Проникновение питательных веществ в корни растений происходит благодаря. Поступление питательных веществ в растения. Строение корневой системы. Поступление иона в свободное пространство корня.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Поглощение питательных веществ растениями через корни. Проникновение питательных веществ в корни растений происходит благодаря


Поглощение питательных веществ растениями через корни.

Количество просмотров публикации Поглощение питательных веществ растениями через корни. - 546

За счёт сосущей силы, возникающей при испарении влаги через устьица листьев, и нагнетающего действия корней находящиеся в почвенном растворе ионы минœеральных солей вместе стоком воды могут поступать сначала в полые межклетники и поры клеточных оболочек молодых корешков, а затем транспортироваться в надземную часть растений по ксилеме — восходящей части сосудисто-проводящей системы, состоящей из омертвевших клеток без перегородок, лишенных живого содержимого. При этом внутрь живых клеток корня (как и надземных органов), имеющих наружную полупроницаемую цитоплазматическую мембрану, поглощенные и транспортируемые с водой ионы могут проникать ʼʼпассивноʼʼ — без дополнительной затраты энергии — только по градиенту концентрации — от большей к меньшей за счёт процесса диффузии либо при наличии соответствующего электрического потенциала (для катионов — отрицательного, а анионов — положительного) на внутренней поверхности мембраны по отношению к наружному раствору.

В то же время хорошо известно, что концентрация отдельных ионов в клеточном соке, как и в пасоке растений (транспортируемой по ксилеме из корней в надземные органы) чаще всœего значительно выше, чем в почвенном растворе. В этом случае поглощение питательных веществ растениями должно происходить против градиента концентрации и невозможно за счёт диффузии.

Растения одновременно поглощают как катионы, так и анионы. При этом отдельные ионы поступают в растение совсœем в другом соотношении, чем они содержатся в почвенном растворе. Одни ионы поглощаются корнями в большем, другие — в меньшем количестве и с разной скоростью даже при одинаковой их концентрации в окружающем растворе. Совершенно очевидно, что пассивное поглощение, основанное на явлениях диффузии и осмоса, не может иметь существенного значения в питании растений, носящем ярко выраженный избирательный характер.

Исследования с применением меченых атомов убедительно показали также, что поглощение питательных веществ и дальнейшее их передвижение в растении происходит со скоростью, которая в сотни раз превышает возможную за счёт диффузии и пассивного транспорта по сосудисто-проводящей системе с током воды.

Вместе с тем, не существует прямой зависимости поглощения питательных веществ корнями растений от интенсивности транспирации, от количества поглощенной и испарившейся влаги.

Все это подтверждает положение, что поглощение питательных веществ растениями осуществляется не просто путем пассивного всасывания корнями почвенного раствора вместе с содержавшимися в нем солями, а является активным физиологическим процессом, который неразрывно связан с жизнедеятельностью корней и надземных органов растений, с процессами фотосинтеза, дыхания и обмена веществ и обязательно требует затраты энергии.

Схематически процесс поступления элементов питания в корневую систему растений выглядит следующим образом.

К внешней поверхности цитоплазматической мембраны корневых волосков и наружных клеток молодых корешков ионы минœеральных солей передвигаются из почвенного раствора с током воды и за счёт процесса диффузии.

Клеточные оболочки имеют довольно крупные поры или каналы и легкопроницаемы для ионов. Более того, целлюлозно-пектиновые стенки обладают высокой сорбирующей способностью. По этой причине в пространстве каналов клеточных оболочек и межклетников не только свободно передвигаются, но и концентрируются ионы из почвенного раствора. Здесь создается как бы своеобразный фонд ионов минœеральных солей для последующего поступления внутрь клетки.

Первым этапом поступления является поглощение (адсорбция) ионов на наружной поверхности цитоплазматической мембраны. Она состоит из двух слоев фосфолипидов, между которыми встроены молекулы белков. Благодаря мозаичной структуре отдельные участки цитоплазматической мембраны имеют отрицательные и положительные заряды, за счёт которых может происходить одновременно адсорбция необходимых растению катионов и анионов из наружной среды в обмен на другие ионы.

Обменным фондом катионов и анионов у растений могут являться ионы Н+ и ОН- , а также Н+ и НСО-3 , образующиеся при диссоциации угольной кислоты, выделяемой при дыхании.

Адсорбция ионов на поверхности цитоплазматической мембраны носит обменный характер и не требует затраты энергии. В обмене принимают участие не только ионы почвенного раствора, но и ионы, поглощенные почвенными коллоидами. Вследствие активного поглощения растениями ионов, содержащих необходимые элементы питания, их концентрация в зоне непосредственного контакта с корневыми волосками снижается. Это облегчает вытеснение аналогичных ионов из поглощенного почвой состояния в почвенный раствор (в обмен на другие ионы).

Транспорт адсорбированных ионов с наружной стороны цитоплазматической мембраны на внутреннюю против градиента концентрации и против электрического потенциала требует обязательной затраты энергии. Механизм такой ʼʼактивнойʼʼ перекачки весьма сложен. Она осуществляется с участием специальных ʼʼпереносчиковʼʼ и так называемых ионных насосов, в функционировании которых важная роль принадлежит белкам, обладающим АТФ-азной активностью. Активный транспорт внутрь клетки через мембрану одних ионов, содержащих необходимые растениям элементы питания, сопряжен с встречным транспортом наружу других ионов, находящихся в клетке в функционально избыточном количестве.

Первоначальный этап поглощения питательных веществ растениями из почвенного раствора — адсорбция ионов на поглощающей поверхности корня — постоянно возобновляется, поскольку адсорбированные ионы непрерывно перемещаются внутрь клеток корня.

Поступившие в клетку ионы в неизменном виде либо уже в форме транспортных органических соединœений, синтезируемых в корнях, передвигаются в надземные органы — стебли и листья, в места наиболее интенсивной их ассимиляции. Активный транспорт питательных веществ из клетки в клетку осуществляется по плазмодесмам, соединяющим цитоплазму клеток растений в единую систему — так называемый симпласт. При передвижении по симпласту часть ионов и метаболитов может выделяться в межклеточное пространство и передвигаться к местам усвоения пассивно с восходящим током воды по ксилеме.

Поглощение корнями и транспорт питательных веществ тесно связаны с процессами обмена веществ и энергии в растительных организмах, с жизнедеятельностью и ростом как надземных органов, так и корней.

Процесс дыхания является источником энергии, крайне важно й для активного поглощения элементов минœерального питания. Этим обусловливается тесная связь между интенсивностью поглощения растениями элементов питания и интенсивностью дыхания корней. При ухудшении роста корней и торможении дыхания (при недостатке кислорода в условиях плохой аэрации или избыточном увлажнении почвы) поглощение питательных веществ резко ограничивается.

Стоит сказать, что для нормального роста и дыхания корней необходим постоянный приток к ним энергетического, материала — продуктов фотосинтеза (углеводов и других органических соединœений) из надземных органов. При ослаблении фотосинтеза уменьшается образование и передвижение ассимилятов в корни, вследствие чего ухудшается жизнедеятельность и снижается поглощение питательных веществ из почвы.

Избирательное поглощение ионов растениями. Физиологическая реакция солей.

Различные элементы питания в неодинаковой степени используются в процессах внутриклеточного обмена в растении для синтеза органических веществ и построения новых органов и тканей. Этим определяется неравномерность поступления отдельных ионов в корни, избирательное поглощение их растениями. Больше поступает в растение из почвы тех ионов, которые более необходимы для синтеза органических веществ, для построения новых клеток, тканей и органов. В случае если в растворе присутствует Nh5Cl, то растения будут интенсивнее и в больших количествах поглощать (в обмен на ионы водорода) катионы Nh5+ поскольку они используются для синтеза аминокислот, а затем и белков В то же время ионы Cl - необходимы растению в небольшом количестве, и в связи с этим поглощение их будет ограниченным В почвенном растворе в данном случае будут накапливайся ионы H+ и CI- (соляная кислота), произойдет ею подкисление В случае если в растворе содержится Na NO3, то растение будет в больших количествах и быстрее поглощать анионы NO3- , в обмен на анионы НСO3- В растворе будут накапливаться ионы Na+ и НСO3- (Na НСO3), произойдет его подщелачивание Избирательное поглощение ранениями катионов и анионов из состава соли обусловливает ее физиологическую кислотность или физиологическую щелочность Соли, из состава которых в больших количествах поглощается анион, чем катион,— Na NO3, K NO3, Ca(NO3)2 — и в результате происходит подщелачиванне раствора, являются физиологически щелочными. Соли, из коюрых катион поглощается растениями в больших количествах, чем анион,— Nh5Cl, (Nh5)2SO4, (Nh5)2CO3, KC1, K2SO4, — и в результате происходит подкисление раствора, являются физиологически кислыми. Физиологическая реакция солей, используемых в качестве минœеральных удобрений, обязательно должна ) учитываться во избежание ухудшения условий роста и развития сельскохозяйственных культур.

Влияние условий внешней среды и микроорганизмов на поглощение питательных веществ растениями

Поглощение растениями пита1ельиых веществ в большой степени зависит от свойств почвы — реакции и концентрации почвенною раствора, температуры, аэрации, влажности, содержания в почве доступных форм питательных веществ, продолжительности и интенсивности освещения и других условий внешней среды. Поступление питательных веществ в растение заметно снижается при плохой аэрации почвы, низкой температуре, избытке или резком недостатке влаги в почве. Особенно сильное влияние на поступление питательных веществ оказывают реакция почвенного раствора, концентрация и соотношение солей в нем. При избыточной концентрации солей в почвенном растворе (к примеру, в засоленных почвах) поглощение растениями воды и питательных вещее IB резко замедляется.

Корни растений имеют очень высокую усвояющую способность и могут поглощать питательные вещества из сильно разбавленных растворов.

Важное значение для нормального развития корней имеет также соотношение солей в растворе, его физиологическая уравновешенность. Физиологически уравновешенным принято называть раствор, в котором отдельные питательные вещества находятся в таких соотношениях, при которых происходит наиболее эффективное использование их растением Раствор, представленный какой-либо одной солью, физиологически неуравновешен.

Одностороннее преобладание (высокая концентрация) в растворе одной соли, особенно избыток какого-либо одновалентного катиона, оказывает вредное действие на растение Развитие корней происходит лучше в многосолевом растворе В нем проявляется антагонизм ионов, каждый ион взаимно препятствует избыточному поступлению другого иона в клетки корня К примеру, Са3+ в высоких концентрациях тормозит избыточное поступление K+, Na+ Mg2+ и наоборот Такие же антагонистические отношения существуют и для ионов K+ и Na +, K+ и Nh5+, K+ и Mg2+, NO3- и h3PO4, Cl- и h3PO4- и др.

Физиологическая уравновешенное IB легче всœего восстанавливается при введении в раствор солей кальция При наличии кальция в растворе создаются нормальные условия для развития корневой системы, в связи с этим в искусственных питательных смесях Са2+ должен преобладать над другими ионами. Особенно сильно ухудшается развитие корней и поступление в них питательных веществ при высокой концентрации ионов водорода, т е при повышенной кислотности раствора Высокая концентрация в растворе ионов водорода оказывает отрицательное влияние на физико-химическое состояние цитоплазмы клеток корпя Наружные клетки корня ослизняются, нарушается их нормальная проницаемость, ухудшается рост корней и поглощение ими питательных веществ. Отрицательное действие кислой реакции сильнее проявляется при отсутствии или недостатке других катионов, особенно кальция, в растворе Кальций тормозит поступление ионов H+,, в связи с этим при повышенном количестве кальция растения способны переносить более кислую реакцию, чем без кальция

Реакция раствора оказывает влияние на интенсивность поступления отдельных ионов в растение и обмен веществ

Влияние СаСl2 на рост корней пшеницы при различной кислотности раствора  
Варианты опытов Элемент питания, в расчете на  
5,3 4,9 4,7 4,3 4,0  
Без СаСl2  
С СаСl2  

При кислой реакции повышается поступление анионов (вместе с ионами Н+), но затрудняется поступление катионов, нарушается питание растений кальцием и магнием и тормозится синтез белка, подавляется образование Сахаров в растении. При щелочной реакции усиливается поступление катионов и затрудняется поступление анионов.

Основной запас питательных веществ находится в почве в форме различных труднорастворимых соединœений, для усвоения которых крайне важно активное воздействие корней на твердую фазу почвы и тесный контакт между корнями и частицами почвы. В процессе жизнедеятельности растений корпи выделяют в окружающую среду углекислоту и некоторые органические кислоты, а также ферменты и другие органические вещества. Под влиянием этих выделœений, концентрация которых бывает особенно высокой в зоне непосредственного контакта корней с частицами почвы, происходит растворение содержащихся в ней минœеральных соединœений фосфора, калия и кальция, вытеснение в раствор катионов из поглощенного почвой состояния, высвобождение фосфора из его органических соединœений.

Питательные вещества наиболее активно усваиваются растениями из той части почвы, которая находится в непосредственном контакте с корнями. По этой причине всœе мероприятия, способствующие лучшему развитию корней (хорошая обработка почвы, известкование кислых почв и т. д.), обеспечивают и лучшее использование растениями питательных веществ из почвы.

Питание растений осуществляется при тесном взаимодействии с окружающей средой, в т.ч. с огромным количеством разнообразных микроорганизмов, населяющих почву. Количество микроорганизмов особенно велико в ризосфере, т. е. в той части почвы, которая непосредственно соприкасается с поверхностью корней. Используя в качестве источника пищи и энергетического материала корневые выделœения, микроорганизмы активно развиваются на корнях и вблизи них и способствуют мобилизации питательных веществ почвы.

Ризосферные и почвенные микроорганизмы играют важную роль в превращении питательных веществ и вносимых в почву удобрений. Микроорганизмы разлагают находящиеся в почве органические вещества и вносимые органические удобрения, благодаря чему содержащиеся в них элементы питания переходят в усвояемую для растений минœеральную форму. Некоторые микроорганизмы способны разлагать труднорастворимые минœеральные соединœения фосфора и калия и переводить их в доступную для растений форму. Ряд бактерий, усваивая молекулярный азот воздуха, обогащает почву азотом. С жизнедеятельностью микроорганизмов связано также образование в почве гумуса.

При определœенных условиях в результате деятельности микроорганизмов питание и рост растений могут ухудшаться. Микроорганизмы, как и растения, потребляют для питания и построения своих тел азот и зольные элементы, т. е, являются конкурентами растений в использовании минœеральных веществ. Не всœе микроорганизмы полезны для растений. Некоторые из них выделяют ядовитые для растений вещества или являются возбудителями различных заболеваний. В почве имеются также микробы, восстанавливающие нитраты до молекулярного азота (денитрификаторы), в результате их деятельности происходят потери азота из почвы в газообразной форме.

В связи с этим одна из важных задач земледелия — создание соответствующими приемами агротехники благоприятных условий для развития полезных микроорганизмов и ухудшение условий для развития вредных.

Отношение растений к условиям питания в разные периоды роста

В разные периоды роста растения предъявляют неодинаковые требования к условиям внешней среды, в т.ч. и к питанию. Поглощение растениями азота͵ фосфора и калия в течение вегетации происходит неравномерно. Следует различать критический период питания (когда размеры потребления бывают ограниченными, но недостаток элементов питания в STO время резко ухудшает рост и развитие растений) и период максимального поглощения, который характеризуется наиболее интуитивным потребле иием питательных веществ.

Рассмотрим общие закономерности в потреблении питательных веществ растениями в течение вегетации. В начальный период развития растения потребляют относительно небольшие абсолютные количества всœех питательных веществ, но весьма чувствительны как к недостатку, так и к избытку их в растворе.

Начальный период роста — критический в отношении фосфорного питания. Недостаток фосфора в раннем возрасте настолько сильно угнетает растения, что урожай резко снижается даже при обильном питании фосфором в последующие периоды .

Вследствие высокой напряженности синтетических процессов при слаборазвитой еще корневой системе молодые растения особенно требовательны к условиям питания. Следовательно, в прикорневой зоне в данный период питательные вещества должны находиться в легкорастворимой форме, но концентрация их не должна быть высокой, с преоблала-нием фосфора над азотом и калием. Обеспечение достаточного уровня снабжения всœеми элементами с начала вегетации имеет важное значение для формирования урожая. Так, у злаковых зерновых культур уже в период развертывания первых трех-четырех листочков начинается закладка и дифференциация репродуктивных органов — колоса или метелки. Недостаток азота в данный период даже при усиленном питании в последующем приводит к уменьшению числа колосков в метелке или колосœе и снижению урожая.

Размеры потребления всœех элементов питания растениями значительно возрастают в период интенсивного роста надземных органов — стеблей и листьев. Темпы накопления сухого вещества могут опережать поступление питательных веществ, а относительное их содержание в растениях снижается по сравнению с предшествующим периодом. Ведущая роль в ростовых процессах принадлежит азоту. Повышенное азотное питание способствует усиленному рос ту вегетативных органов, формированию мощного ассимиляционного аппарата. Недостаток же азота в данный период приводит к угнетению роста͵ а в последующем — к снижению урожая и его качества.

Ко времени цветения и начала плодообразования потребность в азоте у большинства растений уменьшается, но возрастает роль фосфора и калия. Это обусловлено физиологической ролью последних —их участием в синтезе и передвижении органических соединœений, обмене энергии, особенно интенсивно происходящих при формировании репродуктивных органов и образовании запасных веществ в товарной части урожая.

В период плодообразования, когда нарастание вегетативной массы заканчивается, потребление всœех питательных веществ постепенно снижается, а затем их поступление приостанавливается. Дальнейшее образование органического вещества и другие процессы жизнедеятельности обеспечиваются в основном за счёт повторного использования (реутилизации) питательных веществ, ранее накопленных в растении.

Различные сельскохозяйственные культуры отличаются по размерам и интенсивности поглощения питательных элементов в течение вегетационного периода Все зерновые злаковые (за исключением кукурузы), лен, конопля, ранний картофель, некоторые овощные культуры отличаются коротким периодом интенсивного питания — основное количество питательных веществ потребляют в сжатые сроки. К примеру, озимая рожь уже за осœенний период поглощает 25—30% всœего количества питательных веществ, тогда как сухая масса растений за это) период достигает всœего лишь 10% конечного урожая.

Яровая пшеница за сравнительно короткий промежуток— от выхода в трубку до конца колошения (около месяца) — потребляет 2/3-3/4 всœего количества питательных веществ.

Средне- и позднеспелые сорта картофеля наибольшее количество питательных вещее IB потребляют в июле: за данный месяц поглощается почти 40% азота͵ более 50 — фосфора и 60% калия от конечного содержания их в урожае. Ранние сорта картофеля отличаются еще более сжатым сроком интенсивного потребления питательных веществ.

Лен имеет ярко выраженный период максимального потребления элементов минœерального питания — от фазы бутонизации до цветения, а хлопчатником основное количество питательных веществ потребляется с начала бутонизации до массового образования волокна в коробочках.

Некоторые растения, к примеру подсолнечник и сахарная свекла, характеризуются более плавным и растянутым потреблением питательных веществ, поглощение которых продолжается почти до конца вегетации.

Отдельные элементы питания поглощаются растениями с различной интенсивностью: у кукурузы, к примеру, наиболее быстрыми темпами идет потребление калия, затем азота и значительно медленнее поглощается фосфор.

Поглощение калия полностью заканчивается к периоду образования метелок, а азота — к периоду формирования зерна. Поступление фосфора более растянуто и продолжается почти до конца вегетации.

Конопля в первый месяц очень интенсивно поглощает азот и калий. Поступление азота полностью завершается через 3, а калия — через 5 недель после появления всходов, тогда как интенсивное поглощение фосфора продолжается почти до конца вегетации.

Потребление базовых элементов питания сахарной свеклой также происходит неравномерно. В первую декаду после всходов отношение Р : N : К в растениях равно 1,0 : : 1,5 : 1,4. Далее в период интенсивного нарастания листьев это соотношение изменяется в сторону увеличения поглощения азота и калия, составляя в мае 1,0 ; 2,5 : 3,0, в июне— 1,0 : 3,0 : 3,5, в июле 1,0 : 4,0 : 4,0. В августе, когда происходит образование корней и накопление в них сахара, соотношение между этими элементами становится 1,0 i 3,6 I : 5,5, т. е. особенно сильно увеличивается поглощение калия. Слишком обильное азотное питание в период образования корня и накопления в нем сахара нежелательно, так как стимулирует рост ботвы в ущерб росту корня и сахаронакоплению. В данный период очень большое значение имеет достаточный уровень обеспеченности растений калием и фосфором.

Неодинаковая количественная потребность и интенсивность поглощения растениями отдельных элементов питания должна учитываться при разработке системы применения удобрений. Особенно важно обеспечить благоприятные условия питания растений с начала вегетации и в периоды максимального поглощения. Это достигается сочетанием различных способов внесения удобрений: в основное удобрение до посœева, при посœеве и в подкормки.

Задача основного удобрения — обеспечение питания растений на протяжении всœей вегетации, в связи с этим до посœева в большинстве случаев применяют полную норму органических удобрений и подавляющую часть минœеральных. Припосœевное удобрение (в рядки, при посадке в лунки, гнезда) в относительно небольших дозах вносят для снабжения растений в начальный период развития легкодоступными формами питательных веществ, прежде всœего фосфора. Важно заметить, что для снабжения растений элементами питания в наиболее ответственные периоды вегетации применяются подкормки в дополнение к основному и припосœевному удобрению (в отдельных случаях в подкормки может вноситься значительная доля общей нормы удобрений, к примеру азота под озимые, хлопчатник и т. д.). Выбор срока, способа внесения удобрений и заделки их в почву зависит не только от особенностей биологии, питания и агротехники культур, по и от почвенно-климатических условий, вида и формы удобрений. Регулируя условия питания растений по периодам роста в соответствии с их потребностью путем внесения удобрений, можно направленно воздействовать на величину урожая и его качество.

referatwork.ru

Механизм поглощение питательных веществ корнями — Мегаобучалка

За счет сосущей силы, возникающей при испытании влаги через устьица листьев, и нагнетающего действия корней находящиеся в почвенном растворе ионы минеральных солей вместе с током воды могут поступать сначала в полые межклеточники и поры клеточных оболочек молодых корешков, а затем транспортироваться в надземную часть растений по ксилеме – восходящей части сосудисто-проводящей системы, состоящей из омертвевших клеток без перегородок, лишенных живого содержимого.

Однако, внутрь живых клеток корня ( как и надземных органов), имеющих наружную полупроницаемую цитоплазматическую мембрану, поглощенные и транспортируемые с водой ионы могут проникать несколько иначе.

«Пассивное» поглощение – т.е. без дополнительной затраты энергии – только по градиенту концентрации – от большей к меньшей за счет процесса диффузии, либо при наличии соответствующего электрического потенциала ( для катионов – отрицательного, а анионов – положительного) на внутренней поверхности мембраны по отношению к наружному раствору.

Диффузия – передвижение молекул газов, жидкостей или растворенного вещества по градиенту концентрации – зависит от градиента концентрации поглощенных веществ и площади, через которую проходят вещества или ионы. Постоянное прохождение ионов через плазмалемму влечет непрерывный подток к ней новых ионов для выравнивания концентрации.

Часть общего объема тканей корневой системы, в которую ионы поступают и из которой выделяются вследствие диффузии, называют свободным пространством. Оно составляет около 4 – 6 % общего объема корня и локализовано в рыхлой первичной оболочке клеточных стенок вне протопласта снаружи от плазмалеммы.

Однако в растительных организмах питательные элементы, как правило, находятся в значительно более высоких концентрациях, чем в окружающем их питательном растворе. Более того, поступление отдельных элементов и их концентрирование осуществляется различно и не соответствует соотношению концентраций элементов в питательном растворе. Это происходит благодаря плазмолемме, которая предотвращает потерю веществ, накопленных клеткой путем диффузии, одновременно обеспечивая проникновение воды и элементов минерального питания.

В этом случае поглощение питательных веществ растениями должно происходить против градиента концентрации и невозможно за счет диффузии.

Растения одновременно поглощают как катионы, так и анионы. При этом отдельные ионы поступают в растение в совсем другом соотношении, чем они содержатся в почвенном растворе. Одни ионы поглощаются корнями в большем, другие – в меньшем количестве и с разной скоростью даже при одинаковой их концентрации в окружающем растворе. Совершенно очевидно, что пассивное поглощение, основанное на явлениях диффузии и осмоса, не может иметь существенного значения в питании растений, носящем ярко выраженный избирательный характер.

Исследования с применением меченых атомов показали также, что поглощение питательных веществ и дальнейшее их передвижение в растении происходит со скоростью, которая в сотни раз превышает возможную за счет диффузии и пассивного транспорта по сосудисто – проводящей системе с током воды.

Кроме того, не существует прямой зависимости поглощения питательных веществ корнями растений от интенсивности транспирации, от количества поглощенной и испарившейся влаги.

Все это подтверждает положение, что поглощение питательных веществ растениями осуществляется не просто путем пассивного всасывания корнями почвенного раствора вместе с содержащимися в нем солями, а является активным физиологическим процессом, который неразрывно связан с жизнедеятельностью корней и надземных органов растений, с процессами фотосинтеза, дыхания и обмена веществ и обязательно требует затраты энергии.

Схематически процесс поступления элементов питания в корневую систему растений выглядит следующим образом.

К внешней поверхности цитоплазматической мембраны корневых волосков и наружных клеток молодых корешков ионы минеральных солей передвигаются из почвенного раствора с током воды и за счет диффузии.

Первым этапом поступления ионов внутрь клетки является поглощение (адсорбция) ионов на наружной поверхности цитоплазматической мембраны. Она состоит из двух слоев фосфолипидов, между которыми встроены молекулы белков. Благодаря мозаичной структуре отдельные участки цитоплазматической мембраны имеют отрицательные и положительные заряды, за счет которых может происходить одновременно адсорбция необходимых растению катионов и анионов из наружной среды в обмен на другие ионы.

Обменным фондом катионов и анионов у растений могут являться ионы Н+ и ОН- , а также Н+ и НСО3- , образующиеся при диссоциации угольной кислоты, выделяемой при дыхании.

Адсорбция ионов на поверхности цитоплазматической мембраны носит обменный характер и не требует затраты энергии. В обмене принимают участие не только ионы почвенного раствора, но и ионы, поглощенные почвенными коллоидами. Вследствие активного поглощения растениями ионов, содержащих необходимые элементы питания, их концентрация в зоне непосредственного контакта с корневыми волосками снижается. Это облегчает вытеснение аналогичных ионов из поглощенного почвой состояния в почвенный раствор (в обмен на другие ионы).

Транспорт адсорбированных ионов с наружной стороны цитоплазматической мембраны на внутреннюю против градиента концентрации и против электрического потенциала требует обязательной затраты энергии. Механизм такой «активной» перекачки весьма сложен. Она осуществляется с участием специальных «переносчиков» и так называемых ионных насосов, в функционировании которых важная роль принадлежит белкам, обладающим АТФ – азной активностью. Активный транспорт внутрь клетки через мембрану одних ионов, содержащих необходимые растениям элементы питания, сопряжен с встречным транспортом наружу других ионов, находящихся в клетке в функционально избыточном количестве.

Первоначальный этап поглощения питательных веществ растениями из почвенного раствора – адсорбция ионов на поглощающей поверхности корня – постоянно возобновляется, поскольку адсорбированные ионы непрерывно перемещаются внутрь клеток корня.

Избирательность поглощения ионов, повышение их концентрации внутри клеток, конкуренцию при поглощении клетками корня между химически близкими ионами объясняет теория переносчиков. Согласно этой теории ион преодолевает мембрану не в свободном виде, а в виде комплекса с молекулой переносчика. На внутренней стороне мембраны комплекс диссоциирует, освобождая ион внутри клетки. Перенос ионов внутрь клеток может осуществляться с помощью переносчиков различного типа.

Транспорт веществ внутрь клеток корня стимулируется тем, что в цитоплазме многие ионы вовлекаются быстро в биосинтетические процессы и вследствие образования органических веществ концентрация ионов внутри клеток падает.

Активный транспорт питательных веществ из клетки в клетку осуществляется по плазмодесмам, соединяющим цитоплазму клеток растений в единую систему – так называемый симпласт. При передвижении по симпласту часть ионов и метаболитов может выделяться в межклеточное пространство, и передвигаются к местам усвоения пассивно с восходящим током воды по ксилеме. Обычная скорость передвижения ионов, аминокислот, сахаров 2 – 4 см в час.

Существует тесная связь между интенсивностью поглощения растениями элементов питания и интенсивностью дыхания корней, поскольку процесс дыхания является источником энергии, необходимой для активного поглощения элементов минерального питания. Так, при ухудшении роста корней и торможении дыхания (при недостатке кислорода в условиях плохой аэрации или избыточном увлажнении почвы) поглощение питательных веществ резко ограничивается.

Для нормального роста и дыхания корней необходим постоянный приток к ним энергетического материала – продуктов фотосинтеза (углеводов и других органических соединений) из надземных органов. При ослаблении фотосинтеза уменьшается образование и передвижение ассимилянтов в корни, вследствие чего ухудшается жизнедеятельность и снижается поглощение питательных веществ из почвы.

Растения усваивают ионы не только из почвенного раствора, но и ионы, поглощенные коллоидами. Более того, растения активно (благодаря растворяющей способности корневых выделений, включающих угольную кислоту, органические кислоты и аминокислоты) воздействуют на твердую фазу почвы, переводя необходимые питательные вещества в доступную форму.

 

megaobuchalka.ru

Корень

 

Типы корней и корневых систем

 

Корень — один из основных вегетативных органов листостебельных растений, служащих для прикрепления к субстрату и поглощения из него питательных веществ и воды. Филогенетически корень возник позднее, чем сте­бель, и, вероятно, произошел от корнеподобных подзем­ных веточек. У всех высших растений корень имеет сложное строение. Клетки разных участков корня отлича­ются друг от друга формой и размерами. Корень растет в длину своей верхушкой, где находятся молодые клетки образовательной ткани. Растущая часть покрыта корневым чехликом, защищающим кончик корня от повреждений. Кончик корня, или точка роста, состоит из мелких тонко­стенных одинаковых клеток, заполненных цитоплазмой. Благодаря их делению происходит увеличение числа кле­ток. Несколько выше клетки удлиняются (зона роста или растяжения), и корень быстро проникает в новые участки почвы. Еще выше на поверхности корня расположены корневые волоски, которые всасывают воду с растворен­ными в ней веществами. Участок с корневыми волосками называют всасывающей зоной корня. Корневые волоски — это сильно удлиненные выросты наружных клеток, покры­вающих корень. Их длина достигает 10 мм. Корневые волоски недолговечны. У некоторых растений они живут не больше суток, у яблони могут жить до 15 суток, у хлопчатника до 18 суток. Корень непрерывно растет, обра­зуя все новые и новые участки корневых волосков. Корне­вые волоски могут не только поглощать готовые растворы веществ, но и способствовать растворению некоторых ве­ществ почвы, а затем всасывать их.

Между всасывающей зоной и стеблем находится про­водящая зона корня, по сосудам которой вода и растворен­ные в ней вещества из корня поступают в стебель и листья (восходящий ток), а вещества, образовавшиеся в листьях и в стебле, по ситовидным трубкам — в корень (нисходящий ток).

Группы клеток одинакового строения, выполняющие одинаковые функции и имеющие общее происхождение, называют тканями.

Корень, как и другие органы, состоит из разных тка­ней: зона деления — из образовательной ткани, зона вса­сывания покрыта всасывающей тканью.

В состав проводящих тканей корня входят сосуды. Под слоем клеток, образующих корневые волоски, расположена кора корня. Она состоит из сомкнутых округлых клеток. Оболочки клеток пропитаны пробковым веществом. Клет­ки коры образуют покровную ткань корня. Прочность и упругость корня обеспечивает механическая ткань. Ее со­ставляют вытянутые вдоль корня клетки с толстыми обо­лочками. Они рано теряют содержимое и заполнены воз­духом.

В корнях синтезируются алкалоиды, гормоны роста и другие физиологически активные соединения. Корни мно­гих растений (корнеотпрысковые) образуют придаточные почки, дающие надземные побеги, у ряда растений служат местом отложения запасных питательных веществ.

У некоторых тропических деревьев от основания ство­лов или ветвей отходят придаточные корни, служащие для опоры и питания, — дисковидные, ходульные, столбовидные. У лиан развиваются корни — прицепки, у эпифитов — воздушные корни

У мангровых деревьев, растущих в приливных зонах суши, от нижних ветвей отходят столбовидные опорные воздушные корни, в отлив обнажаются растущие от осно­вания стволов дугообразные ходульные корни. Перекрещи­ваясь, они создают своего рода завесу. Мангровая чаща практически непроходима для животных и человека. Бла­годаря такому приспособлению растения не вымываются приливом.

За что ценится женьшень? Вот уже пять тысячелетий он известен в тибетской медицине. Первые сведения о его исключительных лекарственных свойствах встречаются в древних руководствах китайской медицины, написанных две-три тысячи лет назад. В Европе о нем узнали в 1713 году. После однократного приема нескольких граммов экстракта корня физическая и умственная работоспособ­ность повышается на тридцать процентов. По словам та­ежников, достаточно пожевать кусочек корня — и человек может целый день без устали идти по сопкам. Основная ценность в том, что он пробуждает в ослабленном организ­ме скрытые жизненные резервы, улучшает обмен веществ.

Истощение запасов дикорастущего женьшеня застави­ло людей культивировать его. Корни женьшеня в культуре развиваются очень быстро и достигают крупных размеров, но ценятся меньше, так как действующие вещества накап­ливаются очень медленно в естественной среде.

www.bioaa.info

Поступление питательных веществ в растения. Строение корневой системы. Поступление иона в свободное пространство корня.

Растения поглощают питательные вещества почвы с помощью корневой системы. Корни растений сильно разветвлены, проникают в почву на глубину 1,5-2 м, у некоторых растений 5-10 м. В ширину распространяется на 30-65см.

Каждый корень можно разделить на 3 основные зоны:

1) Роста и растяжения 1,5 мм

2) Всасывания 1-2 см

3) Боковых корней

 

Зона роста и растяжения. При делении клеток апикальной меристемы расположенной в этой зоне происходит рост корня.

Зона всасывания (корневых волосков) – зона активного поглощения, наружные клетки которой образуют выросты – корневые волоски. Диаметром 5-72 мкм, длиной 80-1500 мкм.

Зона боковых корней (проводящая) – покрыта пробковой тканью.

 

Наличие большого количества корневых волосков 200-500 шт/мм2 в соответствующей зоне определяет исключительно тесный контакт корневой системы с почвой.

Корневой волосок существует не долго, от 1 до нескольких суток, после их отмирания интенсивность поглощения питательных веществ на данном участке корня резко снижается. По мере нарастания корня происходит перемещение зоны активного поглощения в почве, и растение получает возможность получать новое количество элементов питания. Наблюдается хемотропизм, т.е. корень растет в сторону большей концентрации питательных веществ.

 

В поступлении питательных веществ можно выделить этапы:

1) поступление иона в кажущееся свободное пространство корня

2) преодоление мембранного барьера

3) транспорт иона по тканям растения

 

Поступление иона в кажущееся свободное пространство корня

Питательные вещества могут вступать в контакт с поверхностью корня по 3-м механизмам:

1. корневой перехват (к соприкосновению с питательным веществом приводит рост корней)

2. массовый поток (растения поглощают воду, вызывая движение к корню почвенного раствора содержащего питательные вещества)

3. диффузия (потребляя элементы питания растения, уменьшают их концентрацию у поверхности корней, это дает возможность перемещения питательных веществ по градиенту концентрации)

Вклад каждого из этих механизмов зависит от интенсивности поглощения веществ корнем и от обеспеченности элементом почвы. Катионы и анионы элементов питания поступая к поверхности корня обменно адсорбируются в «кажущемся свободном» пространстве – апопласте, образованном клеточными стенками и межклетником и составляющее 5-10% растительных тканей. Благодаря апопласту корни растения также как и почвенные коллоиды облают емкостью поглощения.

 

В процессе дыхания корневой системы выделяется СО2, который взаимодействуя с Н2О образует Н2СО3 частично диссациирующего на Н+ и НСО3- . Эти ионы адсорбируются в апопласте и составляют постоянно возобновляемый обменный фонд клеток корня. При контакте корня с почвенным раствором и коллоидными частицами происходит обмен Н+ на катион Nh5+,K+ и др., НСО3- меняется на NO3-,Cl- и др.

Поглощение элементов питания свободным пространством корня может осуществляться не только обменно на Н+ и НСО3- но и на ионы органических и минеральных соединений выделяемых корнем.

Ионы элементов питания, адсорбированные в апопласте удерживаются силами электростатического притяжения и могут вытесняться другими ионами в окружающий раствор.

Таким образом, поглощение питательных веществ свободным пространством – это предварительный этап поступления их в клетку.

 

cyberpedia.su

Поглощение питательных веществ растениями через корни

За счет сосущей силы, возникающей при испарении влаги через устьица листьев, и нагнетающего действия корней находящиеся в почвенном растворе ионы минеральных солей вместе стоком воды могут поступать сначала в полые межклетники и поры клеточных оболочек молодых корешков, а затем транспортироваться в надземную часть растений по ксилеме — восходящей части сосудисто-проводящей системы, состоящей из омертвевших клеток без перегородок, лишенных живого содержимого. Однако внутрь живых клеток корня (как и надземных органов), имеющих наружную полупроницаемую цитоплазматическую мембрану, поглощенные и транспортируемые с водой ионы могут проникать «пассивно» — без дополнительной затраты энергии — только по градиенту концентрации — от большей к меньшей за счет процесса диффузии либо при наличии соответствующего электрического потенциала (для катионов — отрицательного, а анионов — положительного) на внутренней поверхности мембраны по отношению к наружному раствору.

В то же время хорошо известно, что концентрация отдельных ионов в клеточном соке, как и в пасоке растений (транспортируемой по ксилеме из корней в надземные органы) чаще всего значительно выше, чем в почвенном растворе. В этом случае поглощение питательных веществ растениями должно происходить против градиента концентрации и невозможно за счет диффузии.

Растения одновременно поглощают как катионы, так и анионы. При этом отдельные ионы поступают в растение совсем в другом соотношении, чем они содержатся в почвенном растворе. Одни ионы поглощаются корнями в большем, другие — в меньшем количестве и с разной скоростью даже при одинаковой их концентрации в окружающем растворе. Совершенно очевидно, что пассивное поглощение, основанное на явлениях диффузии и осмоса, не может иметь существенного значения в питании растений, носящем ярко выраженный избирательный характер.

Исследования с применением меченых атомов убедительно показали также, что поглощение питательных веществ и дальнейшее их передвижение в растении происходит со скоростью, которая в сотни раз превышает возможную за счет диффузии и пассивного транспорта по сосудисто-проводящей системе с током воды.

Кроме того, не существует прямой зависимости поглощения питательных веществ корнями растений от интенсивности транспирации, от количества поглощенной и испарившейся влаги.

Все это подтверждает положение, что поглощение питательных веществ растениями осуществляется не просто путем пассивного всасывания корнями почвенного раствора вместе с содержавшимися в нем солями, а является активным физиологическим процессом, который неразрывно связан с жизнедеятельностью корней и надземных органов растений, с процессами фотосинтеза, дыхания и обмена веществ и обязательно требует затраты энергии.

Схематически процесс поступления элементов питания в корневую систему растений выглядит следующим образом.

К внешней поверхности цитоплазматической мембраны корневых волосков и наружных клеток молодых корешков ионы минеральных солей передвигаются из почвенного раствора с током воды и за счет процесса диффузии.

Клеточные оболочки имеют довольно крупные поры или каналы и легкопроницаемы для ионов. Более того, целлюлозно-пектиновые стенки обладают высокой сорбирующей способностью. Поэтому в пространстве каналов клеточных оболочек и межклетников не только свободно передвигаются, но и концентрируются ионы из почвенного раствора. Здесь создается как бы своеобразный фонд ионов минеральных солей для последующего поступления внутрь клетки.

Первым этапом поступления является поглощение (адсорбция) ионов на наружной поверхности цитоплазматической мембраны. Она состоит из двух слоев фосфолипидов, между которыми встроены молекулы белков. Благодаря мозаичной структуре отдельные участки цитоплазматической мембраны имеют отрицательные и положительные заряды, за счет которых может происходить одновременно адсорбция необходимых растению катионов и анионов из наружной среды в обмен на другие ионы.

Обменным фондом катионов и анионов у растений могут являться ионы Н+ и ОН-, а также Н+ и НСО-3, образующиеся при диссоциации угольной кислоты, выделяемой при дыхании.

Адсорбция ионов на поверхности цитоплазматической мембраны носит обменный характер и не требует затраты энергии. В обмене принимают участие не только ионы почвенного раствора, но и ионы, поглощенные почвенными коллоидами. Вследствие активного поглощения растениями ионов, содержащих необходимые элементы питания, их концентрация в зоне непосредственного контакта с корневыми волосками снижается. Это облегчает вытеснение аналогичных ионов из поглощенного почвой состояния в почвенный раствор (в обмен на другие ионы).

Транспорт адсорбированных ионов с наружной стороны цитоплазматической мембраны на внутреннюю против градиента концентрации и против электрического потенциала требует обязательной затраты энергии. Механизм такой «активной» перекачки весьма сложен. Она осуществляется с участием специальных «переносчиков» и так называемых ионных насосов, в функционировании которых важная роль принадлежит белкам, обладающим АТФ-азной активностью. Активный транспорт внутрь клетки через мембрану одних ионов, содержащих необходимые растениям элементы питания, сопряжен с встречным транспортом наружу других ионов, находящихся в клетке в функционально избыточном количестве.

Первоначальный этап поглощения питательных веществ растениями из почвенного раствора — адсорбция ионов на поглощающей поверхности корня — постоянно возобновляется, поскольку адсорбированные ионы непрерывно перемещаются внутрь клеток корня.

Поступившие в клетку ионы в неизменном виде либо уже в форме транспортных органических соединений, синтезируемых в корнях, передвигаются в надземные органы — стебли и листья, в места наиболее интенсивной их ассимиляции. Активный транспорт питательных веществ из клетки в клетку осуществляется по плазмодесмам, соединяющим цитоплазму клеток растений в единую систему — так называемый симпласт. При передвижении по симпласту часть ионов и метаболитов может выделяться в межклеточное пространство и передвигаться к местам усвоения пассивно с восходящим током воды по ксилеме.

Поглощение корнями и транспорт питательных веществ тесно связаны с процессами обмена веществ и энергии в растительных организмах, с жизнедеятельностью и ростом как надземных органов, так и корней.

Процесс дыхания является источником энергии, необходимой для активного поглощения элементов минерального питания. Этим обусловливается тесная связь между интенсивностью поглощения растениями элементов питания и интенсивностью дыхания корней. При ухудшении роста корней и торможении дыхания (при недостатке кислорода в условиях плохой аэрации или избыточном увлажнении почвы) поглощение питательных веществ резко ограничивается.

Для нормального роста и дыхания корней необходим постоянный приток к ним энергетического, материала — продуктов фотосинтеза (углеводов и других органических соединений) из надземных органов. При ослаблении фотосинтеза уменьшается образование и передвижение ассимилятов в корни, вследствие чего ухудшается жизнедеятельность и снижается поглощение питательных веществ из почвы.



biofile.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта