углекислого газа

Основным элементом является сосуд (двухлитровая пластиковая бутылка, к примеру) с обыкновенной брагой. В бутылку засыпается сырьё для брожения:

  • сахар — 300 г;
  • дрожжи — 0,3 г.

Сырьё заливается 1 литром воды, сахар не размешивается. В бутылочную пробку одним концом герметично вставляется трубка (шланг), а другой конец трубки опускается в воду аквариума. С началом процесса брожения выделяющийся углекислый газ отводится в акву.

Для предотвращения попадания сгустков смеси браги в аквариум к основной ёмкости можно привязать малую пластиковую бутылочку и присоединить ещё 2 трубки, чтобы газ и продукты брожения сначала попадали в малую ёмкость, а уже потом в аквариум.

Этот способ имеет существенные недостатки:

  • невозможность регулировки количества подаваемого в аквариумную воду углекислого газа и нестабильность его подачи;
  • малая продолжительность работы такой системы — до 2 недель.

Генератор СО2 своими руками

Для изготовления работоспособного генератора газа с регулировкой подачи потребуется немного больше материалов и трудозатрат.

Принцип действия установки состоит в постепенной подаче лимонной кислоты из одного сосуда в другой, где находится пищевая сода. Кислота смешивается с содой, и выделяющийся в результате химической реакции СО2 поступает в аквариумный резервуар. Рассмотрим процесс изготовления по этапам работы.

Создание аппарата

Берут две одинаковые литровые пластиковые бутылки. В крышечках необходимо аккуратно просверлить сверлом по дереву по 2 отверстия для последующей установки трубочек (шлангов). Одна трубка с обратным клапаном соединяет ёмкость №1 с ёмкостью №2.

Во вторые отверстия крышечек вставляется трубка-тройник, одно ответвление которой тоже имеет обратный клапан. Шланги с обратными клапанами должны быть вставлены в ёмкость №2, а на центральное ответвление тройника устанавливается небольшой краник для регулировки потока.

Необходимые реактивы

В бутылку №1 заливается водный раствор соды (60 г соды на 100 г воды), а бутылку №2 — раствор лимонной кислоты (50 г кислоты на 100 г воды). Крышечки с трубками должны быть плотно навинчены на бутылки.

Все стыки и отверстия необходимо надёжно загерметизировать смолой или силиконом во избежание утечки газа. Концы первого шланга должны быть опущены в растворы, а левую и правую трубочки тройника необходимо установить выше уровня растворов — через них будет проходить СО2.

Начало работы

Для запуска процесса генерации газа нужно надавить на бутылку №2 (с лимонной кислотой). Кислота через первый шланг поступает в раствор соды, и происходит реакция с выделением углекислого газа. Обратный клапан патрубка не позволяет раствору соды под давлением попадать в ёмкость №2.

Выделяющийся газ проходит по двум направлениям:

  • в бутылку с лимонной кислотой, создавая давление для непрерывной генерации,
  • в центральный патрубок тройника, по которому СО2 поступает в аквариум.

С помощью краника можно регулировать газовый поток. Если вместо самодельного тройника использовать шланги от медицинской капельницы, то дополнительно появится счётчик пузырьков газа, что очень удобно для создания точной концентрации СО2 в аквариумной воде.

Альтернативные установки

Существуют также способы подачи СО2 от специальных газовых баллонов или с использованием огнетушителей. Отдельные умельцы реализуют такие методы.

Питание водной флоры углекислым газом является залогом их нормального роста и жизни. Для обеспечения этого процесса в домашних условиях достаточно минимум подручного материала, немного настойчивости и совсем небольшие финансовые затраты.

Видео по теме: создание СО2 реактора для аквариума своими руками.

aquariumguide.ru>

СО2 для аквариума и все ,что нужно об этом знать.

СО2 — что это такое? 

Рано или поздно перед каждым серьезным аквариумистом встает вопрос о снабжении аквариума СО2. И неспроста. Зачем он нужен аквариумным растениям? Итак, СО2 — что это такое?

Все мы знаем, что водные растения питаются в первую очередь углекислым газом, растворенным в воде. Это и есть СО2. В природе растения получают его из водоема, в котором растут. Поскольку объем воды в природных водоемах очень велик, его концентрация в них обычно постоянна. А вот про аквариумы этого сказать нельзя.

Растения быстро используют весь газ СО2 из аквариумной воды, а само по себе восстановление его концентрации не произойдет, потому что аквариум является замкнутой системой. Даже содержащиеся в нем рыбки не смогут восполнить недостаток СО2, так как они выдыхают настолько мизерную его долю, что ее никогда не хватит для растений. А в итоге аквариумные растения перестают расти.

Кроме того, что растения перестают расти из-за недостатка СО2, вода, в которой его содержание низкое, имеет повышенную жесткость (рН), что губительно для них. Даже неопытные аквариумисты наверняка замечали, что после добавления растений водопроводная вода становится более жесткой, чем была в пустом аквариуме. Это объясняется тем, что углекислый газ способствует появлению в воде угольной кислоты, а она понижает жесткость. То есть важно понимать: чем меньше СО2 в воде, тем выше ее рН.

со2 для аквариума

Газировка как источник СО2 для аквариума

Для наноаквариумов до 20 литров связываться с баллонной установкой СО2 не каждый захочет. Можно сделать генератор СО2 на браге или соде. Но можно поступить проще. Есть древний и незаслуженно забытый метод подачи СО2 это использование газированной воды. Газированная вода это своего рода концентрат углекислого газа уже растворенного в воде.

Содержание СО2 в газировке обычно около 5000-10000мг/л, а после открытия бутылки стремится к 1450мг/л. Если посчитать сколько необходимо газированной воды для доведения концентрации СО2 в аквариуме до 10мг/л, то выходит довольно экономично. Свежей газировки нужно всего 20мл на 10л аквариумной воды, что даст 10мг/л СО2 в аквариуме. Достаточно просто по утрам вносить газировку вместе с удобрениями. После стояния, вносить газировку можно и в больших количествах, так как углекислый газ выветривается.

Приблизительно, 1 литра газировки хватит для 10-20л аквариума на месяц. Подойдет любая газированная вода, конечно, кроме соленой. Лучше использовать самые дешевые. Их обычно делают из водопроводной воды :). Больше чем до 10мг/л лучше концентрацию СО2 таким методом не доводить.

Во-первых, не известно сколько углекислоты содержит ваша газировка 5000мг/л или 10000мг/л. Во-вторых, большие колебания концентрации СО2 в аквариуме не желательны. После добавления газировки концентрация будет постепенно снижаться из-за потребления аквариумными растениями. Постоянные колебания СО2 от 10мг/л до нуля и обратно не страшны. Но колебания от 20-30мг/л до нуля гораздо хуже для баланса в аквариуме.

Плюсы метода:

  • не нужен реактор для растворения СО2 и счетчик пузырьков, так как СО2 уже растворен в газированной воде;
  • простота использования;
  • экономичен в краткосрочной перспективе;
  • удобен для наноаквариумов.

Минусы метода:

  • нестабильная концентрация СО2 в аквариуме;
  • цена 1 грамма СО2 самая высокая из перечисленных методов, то есть неэкономичный в долгосрочной перспективе и для аквариумов большого объема;
  • слабая подача СО2 в сравнении с другими методами.

    Несколько практических советов:

    Для большинства растений, в т.ч. редких и трудных, достаточно лишь небольшой подкормки СО2, т.е. лучше недокормить, чем перекормить. Старайтесь держать индикатор в зеленой зоне.

    Тем не менее, если вдруг Вы обнаружите, что индикатор пожелтел или вовсе обесцветился, причин для паники нет.

    со2 для аквариума

  • Если с рыбами все в порядке, воду подменивать не надо, можете снять бутыль и отправить ее на время в холодильник, растения постепенно усвоят избыток углекислоты, наблюдайте за рыбами, в моих аквариумах часто зашкаливали индикаторы, особенно поначалу, но ни одного случая смерти рыб из-за отравления СО2 не было.

    Когда найдены оптимальные условия насыщения, нет смысла перекрывать подачу углекислоты на ночь, небольшой утренний избыток СО2 к вечеру будет выбран растениями, такой режим повторяет суточные колебания газового состава и Рh в естественных водоемах и благотворно сказывается на росте всех растений.

    ВАЖНО: при использовании в качестве реактора наружных фильтров или фильтров других моделей ни в коем случае не подаваете СО2 ДО фильтрующих элементов. СО2 должен подаваться только ПОСЛЕ всех наполнителей, иначе возможна гибель микрофлоры, населяющей фильтрующие материалы.

    При перезарядке бутыли не свешивайте свободный конец трубки с края аквариума – давление фильтра может перегнать воду через край и она потечет на пол.

    Если Вы забывчивы, не советую так же пользоваться колесиком зажима на трубке капельницы. Если закрыть его надолго во время брожения, возросшее внутри давление может разорвать бутыль.

    Не надо ставить бутыль на теплые лампы аквариума – брожение пойдет слишком интенсивно и закончится в короткий срок.

    Если в Вашем хозяйстве несколько аквариумов, советую снабдить каждый из них своей персональной бутылью. В моем хозяйстве есть разные аквариумы емкостью от 150 до 400 литров , я перезаряжаю все бутыли сразу, примерно раз в 10-15 дней.

  • Средства контроля за содержанием углекислого газа в аквариуме.

    Для контроля поступления СО2 в аквариуме существует, собственно, один способ- замер кислотности (РН) и карбонатной жесткости (КН) с последующим определением концентрации СО2 в воде с помощью таблицы Таблица содержания углекислого газа в аквариуме (CO2, СО2) . Несколько удобнее эту процедуру делать с помощью калькулятора calculator.php#j Одна особенность- в нашем калькуляторе, при вводе значения РН, в качестве десятичного знака нужно использовать не запятую, а точку.

    со2 для аквариума

  • На этом же принципе, основано и использование дроп-чекера (ДЧ). ДЧ представляет из себя емкость, в одну часть которой залит эталонный индикаторный раствор- вода с КН 4, в которую добавлен индикатор- аналог теста на РН. Вторая часть емкости открыта и в нее попадает аквариумная вода. Обе части емкости выполнены таким образом, что между индикаторным раствором и аквариумной водой всегда имеется воздушная подушка. Эдакий «сифон наоборот».
  • При повышении концентрации СО2 в аквариумной воде, часть его выходит из нее в воздушную подушку, выравнивая парциальное давление СО2 в воде и воздухе над ней. Одновременно с этим, СО2 растворяется в индикаторном растворе, так же выравнивая парциальное давление. В результате, концентрация СО2 в аквариумной воде и в индикаторном растворе становятся одинаковыми.
  • С изменением концентрации СО2 в индикаторном растворе, изменяется и его РН, на что индикатор реагирует изменением цвета. По его цвету и можно судить о концентрации СО2. При уменьшении концентрации СО2 в воде, все происходит в обратном порядке. Такой себе постоянно действующий тест на РН Дроп чекер своими руками (DIY CO2 Drop Checker) .
  • Очень удобный девайс с одним существенным недостатком- пока все вышеописанные процессы пройдут, проходит 2-3 часа- время запаздывания ДЧ. За это время можно и рыбу всю положить. Поэтому, я бы на этапе отработки подачи газа рекомендовал бы пользоваться тестами и калькулятором, чтоб иметь «мгновенные» значения, а ДЧ использовать для общего контроля в уже установившемся режиме.Счетчик пузырьков.Для отслеживания количества СО2 поступившего в аквариум используется счетчик пузырьков- небольшая прозрачная емкость, заполненная водой и врезанная в магистраль подачи газа. СО2, проходя через него визуально наблюдается в виде пузырьков, проходящих через воду с равными интервалами один от другого Продам баллооборудование CO2, диффузоры (СПб) (пятое фото слева, седьмое фото справа). Опять-таки, не понимаю, зачем платить, когда с таким же успехом можно взять для этой цели фильтр от капельницы))).
  • Под счетчиком пузырьков желательно ставить обратный клапан- чтоб в случае падения давления газа, вода не вытекла в трубку вниз. Обратный клапан, так же, следует ставить перед рябиновой веткой или диффузором в аквариуме. Обратный клапан в системе подачи углекислого газа для аквариума-Пирлинг- пузыряние растений. Несколько субъективный  метод контроля за содержанием СО2 в аквариуме.
  • Однако, факт остается фактом- опытный аквариумист, зная химсостав воды в своем аквариуме и свое освещение, по пузырянию растений вполне может сделать достаточно точный вывод о концентрации СО2 в воде. Тем более, что разные растения на это реагируют по-разному.

Простейший способ подачи углекислого газа

Основным элементом является сосуд (двухлитровая пластиковая бутылка, к примеру) с обыкновенной брагой. В бутылку засыпается сырьё для брожения:

  • сахар — 300 г;
  • дрожжи — 0,3 г.

Сырьё заливается 1 литром воды, сахар не размешивается. В бутылочную пробку одним концом герметично вставляется трубка (шланг), а другой конец трубки опускается в воду аквариума. С началом процесса брожения выделяющийся углекислый газ отводится в акву.

Для предотвращения попадания сгустков смеси браги в аквариум к основной ёмкости можно привязать малую пластиковую бутылочку и присоединить ещё 2 трубки, чтобы газ и продукты брожения сначала попадали в малую ёмкость, а уже потом в аквариум.

Этот способ имеет существенные недостатки:

  • невозможность регулировки количества подаваемого в аквариумную воду углекислого газа и нестабильность его подачи;
  • малая продолжительность работы такой системы — до 2 недель.

Генератор СО2 своими руками

Для изготовления работоспособного генератора газа с регулировкой подачи потребуется немного больше материалов и трудозатрат.

Принцип действия установки состоит в постепенной подаче лимонной кислоты из одного сосуда в другой, где находится пищевая сода. Кислота смешивается с содой, и выделяющийся в результате химической реакции СО2 поступает в аквариумный резервуар. Рассмотрим процесс изготовления по этапам работы.

со2 для аквариума

Создание аппарата

Берут две одинаковые литровые пластиковые бутылки. В крышечках необходимо аккуратно просверлить сверлом по дереву по 2 отверстия для последующей установки трубочек (шлангов). Одна трубка с обратным клапаном соединяет ёмкость №1 с ёмкостью №2.

Во вторые отверстия крышечек вставляется трубка-тройник, одно ответвление которой тоже имеет обратный клапан. Шланги с обратными клапанами должны быть вставлены в ёмкость №2, а на центральное ответвление тройника устанавливается небольшой краник для регулировки потока.

Необходимые реактивы

В бутылку №1 заливается водный раствор соды (60 г соды на 100 г воды), а бутылку №2 — раствор лимонной кислоты (50 г кислоты на 100 г воды). Крышечки с трубками должны быть плотно навинчены на бутылки.

Все стыки и отверстия необходимо надёжно загерметизировать смолой или силиконом во избежание утечки газа. Концы первого шланга должны быть опущены в растворы, а левую и правую трубочки тройника необходимо установить выше уровня растворов — через них будет проходить СО2.

Начало работы

Для запуска процесса генерации газа нужно надавить на бутылку №2 (с лимонной кислотой). Кислота через первый шланг поступает в раствор соды, и происходит реакция с выделением углекислого газа. Обратный клапан патрубка не позволяет раствору соды под давлением попадать в ёмкость №2.

Выделяющийся газ проходит по двум направлениям:

  • в бутылку с лимонной кислотой, создавая давление для непрерывной генерации,
  • в центральный патрубок тройника, по которому СО2 поступает в аквариум.

С помощью краника можно регулировать газовый поток. Если вместо самодельного тройника использовать шланги от медицинской капельницы, то дополнительно появится счётчик пузырьков газа, что очень удобно для создания точной концентрации СО2 в аквариумной воде.

Некоторые хозяева декоративных рыбок с помощью переходника присоединяют выпускной шланг к выходному отверстию внутреннего фильтра. В данном случае происходит диффузия углекислого газа, и он лучше усваивается растениями.ВИДЕОНужно ли СО2 в аквариуме? Какие условия должны быть в аквариуме, что бы углекислота была нужна растениям? Что такое разогнанный аквариум? Узнаете какая основная причина, почему в аквариум нужно вносить СО2. Какие есть варианты внесения СО2 в аквариум? Нужна ли брага на объем аквариума в 200-300 литров? В чем недостатки использования браги в аквариуме? Зачем нужно включать на ночь компрессор в аквариуме, при использовании браги? Может ли взорваться баллон для СО2? Как часто они взрываются? Какая средняя, нормальная температура для растений? Увидите процесс установки СО2 системы от Dennerle.

ЧИСТКА АКВАРИУМА ДЛЯ НОВИЧКОВ.

ФИЛЬТРЫ ДЛЯ АКВАРИУМА,ВИДЫ,ФОТО И ВИДЕО.

НАГРЕВАТЕЛЬ ДЛЯ АКВАРИУМА И ВСЕ ,ЧТО НУЖНО О НЕМ ЗНАТЬ.

aquarium-fish-home.ru>

Углекислый газ в аквариуме ( самодельная система) в действии #2

Как сделать реактор углекислого газа CO2 для аквариума Подводный реактор углекислого газа

Как Сделать самому СО2 систему для аквариумных рас

Как Сделать самому СО2 систему для аквариумных растений Подача углекислого газа в аквариум

Аквариум Со2 диффузор из камня своими руками

Реактор CO2 своими руками.

Углекислый газ СО2 в аквариум своими руками. 10 суток после запуска.

Углекислый газ для растений. Как обеспечить растение углекислым газом.

СО2 в аквариум - брага

Самодельный распылитель углекислого газа CO2 в аквариуме

Похожие статьи

pro-rybok.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта