Растения обитающие на засоленных почвах называются. Задача: по литературным источникам изучить условия обитания растений на засоленных почвах, пронаблюдать за тем, как изменяются и приспосабливаются растения к среде их обитания. Понятие адаптации

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Уменьшение засоленности почвы. Растения обитающие на засоленных почвах называются


Уменьшение засоленности почвы

С олонцы– с поверхность не засолены, верхний слой выщелоченный, бесструктурный. Нижние горизонты уплотнены, насыщены ионами натрия, при высыхании растрескиваются на столбы, глыбы. Водный режим нестабильный – весной – застаивание влаги, летом – сильное пересыхание.

Солончаковые

Соланчаковатые солонцы

Солонцеватые почвы (слабо засоленные)

Органическое вещество почвы.

Каждому типу почв соответствует определенный растительный, животный мир и совокупность бактерий – эдафон. Отмирающие или отмершие организмы накапливаются на поверхности и внутри почвы, образуя органическое вещество почвы, называемое гумусом. Процесс гумификации начинается с разрушения и измельчения органической массы позвоночными животными, а затем преобразуется грибами и бактериями. К таким животным относятся фитофаги, питающиеся тканями живых растений, сапрофаги, потребляющие мертвые вещества растений, некрофаги, питающиеся трупами животных, копрофаги, уничтожающие экскременты животных. Все они составляют сложную систему, получившую название сапрофильного комплекса животных.

Гумус различается по виду, форме и характеру составляющих его элементов, которые подразделяются на гуминовые и негуминовые вещества. Негуминовые вещества образуются из соединений, входящих в ткани растений и животных, например, белков и углеводов. При разложении данных веществ выделяется углекислый газ, вода, аммиак. Энергия, образующаяся при этом используется почвенными организмами. При этом происходит полная минерализация элементов питания. Гуминовые вещества в результате жизнедеятельности микроорганизмов перерабатываются в новые, обычно высокомолекулярные соединения – гуминовые кислоты или фульвокислоты.

Гумус подразделяется на питательный, который легко перерабатывается и служит источником питания микроорганизмов и устойчивый, который выполняет физические и химические функции, контролируя баланс питательного вещества, количество воды и воздуха в почве. Гумус плотно склеивает минеральные частицы почвы, улучшая ее структуру. Структура почв также зависит от количества соединений кальция. Выделяют следующие структуры почвы:

  • мучнистую,

  • пороховатую,

  • зернистую,

  • ореховатую,

  • комковатую,

  • глинистую.

Темный цвет гумуса способствует лучшему прогреванию почвы, а его высокая влагоемкость – удержанию воды почвой.

Главное свойство почвы – ее плодородие, т.е. способность обеспечивать растения водой, минеральными солями, воздухом. Мощность гумусового слоя определяет плодородие почвы.

Влажность и аэрация.

Вода почвы подразделяется на:

  • гравитационную,

  • гигроскопическую,

  • капиллярную,

  • парообразную

Гравитационная вода – подвижная, является основной разновидностью подвижной воды, заполняет широкие промежутки между частицами почвы, просачивается вниз под действием силы тяжести, пока не достигнет грунтовых вод. Растения легко усваивают ее.

Гигроскопическая вода в почве удерживается за счет водородных связей вокруг отдельных коллоидных частиц в виде тонкой, прочной связанной пленки. Высвобождается только при температуре 105 – 110оС и практически недоступна для растений. Количество гигроскопической воды зависит от содержания в почве коллоидных частиц. В глинистых почвах ее до 15%, в песчаных – 5%.

По мере накопления количества гигроскопической воды она переходит в капиллярную, удерживающуюся в почве силами поверхностного натяжения. Капиллярная вода легко поднимается к поверхности по порам от грунтовых вод, легко испаряется, свободно поглощается растениями.

Парообразная влага занимает все свободные от воды поры.

Существует постоянный обмен почвенных, грунтовых и поверхностных вод, меняющий свою интенсивность и направленность в зависимости от климата, сезонов.

Все поры, свободные от влаги заполнены воздухом. На легких (песчаных) почвах аэрация лучше, чем на тяжелых (глинистых). Воздушный режим и режим влажности связан с количеством атмосферных осадков.

Экологические группы почвенных организмов.

В среднем почва содержит 2-3 кг/м2 живых растений и животных, или 20-30 т/га. При этом в умеренном поясе корни растений составляют 15 т/га, насекомые 1т, дождевые черви – 500кг, нематоды – 50кг, ракообразные – 40кг, улитки, слизни – 20кг, змеи, грызуны – 20гк, бактерии – 3т, грибы – 3т, актиномицеты – 1,5т, простейшие – 100кг, водоросли – 100кг.

Неоднородность почвы приводит к тому, что для разных организмов она выступает как разная среда. По степени связи с почвой как средой обитания животных объединяют в 3 группы:

  • Геобионты – животные, постоянно обитающие в почве (дождевые черви, первично-бескрылые насекомые).

  • Геофиллы – животные, часть цикла которых обязательно проходит в почве (большинство насекомых: саранчовые, ряд жуков, комары-долгоножки).

  • Геоксены – животные, иногда посещающие почву для временного укрытия или убежища (таракановые, многие полужесткокрылые, жесткокрылые, грызуны и др. млекопитающие).

В зависимости от размеров почвенных обитателей можно разделить на следующие группы.

  • Микробиотип, микробиота – почвенные микроорганизмы, основное звено детритной цепи, промежуточное звено между растительными остатками и почвенными животными. Это зеленые, сине-зеленые водоросли, бактерии, грибы, простейшие. Почва для них – система микроводоемов. Они живут в почвенных порах. Способны переносить промерзание почвы.

  • Мезобиотип, мезобиота – сравнительно мелкие, легко извлекающиеся из почвы, подвижные животные (нематоды, мелкие личинки насекомых, клещи, ногохвостки). Питаются в основном детритом и бактериями. Часто хищники и паразиты. Для них почва – система пещер. Дышат насыщенным влагой почвенным воздухом, но чувствительны к пересыханию. При переувлажнении переживают период в пузырьках воздуха. Способны переносить промерзание почвы.

  • Макробиотип, макробиота – крупные почвенные животные, размером до 20мм (личинки насекомых, многоножки, дождевые черви и т.д.). почва для них – плотная среда, оказывающая сильное механическое сопротивление при движении. Они передвигаются в почве расширяя естественные скважины путем раздвижения почвенных частиц либо роя новые ходы. В связи с этим у них выработались приспособления к рытью. Часто имеются специализированные органы дыхания. Также дышат через покровы тела. На зиму и в засушливый период перемещаются в глубокие почвенные слои.

  • Мегабиотип, мегабиота – крупные землерои, главным образом из числа млекопитающих. Многие из них проводят в почве всю жизнь (златокроты, слепушонки, цокоры, кроты Евразии, сумчатые кроты Австралии, слепыши и др.). Прокладывают в почве систему нор, ходов. У них недоразвиты глаза, компактное, вальковатое тело с короткой шеей, короткий густой мех, сильные компактные конечности, роющие конечности, крепкие когти.

  • Обитатели нор – барсуки, сурки, суслики, тушканчики и др. Кормятся на поверхности, размножаются, зимуют, отдыхают, спят, спасаются от опасности в почвенных норах. Строение характерно для наземных, однако имеют приспособления норных –крепкие когти, сильная мускулатура на передних конечностях, узкая голова, небольшие ушные раковины.

  • Псаммофилы – жители сыпучих песков. Имеют своеобразные конечности, нередко в форме «лыж», покрытых длинными волосками, роговыми выростами (тонкопалый суслик, гребнепалый тушканчик).

  • Галлофилы – жители засоленных почв. Имеют приспособления к защите от избытка солей: плотные покровы, приспособления для удаления солей из организма (личинки пустынных жуков-чернотелок).

Растения подразделяются на группы в зависимости от требовательности к плодородию почвы.

  • Эутотрофные или эвтрофные – растут на плодородных почвах.

  • Мезотрофные – менее требовательные к плодородию почвы.

  • Олиготрофные – довольствующиеся небольшим количеством питательных веществ.

В зависимости от требовательности растений к отдельным микроэлементам почвы выделяют следующие группы.

  • Нитрофилы – требовательны к наличию в почве азота, поселяются там, где есть дополнительные источники азота – растения вырубок (малина, хмель, вьюнок), мусорные (крапива щирица, зонтичные), растения пастбищ.

  • Кальциефилы – требовательны к наличию в почве кальция, поселяются на карбонатных почвах (венерин башмачок, лиственница сибирская, бук, ясень).

  • Кальциефобы – растения, избегающие почв с большим содержанием кальция (сфагнумовые мхи, болотные, вересковые, береза бородавчатая, каштан).

В зависимости от требований к РН почвы все растения подразделяются на 3 группы.

  • Ацидофилы – растения, предпочитающие кислые почвы (вереск, белоус, щавель, щавелек малый).

  • Базифиллы – растения, предпочитающие щелочные почвы (мать-и-мачеха, горчица полевая).

  • Нейтрофилы – растения, предпочитающие нейтральные почвы (лисохвост луговой, овсяница луговая).

Растения, произрастающие на засоленных почвах называются галофиты(солерос европейский, сарсазан шишковатый), а растения не выдерживающие избыточного засоления – гликофиты. Галофиты имеют высокое осмотическое давление, позволяющее использовать почвенные растворы, способны выделять избыток солей через листья или накапливать их в своем организме.

Растения, адаптированные к сыпучим пескам называются псаммофиты. Они способны образовывать придаточные корни при засыпании их песком, на корнях образуются придаточные почки при их обнажении, часто имеют высокую скорость роста побегов, летучие семена, прочные покровы, имеют воздушные камеры, парашюты, пропеллеры – приспособления к незасыпанию песком. Иногда целое растение способно оторваться от грунта, высохнуть и вместе с семенами перенестись ветром в другое место. Всходы быстро прорастают, споря с барханом. Имеются приспособления к перенесению засухи – чехлы на корнях, опробковение корней, сильное развитие боковых корней, безлистные побеги, ксероморфную листву.

Растения, произрастающие на торфяных болотах, называются оксилофитами. Они приспособлены к высокой кислотности почвы, сильному увлажнению, анаэробным условиям (багульник, росянка, клюква).

Растения, обитающие на камнях, скалах, каменистых осыпях относятся к литофитам. Как правило, это первые поселенцы на скальных поверхностях: автотрофные водоросли, накипные лишайники, листовые лишайники, мхи, литофиты из высших растений. Их называют растениями щелей – хасмофитами. Например, камнеломка, можжевельник, сосна.

studfiles.net

2.3.4. Засоление почв

Для почвенного питания растений исключительно важен солевой режим почвы, характеризующийся содержанием и доступностью в почвенном растворе солей элементов, необходимых для жизнедеятельности растений (азота, калия, фосфора, кальция, серы, железа и др.). Такие элементы, как железо, алюминий, обычно содержатся в почве в достаточных количествах для питания растений, другие — азот, фосфор, калий — потребляются растениями в небольших дозах, часто оказываются в недостатке. Для нормального течения многих физиологических процессов расте­ния существенное значение имеет обеспеченность почвы микро­элементами — медью, бором, марганцем, цинком и другими. 25% всех почв нашей планеты в той или иной мере засолено. Избыток солей в почвенном растворе токсичен для большинства расте­ний. Наиболее вредны легкорастворимые соли, без труда проникающие в цитоплазму: NaCl, MgCl2, CaCl2. Менее токсичны труднорастворимые соли: CaSO4, MgSO4, CaCO3.

Среди разных типов засоленных почв основные — солончаки и солонцы, имеющие неодинаковый солевой и водный режимы.

Солончаки — это почвы, постоянно и сильно увлажненные солеными водами вплоть до поверхности, например, вокруг горько-соленых озер. Концентрация солей в почвенном растворе достигает нескольких десятков процентов. Ионы натрия находятся не только в растворе, но и насыщают коллоиды почвенного поглощающего комплекса. Летом с поверхности солончаки высыхают, покрываясь корочкой солей. Солонцы с  поверхности не засолены, верхний слой выщелоченный, бесструктурный. Нижние горизонты уплотнены и насыщены ионами натрия, при высыхании растрескиваются на столбы, глыбы и т. д. Водный режим характеризуется резкими изменениями: весной из-за водонепроницаемости часто наблюдается поверхностное застаивание влаги, летом — сильное пересыхание. Есть ряд промежуточных типов почв: солончаковатые солонцы, солонцеватые, солончаковатые и т. д. [7]

Растения, приспособившиеся к произрастанию с высоким содержанием солей, называют галофитами. В отличие от галофитов, растения, произрастающие не на засоленных почвах, называют гликофитами. Галофиты имеют высокое осмотическое давление, позволяющие им использовать почвенные растворы, так как сосущая сила корней превосходит сосущую силу почвенного раствора. Типичными галофитами являются солерос европейский, сарсазан шишковатый и др.[1]

2.4. Органическое вещество почвы.

Животные и растения, обитающие на почве и в почве, постоянно воздействуют на субстрат, забирая у него питательные вещества. Поэтому каждый раз нарушается только что установившееся химическое равновесие в почве, происходит дальнейшее углубление процессов разложения и выветривания.

Из отмерших растений образовавшаяся органическая субстанция попадает в виде спада листвы и хвои в почву, перерабатывается микроорганизмами и превращается непосредственно или через животные организмы в почвенный гумус. Таким путем она вновь вовлекается в минеральный или пищевой круговорот и может быть в обновленном виде усвоена растениями.

Каждому типу почв соответствует определенный животный мир и определенная растительность. Отмирающие или уже отмершие организмы или их части накапливаются на поверхности и внутри почвы, образуя органическое вещество. Совокупность живущих в почве организмов называют эдафоном.

Несмотря на то, что число микроорганизмов в 1 дм3 почвы измеряется миллионами, в общей массе они составляют только 5% суммарного количества органических соединений. Минеральная субстанция почвы занимает 93%. Органическое вещество почвы, состоящее из отмерших остатков растений и животных, называют гумусом. Таким образом, процесс гумусообразования начинается разрушением и измельчением растительной массы и мертвого животного вещества. Этот процесс осуществляется позвоночными животным при обязательном участии грибов и бактерий. К таким животным относятся фитофаги, питающиеся тканями живых растений; сапрофаги, потребляющие мертвые вещества растений, некрофаги, питающиеся трупами животных; хищники, поедающие живых животные копрофаги, уничтожающие экскременты животных. Все они составляют сложную систему, получившую название сапрофильного комплекса животных.

В круговороте веществ в почве растения синтезируют органическое вещество.

Большую роль в разрыхлении почвы, механическом перемещении органического и минерального вещества играют подвижные почвенные животные (дождевые черви, грызуны и др.).

Животные производят механическое и биохимическое разрушение его и тем самым подготавливают его для гумусообразования. Микроорганизмы синтезируют почвенный гумус и затем разлагают его.

Гумус различают виду, форме и характеру составляющих его элементов (табл.).

Таблица

Важнейшие формы гумуса  (по Г.Францу, 1960)

Форма гумуса

рН

С/N

Минерализация или гумификация

Грубый гумус

Модер

Муль

3,5 – 4,5

4 – 5

5,5 – 7

30 – 40

20 – 25

10 – 20

Медленная

Средняя

Быстрая

Эти элементы могут принадлежать к группе гуминовых или негуминовых веществ. Негуминовые вещества образуются из соединений, входящих в состав живых растений и животных, например, белков и углеводов. При разложении данных веществ выделяются двуокись углерода, вода и аммиак. Энергия, образующаяся при этом, используется почвенными организмами. Распад негуминовых веществ сопровождается полной минерализацией элементов питания, что препятствует дальнейшему накоплению в почве устойчивого органического вещества. Напротив, гуминовые вещества в результате жизнедеятельности микроорганизмов перерабатываются в новые, обычно высокомолекулярные соединения — гуминовые кислоты или фульвокислоты.[7]

В качестве разновидностей гумуса различают гумус питательный и устойчивый. Питательный гумус легко перерабатывается и служит микроорганизмам источником питания, а устойчивый гумус с трудом поддается переработке и выполняет прежде всего физические и химические функции, контролируя баланс питательного вещества, количество воды и воздуха в почве. Таким образом, гумус служит основным поставщиком и резервом элементов питания растений. Темный цвет гумуса способствует лучшему прогреванию почвы, а его высокая влагоемкость—удержанию воды почвой. Гумус прочно склеивает минеральные частицы, образуя комочки, улучшающие структуру почвы. Данные свойства благоприятствуют условиям роста растений на почвах, богатых гумусом. Чрезвычайно своеобразны экологические условия для растений, произрастающих на торфе (торфяные болота), - особой разновидностью почвенного субстрата, образовавшегося в результате неполного распада растительных остатков в условиях повышенной влажности и затрудненного доступа воздуха. Растения, произрастающие на торфяных болотах, называют оксилофитами. [3]

Важнейшим свойством почвы является ее плодородие — способность обеспечивать растения водой, элементами питания и воздухом. Мощность гумусового слоя и содержание гумуса в почве являются одним из важнейших показателей уровня плодородия почв. В подзолистых почвах северных районов России содержится 1—3% гумуса, в более плодородных почвах лесостепной зоны ─ 4—6%. Наиболее богаты гумусом черноземы (обыкновенные ─ 7—8%, тучные — 8—12%).

Так, чернозем обыкновенный тучный глинистый содержит до 70% физической глины, богат карбонатами. Формирующиеся на глине обыкновенные черноземы имеют гумусовый горизонт глубиной 60-70 см, содержание гумуса нередко превышает 10%. Количество гумуса в метровом слое достигает 60 700 т/га, иногда до 800 т/га. Эти черноземы имеют хорошо выраженную водопрочную комковато-зернистую структуру.

Чернозем обыкновенный среднегумусовый на тяжелом лессовидном суглинке широко распространен в правобережной части Саратовской области. Мощность гумусового горизонта не превышает 50-55 см. Содержание гумуса в горизонте около 7-8%, запасы в метровом слое 400-450 т/га. Чернозем обыкновенный среднегумусовый среднемощный приурочен к предбалочным понижениям и малозаметным впадинам на плато и склонах.

В Курганской области из 3,0 млн. га пашни черноземы занимают 65,3%, в комплексе с солонцами — 8,7, серые лесные — 5,0, черноземно-луговые и лугово-черноземные - 4,2, солоди — 0,4, солонцы — 14,9, солончаки — 0,3, пойменные и прочие — 1,2%. Содержание гумуса в почвах колеблется от 4-6 (черноземы обыкновенные) до 1% (солоди). По механическому составу 63,8% всех почв пашни относятся к тяжело-суглинистым, глинистым и тяжелоглинистым, 35,1 — к средне-легкосуглинистым, 1,1% — к песчаным и супесчаным.

Для того чтобы формировался гумус того или иного типа, необходим достаточный дренаж почвы. В условиях переувлажнения разложение идет очень медленно, так как нехватка кислорода ограничивает рост аэробных редуцентов. В таких условия растительные и животные остатки сохраняют свою структуру и, постепенно спрессовываясь, образуют торф, который может накапливаться вплоть до больших глубин.[7]

studfiles.net

по литературным источникам изучить условия обитания растений на засоленных почвах, пронаблюдать за тем, как изменяются и приспосабливаются растения к среде их обитания. Понятие адаптации

Адаптация растений к засолениям почвы2012

Проверил Гладков Е.А.

Выполнила Гусарова Е.И.

15.04.2012

МГУИЭ

Оглавление

  • Введение
  • Понятие адаптации растений
  • Классификация почв в зависимости от степени и типа засоления.
  • Зависимость природного засоления почв от климатических факторов.
  • Примеры растений засоленных почв.
  • Механизмы приспособление растений к условиям засоления.
  • Осморегуляция
  • Соленакапливающие растения
  • Солевыделяюшие растения
  • Соленепроницаемые растения
  • Солелокализующие растения
  • Анатомо-морфологическая характеристика галофитов.
  • Солевое закаливание семян агрокультур.
  • Заключение
  • Словарь
  • Использованные информационные ресурсы при выполнении реферата
Введение

Выбранная тема чрезвычайно актуальна, так как без растений невозможно представить себе жизни на Земле. Они создают условия существования для всех организмов: выделяют кислород, служат источником пищи для всех живых организмов и т.д. Но почти четвертая часть почв всего земного шара засолена в той или иной мере, а потребность введения их в сельскохозяйственный оборот только растёт. Различные факторы способствуют распространению ареала таких почв. Это и активная хозяйственная деятельность человека, вызывающая нарушение экологического равновесия, приводящего, в частности к засолению почв, и регистрируемое изменение глобального климата, и другие причины. На данный момент на Земле тяжелая экологическая ситуация, и многие экологические факторы меняют окружающую среду, а, следовательно, меняются и обитатели этой среды, они приспосабливаются к условиям жизни. Но ведь не только окружающая среда влияет на растения. Растения тоже оказывают влияние на их среду обитания. Именно поэтому, адаптация растений к окружающей среде является особо важным и насущным вопросом в наше время, нуждающимся во всестороннем изучении с целью, как понимания механизмов данных процессов, так и применения полученных научных данных на практике, и в области экологии, и в различных областях хозяйственной деятельности человечества, для гармоничного развития современного общества, требующего всё более высоких стандартов уровня жизни, одним из основополагающих требованием которого, конечно же, является экология.

Целью данной работы является изучение влияния окружающей среды, в частности, засоления почв, на растения и их адаптационные возможности.

Задача: по литературным источникам изучить условия обитания растений на засоленных почвах, пронаблюдать за тем, как изменяются и приспосабливаются растения к среде их обитания.

  • Понятие адаптации растений
Адаптация - это развитие любого признака, который способствует выживанию вида и его размножению. В процессе своей жизнедеятельности растения адаптируются к: загрязнению атмосферы, засолению почвы, различным биотическим и климатическим факторам и т.д. Все растения и животные постоянно адаптируются к окружающей среде. Чтобы понять, как это происходит, необходимо рассматривать не только животное или растение в целом, но и генетическую основу адаптации.

У каждого вида программа развития признаков заложена в генетическом материале. Материал и закодированная в нем программа передаются от одного поколения другому, оставаясь относительно неизменными, благодаря чему представители того или иного вида выглядят и ведут себя почти одинаково. Однако в популяции организмов любого вида всегда присутствуют небольшие изменения генетического материала и, следовательно, вариации признаков отдельных особей. Именно из этих разнообразных генетических вариаций процесс приспособления отбирает те признаки, которые благоприятствуют развитию таких признаков, которые в наибольшей степени увеличивают шансы на выживание и тем самым на сохранение генетического материала. Адаптация, таким образом, может рассматриваться как процесс, посредством которого генетический материал повышает свои шансы на сохранение в последующих поколениях в условиях изменяющейся окружающей среды.

  • Классификация почв в зависимости от степени и типа засоления.
По степени засоления почв различают: незасоленные, слабозасоленные, среднезасоленные. Тип засоления определяется по содержанию анионов в почве: хлоридное, сульфатное, хлоридно-сульфатные и карбонатное. Наиболее вредное влияние оказывает содовое засоление, поскольку в почве сода распадается, образуя сильную щелочь (гидроксид натрия). Соли хорошо растворимы в воде, так что во влажном климате обычно вымываются из почвы атмосферными осадками и сохраняются в ней в ничтожных количествах. В сухом же и жарком климате не только не происходит промывания почвы дождем, но, наоборот, растворы солей поднимаются с восходящим током почвенной воды из глубин субстрата. Вода испаряется, а соли остаются в верхних слоях почвы. Так, в поливной зоне нашей страны насчитывается до 36% засоленных земель. По побережьям морей даже при влажном климате почва насыщена солями.

В зависимости от состава солей различают почвы:

  • хлоридно-сульфатные (избыток хлоридных и сульфатных ионов
  • сульфатно-содовые (избыток сульфатных и карбонатных йонов
  • нитратное (избыток нитратных йонов) и т.д
По степени засоления, т.е. количеству солей, различают почвы:
  • Незасоленные, содержание солей меньше 0,25% на протяжении всех почвенных горизонтов (до 150 см
  • солончаковые √ содержание солей больше 0,25
  • слабосолончаковые - засоление сплошное до 80√150 см
  • солончаковатые √ засоление до 30√80 см
  • солончаковые √ засоление до 5√30 см
  • солончак √ в верхнем горизонте почвы содержится больше 1% солей
Основными типами засоленых почв являются солончаки и солонцы. Почвы солончаков постоянно и сильно увлажнены солеными водами. Летом часто на поверхности солончаков возникает солевая корочка. Почвы солонцов с поверхности не засолены, верхний слой выщелоченный, бесструктурный. Нижние горизонты уплотнены и насыщены ионами натрия. Образование солонцов происходит при вымывании солей.

Особенно сильно действует на растение хлоридное засоление. Избыточная концентрация солей влияет:

  • на величину осмотического давления, которое нарушает водоснабжение растений
  • действует как отравляющее вещество, нарушающее азотный обмен и способствующий накоплению продуктов белкового распада
  • подавляет процессы роста и замедляет синтез белка.
  • Зависимость природного засоления почв от климатических факторов.
В областях с гумидным климатом засоление почв легкорастворимыми солями происходит в исключительных случаях, например, там, где почва увлажняется грунтовыми водами, богатыми солями (побережья морей). Но в жарком, аридном, климате, где осадков недостаточно, чтобы промыть почву, и преобладает испарение, вызывающее восходящий ток воды, богатый солями, засоление — обычное явление, поэтому засоленные почвы особенно широко распространены в южных степях и пустынях.

Преобладают в солончаках соли натрия. Если - почва засолена только хлоридами и сульфатами, то реакция почвенного раствора таких солончаков близка к нейтральной; при содовом засолении (в Западной Сибири, на северо-востоке Казахстана) значение рН почвенного раствора может достигать 9—11.

Но в природе часто наблюдаются случаи, когда из засоленной почвы происходит вымывание солей, т. е. идет рассоление, например, при увлажнении климата или, чаще, при понижении зеркала грунтовых вод. При. рассолении по мере выщелачивания легкорастворимых, особенно натриевых, солей солянковая растительность (например в южных степях) постепенно сменяется сначала полынной, а затем злаковой. Этот процесс называют осолонцеванием, а образующиеся при этом почвы — солонцами. Солонцы в большинстве случаев также засолены хорошо растворимыми солями, которые находятся в под-солонцовом горизонте, и значение рН этого горизонта близко к нейтральному. Для растений имеет значение и структура солонцового горизонта: в сухом состоянии он сильно уплотнен, а во влажном — бесструктурный и мажущийся.

При дальнейшем понижении уровня грунтовых вод связь солонца с ними может разорваться. Легкорастворимые соли постепенно вымываются в самую нижнюю часть промачиваемой толщи. Солонцеватая растительность постепенно сменяется степной, т. е. идет процесс остепнения солонца. Другим направлением эволюции солонцов может быть путь, когда грунтовые воды не понижаются, но если солонец расположен в понижении микрорельефа, то сюда стекают воды и промывают его. В результате образуются солоди, а сам процесс называется осолодением. В степной зоне для таких почв типичны так называемые осиновые кусты, или колки. На юге степной зоны и в полупустынях солонцы и солончаки обусловлены в основном микрорельефом и определяют типичную черту растительности этих регионов — ее комплексность и мозаичность.

  • Примеры растений засоленных почв.
Интересна группа растений галофитов (от греческого слова «гальс» — соль). Они растут на засоленной почве: по берегам морей или в засушливом климате (в зоне степей, полупустынь и пустынь). В засушливом климате с поверхности почвы сильно испаряется вода, а растворенные в ней соли (поваренная соль, сернокислый натрий, сода и др.) поднимаются с водой наверх и остаются в почве. Так образуются солончаки, на которых могут расти только одни галофиты. Обычно в самом центре солончака, где засоление наиболее сильно, растений совсем нет, а только белеют «выцветы» солей. Вокруг лишенного растительности пятна, там, где солей уже меньше, поселяется самое солеустойчивое на свете растение — солерос. Вид у солероса необычный. Это небольшое, высотой от 10 до 30 см, однолетнее травянистое растение. Оно состоит из отдельных члеников, толстых и мясистых. Каждый такой членик представляет сросшийся с листом стебель. Внутри своих тканей солерос накапливает соли. Когда в ткани оказывается слишком много солей, отдельные членики отпадают. Так солерос защищается от избытка солей внутри своего организма. Солерос лучше развивается на засоленной почве. В сосуде слева почва незасоленная, в сосуде справа — засоленная. Посеяны растения одновременно.

Бок о бок с солеросом растет сведа, имеющая стебель и толстые мясистые листья. Она хуже, чем солерос, выдерживает засоление почвы. Несколько иным образом борется с засолением кермек, обладающий прикорневой розеткой листьев. В жаркий солнечный день листья кермека покрывает похожий на муку белый налет. Попробуйте лизнуть этот налет языком, и вы почувствуете солено-горький вкус. Через особые желёзки кермек выделяет избыток солей на поверхность листа, а отсюда их смывает дождь. Так же выделяет соли и среднеазиатский кустарник тамарикс. По самому краю солончака растет особый вид полыни — полынь солончаковая. Она может расти на засоленной почве, но отличается от, солероса и кермека тем, что поглощает из почвы очень мало солей. Галофиты, несомненно, произошли в далеком прошлом от глюкофитов, т. е. растений, растущих на незасоленной почве (от греческого слова «глюкос» — сладкий). В процессе естественного отбора среди глюкофитов, поселявшихся на засоленной почве, выживали те, которые были способны переносить засоление. Теперь многие галофиты уже не могут жить в ином месте и лучше развиваются при сравнительно высоком содержании солей в почве. Их происхождение от глюкофитов подтверждается и тем, что семена многих галофитов лучше прорастают на малозасоленной почве. Обычно осенью, зимой и ранней весной солончак отмывается от солей, вернее соли уходят вместе с дождевой водой в более глубокие слои почвы. Семена солероса прорастают, когда в почве почти совсем нет солей. Затем понемногу соли поднимаются с испаряющейся водой наверх, где их поглощают корни проросшего растения.

Галофит солерос: 1 — общий вид; 2 — веточка; 3 — поперечный разрез веточки.

Своеобразно приспособилась к засолению мангровая растительность. Мангровые растения растут по побережьям тропических морей — в заливах, проливах или в устьях рек, там, куда не доходит морской прибой. Очень часто мангровой растительностью покрыты внутренние берега коралловых атоллов. В тропической части Китая, на острове Хайнань, мангровые представляют собой кустарники значительно выше человеческого роста. В Индонезии некоторые мангровые достигают 20 и более метров высоты.

Большинство мангровых растений — деревья с гладкими кожистыми листьями, они напоминают комнатные фикусы, но стоят как бы на огромных подпорках. Это ходульные корни, они помогают мангровым растениям вынести крону выше уровня прилива. С поверхности почвы поднимаются вверх искривленные дыхательные корни. С их помощью многие мангровые поглощают из атмосферы кислород. В почве мангровым его не хватает, так как она затопляется приливом.

Самое удивительное у многих мангровых то, что это растения живородящие: их семена прорастают на материнском растении. Плоды с проросшими семенами свешиваются с деревьев в виде длинных образований, достигающих у некоторых пород 30 см. На поверхности почвы, где растут мангровые, обычно лежит большое количество таких проростков, отпавших от материнского растения. У многих из проростков на нижнем конце можно заметить корни, идущие в грунт. Все исследователи, изучавшие жизнь мангровых растений, утверждают, что корни на этих проростках образуются очень быстро (за несколько часов), и проросток легко укореняется в илистом либо песчаном грунте. Если бы семя мангровых пород упало в морскую воду непроросшим, оно быстро отравилось бы солями. Однако этого не происходит, потому что семя прорастает на материнском растении. Получая от него питательные вещества и соли, оно приспосабливается к засолению. Оторвавшемуся от материнского растения проростку уже не страшно сильное засоление.

Гребенщи́к (лат. Tamárix) — род кустарников семейства Гребенщиковые (Lauraceae). Известен также под названиями тамари́ск,  тамари́кс, гребенчу́к, Бо́жье де́рево и би́серник, в Астраханской области -жидови́льник, астраханская сирень.

Применяются как декоративные и пескозакрепительные растения.

Представители рода встречаются в пустынях, полупустынях и степях на юге Европы, в Африке и Азии, где являются характерными, часто господствующими растениями. Обычны в тугайных лесах Центральной Азии, где встречается около 15 видов.

Произрастают, преимущественно, вдоль рек в тугайных лесах, на солонцах и солончаках, по краям такыров, а иногда и на барханных песках. В горах Средней Азии поднимаются до 2000 м над уровнем моря; на Кавказе — до 600 м. Нетребовательны к почве, солеустойчивы.

tnu.podelise.ru

Засоление почв | Биология. Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест

Тема:

Почвоведение (Агрономия)

Существуют два основных типа засоленных почв: 1) солончаки и 2) солонцы.

Солончаки содержат соли по всему профилю почвы. У солонцов вредные соли содержатся в нижнем солевом горизонте. Верхний горизонт солонца отмыт от солей. Следующий за ним солонцовый горизонт отличается очень плохими физическими свойствами (бесструктурность), так как в поглощающем комплексе почвы (коллоидная часть) содержится много поглощенного натрия, что и является причиной отрицательных для растений свойств этого горизонта. Таким образом, на солонцах растение ис­пытывает в первую очередь вредное влияние плохих физических свойств солонцового горизонта, а во-вторых, и влияние солей, имеющихся в соле­вом горизонте.

Как известно, засоление почвы, происходящее в засушливом климате, связано с преобладанием процесса испарения воды над процессом промы­вания почвы. Засоленные грунтовые воды поднимаются по капиллярам поч­вы к поверхности. Вода испаряется, а соли остаются в верхних слоях поч­вы. В течение зимы происходит обратное отмывание солей в глубь почвы. Таким образом, от весны к осени количество солей увеличивается снизу вверх, и в верхних слоях почвы накапливается наибольшее количеств солей. От осени к весне наблюдается обратная картина распределения солей: наименьшее их количество наверху и наибольшее на некоторой глубине.

Таблица. Сравнительная степень ядовитости солей для растений в условных единицах (по В. В. Егорову, 1954)

Ядовитые соли

Неядовитые соли

Химический состав соли

Степень ядовитости

Na2SO4

1

 

NaHCO3

3

MgCO3

MgSO4

3-5

CaCO3

MgCl2

3-5

CaHCO3

NaCl

5-0

CaSO4

Na2CO3

10

 

Наиболее ядовитой солью для растения является углекислый натрий. Подвергаясь в почве гидролитическому распаду, он образует едкий натр, крайне ядовитый для растения. В приведенной таблице показана срав­нительная ядовитость солей, в которой за единицу принята ядовитость сер­нокислого натрия (см. таблицу выше).

Отмечают слабое, среднее и сильное засоление почвы в зависимости от содержания в ней солей.

В следующей таблице приводится одна из существующих классифика­ций засоленности почвы.

Таблица. Классификация засоленности почвы

Степень засоления

Содержание солей (в г на 100 г почвы) Материал с сайта http://worldofschool.ru

Незасоленные

менее 0,1

Очень слабо засоленные

0,20—0,25

Слабо засоленные

0,25—0,50

Средне засоленные

0,50—0.70

Сильно засоленные (солончаки)

0,7—1,0 и выше

worldofschool.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта